

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	46,00	(dBm)
Maximum peak output power at antenna input terminal:	39810,71706	(mW)
Antenna gain(maximum):	8,5	(dBi)
Maximum antenna gain:	7,079457844	(numeric)
Time Averaging:	100	(%)
Prediction distance:	150	(cm)
Prediction frequency:	2020	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1,000	(mW/cm^2)
Power density at prediction frequency:	0,996799	(mW/cm^2)
Margin of compliance:	0,0	(dB)
This equates to:	9,967990556	W/m^2