## Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad \mathrm{S}=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal:
$\qquad$
Antenna gain(maximum):
Maximum antenna gain:
Time Averaging:
Prediction distance:
Prediction frequency:
MPE limit for uncontrolled exposure at prediction frequency:
Power density at prediction frequency:
Margin of compliance:
This equates to: $\quad 5.079841097 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

## Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad \mathrm{S}=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal: $\qquad$ 29.03 (dBm) Antenna gain(maximum): Maximum antenna gain: $799.834255(\mathrm{~mW})$ 15 (dBi) 31.6227766 (numeric)

Time Averaging:
Prediction distance:
Prediction frequency:
MPE limit for uncontrolled exposure at prediction frequency:
Power density at prediction frequency:
Margin of compliance:
This equates to: $8.051005574 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

## Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad \mathrm{S}=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal: $\qquad$ $29.03(\mathrm{dBm})$ Antenna gain(maximum): Maximum antenna gain: $\qquad$ $799.834255(\mathrm{~mW})$ 15 (dBi) 31.6227766 (numeric)

Time Averaging:
Prediction distance:
Prediction frequency:
MPE limit for uncontrolled exposure at prediction frequency:
Power density at prediction frequency:
Margin of compliance:
This equates to: $\quad 8.051005574 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

## Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad \mathrm{S}=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal: $\qquad$ $29.03(\mathrm{dBm})$ Antenna gain(maximum): Maximum antenna gain: $\qquad$ $799.834255(\mathrm{~mW})$ 15 (dBi) 31.6227766 (numeric)

Time Averaging:
Prediction distance:
Prediction frequency:
MPE limit for uncontrolled exposure at prediction frequency:
Power density at prediction frequency:
Margin of compliance:
This equates to: $\quad 8.051005574 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

## Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$
S=\frac{P G}{4 \pi R^{2}}
$$

where: $\quad \mathrm{S}=$ power density
$P=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal:
$\qquad$
Antenna gain(maximum):
Maximum antenna gain:
Time Averaging:
Prediction distance:
Prediction frequency:
MPE limit for uncontrolled exposure at prediction frequency:
Power density at prediction frequency:
Margin of compliance:
This equates to: $8.051005574 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

