	Title 47 - Telecommunication Chapter I Federal Communications Commission Subchapter B - Common carrier services Part 27 - Miscellaneous wireless communications services
Applicant:	TEKO Telecom Srl. Via Meucci, 24/a 40024 - Castel S. Pietro Terme (BO) - Italy
Apparatus:	Next Generation Very Very High Power Remote Unit 3700-3980MHz
Model:	RD35TWW2AT
FCC ID:	XM2-RD35TW2

	Nemko Italy Spa Via del Carroccio, 4 20853 Biassono (MB) - Italy
Telephone: $\quad+390392201201$	
Facsimile: $\quad+390392201221$	

	Name and title	Date
Tested by:	BauM L	$2022-11-25$
Reviewed by:	Parbieri, Wireless/EMC Specialist Bambe Guounone	$2022-11-25$
	D. Guarnone, Wireless/EMC Specialist	

Table of contents

Section 1: Report summary 3
1.1 Test specification 3
1.2 Statement of compliance 3
1.3 Exclusions 3
1.4 Registration number 3
1.5 Test report revision history 3
1.6 Limits of responsibility 3
Section 2: Summary of test results 4
2.1 FCC Part 27, test results 4
Section 3: Equipment under test (EUT) and application details 5
3.1 Applicant details 5
3.2 Modular equipment 5
3.3 Product details 5
3.4 Application purpose 5
3.5 Composite/related equipment 6
3.6 Sample information 6
3.7 EUT technical specifications 6
$3.8 \quad$ Accessories and support equipment 7
The following information identifies accessories used to exercise the EUT during testing: 7
$3.9 \quad$ Operation of the EUT during testing 8
3.10 EUT setup diagram 8
Section 4: Engineering considerations 9
$4.1 \quad$ Modifications incorporated in the EUT 9
4.2 Deviations from laboratory tests procedures 9
4.3 Technical judgment 9
Section 5: Test conditions 10
5.1 Deviations from laboratory tests procedures 10
5.2 Test conditions, power source and ambient temperatures 10
5.3 Measurement uncertainty 10
5.4 Test equipment 12
Appendix A: Test results 13
Clause 935210 D05v01r04 (3.2) AGC threshold 13
Clause 935210 D05v01r04 (3.3) Out of band rejection 18
Clause 27.53(I)(1) Occupied bandwidth 20
Clause 27.50(j) Peak output power at RF antenna connector 29
Clause 27.53(I) Spurious emissions at RF antenna connector 40
Clause 27.53(I) Radiated Spurious emissions 84
Clause 27.54 Frequency stability 104
Appendix B: Block diagrams of test set-ups 111
Appendix C: EUT Photos 112

Specification: FCC 27

Section 1: Report summary

1.1 Test specification

Specifications

Part 27 - Miscellaneous wireless communications services

1.2 Statement of compliance

Compliance	In the configuration tested the EUT was found compliant		
Yes $\boxtimes \quad$ No \square		\quad	Test method: ANSI C63.26-2015, 662911 D01 Multiple Transmitter Output
:---			
v02r01, 662911 D02 MIMO with Cross-Polarized Antennas v01,			
935210 D05 Measurements guidance for industrial and non-consumer signal			
booster, repeater and amplifier devices v01r04			

1.3 Exclusions

Exclusions None

1.4	Registration number
FCC site number	682159

1.5 Test report revision history
 Revision \# \quad Details of changes made to test report TRFWL Original report issued

1.6 Limits of responsibility

[^0]
Section 2: Summary of test results

2.1 FCC Part 27, test results

Part	Methods	Test description	Verdict
	$\S 935210$ D05v01r04 (3.2)	AGC threshold	Pass
	$\S 935210$ D05v01r04 (3.3)	Out of band rejection	Pass
§27.53(I)(1)	$\S 935210$ D05v01r04 (3.4)	Occupied bandwidth	Pass
$\S 27.50(\mathrm{j})$	$\S 935210$ D05v01r04 (3.5)	Peak output power at RF antenna connector	Pass
$\S 27.53(\mathrm{l})$	$\S 935210$ D05v01r04 (3.6)	Spurious emissions at RF antenna connector	Pass
$\S 27.53(I)$	$\S 935210$ D05v01r04 (3.8)	Radiated spurious emissions	Pass
$\S 27.54$	$\S 935210$ D05v01r04 (3.7)	Frequency stability	Pass

Notes:

Specification: FCC 27

Section 3: Equipment under test (EUT) and application details

3.1 Applicant details		
	Name: Federal Registration Number (FRN):	Teko Telecom Srl
	Grantee code	XM2
Mailing address	Address: City:	Via Meucci, 24/a Castel S. Pietro Terme Province/State: Post code: Country:

3.2 Modular equipment	
a) Single modular	Single modular approval
approval	Yes \square
b) Limited single	Limited single modular approval
modular approval	Yes \square

P.3 Product details		
	Grantee code:	XM2
	Product code:	-RD35TW2
Equipment class	B2I	
Description of product as it is marketed	Booster Model name/number:	RD35TWW2AT
	Serial number:	1038378001

3.4 Application purpose		
Type of application	\boxtimes	Original certification
	\square	Change in identification of presently authorized equipment
		Original FCC ID: Grant date:
	\square	Class II permissive change or modification of presently authorized equipment

Section 3: Equipment under test

Composite/related equipment	
a) Composite equipment	The EUT is a composite device subject to an additional equipment authorization Yes \square No \boxtimes
b) Related equipment	The EUT is part of a system that operates with, or is marketed with, another device that requires an equipment authorization Yes \square No \boxtimes
c) Related FCC ID	If either of the above is "yes": has been granted under the FCC ID(s) listed below: is in the process of being filled under the FCC ID(s) listed below: is pending with the FCC ID(s) listed below: has a mix of pending and granted statues under the FCC ID(s) listed below: i FCC ID: ii FCC ID:

3.6 Sample information	
Receipt date:	$2022 / 11 / 11$
Nemko sample ID number:	4478350001

$3.7 \quad$ EUT technical specifications	
Operating band: Operating frequency:	Down Link - Up Link: $3700-3980 \mathrm{MHz}$
Modulation type:	TDD 5G NR (QAM and QPSK)
Occupied bandwidth:	5 G NR: 10 MHz to 100 MHz
Channel spacing:	standard
Emission designator:	5 G NR: D7W
RF Output	Down Link: $-\quad$ max composite output power based on one carrier per path: 46 dBm $(40,00 \mathrm{~W})$ - MIMO max composite output power based on one carrier per path: 49 dBm (80,00W) Up Link: N.A. (The EUT does not transmit over the air in the up-link direction)
Gain	Down Link: 48dB Up Link: N.A. (The EUT does not transmit over the air in the up-link direction)
Antenna type:	External Antenna is not provided, equipment that has an external 50Ω RF connector
Power source:	100-240 Vac

Section 3: Equipment under test

3.8 Accessories and support equipment	
The following information identifies accessories used to exercise the EUT during testing:	
Item \# 1	
Type of equipment:	Next Generation OTRX
Brand name:	Teko Telecom srl
Model name or number:	ED35TD
Serial number:	---
Nemko sample number:	----------
Connection port:	DL/UL RF connector (to connect to the base station) SFP/Optical port (to connect to remote unit)
Cable length and type:	---------
Item \# 2	
Type of equipment:	
Brand name:	
Model name or number:	
Serial number:	
Nemko sample number:	
Connection port:	
Cable length and type:	
Item \# 3	
Type of equipment:	
Brand name:	
Model name or number:	
Serial number:	
Nemko sample number:	
Connection port:	
Cable length and type:	
Item \# 4	
Type of equipment:	
Brand name:	
Model name or number:	
Serial number:	
Nemko sample number:	
Connection port:	
Cable length and type:	

Section 3: Equipment under test

3.9 Operation of the EUT during testing

Details: \quad In down-link direction, normal working at max gain with max RF power output.

3.10 EUT setup diagram

In this system, Next Generation Remote Unit is the EUT. Next Generation OTRX includes only management of optical conversion (to convert RF signal in optical signal in down-link direction and vice versa optical signal in RF signal in up-link direction). As described in "Operational description", OTRX is connected directly to base station, so the system doesn't use another equipment (under another FCC ID) to exercise the EUT. Signal generator is linked directly to the RF connector of the OTRX.

Test setup for output power, occupied bandwidth, spurious emissions:

Procedure

Connect the signal modulated generator to the input of the EUT, so that the EUT works at the max gain. Raise the input level to the EUT until reach the maximum output power. Connect the spectrum analyzer to the RF output connector of the EUT.

Specification: FCC 27

Section 4: Engineering considerations

4.1 Modifications incorporated in the EUT
 Modifications \quad Modifications performed to the EUT during this assessment None $\boxtimes \quad$ Yes \square, performed by Client \square or Nemko \square Details:

4.2 Deviations from laboratory tests procedures	
Deviations	Deviations from laboratory test procedures None $\boxtimes \quad$ Yes \square - details are listed below:

4.3 Technical judgment	
Judgment	None

Specification: FCC 27

Section 5: Test conditions

5.1 Deviations from laboratory tests procedures

No deviations were made from laboratory test procedures.

5.2 Test conditions, power source and ambient temperatures

Normal temperature, humidity and air pressure test conditions	Temperature: $18-33^{\circ} \mathrm{C}$ Relative humidity: $25-75 \%$ Air pressure: $86-106 \mathrm{kPa}$
When it is impracticable to carry out tests under these conditions, a note to this	
effect stating the ambient temperature and relative humidity during the tests shall	
be recorded and stated.	

5.3 Measurement uncertainty

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002. The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:
P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit. F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.
Hereafter Nemko's measurement uncertainties are reported:

Specification: FCC 27

Section 5: Test conditions, continued

EUT	Type	Test	Range	Measurement Uncertainty	Notes
Transmitter	Conducted	Frequency error	$0.001 \mathrm{MHz} \div 40 \mathrm{GHz}$	0.08 ppm	(1)
		Carrier power RF Output Power	$0.009 \mathrm{MHz} \div 30 \mathrm{MHz}$	1.1 dB	(1)
			$30 \mathrm{MHz} \div 18 \mathrm{GHz}$	1.5 dB	(1)
			$18 \mathrm{MHz} \div 40 \mathrm{GHz}$	3.0 dB	(1)
			$40 \mathrm{MHz} \div 140 \mathrm{GHz}$	5.0 dB	(1)
			$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	1.4 dB	(1)
		Conducted spurious emissions	$0.009 \mathrm{MHz} \div 18 \mathrm{GHz}$	3.0 dB	(1)
			$18 \mathrm{GHz} \div 40 \mathrm{GHz}$	4.2 dB	(1)
			$40 \mathrm{GHz} \div 220 \mathrm{GHz}$	6.0 dB	(1)
		Intermodulation attenuation	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	2.2 dB	(1)
		Attack time - frequency behaviour	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	2.0 ms	(1)
		Attack time - power behaviour	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	2.5 ms	(1)
		Release time - frequency behaviour	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	2.0 ms	(1)
		Release time - power behaviour	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	2.5 ms	(1)
		Transient behaviour of the transmitterTransient frequency behaviour	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	0.2 kHz	(1)
		Transient behaviour of the transmitter - Power level slope	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	9\%	(1)
		Frequency deviation - Maximum permissible frequency deviation	$0.001 \mathrm{MHz} \div 18 \mathrm{GHz}$	1.3\%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	$0.001 \mathrm{MHz} \div 18 \mathrm{GHz}$	0.5 dB	(1)
		Dwell time	-	3\%	(1)
		Hopping Frequency Separation	$0.01 \mathrm{MHz} \div 18 \mathrm{GHz}$	1\%	(1)
		Occupied Channel Bandwidth	$0.01 \mathrm{MHz} \div 18 \mathrm{GHz}$	2\%	(1)
		Modulation Bandwidth	$0.01 \mathrm{MHz} \div 18 \mathrm{GHz}$	2\%	(1)
	Radiated	Radiated spurious emissions	$0.009 \mathrm{MHz} \div 26.5 \mathrm{GHz}$	6.0 dB	(1)
			$26.5 \mathrm{GHz} \div 66 \mathrm{GHz}$	8.0 dB	(1)
			$66 \mathrm{GHz} \div 220 \mathrm{GHz}$	10 dB	(1)
		Effective radiated power transmitter	$10 \mathrm{kHz} \div 26.5 \mathrm{GHz}$	6.0 dB	(1)
			$26.5 \mathrm{GHz} \div 66 \mathrm{GHz}$	8.0 dB	(1)
			$66 \mathrm{GHz} \div 220 \mathrm{GHz}$	10 dB	(1)
Receiver	Radiated	Radiated spurious emissions	$0.009 \mathrm{MHz} \div 26.5 \mathrm{GHz}$	6.0 dB	(1)
			$26.5 \mathrm{GHz} \div 66 \mathrm{GHz}$	8.0 dB	(1)
			$66 \mathrm{GHz} \div 220 \mathrm{GHz}$	10 dB	(1)
		Sensitivity measurement	$1 \mathrm{MHz} \div 18 \mathrm{GHz}$	6.0 dB	(1)
	Conducted	Conducted spurious emissions	$0.009 \mathrm{MHz} \div 18 \mathrm{GHz}$	3.0 dB	(1)
			$18 \mathrm{GHz} \div 40 \mathrm{GHz}$	4.2 dB	(1)
			$40 \mathrm{GHz} \div 220 \mathrm{GHz}$	6.0 dB	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%

Section 5: Test conditions, continued

5.4 Test equipment				
Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
Vector Signal Generator	Keysight	N5182B MXG	MY59100262	2025-07
Vector Signal Generator	Keysight	N5182B MXG	MY61252595	2024-11
Spectrum Analyzer	Keysight	N9030B PXA	MY61330632	2023-04
Spectrum Analyzer	Keysight	N9041B UXA	US57220208	2023-05
Combiner	Miczen	MZP200506GA (0.5-6 GHz)	210314001	COU
Climatic Chambre	Angelantoni	ACS-Hygros 600	7237	2023-11
Antenna Trilog $25 \mathrm{MHz}-8 \mathrm{GHz}$	Schwarzbeck	VULB9162	9162-025	2024-07
Antenna 1-18 GHz	Schwarzbeck	STLP 9148	STPL 9148-123	2024-06
Double Ridge Horn Antenna	RFSpin	DRH40	061106A40	2023-04
Broadband Amplifier	Schwarzbeck	BBV9718C	00121	2023-03
Broadband Bench Top Amplifier	Sage	STB-1834034030-KFKF-L1	18490-01	2023-05
EMI Receiver	Rohde \& Schwarz	ESW44	101620	2023-08
Spectrum analyzer	R\&S	FSW43	101767	2023-01
Controller	Maturo	FCU3.0	10041	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR
Semi-anechoic chamber	Nemko	10 m semi-anechoic chamber	530	NCR
Shielded room	Siemens	10 m control room	1947	NCR
Note: \quad N/A $=$ Not Applicable, NCR = No Cal Required, COU = CAL On Use (*) Equipment supplied by manufacturer's				

Specification: FCC 27

Appendix A: Test results

Clause 935210 D05v01r04 (3.2) AGC threshold

Measure of EUT AGC Threshold

Test date: 2022-11-11 to 2022-11-25

Test results: Pass

```
Special notes
```

 -
 | Equipment | Manufacturer | Model No. | Asset/Serial No. | Next cal. |
| :---: | :---: | :---: | :---: | :---: |
| Vector Signal Generator | Keysight | N5182B MXG | MY59100262 | 2025-07 |
| Spectrum Analyzer | Keysight | N9030B PXA | MY61330632 | 2023-04 |
| Note: $\quad N / A=$ Not Applicable, NCR $=$ No Cal Required, COU $=$ CAL On Use (*) Equipment supplied by manufacturer's | | | | |

Specification: FCC 27

Test data

RF PORT 1

10 MHz signal, middle channel, nominal input signal

10 MHz signal, middle channel, nominal input signal +1 dB

100 MHz signal, middle channel, nominal input signal

100 MHz signal, middle channel, nominal input signal +1 dB

Specification: FCC 27

RF PORT 2

10 MHz signal, middle channel, nominal input signal

10 MHz signal, middle channel, nominal input signal +1 dB

100 MHz signal, middle channel, nominal input signal

100 MHz signal, middle channel, nominal input signal +1 dB

Specification: FCC 27

Clause 935210 D05v01r04 (3.3) Out of band rejection

Out of Band Rejection - Test for rejection of out of band signals.

Test date: 2022-11-11 to 2022-11-25

Test results: Pass

Special notes

Test equipment				Manufacturer
Equipment	Model No.	Asset/Serial No.	Next cal.	
Vector Signal Generator	Keysight	N5182B MXG	MY59100262	$2025-07$
Spectrum Analyzer	Keysight	N9030B PXA	MY61330632	2023-04
Note: \quad N/A $=$ Not Applicable, NCR = No Cal Required, COU = CAL On Use (*) Equipment supplied by manufacturer's				

Specification: FCC 27

Test data

RF PORT 1

RF PORT 2

Clause 27.53(I)(1) Occupied bandwidth

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

```
Test date: 2022-11-11 to 2022-11-25
Test results: Pass
```


Special notes

-

Test equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
Vector Signal Generator	Keysight	N5182B MXG	MY59100262	$2025-07$
Spectrum Analyzer	Keysight	N9030B PXA	MY61330632	$2023-04$

Note: $\quad \mathrm{N} / \mathrm{A}=$ Not Applicable, $\mathrm{NCR}=$ No Cal Required, $\mathrm{COU}=\mathrm{CAL}$ On Use
(*) Equipment supplied by manufacturer's

Specification: FCC 27

Test data

RF PORT 1

10 MHz signal, middle channel, nominal input signal - Output

10 MHz signal, middle channel, nominal input signal - Input

10 MHz signal, middle channel, nominal input signal + 3dB - Output

10 MHz signal, middle channel, nominal input signal + 3dB - Input

Lx PASS	Align: Auto	NFE: Off			

\#Res BW 1.0000 MHz Sweep 1.00 ms (1001 pts)

2 Metrics	V	
Occupied Bandwidth		
	97.359 MHz	
	Transmit Freq Error	-116.57 kHz
	x dB Bandwidth	100.7 MHz

Measure Trace	Trace 1
Active Carrier(s)	1
Total Power	55.4 dBm
\% of OBW Power	99.00 \%
x dB	-26.00 dB

100 MHz signal, middle channel, nominal input signal - Output

100 MHz signal, middle channel, nominal input signal - Input

100 MHz signal, middle channel, nominal input signal + 3dB - Output

100 MHz signal, middle channel, nominal input signal + 3dB - Input

Specification: FCC 27

RF PORT 2

10 MHz signal, middle channel, nominal input signal - Output

10 MHz signal, middle channel, nominal input signal - Input

10 MHz signal, middle channel, nominal input signal + 3dB - Output

10 MHz signal, middle channel, nominal input signal + 3dB - Input

100 MHz signal, middle channel, nominal input signal - Output

100 MHz signal, middle channel, nominal input signal - Input

100 MHz signal, middle channel, nominal input signal + 3dB - Output

100 MHz signal, middle channel, nominal input signal + 3dB - Input

Clause 27.50(j) Peak output power at RF antenna connector

§ 27.50(j) The following power requirements apply to stations transmitting in the 37003980MHz band:

(1) The power of each fixed or base station transmitting in the $3700-3980 \mathrm{MHz}$ band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to an equivalent isotropically radiated power (EIRP) of 3280 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station.
(2) The power of each fixed or base station transmitting in the $3700-3980 \mathrm{MHz}$ band and situated in any geographic location other than that described in paragraph (j)(1) of this section is limited to an EIRP of 1640 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station.
(4) Equipment employed must be authorized in accordance with the provisions of§27.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (j)(5) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB .
(5) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, and any other relevant factors, so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Test date: 2022-11-11 to 2022-11-25
 Test results: Pass

Special notes

Test equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
Vector Signal Generator	Keysight	N5182B MXG	MY59100262	$2025-07$
Spectrum Analyzer	Keysight	N9030B PXA	MY61330632	$2023-04$

Note: $\quad \mathrm{N} / \mathrm{A}=$ Not Applicable, $\mathrm{NCR}=$ No Cal Required, $\mathrm{COU}=\mathrm{CAL}$ On Use
(*) Equipment supplied by manufacturer's

Test data

RF PORT 1

AWGN signal, nominal input signal

Test data						
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power $(\mathrm{W} / \mathrm{MHz})$	PAR (dB)
Down-link	$5 \mathrm{G} \mathrm{NR}, 10 \mathrm{MHz}$	3840.0	46.1	40.7	4.1	8.50
Down-link	$5 \mathrm{G} \mathrm{NR}, 100 \mathrm{MHz}$	3840.0	46.0	40.0	0.4	8.61

AWGN signal, nominal input signal + 3dB

Test data						
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power $(\mathrm{W} / \mathrm{MHz})$	PAR (dB)
Down-link	$5 \mathrm{G} \mathrm{NR} 10 MHz$,	3840.0	46.5	44.7	4.5	8.16
Down-link	$5 \mathrm{G} \mathrm{NR}, 100 \mathrm{MHz}$	3840.0	46.2	41.7	0.4	8.27

Note: PAR measure is performed by the "CCDF" function installed on Spectrum analyzer that provides average power (the same measured with "Channel power" function), peak power and PAR.

10 MHz signal, middle channel, nominal input signal

10 MHz signal, middle channel, nominal input signal + 3dB

100 MHz signal, middle channel, nominal input signal

100 MHz signal, middle channel, nominal input signal + 3dB

RF PORT 2

AWGN signal, nominal input signal

Test data						
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power $(\mathrm{W} / \mathrm{MHz})$	PAR (dB)
Down-link	$5 \mathrm{G} \mathrm{NR} 10 MHz$,	3840.0	46.0	40.0	4.0	8.62
Down-link	$5 \mathrm{G} \mathrm{NR}, 100 \mathrm{MHz}$	3840.0	46.0	40.0	0.4	8.74

AWGN signal, nominal input signal + 3dB

Test data						
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power $(\mathrm{W} / \mathrm{MHz})$	PAR (dB)
Down-link	$5 \mathrm{G} \mathrm{NR}, 10 \mathrm{MHz}$	3840.0	46.2	41.7	4.2	8.19
Down-link	$5 \mathrm{G} \mathrm{NR}, 100 \mathrm{MHz}$	3840.0	46.3	42.7	0.4	8.35

Note: PAR measure is performed by the "CCDF" function installed on Spectrum analyzer that provides average power (the same measured with "Channel power" function), peak power and PAR.

10 MHz signal, middle channel, nominal input signal

10 MHz signal, middle channel, nominal input signal + 3dB

100 MHz signal, middle channel, nominal input signal

100 MHz signal, middle channel, nominal input signal + 3dB

Clause 27.53(I) Spurious emissions at RF antenna connector

(I) 3.7 GHz Service. The following emission limits apply to stations transmitting in the 37003980 MHz band:
(1) For base station operations in the $3700-3980 \mathrm{MHz}$ band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed $-13 \mathrm{dBm} / \mathrm{MHz}$. Compliance with this paragraph (I)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Test date: 2022-11-11 to 2022-11-25
 Test results: Pass

Special notes

Test equipment							
Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.			
Vector Signal Generator	Keysight	N5182B MXG	MY59100262	$2025-07$			
Vector Signal Generator	Keysight	N5182B MXG	MY61252595	$2024-11$			
Spectrum Analyzer	Keysight	N9030B PXA	MY61330632	$2023-04$			
Spectrum Analyzer	Keysight	N9041B UXA	US57220208	$2023-05$			
Combiner	Miczen	MZP200506GA (0.5-6 GHz)	210314001	COU			

Note: \quad N/A $=$ Not Applicable, $N C R=$ No Cal Required, $\mathrm{COU}=\mathrm{CAL}$ On Use
${ }^{*}$) Equipment supplied by manufacturer's

Specification: FCC 27

Test data

See Plots below

Spurious emissions measurement results:

Frequency (MHz)	Spurious emission (dBm)	Limit (dBm)	Margin (dB)	
Low channel	Negligible	-16		
Bottom channel				
Mid channel	Negligible	-16		
Middle channel				
High channel				
Last channel	Negligible	-16		

MIMO consideration

The EUT has two MIMO RF Port, so it's possible manage two MIMO RF paths.
If EUT is used in MIMO configuration according to KDB 662911-D01 v02r01 and 662911-D02 v01 with signals completely uncorrelated, the maximum emission is calculated as follows:

- MIMO Maximum Emission = Emission at each path + 10log(Nant) dB = $=$ Emission at each path $+10 \log (2)=$ Emission at each path +3 dB
- Spurious emission are negligible.

Specification: FCC 27

Test data, continued: spurious emissions at antenna terminal

RF PORT 1

10 MHz signal, bottom channel, 30 Mhz - 1GHz

10 MHz signal, bottom channel, 20 Ghz - 40GHz

10 MHz signal, middle channel, 30Mhz - 1 GHz

10 MHz signal, middle channel, $1 \mathrm{GHz}-20 \mathrm{GHz}$

10 MHz signal, middle channel, 20 GHz - 40GHz

10 MHz signal, top channel, 30Mhz - 1GHz

10 MHz signal, top channel, $1 \mathrm{GHz}-20 \mathrm{GHz}$

10 MHz signal, top channel, 20 GHz - 40GHz

100 MHz signal, bottom channel, 30Mhz - 1GHz

100 MHz signal, bottom channel, 1 GHz -20GHz

100 MHz signal, bottom channel, 20 GHz - 40GHz

100 MHz signal, middle channel, 30 Mhz - 1 GHz

100 MHz signal, middle channel, $1 \mathrm{GHz}-20 \mathrm{GHz}$

100 MHz signal, middle channel, 20GHz - 40GHz

100 MHz signal, top channel, 30 Mhz - 1 GHz

100 MHz signal, top channel, $1 \mathrm{GHz}-20 \mathrm{GHz}$

100 MHz signal, top channel, 20 GHz - 40GHz

Specification: FCC 27

RF PORT 2

10 MHz signal, bottom channel, 30Mhz - 1GHz

10 MHz signal, bottom channel, 20Ghz - 40GHz

10 MHz signal, middle channel, 30 Mhz - 1 GHz

10 MHz signal, middle channel, $1 \mathrm{GHz}-20 \mathrm{GHz}$

10 MHz signal, middle channel, $20 \mathrm{GHz}-40 \mathrm{GHz}$

10 MHz signal, top channel, 30Mhz - 1GHz

10 MHz signal, top channel, 1 GHz - 20GHz

10 MHz signal, top channel, 20 GHz - 40GHz

100 MHz signal, bottom channel, 30Mhz - 1GHz

100 MHz signal, bottom channel, 1 GHz - 20GHz

100 MHz signal, bottom channel, 20 GHz - 40GHz

100 MHz signal, middle channel, 30 Mhz - 1 GHz

100 MHz signal, middle channel, 1 GHz - 20 GHz

100 MHz signal, middle channel, $20 \mathrm{GHz}-40 \mathrm{GHz}$

100 MHz signal, top channel, 30 Mhz - 1 GHz

100 MHz signal, top channel, 1 GHz - 20GHz

Specification: FCC 27

Test data, continued: band edges Inter modulation

RF PORT 1

10 MHz signal, Low Band Edge, 1 carrier, nominal input signal

		Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 12 dB Preamp: Off $\mu \mathrm{W}$ Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWWWWW ANNNN
1 Spectrum				Ref Lvl Offset 41.60 dB Ref Level $\mathbf{4 0 . 0 0} \mathbf{~ d B m}$			
Scale/Div 10 dB Ref Level $\mathbf{4 0 . 0 0} \mathbf{d B m}$							
Log	Trace	1 Pass					
			m			Nranm	
10.0							
0.00							
							y
-10.0							
-20.0							nus
-30.0							
-40.0							
-50.0							
Start \#Res	$\begin{aligned} & 3.699000 \mathrm{C} \\ & \text { BW } 100 \mathrm{kH} \end{aligned}$	$\begin{gathered} \mathrm{CHz} \\ \mathrm{kHz} \end{gathered}$		Video BW 300 kH		Stop 3. Sweep 1.00 m	3.711000 CHz ms (1001 pts)

10 MHz signal, Low Band Edge, 1 carrier, nominal input signal + 3dB

10 MHz signal, Low Band Edge, 2 carrier, nominal input signal

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A wwww w w ANNNN

10 MHz signal, Low Band Edge, 2 carrier, nominal input signal + 3dB

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold:>100/100 Trig: Free Run	123456 A WWWWW ANNNN

10 MHz signal, High Band Edge, 1 carrier, nominal input signal

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCa Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWHWW ANNNNN

10 MHz signal, High Band Edge, 1 carrier, nominal input signal + 3dB

10 MHz signal, High Band Edge, 2 carrier, nominal input signal + 3dB

100 MHz signal, Low Band Edge, 1 carrier, nominal input signal

100 MHz signal, Low Band Edge, 1 carrier, nominal input signal + 3dB

100 MHz signal, Low Band Edge, 2 carrier, nominal input signal

100 MHz signal, Low Band Edge, 2 carrier, nominal input signal + 3dB

100 MHz signal, High Band Edge, 1 carrier, nominal input signal

100 MHz signal, High Band Edge, 1 carrier, nominal input signal + 3dB

100 MHz signal, High Band Edge, 2 carrier, nominal input signal

100 MHz signal, High Band Edge, 2 carrier, nominal input signal + 3dB

RF PORT 2

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 12 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: $>100 / 100$ Trig: Free Run	123456 A WWWWW ANNNNN
$\underline{L} \backslash$ PASS						

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWWWW ANNNNN

10 MHz signal, Low Band Edge, 1 carrier, nominal input signal

KEYSIGHT LU PASS	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off $\mu \mathrm{W}$ Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold:>100/100 Trig: Free Run	123456 A WWWWWW ANNNNN

1 Spectrum Scale/Div 10 dB Log Trace 1 Pass
30.0

10 MHz signal, Low Band Edge, 1 carrier, nominal input signal + 3dB

10 MHz signal, Low Band Edge, 2 carrier, nominal input signal

10 MHz signal, Low Band Edge, 2 carrier, nominal input signal + 3dB

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off $\mu \mathrm{W}$ Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWWWW ANNNNN

10 MHz signal, High Band Edge, 1 carrier, nominal input signal

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 12 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWWWWW ANNNNN
LX PASS				Sig Track. Off		ANNNNN

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold:>100/100 Trig: Free Run	123456 A WWWWW ANNNNN

10 MHz signal, High Band Edge, 1 carrier, nominal input signal + 3dB

KEYSIGHTInput: RF Coupling: AC Align: Auto

	Input: RF Coupling: AC Align: Auto	Input Z: 50Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	\#Atten: 10 dB Preamp: Off μ W Path: Standard	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) Avg\|Hold: > 100/100 Trig: Free Run	123456 A WWWWW ANNNN

10 MHz signal, High Band Edge, 2 carrier, nominal input signal + 3dB

100 MHz signal, Low Band Edge, 1 carrier, nominal input signal

100 MHz signal, Low Band Edge, 1 carrier, nominal input signal + 3dB

100 MHz signal, Low Band Edge, 2 carrier, nominal input signal

100 MHz signal, Low Band Edge, 2 carrier, nominal input signal + 3dB

100 MHz signal, High Band Edge, 1 carrier, nominal input signal

100 MHz signal, High Band Edge, 1 carrier, nominal input signal + 3dB

[^0]: Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

 This test report has been completed in accordance with the requirements of ISO/IEC 17025. Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

 Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.
 Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

