

III.MPE Limits

A. Limits for Maximum Permissible Exposure (MPE)

Requirements:

FCC Guidelines for evaluating exposure to RF Emissions, from the FCC OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Tim
Range	Strength (E)	Strength (H)	(S)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
			5	6
(B) Limits for C	General Population	 n/Uncontrolled Ex		
	General Population Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)		
(B) Limits for C Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (H)	Power Density (S)	Averaging Tim

B. Calculating MPE Distance from Antenna

MPE Limit Calculation: EUT's operating frequencies @ 851.0125 MHz; highest conducted power = 12.04 dBm therefore, **Limit for Uncontrolled Exposure: 0.567 mW/cm²**

EUT maximum antenna gain = 3 dBi.

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2 \qquad \text{or} \qquad R = \sqrt{PG / 4\pi S}$

where, R = Distance (20 cm)

P = Power Input to antenna (15.996 mW)

G = Antenna Gain (2 numeric)

 $S = (15.996*2) / (4* \pi *400)$

S = (31.992) / (5026.544)

 $S = 0.00636 \text{ mW/cm}^2$

Calculation for 851 - 869 MHz Band

MPE Limit Calculation: EUT's operating frequencies @ 869.2 MHz; highest conducted power = 21.87 dBm therefore, **Limit for Uncontrolled Exposure: 0.579 mW/cm**²

EUT maximum antenna gain = 3 dBi.

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \sqrt{PG / 4\pi S}$

where, R = Distance (20 cm)

P = Power Input to antenna (153.815 mW)

G = Antenna Gain (2 numeric)

 $S = (153.815*2) / (4* \pi *400)$

S = (307.63) / (5026.544)

 $S = 0.0612 \text{ mW/cm}^2$

Calculation for 869 - 894 MHz Band

MPE Limit Calculation: EUT's operating frequencies @ $\underline{1960 \text{ MHz}}$; highest conducted power = 22.01 dBm therefore, **Limit for Uncontrolled Exposure: 1 mW/cm²**

EUT maximum antenna gain = 4 dBi.

Equation from page 18 of OET 65, Edition 97-01

 $S = PG \, / \, 4\pi R^2 \qquad \text{ or } \qquad R = \sqrt{PG} \, / \, 4\pi S$

where, R = Distance (20 cm)

P = Power Input to antenna (158.855 mW)

G = Antenna Gain (2.52 numeric)

 $S = (158.855*2.52) / (4* \pi *400)$

S = (400.3146) / (5026.544)

 $S = 0.0796 \text{ mW/cm}^2$

Calculation for 1930 -1990 MHz Band