

Report Reference ID:	303872-3TRFWL	
Test specification:	Title 47 – Telecommunication Chapter I – Federal Communications Commission Subchapter D – Safety and special radio services Part 90 – Private land mobile services Subpart I – General technical standards	
Applicant:TEKO Telecom Srl. Via Meucci, 24/a I-40024 Castel S. Pietro Terme (BO) (Italy)		
Apparatus:	Remote unit	
Model:	TRU7FL8PWE/AC-WT	
FCC ID:	XM2-EP7FL8P	

Testing laboratory:	Nemko Italy Spa Via del Carroccio, 4 20853 Biassono (MB) – Italy Telephone: +39 039 2201201 Facsimile: +39 039 2201221
---------------------	--

	Name and title	Date	
Tested by:	Curioni &	2016-03-17	
	G. Curioni, Wireless/EMC Specialist		
Reviewed by: P. Barbieri, Wireless/EMC Specialist		2016-03-17	

Nemko Spa, 20853 Biassono (MB) - Italy. All rights reserved.

This publication may be reproduced in whole for non-commercial purposes as long as Nemko Spa is acknowledged as copyright owner and source of the material. Nemko Spa takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This test report may not be partially reproduced, except with the prior written permission of Nemko Spa. The test report merely corresponds to the test sample. The phase of sampling / collection of equipment under test is carried out by the customer.

This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko.

Table of contents

Section 1: I	Report summary	
1.1	Test specification	4
1.2	Statement of compliance	4
1.3	Exclusions	4
1.4	Registration number	4
1.5	Test report revision history	4
1.6	Limits of responsibility	4
Section 2: \$ 2.1	Summary of test results	5
	Equipment under test (EUT) and application details6 Applicant details	6
3.2	Modular equipment	6
3.3	Product details	6
3.4	Application purpose	6
3.5	Composite/related equipment	7
3.6	Sample information	7
3.7	EUT technical specifications	7
3.8	Accessories and support equipment	8
3.9	Operation of the EUT during testing	9
3.10	EUT setup diagram	9
Section 4: I 4.1	Engineering considerations	.11
4.2	Deviations from laboratory tests procedures	.11
4.3	Technical judgment	.11
	Test conditions 12 Deviations from laboratory tests procedures 12	.12
5.2	Test conditions, power source and ambient temperatures	.12
5.3	Measurement uncertainty	.13
5.4	Test equipment	.13
	A: Test results	.14
Clause 9352	210 D05v01 (4.3) Out of band rejection	.15
Clause 90.2	09, 90.210(g), 90.210(h), 90.219(e)(4), 90.691 Occupied bandwidth	.16
Clause 90.2	05, 90.219(e)(1) Output power at RF antenna connector	.23
Clause 9352	210 D05v01 (4.6) Noise figure	.26

Clause 90.209, 90.210(g), 90.210(h), 90.219(e)(3), 90.691 Spurious emissions at the antenna	a terminal27
Clause 90.219(e)(3) Spurious emissions radiated	33
Appendix B: Block diagrams of test set-ups	39
Appendix C: EUT Photos	40

Section 1: Report summary

1.1 Test sp	ecification
Specifications Part 90 – Private land mobile services	

1.2 Statement of compliance			
Compliance	In the configuration tested the EUT was found compliant Yes ⊠ No □ This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Canada Inc. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 90. Radiated tests were conducted in accordance with ANSI C63.4-2003.		

1.3 Exclusion	ons
Exclusions	None

1.4 Registration number

Test site FCC	176392 (3 m Semi anechoic chamber)
ID number	

1.5 Test report revision history		
Revision #	Details of changes made to test report	
TRF Original report issued		
R1TRF		

1.6 Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Section 2: Summary of test results

Part Methods		Test description	Verdict
	§ 935210 D05v01 (4.2)	AGC threshold	Pass
	§ 935210 D05v01 (4.3)	Out of band rejection	Pass
§90.209 §90.210(g) §90.210 (h) §90.691 §90.219(e)(4)	§ 935210 D05v01 (4.4)	Occupied bandwidth	
§90.205 §90.219(e)(1)	§ 935210 D05v01 (4.5)	Output power at RF antenna connector	Pass
§90.219(e)(2)	§ 935210 D05v01 (4.6)	Noise Figure	Pass
§90.209 §90.210(g) §90.210 (h) §90.691 §90.219(e)(3)	§ 935210 D05v01 (4.7)	7) Spurious emissions at RF antenna connector	
§90.219(e)(3)	§ 935210 D05v01 (4.9)	Radiated spurious emissions	Pass
§90.213 § 935210 D05v01 (4.8)		Frequency stability	N/A a)

frequency change in EUT (input and output have same frequency)

Section 3: Equipment under test (EUT) and application details

3.1 Applicant details				
Applicant	Name:	Teko Telecom Srl		
complete	Federal			
business name	Registration	0018963462		
	Number (FRN):			
	Grantee code	XM2		
Mailing address	Address:	Via Meucci, 24/a		
	City:	Castel S. Pietro Terme		
	Province/State:	Bologna		
	Post code:	40024		
	Country:	Italy		

3.2 Modular ed	quipment
a) Single modular	Single modular approval
approval	Yes 🗌 No 🖂
b) Limited single	Limited single modular approval
modular approval	Yes 🗌 No 🖂

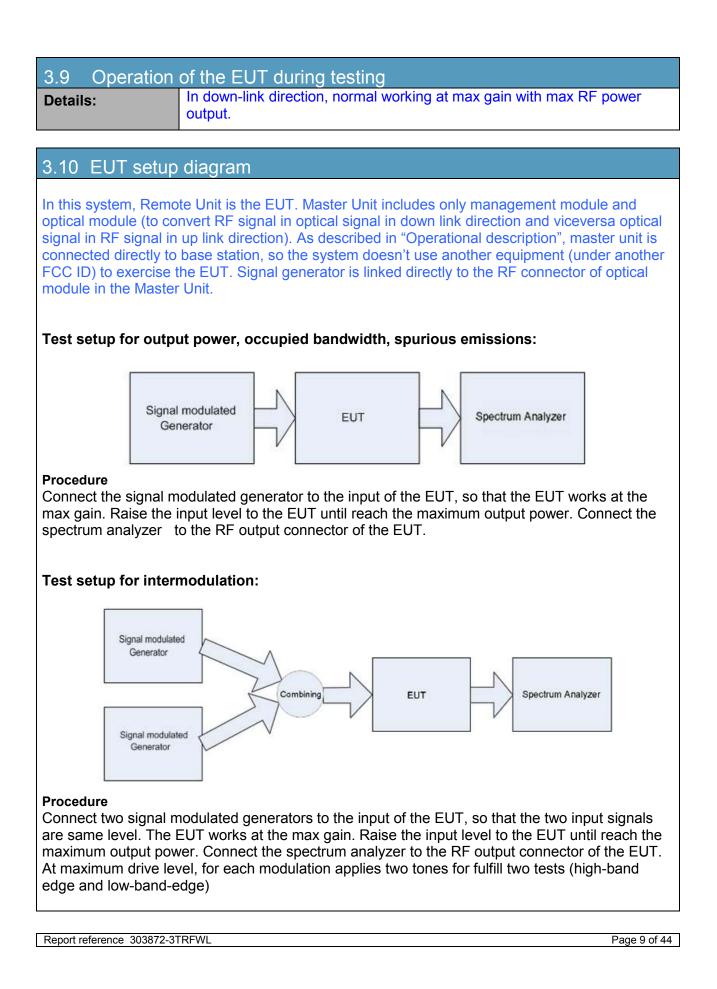
3.3 Product de	tails	
FCC ID	Grantee code:	XM2
	Product code:	-EP7FL8P
Equipment class	B9B	
Description of	Booster	
product as it is	Model	TRU7FL8PWE/AC-WT
marketed	name/number:	
	Serial number:	1003295001

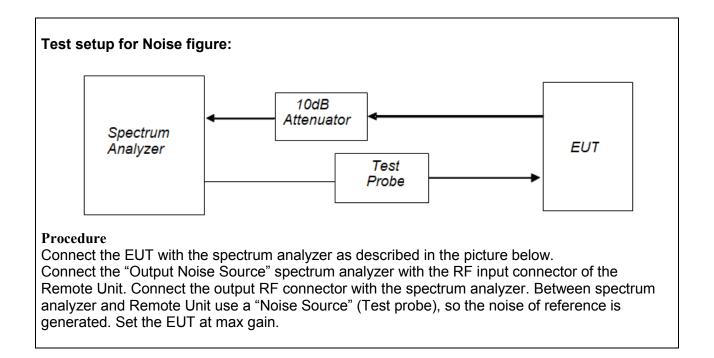
3.4 Application	purpc	se
Type of	\boxtimes	Original certification
application		Change in identification of presently authorized equipment
		Original FCC ID: Grant date:
		Class II permissive change or modification of presently authorized
		equipment

Section 3: Equipment under test

3.5 Composite	/related equipment
a) Composite	The EUT is a composite device subject to an additional equipment
equipment	
	Yes 🗌 No 🖂
b) Related	The EUT is part of a system that operates with, or is marketed with,
equipment	another device that requires an equipment authorization
	Yes 🗌 No 🖂
c) Related FCC ID	If either of the above is "yes":
	has been granted under the FCC ID(s) listed below:
	is in the process of being filled under the FCC ID(s) listed below:
	is pending with the FCC ID(s) listed below:
	has a mix of pending and granted statues under the FCC ID(s)
	listed below:
	i FCC ID:
	ii FCC ID:

3.6 Sample inf	ormation
Receipt date:	2016-03-14
Nemko sample ID number:	


3.7 EUT techn	ical specifications
Operating band:	Down Link: 851–862 MHz, Up Link: 806-817 MHz
Operating frequency:	Wideband
Modulation type:	P25, FM
Occupied	Standard
bandwidth:	
Channel spacing:	Standard
Emission	F1E, F1D, F3E
designator:	
RF Output	Down Link: 31dBm (1,25W)
	Up Link: N.A. (The EUT does not transmit over the air in the up-link
	direction)
Gain	Down Link: 36dB
	Up Link: N.A. (The EUT does not transmit over the air in the up-link
	direction)
Antenna type:	External Antenna is not provided,
	equipment that has an external 50 Ω RF connector
Power source:	100-240 Vac


Section 3: Equipment under test

3.8 Accessories and	d support equipment
The following information id	lentifies accessories used to exercise the EUT during testing:
	t are used to exercise the EUT during testing
Item # 1	
Type of equipment:	Master Unit - Subrack
Brand name:	Teko Telecom srl
Model name or number:	SUB-TRX-PSU
Serial number:	101083001
Nemko sample number:	
Connection port:	
Cable length and type:	
Item # 2	
Type of equipment:	Master Unit – Management Module
Brand name:	Teko Telecom srl
Model name or number:	TSPV-R
Serial number:	081300017
Nemko sample number:	
Connection port:	LAN port
Cable length and type:	
Item # 3	
Type of equipment:	Master Unit – Optical Module
Brand name:	Teko Telecom srl
Model name or number:	TTRU4W-S-M
Serial number:	110679007
Nemko sample number:	
Connection port:	DL/UL RF connector (to connect to the base station)
	Optical port (to connect to remote unit)
Cable length and type:	
Item # 4	
Type of equipment:	Master Unit – Power Supply
Brand name:	Teko Telecom srl
Model name or number:	TPSU/AC
Serial number:	100012286
Nemko sample number:	
Connection port:	
Cable length and type:	

Section 4: Engineering considerations

4.1 Modification	ns incorporated in the EUT
	Modifications performed to the EUT during this assessment None ☑ Yes □, performed by Client □ or Nemko □ Details:

4.2 Deviations	from laboratory tests procedures
Deviations	Deviations from laboratory test procedures
	None Yes - details are listed below:

4.3 Technical	judgment
Judgment	None

Section 5: Test conditions

5.1 Deviations from laboratory tests procedures

No deviations were made from laboratory test procedures.

5.2 Test condit	tions, power source and ambient temperatures
Normal temperature, humidity and air pressure test conditions	Temperature: 15–30 °C Relative humidity: 20–75 % Air pressure: 86–106 kPa
	When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.
Power supply range:	The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ± 5 %, for which the equipment was designed.

Section 5: Test conditions, continued

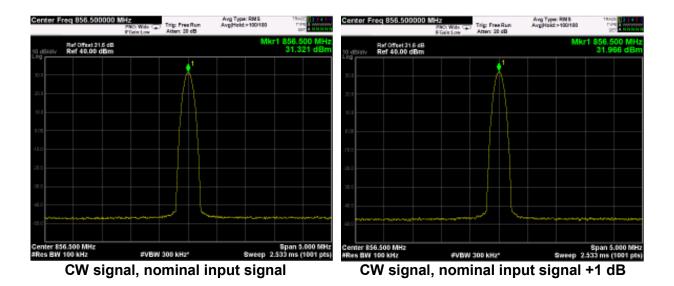
5.3 Measurement uncertainty

Nemko S.p.A. measurement uncertainty has been calculated using the standard CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC measurements". All calculations can be found in Nemko S.p.A. document WML1002.

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
Vector Signal Generator	Agilent	N5172B EXG	MY53051238	Jun 2018
Vector Signal Generator	Agilent	E4438C ESG	MY45094485	Ago 2016
Spectrum Analyzer	Agilent	N9030A PXA	MY53120882	Jun 2016
Network Analyzer	Agilent	E5071C ENA	MY46106183	Jun 2016
Noise Source	Agilent	346B	4124A17612	Ago 2018
V-network	R&S	ESH2-Z5	872 460/041	11/2016
Trilog Broad Band Antenna 25-2000 MHz	Schwarzbeck	VULB 9168	VULB 9168-242	06/2018
Trilog Broad Band Antenna 25-8000 MHz	Schwarzbeck	VULB 9162	VULB 9162-25	07/2018
Antenna 1-18 GHz	Schwarzbeck	STLP 9148	STPL 9148-123	06/2018
Double ridge waveguide horn	RFspin	DRH40	061106A40	08/2016
Preamplifier 18-40 GHz	Miteq	JS44	1648665	12/2016
Broadband preamplifier 1-18 GHz	Schwarzbeck	BBV 9718	9718-137	10/2016
EMI receiver 20 Hz ÷ 8 GHz	R&S	ESU8	100202	04/2016
EMI receiver 20 Hz ÷ 3 GHz	R&S	ESCI	100888	09/2016
Hydraulic revolving platform	Nemko	RTPL 01	4.233	NCR
Turning-table	R&S	HCT	835 803/03	NCR
Antenna mast	R&S	НСМ	836 529/05	NCR
Controller	R&S	HCC	836 620/7	NCR
Spectrum Analyzer 9kHz ÷ 40GHz	R&S	FSEK	848255/005	11/2016
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	09/2016
Shielded room	Siemens	10m control room	1947	NCR
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	70	NCR
Shielded Room	Siemens	3m semi-anechoic chamber	3	NCR
Motor controller	Emco	1051-25	9012-1559	NCR
Motor controller	Emco	1061-1.521	9012-1508	NCR
Antenna Tower	Emco	2071-2	9601-1940	NCR
Controller pole/table	Emco	2090	9511-1099	NCR

(*) Equipment supplied by manufacturer's

Appendix A: Test results


Clause 935210 D05v01 (4.2) AGC threshold

Measure of EUT AGC Threshold

Test date: 2016-03-15 Test results: Pass

Special notes

Test data

Report reference 303872-3TRFWL

Page 14 of 44

Clause 935210 D05v01 (4.3) Out of band rejection

Out of Band Rejection – Test for rejection of out of band signals.

Test date: 2016-03-15 Test results: Pass

Special notes

Test data

Marker 3	864.780000	000 MHz PNO: Fast IFGain:Low	Trig: Free F Atten: 20 c	Run Avg	g Type: Log-Pw g Hold:>100/100		E WMWWWW
10 dB/div Log	Ref Offset 31.6 Ref 40.00 d				Ν	/kr3 864. 11.0	78 MHz 88 dBm
30.0				1			*
20.0			$\sqrt{2}$		3		
10.0			Ŷ	\	,		
0.00							
-10.0		/	{		$ \longrightarrow $		
-20.0							
-30.0		¥					
-40.0 mm-vhw	- ไป _{ี่ย} งเลง (**** (**)) - ไป _{ี่ย} งเลง (****)	with the start of		L A ST I		William Markan M	Your meterson
-50.0	rtimby/mm				MAN AUGA	NW WWW	N. WWW.
Center 85 #Res BW		#VE	3W 300 kHz		Sweep	Span 6 1.000 ms (0.00 MHz 1001 pts)
	C SCL	× 856.50 MHz	۲ 30.913 dBr	FUNCTION	FUNCTION WIDT	TH FUNCTIO	DN VALUE
2 N 2 3 N 2	f f	849.60 MHz 864.78 MHz	11.182 dBr 11.088 dBr	n			
4 5							·

Clause 90.209, 90.210(g), 90.210(h), 90.219(e)(4), 90.691 Occupied bandwidth

§ 90.219(e)(4)

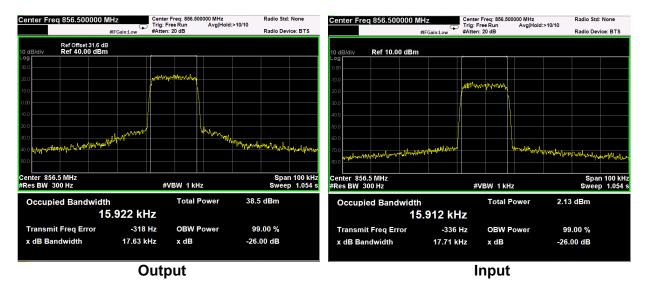
A signal booster must be designed such that all signals that it retransmits meet the following requirements: (i) The signals are retransmitted on the same channels as received. Minor departures from the event provided that the retransmitted

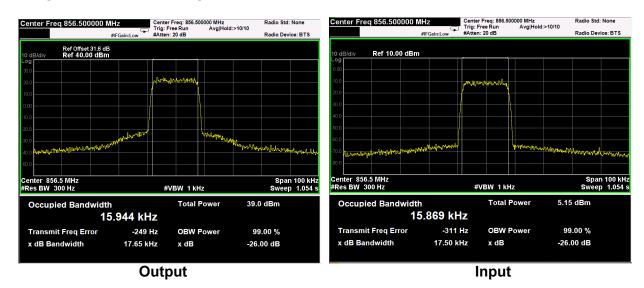
exact provider or reference frequencies of the input signals are allowed, *provided that* the retransmitted signals meet the requirements of § 90.213.

(ii) There is no change in the occupied bandwidth of the retransmitted signals.

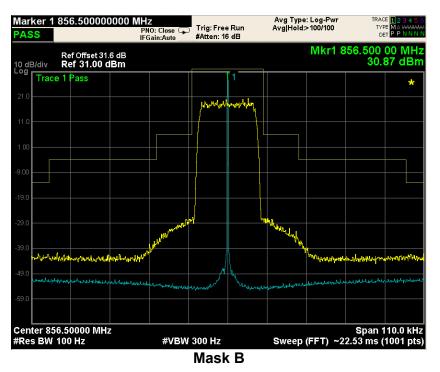
(iii) The retransmitted signals continue to meet the unwanted emissions limits of § 90.210 applicable to the corresponding received signals (assuming that these received signals meet the applicable unwanted emissions limits by a reasonable margin).

Test date: 2016-03-15 Test results: Pass

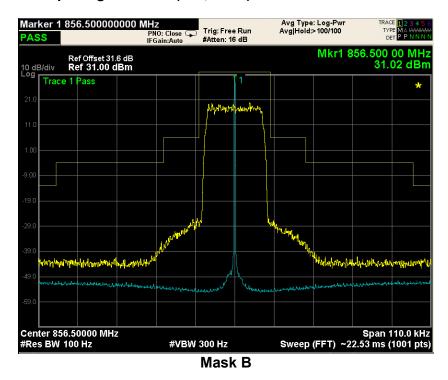

Special notes

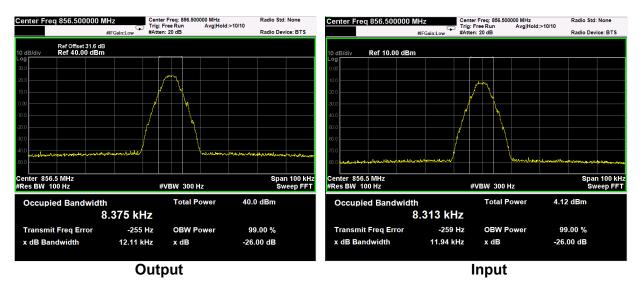

Occupied bandwidth, continued

Test data


16k signal, nominal input signal (856,5MHz)

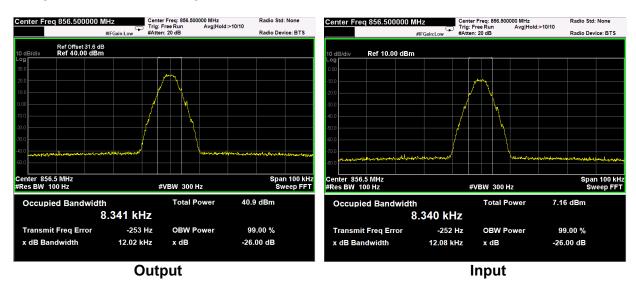
16k signal, nominal input signal + 3dB (856,5MHz)

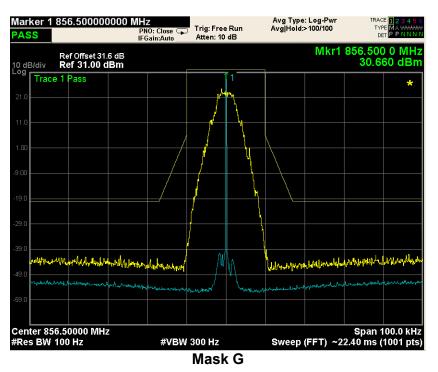




16k signal, nominal input signal (856,5MHz)

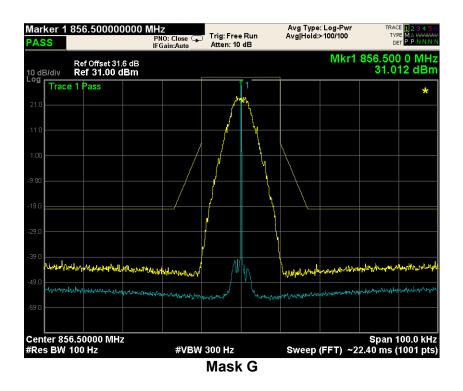
16k signal, nominal input signal + 3dB (856,5MHz)

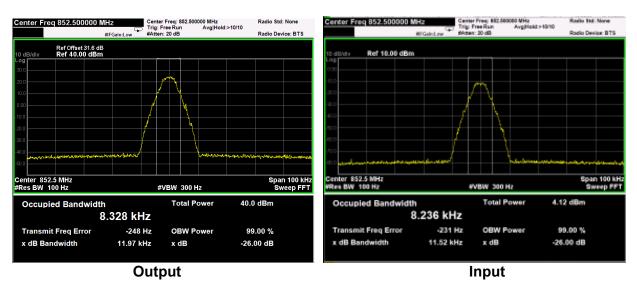




P25 signal, nominal input signal (856,5MHz)

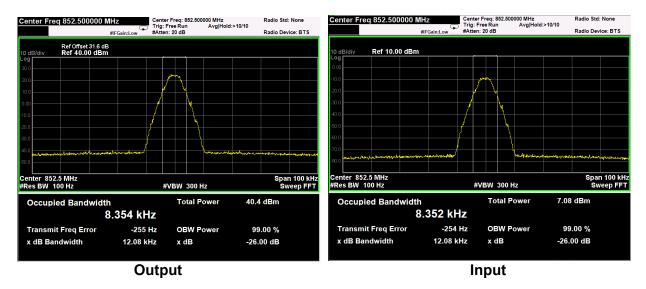
P25 signal, nominal input signal + 3dB (856,5MHz)

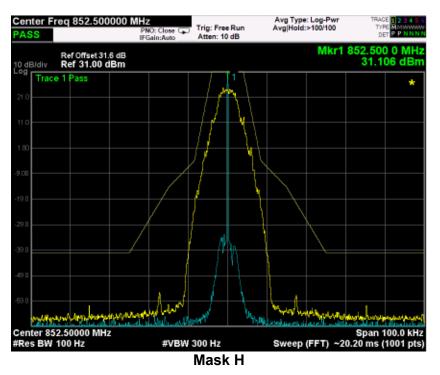




P25 signal, nominal input signal (856,5MHz)

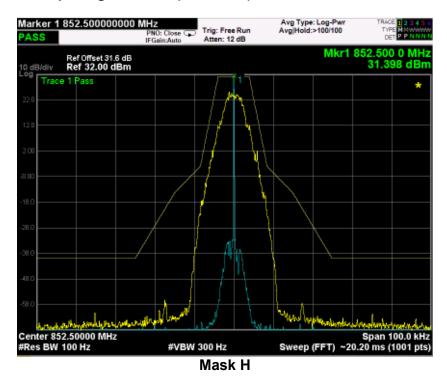
P25 signal, nominal input signal + 3dB (856,5MHz)





P25 signal, nominal input signal (852,5MHz)

P25 signal, nominal input signal + 3dB (852,5MHz)



P25 signal, nominal input signal (852,5MHz)

P25 signal, nominal input signal + 3dB (852,5MHz)

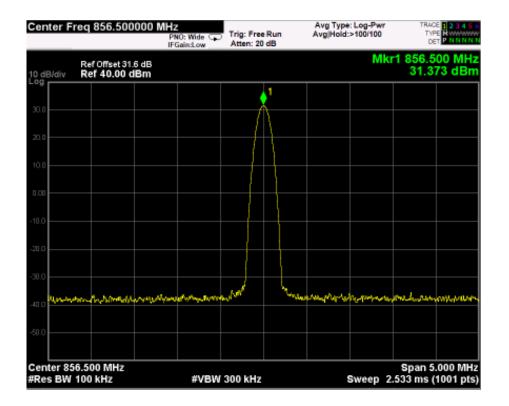
Clause 90.205, 90.219(e)(1) Output power at RF antenna connector

§ 90.205

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation. Except where otherwise specifically provided for, the maximum power that will be authorized to applicants whose license applications for new stations are filed after August 18, 1995 is as follows in FCC Part 90.205 (a) through (r).

§ 90.219(e)(1)

The output power capability of a signal booster must be designed for deployments providing a radiated power not exceeding 5 Watts ERP for each retransmitted channel.


Test date: 2016-03-15 Test results: Pass

Special notes

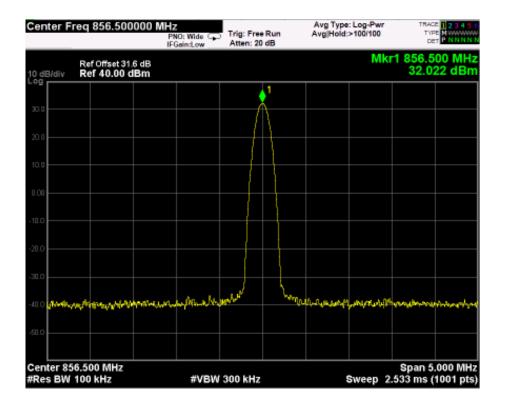
Output power at RF antenna connector

CW signal, nominal input signal

Test data							
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power (W/MHz)		
Down-link	CW	856,0	31,37	1,37	0,13		

Test result

Gmax antenna gain (dBi) = 39 - 31.37 = 7.63 dBi


EIRP = 31.37 + 7.63 = 39 dBm

ERP = 39 - 2.14 = 36.86dBm = 4.85W < 5 W ERP

CW signal, nominal input signal + 3dB

Test data					
Direction	Modulation	Frequency (MHz)	RF output Power (dBm)	RF output channel Power (W)	RF output Power (W/MHz)
Down-link	CW	772,0	32,0	1,59	0,15

Clause 935210 D05v01 (4.6) Noise figure

§ 90.219(e)(2)

The noise figure of a signal booster must not exceed 9 dB in either direction.

Test date: 2016-03-15

Test results: Pass

Special notes

In the Remote Unit, only up-link measurement can be performed (test probe is connect to antenna port)

enter Frec	011.000000 Militz			CALSTATE CAL	
PREAMP		Atten: 0 dB		ENR STATE ENR	
Noise Figur	e			Mkr3 817 MH	
.0 dB/div	Ref 6.0 dB			4.9176 d	
10.0					
9.0					
7.0				3	
6.0 5.0 1		<mark>\2</mark>			
4.0					
2.0					
G ain I.0 dB/div	Ref 45.0 dB				
.0 dB/div 49.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0 45.0 45.0 44.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0 45.0 45.0 44.0 43.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0 45.0 45.0 44.0 43.0 42.0	Ref 45.0 dB				
.0 dB/div 49.0 48.0 47.0 46.0 45.0 44.0 43.0 42.0 41.0			Ston F	Freq 817 00000 MH	
.0 dB/div 49.0 48.0 47.0 46.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45	306.00000 MHz		Stop F	Freq 817.00000 MH	
.0 dB/div 49.0 48.0 48.0 47.0 46.0 45.0 44.0 43.0 42.0 41.0	306.00000 MHz	.50 K (Default)	Stop F Noise Source: N	req 817.00000 MH Norm Points 20	
.0 dB/div 49.0 48.0 47.0 46.0 45.0 4	306.00000 MHz Iz T cold 296.	X	Noise Source: N	Norm Points 20	
.0 dB/div 49.0 48.0 47.0 46.0 45.0 44.0 43.0 43.0 43.0 43.0 43.0 43.0 43	306.00000 MHz Iz T cold 296.		Noise Source: N	lorm Points 20	

Clause 90.209, 90.210(g), 90.210(h), 90.219(e)(3), 90.691 Spurious emissions at the antenna terminal

§ 90.210(g)

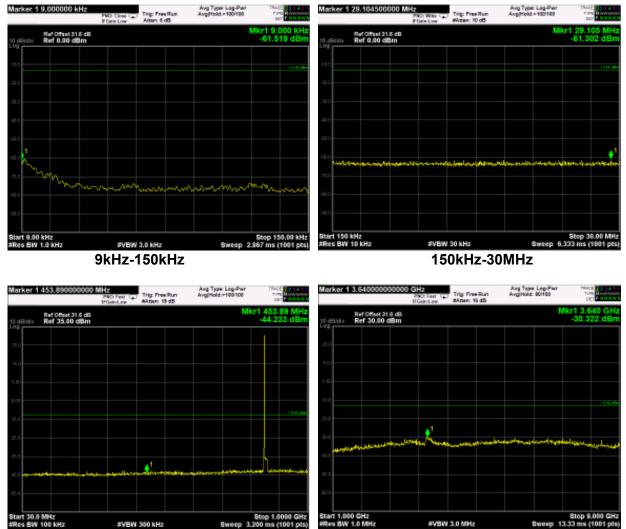
Emission Mask G. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:
(2) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB

§ 90.210(h)

Emission Mask H. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows: (5) On any frequency removed from the center of the authorized bandwidth by more than 25 kHz: At least 43 + log (P) dB.

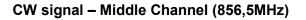
§ 90.219(e)(3)

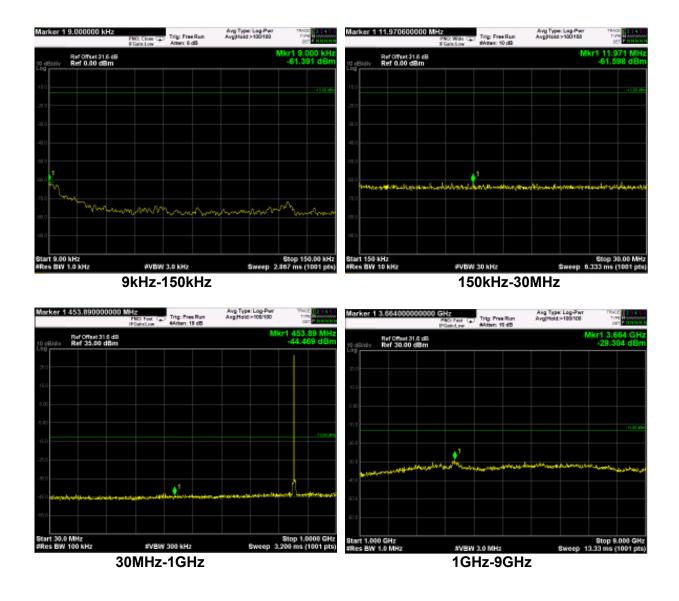
Spurious emissions from a signal booster must not exceed –13dBm within any 100 kHz measurement bandwidth.


Test date: 2016-03-15 Test results: Pass

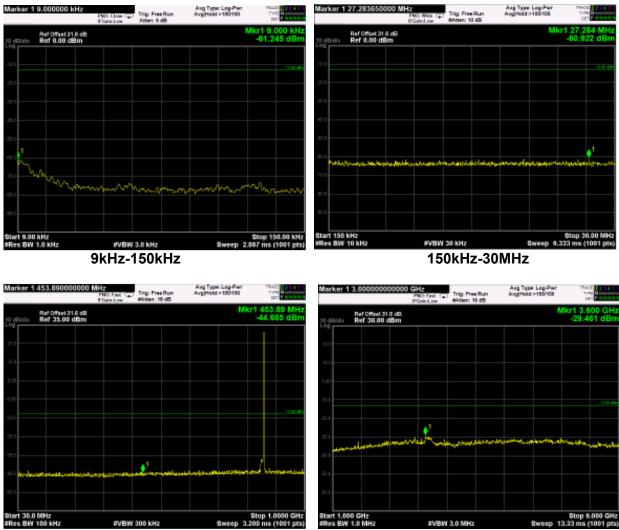
Special notes

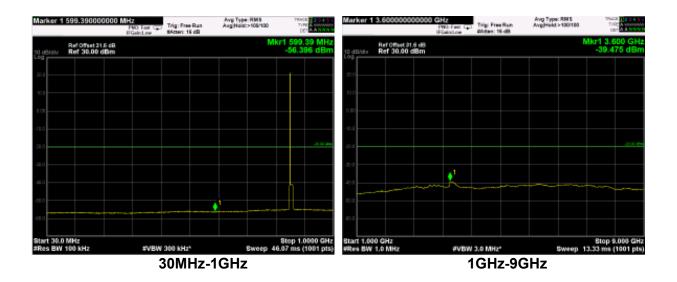
Test data: Spurious emissions at RF antenna connector


CW signal – First Channel (851,025MHz)



30MHz-1GHz

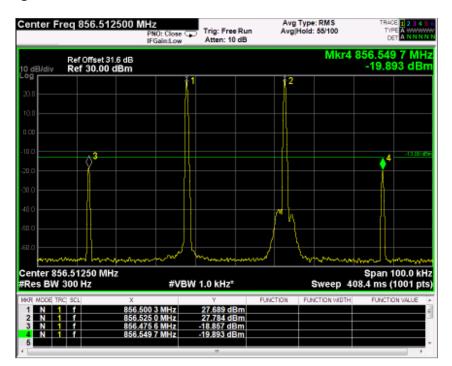

1GHz-9GHz

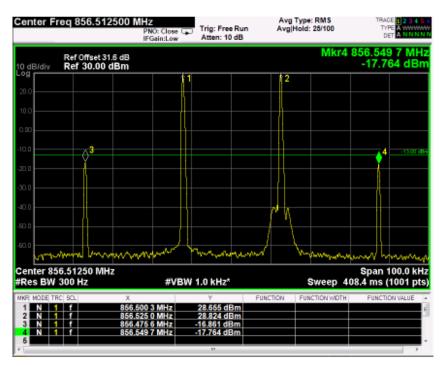


CW signal – Last Channel (861,975MHz)

30MHz-1GHz

1GHz-9GHz


Spurious emissions at RF antenna connector: Mod. FM (P25) (Freq. band 851-854MHz)



Spurious emissions at RF antenna connector: intermodulation

Nominal input signal

Nominal input signal + 3dB

Clause 90.219(e)(3) Spurious emissions radiated

§ 90.219(e)(3)

Spurious emissions from a signal booster must not exceed –13dBm within any 100 kHz measurement bandwidth.

Test date: 2016-03-16 Test results: Pass

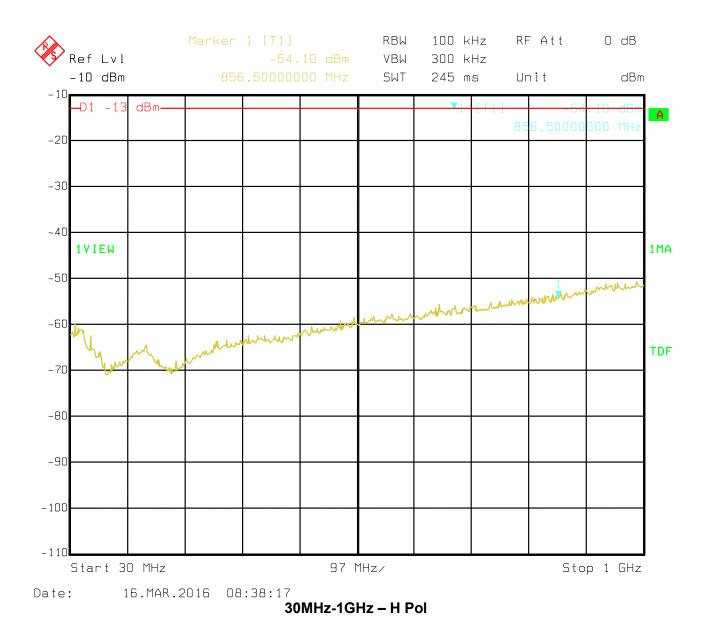
Special notes

Radiated spurious emissions, continued

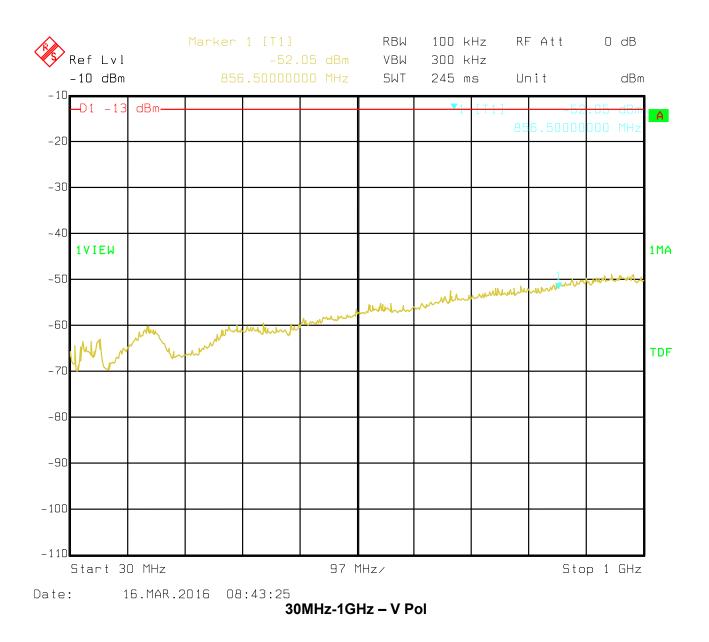
Test data

The D.U.T. was positioned according to the radiated emissions set-up

The D.U.T. antenna connector was terminated by a 50 Ω shielded dummy load.

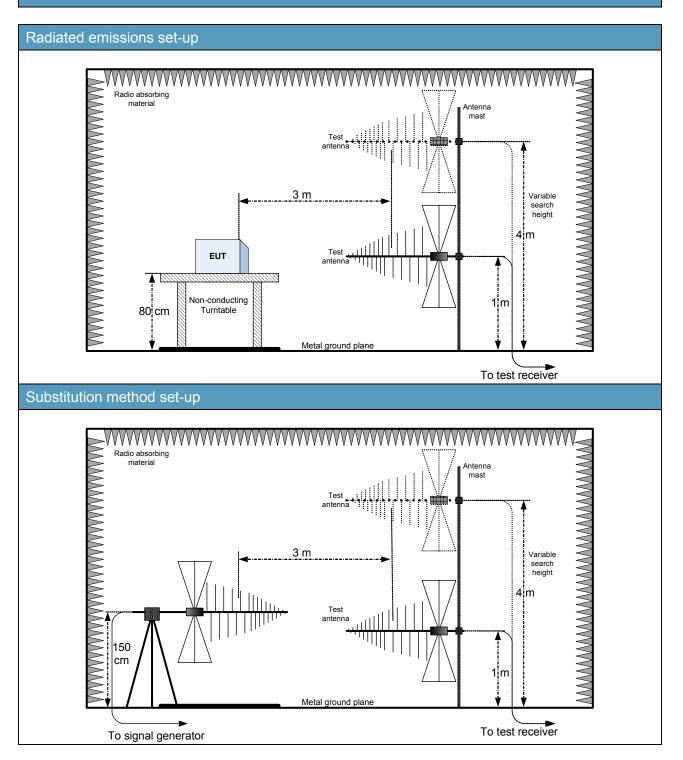

The spectrum was searched from 30 MHz to 1 GHz (RBW 100 kHz) & 1 GHz (RBW 1 MHz) to the tenth harmonic of the carrier.

There were no emissions detected above the noise floor which was at least 20 dB below the specification limit.


Spurious emissions measurement results:

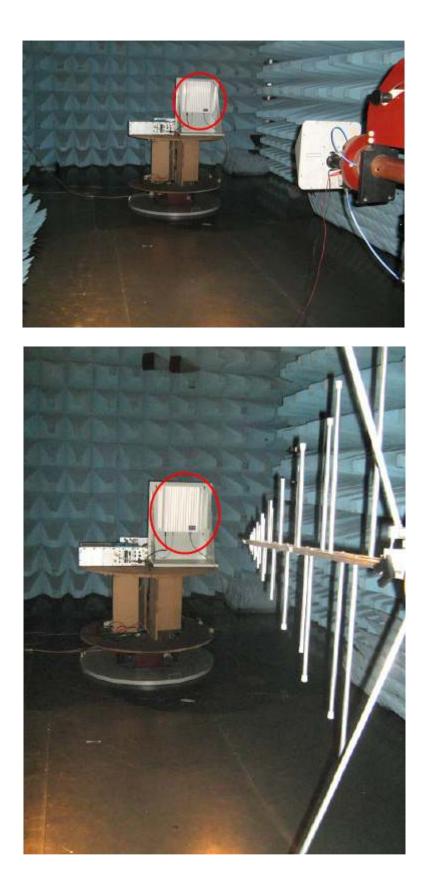
Frequency	Polarization.	Field strength	Limit	Margin			
(MHz)	V/H	(dBµV/m)	(dBµV/m)	(dB)			
Low channel							
Mid channel			[
High channel							
Note: Field strength includes correction feature of entenne, each loss, expelifier, and ettenueters							
Note: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.							





Appendix B: Block diagrams of test set-ups

Appendix C: EUT Photos


Photo Set up

Product: TRU7FL8PWE/AC-WT

Photo EUT

Label EUT

WARNING. This is NOT a CONSUMER device. This is a 90.219 Class B signal booster. It is designed for installation by FCC LICENSEES and QUALIFIED INSTALLERS. You MUST have an FCC LICENSE or express consent of an FCC Licensee to operate this device. You MUST register Class B signal boosters (as defined in 47 CFR 90.219) online at www.fcc.gov/signal-boosters/registration. Unauthorized use may result in significant forfeiture penalties, including penalties in excess of \$100,000 for each continuing violation.