

Report Reference ID:	372836-4TRFWL	
	Title 47 – Telecommunication	
Test specification:	Chapter I – Federal Communications Commission Subchapter B – Common carrier services Part 27 – Miscellaneous wireless communications services	
Applicant:	TEKO Telecom Srl. Via Meucci, 24/a I-40024 Castel S. Pietro Terme (BO) (Italy)	
Apparatus:	Medium Power Remote Unit	
Model: TRM19HAWX2325AT		
FCC ID:	XM2-MP19HAWX2325	

Testing laboratory:	Nemko Italy Spa Via del Carroccio, 4 20853 Biassono (MB) – Italy Telephone: +39 039 2201201 Facsimile: +39 039 2201221
---------------------	--

	Name and title	Date
Tested by:	Ballur Part P. Barbieri, Wireless/EMC Specialist	06/24/2019
Reviewed by:	R. Giampaglia, Wireless/EMC Specialist	

Nemko Spa, 20853 Biassono (MB) - Italy. All rights reserved.

This publication may be reproduced in whole for non-commercial purposes as long as Nemko Spa is acknowledged as copyright owner and source of the material. Nemko Spa takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This test report may not be partially reproduced, except with the prior written permission of Nemko Spa. The test report merely corresponds to the test sample. The phase of sampling / collection of equipment under test is carried out by the customer.

This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko.

Table of contents

Section 1:	Report summary	
1.1	Test specification	4
1.2	Statement of compliance	4
1.3	Exclusions	4
1.4	Registration number	4
1.5	Test report revision history	4
1.6	Limits of responsibility	4
Section 2: 3 2.1	Summary of test results	5
Section 3: 3.1	Equipment under test (EUT) and application details6 Applicant details	6
3.2	Modular equipment	6
3.3	Product details	6
3.4	Application purpose	6
3.5	Composite/related equipment	7
3.6	Sample information	7
3.7	EUT technical specifications	7
3.8	Accessories and support equipment	8
The followin	ng information identifies accessories used to exercise the EUT during testing:	8
3.9	Operation of the EUT during testing	9
3.10	EUT setup diagram	9
Section 4: 4.1	Engineering considerations	10
4.2	Deviations from laboratory tests procedures	10
4.3	Technical judgment	10
Section 5: [•] 5.1	Test conditions 11 Deviations from laboratory tests procedures	11
5.2	Test conditions, power source and ambient temperatures	11
5.3	Measurement uncertainty	12
5.4	Test equipment	13
	A: Test results	14
Clause 935	210 D05v01 (3.3) Out of band rejection	15
Clause 27.5	53(h)(3) Occupied bandwidth	16
Clause 27.5	50(d) Peak output power at RF antenna connector	18

Clause 27.53(h) Radiated Spurious emissions	
Clause 27.53(h) Spurious emissions at RF antenna connector	.21

Section 1: Report summary

1.1 Test specification		
Specifications	Part 27 – Miscellaneous wireless communications services	

1.2 Statement of compliance			
Compliance	In the configuration tested the EUT was found compliant Yes No This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Spa. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 27. Radiated tests were conducted in accordance with ANSI C63.26-2015.		

1.3 Exclusions		
Exclusions	None	

1.4Registration numberTest site FCC682159ID number682159

1.5 Test report revision history			
Revision #	Revision # Details of changes made to test report		
TRF	TRF Original report issued		
R1TRF			

1.6 Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Section 2: Summary of test results

Part	Methods	Test description	Verdict
	§ 935210 D05v01r03 (3.2)	AGC threshold	Pass
	§ 935210 D05v01r03 (3.3)	Out of band rejection	Pass
§27.53(h)(3) § 935210 Occupied bandwidth D05v01r03 (3.4)		Pass	
§27.50(d)	§ 935210 D05v01r03 (3.5)	Peak output power at RF antenna connector	Pass
§27.53(h)	§ 935210 D05v01r03 (3.6)	Spurious emissions at RF antenna connector	Pass
§27.53(h)	§ 935210 D05v01r03 (3.8)	Radiated spurious emissions	Pass
§27.54	§ 935210 D05v01r03 (3.7)	Frequency stability	N/A a)
Notes:			

Section 3: Equipment under test (EUT) and application details

3.1 Applicant of	details	
Applicant	Name:	Teko Telecom Srl
complete	Federal	
business name	Registration	0018963462
	Number (FRN):	
	Grantee code	XM2
Mailing address	Address:	Via Meucci, 24/a
	City:	Castel S. Pietro Terme
	Province/State:	Bologna
	Post code:	40024
	Country:	Italy

3.2 Modular ed	quipment	
a) Single modular	Single modular approval	
approval	Yes 🗌 No 🖂	
b) Limited single	Limited single modular approval	
modular approval	Yes 🗌 No 🖂	

3.3 Product details		
FCC ID Grantee code: XM2		XM2
	Product code:	-MP19HAWX2325
Equipment class		
Description of		
product as it is	Model	TRM19HAWX2325ATAT
marketed	name/number:	
	Serial number:	1013849001

3.4 Application	purpo	ose
Type of	\boxtimes	Original certification
application		Change in identification of presently authorized equipment
		Original FCC ID: Grant date:
		Class II permissive change or modification of presently authorized equipment

Section 3: Equipment under test

3.5 Composite	/related equipment		
a) Composite equipment	The EUT is a composite device subject to an additional equipment authorization		
equipment	Yes 🗌 No 🖂		
b) Related	The EUT is part of a system that operates with, or is marketed with,		
equipment	another device that requires an equipment authorization		
	Yes 🗌 No 🖂		
c) Related FCC ID	If either of the above is "yes":		
	has been granted under the FCC ID(s) listed below:		
	is in the process of being filled under the FCC ID(s) listed below:		
	is pending with the FCC ID(s) listed below:		
	\Box has a mix of pending and granted statues under the FCC ID(s)		
	listed below:		
	i FCC ID:		
	ii FCC ID:		

3.6 Sample information Beceint date: 05/27/2019				
Receipt date:	05/27/2019			
Nemko sample ID number:				

3.7 EUT techn	ical specifications
Operating band:	Down Link: 2180–2200 MHz
Operating frequency:	Wideband
Modulation type:	CDMA, WCDMA, LTE (QAM and QPSK)
Occupied	CDMA: 1,25 MHz,
bandwidth:	WCDMA: 5 MHz
	LTE: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz
Channel spacing:	standard
Emission	CDMA, WCDMA: F9W,
designator:	LTE: D7W
RF Output	Down Link: 33dBm (2W)
	Up Link: N.A. (The EUT does not transmit over the air in the up-link
	direction)
Gain	Down Link: 38dB
	Up Link: N.A. (The EUT does not transmit over the air in the up-link
	direction)
Antenna type:	External Antenna is not provided,
	equipment that has an external 50 Ω RF connector
Power source:	100-240 Vac

Section 3: Equipment under test

3.8 Accessories and support equipment

The following information identifies accessories used to exercise the EUT during testing:

Item # 1	
Type of equipment:	Master Unit - Subrack
Brand name:	Teko Telecom srl
Model name or number:	SUB-TRX-PSU
Serial number:	101083001
Nemko sample number:	
Connection port:	
Cable length and type:	
Item # 2	
Type of equipment:	Master Unit – Management Module
Brand name:	Teko Telecom srl
Model name or number:	TSPV-R
Serial number:	110942253
Nemko sample number:	
Connection port:	LAN port
Cable length and type:	
Item # 3	
Type of equipment:	Master Unit – Optical Module
Brand name:	Teko Telecom srl
Model name or number:	TTRU4W-S-M
Serial number:	110679007
Nemko sample number:	
Connection port:	DL/UL RF connector (to connect to the base station)
	Optical port (to connect to remote unit)
Cable length and type:	
Item # 4	
Type of equipment:	Master Unit – Power Supply
Brand name:	Teko Telecom srl
Model name or number:	TPSU/AC
Serial number:	081063004
Nemko sample number:	
Connection port:	
Cable length and type:	

3.9 Operation	of the EUT during testing
Details:	In down-link direction, normal working at max gain with max RF power output.
3.10 EUT setup	diagram
optical module (to co signal in RF signal in connected directly to FCC ID) to exercise module in the Maste	ote Unit is the EUT. Master Unit includes only management module and onvert RF signal in optical signal in down link direction and viceversa optical in up link direction). As described in "Operational description", master unit is base station, so the system doesn't use another equipment (under another the EUT. Signal generator is linked directly to the RF connector of optical r Unit. ut power, occupied bandwidth, spurious emissions:
	EUT EUT Spectrum Analyzer
max gain. Raise the	nodulated generator to the input of the EUT, so that the EUT works at the input level to the EUT until reach the maximum output power. Connect the to the RF output connector of the EUT.

Section 4: Engineering considerations

Modifications Modifications performed to the EUT during this assessment None Yes , performed by Client or Nemko	4.1 Modificatio	ns incorporated in the EUT
Details:	Modifications	

4.2 Deviations	from laboratory tests procedures
Deviations	Deviations from laboratory test procedures
	None 🛛 Yes 🗌 - details are listed below:

4.3 Technical	judgment
Judgment	None

Section 5: Test conditions

5.1 Deviations from laboratory tests procedures

No deviations were made from laboratory test procedures.

5.2 Test condit	5.2 Test conditions, power source and ambient temperatures			
Normal temperature, humidity and air pressure test conditions	Temperature: 15–30 °C Relative humidity: 20–75 % Air pressure: 86–106 kPa			
	When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.			
Power supply range:	The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ± 5 %, for which the equipment was designed.			

Section 5: Test conditions, continued

EUT	Туре	Test	Range and Setup features	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			10 kHz ÷ 30 MHz	1.0 dB	(1)
		Carrier power RF Output Power	30 MHz ÷ 18 GHz	1.5 dB	(1)
			18 MHz ÷ 40 GHz	3.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.6 dB	(1)
			10 kHz ÷ 26 GHz	3.0 dB	(1)
		Conducted spurious emissions	26 GHz ÷ 40 GHz	4.5 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
		Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
Conducted Transmitter Radiated	Conducted	Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
	Conducted	Transient behaviour of the transmitter– Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Padiated apurious amissions	10 kHz ÷ 26.5 GHz	6.0 dB	(1)
	Dodiated	Radiated spurious emissions	26.5 GHz ÷ 40 GHz	8.0 dB	(1)
	Hadlated	Effective radiated power transmitter	10 kHz ÷ 26.5 GHz	6.0 dB	(1)
			26,5 GHz ÷ 40 GHz	8.0 dB	(1)
		De dista de su di	10 kHz ÷ 26.5 GHz	6.0 dB	(1)
	Radiated	Radiated spurious emissions	26.5 GHz ÷ 40 GHz	8.0 dB	(1)
Receiver		Sensitivity measurement	1 MHz ÷ 18 GHz	6.0 dB	(1)
			10 kHz ÷ 26 GHz	3.0 dB	(1)
Conducted	Conducted spurious emissions	26 GHz ÷ 40 GHz	4.5 dB	(1)	

measurement multiplied by the coverage factor k = 2 which has been derived from the assumed normal probability distribution with infinite degrees of freedom and for a coverage probability of 95 %

quipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
ector Signal	Agilent	N5172B EXG	MY53051238	05/2021
ector Signal enerator	Agilent	E4438C ESG	MY45094485	08/2019
pectrum Analyzer	Agilent	N9030A PXA	MY53120882	12/2019
rilog Broad Band ntenna 25-8000 MHz	Schwarzbeck	VULB 9162	VULB 9162-25	07/2021
ntenna 1-18 GHz	Schwarzbeck	STLP 9148	STPL 9148-123	07/2021
ouble ridge horn ntenna (4 ÷ 40 GHz)	RFSpin	DRH40	061106A40	02/2020
Broadband preamplifier 18 ÷ 40 GHz)	Miteq	JS44-18004000-35-8P- R	1.627	09/2019
roadband preamplifier -18 GHz	Schwarzbeck	BBV 9718	9718-137	08/2019
MI receiver 20 Hz ÷ 8 iHz	R&S	ESU8	100202	01/2020
MI receiver 2 Hz ÷ 44 Hz	R&S	ESW44	101620	05/2019
ydraulic revolving atform	Nemko	RTPL 01	4.233	NCR
urning-table	R&S	HCT	835 803/03	NCR
ntenna mast	R&S	HCM	836 529/05	NCR
ontroller	R&S	HCC	836 620/7	NCR
mi-anechoic amber	Nemko	10m semi-anechoic chamber	530	09/2021
hielded room	Siemens	10m control room	1947	NCR
emi-anechoic amber	Nemko	10m semi-anechoic chamber	70	NCR
hielded Room	Siemens	3m semi-anechoic chamber	3	NCR
lotor controller	Emco	1051-25	9012-1559	NCR
otor controller	Emco	1061-1.521	9012-1508	NCR
ntenna Tower	Emco	2071-2	9601-1940	NCR
controller pole/table	Emco	2090	9511-1099	NCR

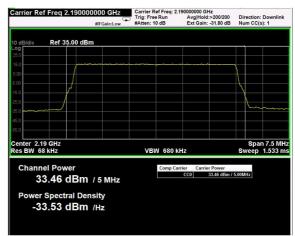
Note: N/A = Not Applicable, NCR = No Cal Required, COU = CAL On Use (*) Equipment supplied by manufacturer's

Appendix A: Test results

Clause 935210 D05v01 (3.2) AGC threshold

Measure of EUT AGC Threshold

Test date: 05/27/2019 to 06/24/2019 Test results: Pass


Special notes

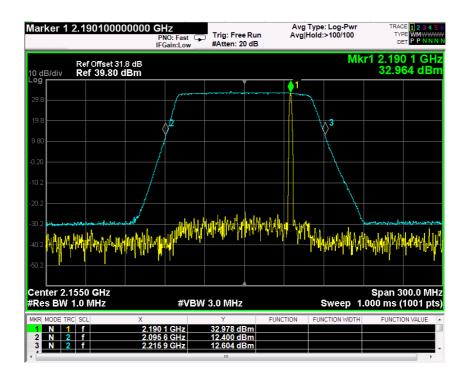
- Broadband amplifiers: AWGN test signal used (5 MHz LTE channel)

Test data

	Ref Freq 2.190	#IFGain:Low	Carrier Ref Freq: 2. Trig: Free Run #Atten: 10 dB	Avg Hold:>200/200 Ext Gain: -31.80 dB	Direction: Downline Num CC(s): 1
0 dB/div	Ref 35.00 c	IBm			
og					
5.0					
)
.00					
5.0	/				2
5.0					
5.0	mar				mmm
5.0					
5.0					
enter 2 es BW	2.19 GHz 68 kHz		VBW 680 F	(Hz	Span 7.5 MH Sweep 1.533 m
Chan	nel Power		Comp Ca	arrier Carrier Power	
	33.01 dBr		Comp Ca	CC0 33.01 dBm /	5.00MHz
	33.01 а ы	II / 5 MHZ			
Powe	er Spectral D	ensity			
_	33.98 dBr	n /Hz			

AWGN Signal, Nominal Input Signal

AWGN Signal, Nominal Input Signal +1dB


Clause 935210 D05v01 (3.3) Out of band rejection

Out of Band Rejection – Test for rejection of out of band signals.

Test date: 05/27/2019 to 06/24/2019 Test results: Pass

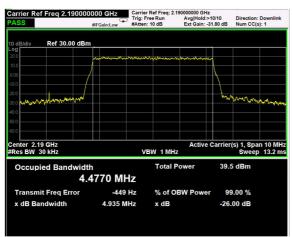
Special notes

Test data

Clause 27.53(h)(3) Occupied bandwidth

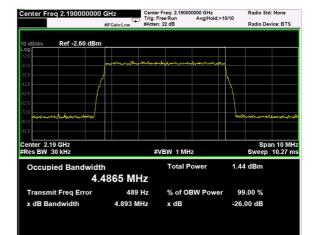
The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

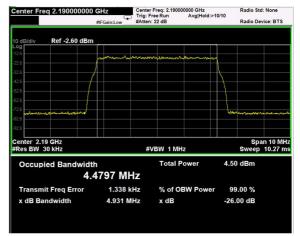
Test date: 05/27/2019 to 06/24/2019 Test results: Pass


Special notes

- Broadband amplifiers: AWGN test signal used (5 MHz LTE channel)

Clause 27.53(h)(3) Occupied bandwidth, continued


Test data


AWGN Signal, Nominal Input Signal, Output

Carrier Ref Fre		#IFGain:Low		e Run	90000000 GHz Avg Hold:> Ext Gain: -3		Direction: Num CC(s	
0 dB/div Re	f 30.00 dBm							
.og								
10.0		Martin Martin	mount	mannon	thomashing	1		
10.0	1					\backslash		
10.0								
20.0						hast	dine Chart	
20.0 30.0	Contraction of the second						stor m	my
10.0								
50.0								
50.0								
Center 2.19 GH Res BW 30 kH			VBI	W 1 MHz		Carrier	(s) 1, Spa Sweep	
Occupied	Bandwidth			Total P	ower	40.2	2 dBm	
Coupier		779 MI	Ηz					
Transmit Fre	eq Error	-465	Hz	% of O	3W Power	99	.00 %	
x dB Bandw	idth	4.935 N	IHz	x dB		-26.	00 dB	

AWGN Signal, Nominal Input Signal +3dB, Output

AWGN Signal, Nominal Input Signal, Input

AWGN Signal, Nominal Input Signal +3dB, Input

Clause 27.50(d) Peak output power at RF antenna connector

§ 27.50(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

- (2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:
 (i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;
 (ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater
- (5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.
- (8) A licensee operating a base or fixed station in the 2180-2200 MHz band utilizing a power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must be coordinated in advance with all AWS licensees authorized to operate on adjacent frequency blocks in the 2180-2200 MHz band.

Test date: 05/27/2019 to 06/24/2019 Test results: Pass

than 1 MHz.

Special notes

- Broadband amplifiers: AWGN test signal used (5 MHz LTE channel)

Clause 27.50(d) Peak output power at RF antenna connector

Test data

AWGN signal, nominal input signal

Test data						
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power (W/MHz)	PAR (dB)
Down-link	AWGN (LTE, 5MHz)	2190.0	33.02	2.00	0.40	10.95

PAR measure is performed by the "CCDF" function installed on Spectrum analyzer that provides average power (the same measured with "Channel power" function), peak power and PAR.

AWGN signal, nominal input signal + 3dB

Test data					
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power (W/MHz)
Down-link	AWGN (LTE, 5MHz)	2190.0	33.39	2.18	0.43

	tion: Downlink CC(s): 1
og <	
200 2	
Channel Power 33.39 dBm / 5 MHz	
Channel Power 33.39 dBm / 5 MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz Comp Carrier Carrier Power CC0 33.39 dBm / 5.00MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz	
channel Power 33.39 dBm / 5 MHz	
enter 2.19 GHz es BW 68 kHz Channel Power 33.39 dBm / 5 MHz	
es BW 68 kHz VBW 680 kHz Swee Channel Power 33.39 dBm / 5 MHz	
33.39 dBm / 5 MHz	pan 7.5 MH ep 1.533 m
33.39 dBm / 5 MHz	i se
Power Spectral Density	
-33.60 dBm /Hz	

Clause 27.53(h) Spurious emissions at RF antenna connector

(h) AWS emission limits:

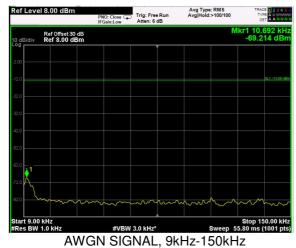
- (1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
- (3) Measurement procedure.
- (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

Test date: 05/27/2019 to 06/24/2019 Test results: Pass

Special notes

- Broadband amplifiers: AWGN test signal used (5 MHz LTE channel)

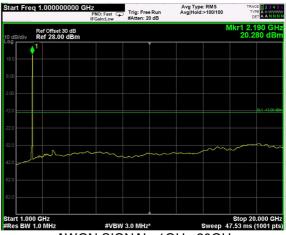
Clause 27.53 (h) Spurious emissions at RF antenna connector, continued


asurement results:		
Spurious emission (dBm)	Limit (dBm)	Margin (dB)
Negligible	-13	
Negligible	-13	
Negligible	-13	
	(dBm) Negligible Negligible	Spurious emission (dBm) Limit (dBm) Negligible -13 Negligible -13

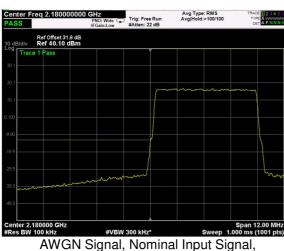
Test data: spurious emissions at antenna terminal

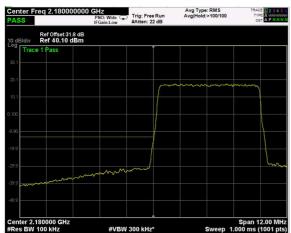
AWGN signal

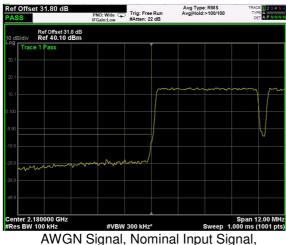

(Plots are referred to modulated carrier at the Middle Channel)

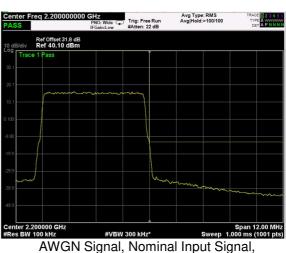


AWGN SIGNAL, 30MHz-1GHz

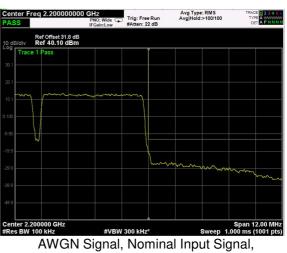

AWGN SIGNAL, 150kHz-30MHz


AWGN SIGNAL, 1GHz-20GHz

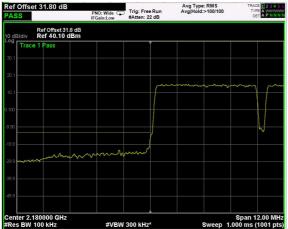

Test data, continued: band edges Inter modulation


Low Band Edge, 1 Carrier

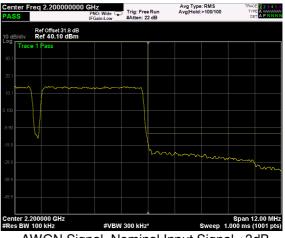
AWGN Signal, Nominal Input Signal +3dB, Low Band Edge, 1 Carrier


Low Band Edge, 2 Carrier

WGN Signal, Nominal Input Signal High Band Edge, 1 Carrier



AWGN Signal, Nominal Input Signal +3dB, High Band Edge, 1 Carrier



High Band Edge, 2 Carrier

AWGN Signal, Nominal Input Signal +3dB, Low Band Edge, 2 Carrier

AWGN Signal, Nominal Input Signal +3dB, High Band Edge, 2 Carrier

Clause 27.53(h) Radiated Spurious emissions

(h) AWS emission limits:

(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

(2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
(i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200 2290 MHz band.

- (3) Measurement procedure.
- (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

Test date: 05/27/2019 to 06/24/2019 Test results: Pass

Special notes

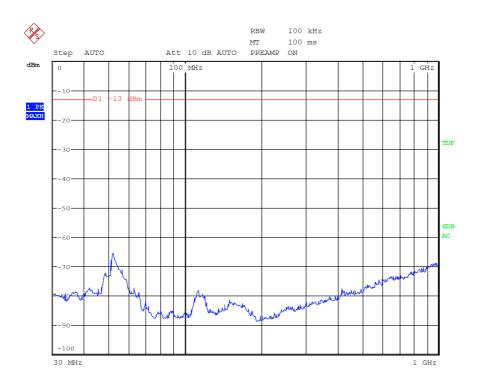
Clause 27.53(h) Radiated spurious emissions, continued

Test data

The D.U.T. was positioned according to the radiated emissions set-up

The D.U.T. antenna connector was terminated by a 50 Ω shielded dummy load.

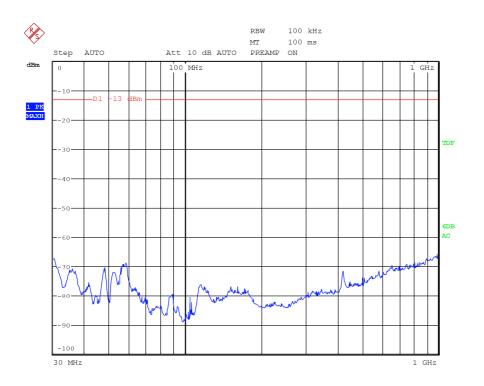
The spectrum was searched from 30 MHz to 1 GHz (RBW 100 kHz) & 1 GHz (RBW 1 MHz) to the tenth harmonic of the carrier.


There were no emissions detected above the noise floor which was at least 20 dB below the specification limit.

Spurious emissions measurement results:

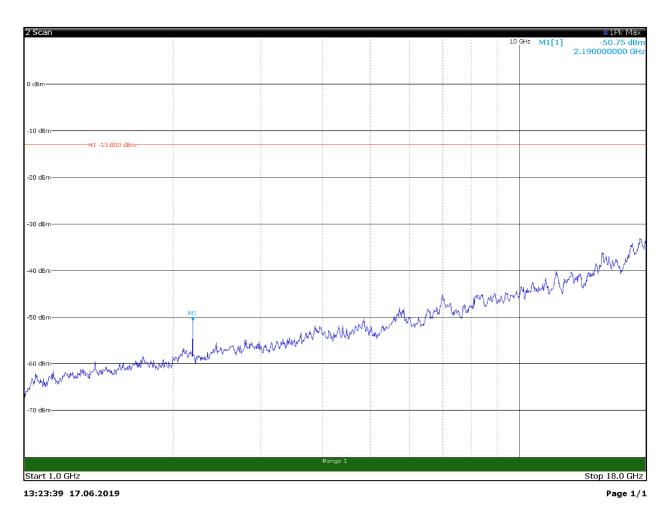
Frequency (MHz)	Polarization. V/H	Field strength (dBm)	Limit (dBm)	Margin (dB)
Low channel				
First Channel	V/H	Negligible	-13	
Mid channel				
2190	V/H	Negligible	-13	
High channel	1			
Last Channel	V/H	Negligible	-13	

Note: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.



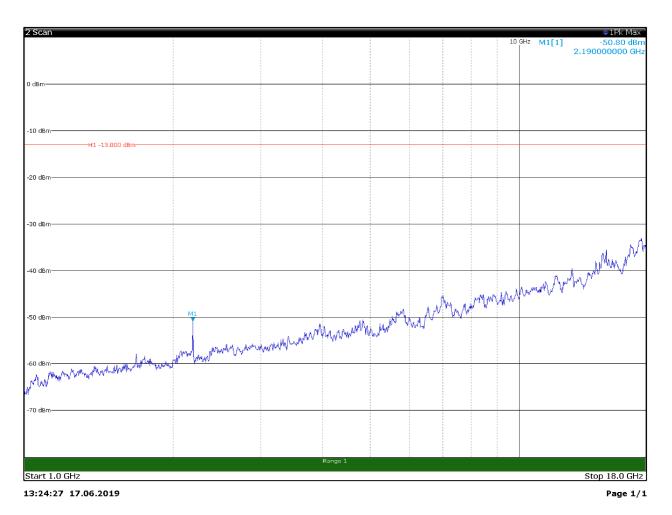
Date: 19.JUN.2019 09:00:23

30MHz-1GHz – H Pol



Date: 19.JUN.2019 08:59:32

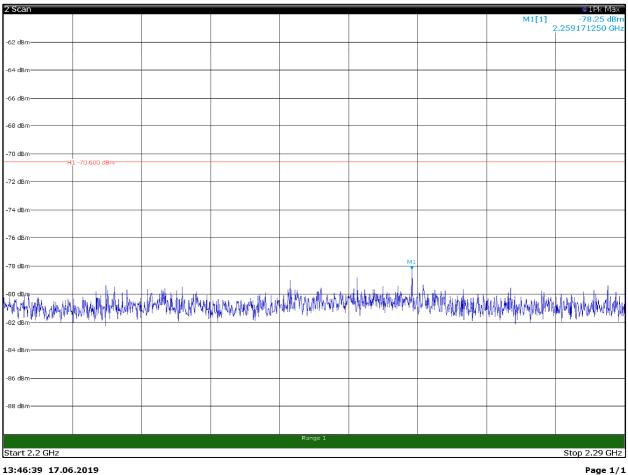
30MHz-1GHz – V Pol



2 Scan	• 1Pk Max
	M1[1] -42.30 dBm 26.349750000 GHz
	20.349730000 GHZ
5 dBm	
-10 dBm	
H1 -13.000 dBm	
-15 dBm	
-20 dBm	
-25 dBm	
-30 dBm	
-35 dBm	
oo dam	
-40 dBm	
4E dilmo	water the water and the the the second water the second and the se
- Burnelling and the second of the Marken of	Mall Marsh Mall and Mall and Mall and Mall Marsh and Mall and Mall and Mall and Mall and Mall and All and A
we a Manadalan Arthan and an anna anna anna anna anna anna	and the and the second and the second and the second the second of the second of the second and the second of the
-50 dBm	
-55 dBm	
	Range 1
Start 18.0 GHz	Stop 27.0 GHz
11:57:55 18.06.2019	Page 1/1

18GHz-27GHz – H Pol

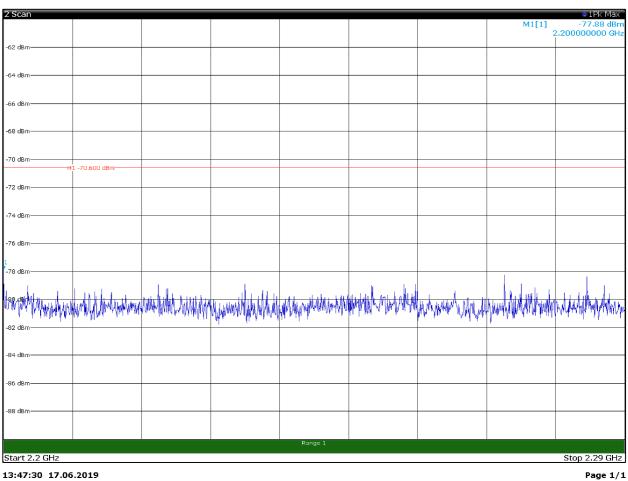
2 Scan	● 1Pk Max
	M1[1] -42.39 dBm 26.916250000 GHz
	20131020000 01/2
5 dBm	
-10 dBm	
H1 -13.000 dBm	
-15 dBm	
-20 dBm	
-25 dBm	
-30 dBm	
-35 dBm	
-40 dBm	
	MI
	and a second and a star and a star and the second start the second start and the second start was the other than
-45 dBm	all say a said shine have with a far that a far the
washared and a phone with the phone of the same	and a second provide the provident of the second of the se
-50 dBm	
-55 dBm-	
	Range 1
Start 18.0 GHz	Stop 27.0 GHz
11:58:23 18.06.2019	Page 1/1


Test data, continued: Radiated Spurious emissions, band 2200-2290MHz

Special notes

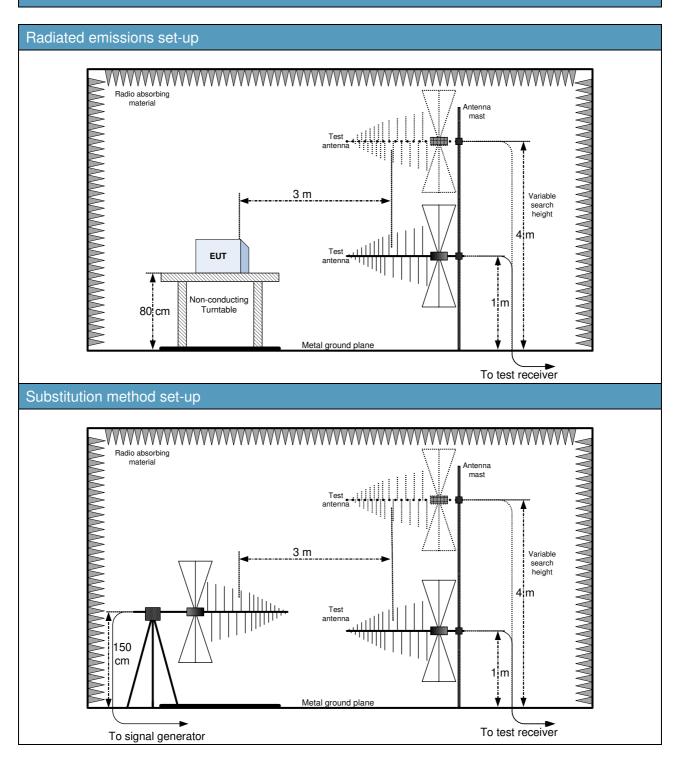
For AWS-4 operations, the power of any emissions on all frequencies between 2200-2290MHz shall not exceed an EIRP of -100.6 dBW/4 kHz

-100.6 dBW/4 kHz = - 70.6 dBm/4 kHz


- 70.6 dBm/4 kHz = -46.6 dBm/1MHz

13:46:39 17.06.2019

2200MHz-2290MHz - H Pol



13:47:30 17.06.2019

2200MHz-2290MHz - V Pol

Appendix B: Block diagrams of test set-ups

Appendix C: EUT Photos

Photo Set up

Photo EUT

END OF REPORT