

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

Radio Test Report

FCC Part 95 MedRadio Transmitter

Model: PW1000

COMPANY:	Nevro Corporation 1800 Bridge Parkway Redwood City, CA 94065
TEST SITE(S):	National Technical Systems 41039 Boyce Road. Fremont, CA. 94538-2435
PROJECT NUMBER:	PR085867
REPORT DATE:	November 19, 2018
REISSUE DATE :	January 24, 2019
FINAL TEST DATES:	November 1, 2 and 5, 2018
TOTAL NUMBER OF PAGES:	39

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Project number PR085867 Report Date: November 19, 2018, Reissued Date: January 24, 2019

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

Bare

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

lan

Gary Izard Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	November 19, 2018	First release	
1	January 24, 2019	Corrected reference to test method standard	dwb

TABLE OF CONTENTS

COVER PAGE	
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 95	
EXTREME CONDITIONS	8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS EUT OPERATION	
TESTING	
RF PORT MEASUREMENT PROCEDURES	
BANDWIDTH MEASUREMENTS	
FREQUENCY STABILITY	12
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	14
ANTENNA MAST AND EQUIPMENT TURNTABLE	15
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS – RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	19
APPENDIX B TEST DATA	20
END OF REPORT	39

SCOPE

Tests have been performed on the Nevro Corporation model PW1000, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 95 Subpart I (Medical Device Radio Communication Service)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.26:2015

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

The test results recorded herein are based on a single type test of the Nevro Corporation model PW1000 and therefore apply only to the tested sample. The sample was selected and prepared by Ryan Greenstreet of Nevro Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Nevro Corporation model PW1000 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 95

Rule Part	Description	Measured	Limit	Result
Transmitter fr	equency, power, bandwidth, modulation	on and unwanted em	issions	
§2.1033(c) (5)		402.45 - 404.55	402 405 MIL	C
§ 95.2563(a)	Frequency range(s)	MHz	402-405 MHz	Complied
§2.1033(c) (6)				
§2.1033(c) (7)	EIRP (Calculated from Field	23.3µW	25µW	
§2.1046	Strength)	-16.3dBm	-16dBm	Complied
§95.2567(a)(1)	~			
$\frac{3}{2}$ $\frac{3}$	Emission types	F1D	_	-
§2.1035(c) (1)		0.007µW	0.25µW	
§95.2579(c)	Unwanted emissions	-51.5dBm	-36dBm	Complied
§2.1049				
§95.2573(a)	Authorized Bandwidth	252 kHz	300 kHz	Complied
	urious emissions			
§2.1053				
§2.1055 §2.1057	Field strength	39.4 dBuV/m	See table	Complia
	Field strength	39.4 dDu V/III	See table	Complied
§95.2579(a)				
Other details				
		LBT Threshold	LBT Threshold	
		power level	power level	
		-102.3 dBm	-102.3 dBm	
		Monitoring	Monitoring	
		system	system	
		bandwidth	bandwidth	
		> 20 dB EBW	> 20 dB EBW	
		Monitoring	Monitoring	
		system scan cycle	system scan cycle	
		time	time	
		1 second	< 5 seconds	
		Monitoring	Monitoring	
95.2559	Frequency Monitoring	system Minimum	system Minimum	Complie
		Channel	Channel	•••••P•••
		monitoring	monitoring	
		period	period	
		0.1 ms / 10 ms	0.1 ms / 10 ms	
		Channel access	Channel access	
		based on ambient	based on ambient	
		level above PTh	level above PTh	
		Correct channel	Correct channel	
		selection	selection	
		Discontinuation	Discontinuation	
		of MICS session	of MICS session	
		5 seconds	< 5 seconds	
§2.1055	Frequency stability	18.9 ppm	100 ppm	Complie
§95.2565	1 7 7			compile
§2.1093	RF Exposure	Refer	to separate exhibit	
	Final radio frequency amplifying			
	circuit's dc voltages and currents for		3 Vdc 7 m 4	
82 1033 (0) (8)	normal an anation or an the marrier	3.3Vdc, 7mA		
§2.1033 (c) (8)	normal operation over the power			
§2.1033 (c) (8)	range			

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. As the device is hand carried, USB powered equipment, the supply voltage of the laptop to which the PW1000 is connected was varied between 85% and 115% of the nominal AC voltage range. The laptop battery was removed for the testing.

The extremes of temperature were 0° C to $+55^{\circ}$ C as specified in FCC §95.2565(b) for stations in the Medical Device Radiocommunication Service.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	$\pm 2.5 \text{ dB}$
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Nevro Corporation model PW1000 is a programmer wand that is designed to communicate with an IPG or Trial Stimulator to program these devices. Since the EUT could be placed in any position during operation and could be handheld, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the Wand is 5VDC supplied from the USB connection. The electrical rating of the laptop adapter is 100-240V, 50-60 Hz, 1.7A.

The samples were received on October 25, 2018 and tested on November 1, 2 and 5, 2018. The following units were used during testing:

Company	Model	Description	Serial Number	FCC ID
Nevro Corporation	PW1000	Programmer Wand	11080-0000106	XKYWAND1001
Nevro Corporation	PW1000	Programmer Wand	11080-0000122	XKYWAND1001
Dell / Nevro	Latitude 3340 /	Laptop	15GGD32	-
	Clinician Programmer			
Dell / Nevro	HA65NM130	AC Adapter	CN-06TFFF-75661-	-
			73G-05HD-A04	

OTHER EUT DETAILS

Any details including receiver class and power class, channel separation, frequency range or ranges, antennas used etc.

ENCLOSURE

The Programmer Wand enclosure is primarily constructed of plastic. It measures approximately 6.5 cm wide by 10.5 cm deep by 2.2 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Nevro	Senza	Implant	100912	-
Lenovo	Thinkpad	Laptop	PC-0D8RVE	-
Lenovo	ADLX45NLC2A	AC Adapter for	-	-
		Laptop		

Note: The Lenovo laptop was used for some tests in place of the Dell/Nevro laptop

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

EUT					
Port Connected To		Cable(s)			
ron	Connected 10	Description	Shielded or Unshielded	Length(m)	
USB	Laptop	Multiwire	Shielded	1.4	

Additional on Support Equipment

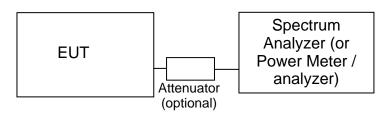
Port	Connected To	Cable(s)				
1 Off	Connected 10	Description	Shielded or Unshielded	Length(m)		
Laptop DC	AC Adapter	two wire	Unshielded	1.6		
AC Adapter	Mains	three wire	Unshielded	1		

EUT OPERATION

During emissions testing the EUT was programmed to continuously transmit a modulated signal on the selected channel except for frequency stability where a CW signal was employed.

TESTING

GENERAL INFORMATION


Radiated spurious emissions measurements were taken at the National Technical Systems Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4:2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.

Cita	Registration Numbers		Location	
Site	FCC	Canada	Location	
			41039 Boyce Road	
Chamber 5	769238	IC 2845B-5	Fremont,	
			CA 94538-2435	

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

For devices with an integral antenna the output power is measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using far field equations as shown in SAMPLE CALCULATIONS –RADIATED POWER.

BANDWIDTH MEASUREMENTS

The 20dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.26. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

RADIATED EMISSIONS MEASUREMENTS

Radiated spurious emissions measurements are made in accordance with ANSI C63.26 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

- R_r = Measured value in dBm
- S = Specification Limit in dBm
- M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

and

 $P_{EUT} = P_{S} - (E_{S} - E_{EUT})$

 $P_s = G + P_{in}$

where:

 P_{S} = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions as detailed in FCC Part 95.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	<u>Description</u> , 25 - 4,050 MHz, 01-Nov-18	Model	Asset #	Calibrated	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	JB3 ESIB 7	1549 9482	5/30/2017 10/13/2018	5/30/2019 10/13/2019
Hewlett Packard	Preamplifier, 1-26.5GHz	8449B	WC068 124	10/12/2018	10/12/2019
LBT and Receiver B	locking, 02-Nov-18				
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	7/27/2018	7/27/2019
Agilent Technologies	MXG Analog Signal Generator 6 GHz	N5181A	2146	3/7/2018	3/7/2019
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20GHz)	E8267D	3011	2/26/2018	2/26/2019
Conducted Emission	ns - AC Power Ports, 02-Nov-18	8			
Rohde & Schwarz Rohde & Schwarz	Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	ESH3 Z2 ESIB 7	1398 1756	1/8/2018 7/7/2018	1/8/2019 7/7/2019
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50- 25-2-09	2001	8/15/2018	8/15/2019
Frequency Stability, Rohde & Schwarz	05-Nov-18 Signal Analyzer 20 Hz - 26.5 GHz	FSQ26	2327	6/25/2018	6/25/2019

Appendix B Test Data

TL085867-RA Pages 21 - 38

EMC Test Data

Client: Nevro Corporation	PR Number: PR085867
Product PW1000	T-Log Number: TL085867-RA
System Configuration:	Project Manager: Christine Krebill
Contact: Ryan Greenstreet	Project Engineer: David Bare
Emissions Standard(s): FCC part 95, EN 301 839	Class: -
Immunity Standard(s):	Environment: Radio

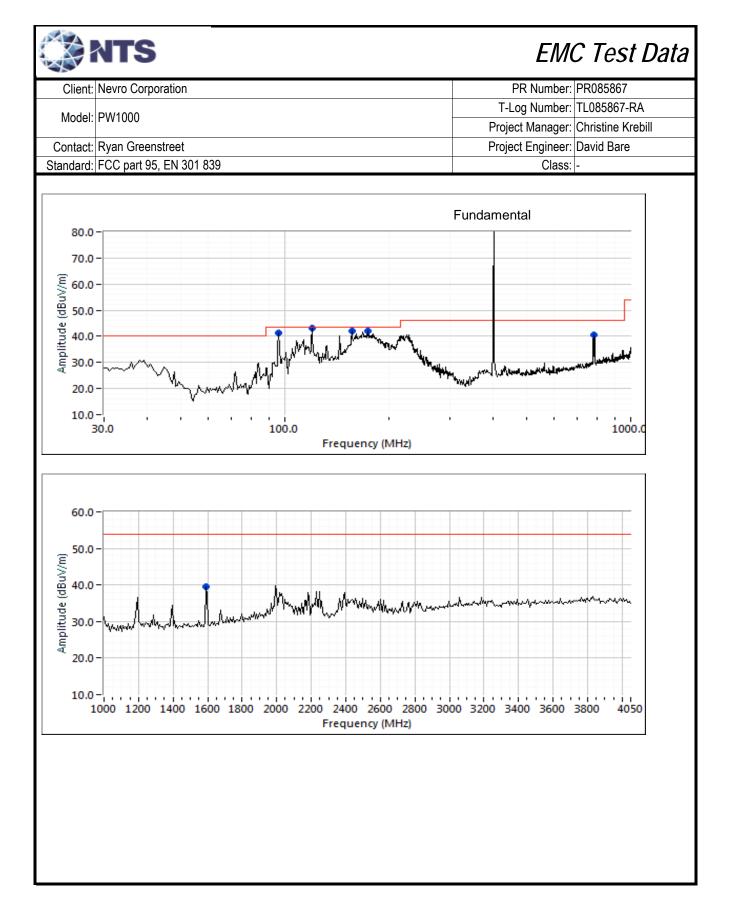
EMC Test Data

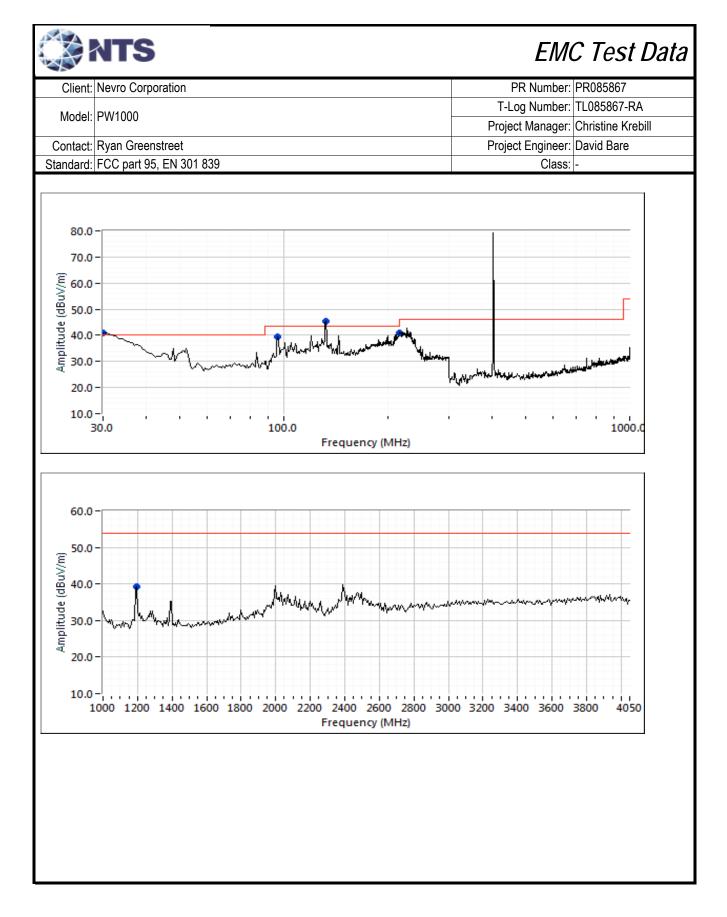
For The

Nevro Corporation

Product

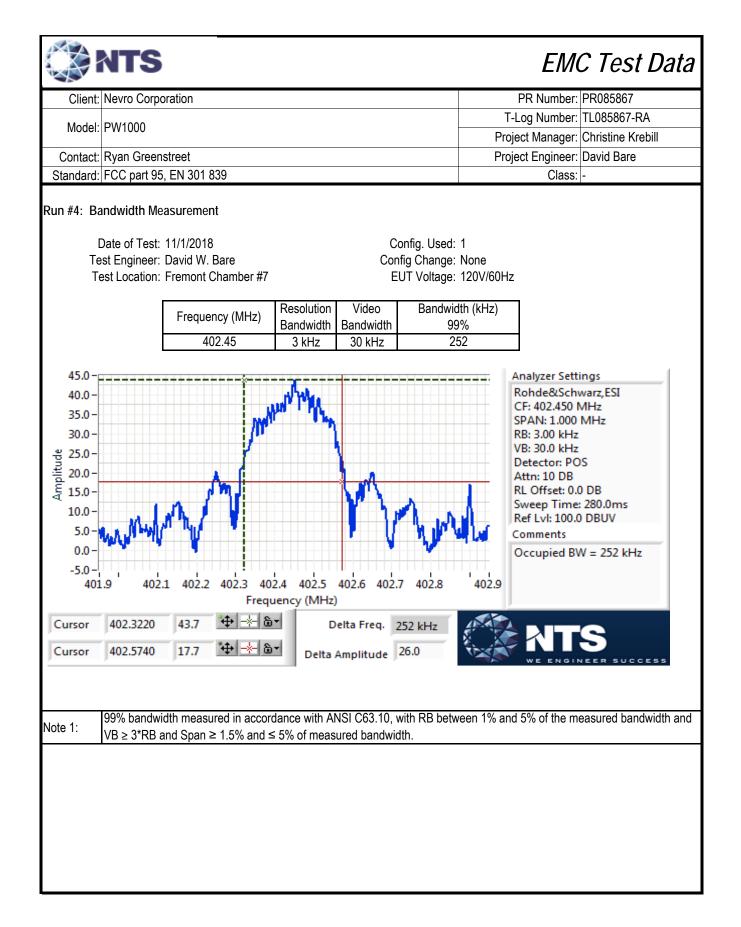
PW1000


Date of Last Test: 11/5/2018


Model: PW1000					PR085867
wodel: Pw ruut			T·	Log Number:	TL085867-RA
			Pro	ject Manager:	Christine Krebill
Contact: Ryan Gr	eenstreet		Proj	ect Engineer:	David Bare
Standard: FCC par	t 95, EN 301 839			Class:	-
Fest Specific De	(NTS Silicon Valley, Fremo	ed Emissions nt Facility, Semi-And	echoic Chan	nber)	
•	ive: The objective of this test session is to specification listed above.	perform engineering	evaluation te	sting of the EL	JT with respect to the
Test Engine	est: 11/1/2018 eer: David W. Bare on: Fremont Chamber #5	Config. Used Config Change EUT Voltage		<u>.</u>	
General Test Co The EUT was loca The test distance a	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are o	detailed under each r	un descriptior	ı.	
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximizo	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are of esting indicates that the emissions were m ed testing indicated that the emissions were pulation of the EUT's interface cables.	detailed under each ri aximized by orientation	un descriptior on of the EUT	n. and elevatior	n of the measuremen
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximize antenna, and mani Ambient Conditi	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are of esting indicates that the emissions were m ed testing indicated that the emissions were pulation of the EUT's interface cables. ons: Temperature: Rel. Humidity: sults	detailed under each r aximized by orientation re maximized by orier 20 °C 43 %	un descriptior on of the EUT ntation of the	n. ⁻and elevatior EUT, elevatior	n of the measuremen n of the measuremen
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximizo antenna, and mani Ambient Conditi Summary of Res Run #	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are d esting indicates that the emissions were m ed testing indicated that the emissions were pulation of the EUT's interface cables. ons: Temperature: Rel. Humidity: sults Test Performed	detailed under each ru aximized by orientation re maximized by orien 20 °C 43 % Limit	un descriptior on of the EUT	n. and elevatior EUT, elevatior	n of the measuremen n of the measuremen gin
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximize antenna, and mani Ambient Conditi	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are of esting indicates that the emissions were m ed testing indicated that the emissions were pulation of the EUT's interface cables. ons: Temperature: Rel. Humidity: sults	detailed under each r aximized by orientation re maximized by orier 20 °C 43 %	un descriptior on of the EUT ntation of the	n. and elevatior EUT, elevatior Value / Marg 84.9 dBuV/n	n of the measuremen n of the measuremen gin n (-16.3 dBm eirp)
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximizo antenna, and mani Ambient Conditi Summary of Res Run #	nfiguration ted on the turntable for radiated emissions and extrapolation factor (if applicable) are of esting indicates that the emissions were me ed testing indicated that the emissions were pulation of the EUT's interface cables. ons: Temperature: Rel. Humidity: sults Test Performed Fundamental Signal Field Strength Transmitter Radiated Spurious Emissions, 30 - 4,050 MHz	detailed under each ru aximized by orientation re maximized by orien 20 °C 43 % Limit	un descriptior on of the EUT ntation of the Result	n. and elevatior EUT, elevatior Value / Marg 84.9 dBuV/n	n of the measuremen n of the measuremen gin
General Test Co The EUT was loca The test distance a Note, preliminary to antenna. Maximize antenna, and mani Ambient Conditi Summary of Res Run #	nfiguration ted on the turntable for radiated emissions und extrapolation factor (if applicable) are desting indicates that the emissions were med testing indicated that the emissions were med testing indicated that the emissions were pulation of the EUT's interface cables. ons: Temperature: Rel. Humidity: sults Test Performed Fundamental Signal Field Strength Transmitter Radiated Spurious	detailed under each ru aximized by orientation re maximized by orien 20 °C 43 % Limit FCC Part 95	un descriptior on of the EUT ntation of the Result Pass	N. and elevation EUT, elevation Value / Marg 84.9 dBuV/n 39.4 dBµV/r (-4.1 dB)	n of the measuremen n of the measuremen gin n (-16.3 dBm eirp)

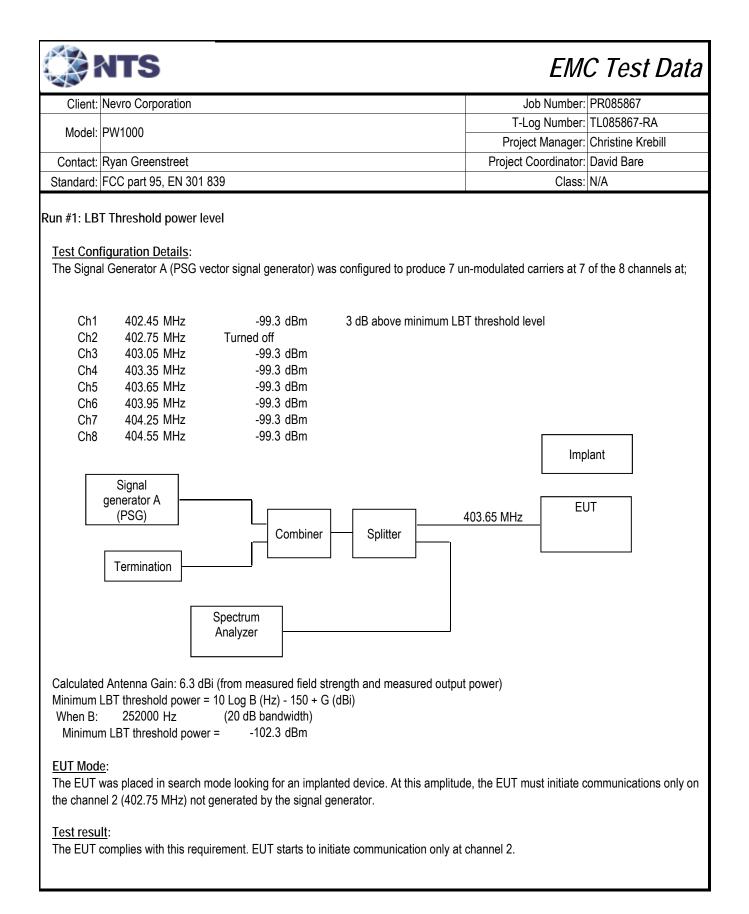
EMC Test Data

	-						
Client:	Nevro Corporation				PR Number:		
Model.	PW1000				•	TL085867-R	
Model.	1 111000			-	-	Christine Kre	bill
Contact:	Ryan Greenstreet			Proje	ect Engineer:	David Bare	
Standard:	FCC part 95, EN 301 839				Class:	-	
Tests were The resuls s tests.	idiated Emissions, 30-4050 MHz, F performed on the sample in three ori showed that the highest emssions an	entations to determine ori e with the device flat on th	entation with le support so	n highest em o the device v	issions. was placed ir	n this orientati	on for fina
Run #2: Ra	adiated Emissions, 30-4050 MHz, F	Fundamental and Transr	nitter Spurie	ous Emissio	ons		
	Frequency Range	Test Distance	Limit D	istance	Extranola	tion Factor	
	30 - 4,050 MHz	3		3	1	.0	
		v		~		.•	
Note:	The limit in part 95 for the fundamen limits which are the same as 15.209 more than 150kHz from the fundam The field strength of any spurious e	limits except in the 250 k ental frequency (65.2 dBu	Hz range ad <u>IV/m in 3kHz</u>	ljacent to the RB).	9402-405 MH	Iz band and i	
Note:	The frequency scans plot below are						nuecies
	observed during the scans using the	•				•	quecies
20.0	- 	Frequency (M		Ý	why wr	1 402.9	51
		In-band with RB=3 kHz					



	NTS							EM	C Test Data
Client:	Nevro Corpo	oration						PR Number:	PR085867
							T-	Log Number:	TL085867-RA
Model:	PW1000						Proj	ect Manager:	Christine Krebill
Contact:	Ryan Green	street						ect Engineer:	
	FCC part 95		39					Class:	
High Chann	nel	404.55MH	z						
Frequency	Level	Pol	FCC F	Part 95	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Fundamenta	al maximized								
404.550	81.2	Н	85.2	-4.0	PK	282	1.0	RB=1 MHz	
Preliminary s	spurious								
30.001	40.9	Н	40.0	0.9	Peak	255	4.0	Broadband	
96.001	39.5	Н	43.5	-4.0	Peak	165	3.5	USB related	
132.000	45.3	Н	43.5	1.8	Peak	96	1.5	USB related	
215.879	41.0	Н	43.5	-2.5	Peak	196	1.5	Broadband	
Final maxim	ized spurious	S							
30.001	31.6	Н	40.0	-8.4	QP	257	3.5	QP (1.00s)	
96.001	37.7	Н	43.5	-5.8	QP	151	2.9	QP (1.00s)	
132.000	39.4	Н	43.5	-4.1	QP	93	2.0	QP (1.00s)	
215.879	35.6	Н	43.5	-7.9	QP	211	1.2	QP (1.00s)	
1196.800	42.5	V	74.0	-31.5	PK	360	2.5	PK (0.10s)	
1196.800	25.0	V	54.0	-29.0	AVG	360	2.5	AVG (0.10s)	

Run #3: Radiated Spurious Emissions, Receive Mode, 30 - 1,300 MHz


Since all of the emissions except the fundamental when the radio is transmitting must meet the receiver limits of Part 15, no additional test is required for receive mode.

NTS EMC Test Data Client: Nevro Corporation Job Number: PR085867 T-Log Number: TL085867-RA Model: PW1000 Project Manager: Christine Krebill Project Coordinator: David Bare Contact: Ryan Greenstreet Standard: FCC part 95, EN 301 839 Class: N/A FCC Part 95.2565 & EN 301 839 **Frequency Stability** Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. For frequency stability measurements the EUT was placed inside an environmental chamber. Ambient Conditions: Temperature: 21 °C Rel. Humidity: 42 % Summary of Results Run # Test Performed Result / Margin Limit Pass / Fail Frequency Stability 100ppm Pass 18.9 ppm 1 Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Sample Notes Sample S/N: 11080-0000122

Model: Project Manager. Christine Kr Contact: Ryan Greenstreet Project Coordinator: David Bare Standard: FCC part 95, EN 301 839 Class: N/A Run #1: Frequency Stability Date of Test: 11/5/2018 Config Used: 1 Test Engineer: Jude Semana Config Change: None Test Location: Frequency: 402.45 Nominal Frequency: 402.45 MHz Full Voltage: 100 - 240V, 60 Hz None Test Location: Frequency: 402.45 MHz Full Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz Full Voltage: 100 - 240V, 60 Hz Temperature Frequency Measured Drift Full Voltage: 100 - 240V, 60 Hz 0 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 11.3 -2.0 30 402.447596 -2404 -6.0 50 402.447593 -4407					EMC Test Da
Model: Project Manager: Christine Kr Contact: Ryan Greenstreet Project Coordinator: David Bare Standard: FCC part 95, EN 301 839 Class: N/A un #1: Frequency Stability Config. Used: 1 Config. Used: 1 Test Engineer: Jude Semana Config. Config. Config. Used: 1 Config. Change: None Test Location: Frequency 402.45 MHz EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz requency Stability Over Temperature He EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature Frequency Measured Drift (Celsius) (MHz) (Hz) (ppm) 0 402.447796 -2404 -6.0 10 402.447796 -2404 -6.0 10 402.447796 -2404 -6.0 10 402.44799 -20.0 -3.0 30 402.447939 -2.0 -3.0 55 402.447997 -2.003 -5.0	Client:	Nevro Corporation			Job Number: PR085867
Project Manager: Project Manager: Project Manager: Project Manager: David Bare Standard: FCC part 95, EN 301 839 Class: NA Unt #1: Frequency Stability Config: Used: 1 Class: NA Test Engineer: Jude Semana Config: Used: 1 Config: Used: 1 Config: Used: 1 Test Location: Frequency Stability 402.45 MHz EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz requency Stability Over Temperature hee EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Immediate and that temperature. Temperature Frequency Measured Drift (ppm) 0 402.447115 -2.0 30 402.447115 -2.0 30 402.44539 -4661 -11.3 40 402.447394 -6.0 11.0 55 402.447937 -2.003 -5.0 Norst case: -7612 -18.9 11.0 10.0 2402.447997 -2.003 -5.0 Norst case: -7612 -18.9 11.0 15.0 10.	Madalı	D14/4000			T-Log Number: TL085867-RA
Contact: Ryan Greenstreet Project Coordinator: David Bare Standard: FCC part 95, EN 301 839 Class: N/A tun #1: Frequency Stability Date of Test: Config. Used: 1 Test Engineer: Jude Semana Config. Used: 1 Test Location: Freement EMC Lab #3 EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz 100 - 240V, 60 Hz Trequency Stability Over Temperature nemperature Frequency Measured Drift 100 - 240V, 60 Hz Temperature Frequency Measured Drift 100 - 240V, 60 Hz 100 - 240V, 60 Hz Temperature Frequency Measured Drift 100 - 240V, 60 Hz 100 - 240V, 60 Hz 10 402.447536 -2404 -6.0 100 - 240V, 60 Hz 100 - 200 - 240V, 60 Hz 10 402.447536 -2404 -6.0 100 - 202 - 200	Model:	PVV1000			Project Manager: Christine Krebill
Standard: FCC part 95, EN 301 839 Class: N/A Standard: FCC part 95, EN 301 839 Class: N/A Qun #1: Frequency Stability Date of Test: 11/5/2018 Config. Used: 1 Test Engineer: Jude Semana Config Change: None Test Location: Frequency: 402.45 MHz EUT Voltage: 100 - 240V, 60 Hz Trequency Stability Over Temperature frequency: 402.45 MHz EUT voltage: 100 - 240V, 60 Hz Trequency Stability Over Temperature frequency: 402.45 MHz frequency: EUT voltage: 100 - 240V, 60 Hz Temperature Frequency Measured Drift frequency: 60 - 2404 6.0 10 402.44715 2885 -7.2 20 402.44715 2885 -7.2 20 402.447115 -2885 -7.2 20 402.447115 -2885 -7.2 -0 30 402.445533 -4407 -11.0 -55 402.445533 -4407 -11.0 -55 402.447593 -5.0 Worst case: -7612 -	Contact:	Ryan Greenstreet			
Run #1: Frequency Stability Date of Test: 11/5/2018 Config. Used: 1 Test Engineer: Jude Semana Config Change: None Test Location: Frement EMC Lab #3 EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT shamber had stabilized at that temperature. Temperature Temperatures Frequency Measured Drift (Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 30 402.447593 -4407 -11.3 40 402.447593 -4407 -11.3 50 402.447597 -2003 -5.0 Worst case: -772 -18.9 -78.9 Frequency Measured Drift <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Date of Test: 11/5/2018 Config. Used: 1 Test Enginee:: Jude Semana Config Change: None Test Location: Frement EMC Lab #3 EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz requency Stability Over Temperature he EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Imperature: Frequency Measured Drift (Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.447399 -801 -2.0 30 402.447399 -801 -2.0 30 402.447997 -2003 5.5 Worst case: -7612 -18.9 Trequency Stability Over Input Voltage Iominal Voltage Is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm)	otandara				
Date of Test: 11/5/2018 Config. Used: 1 Test Engineer: Jude Semana Config Change: None Test Location: Frement EMC Lab #3 EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz trequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature Frequency Measured (Celsius) (MHz) (Hz) 0 402.447596 -2404 -0 402.44715 -2885 20 402.449199 -801 20 402.44539 -4561 30 402.442388 -7612 30 402.447997 -2003 55 402.447997 -2003 55 402.447976 -2724 -68 worst case: -7612 -7612 -18.9 -18.9 Trequency Stability Over Input Voltage Worst case: -2724 400 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case:	Run #1: Fr	equency Stability			
EUT Voltage: 100 - 240V, 60 Hz Nominal Frequency: 402.45 MHz requency Stability Over Temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature frequency Measured 0 402.447596 -2404 -6.0 10 402.447195 -2885 -7.2 20 402.447199 -801 -2.0 30 402.445593 -4461 -111.3 40 402.447197 -2003 -5.0 55 402.445593 -4407 -11.0 55 402.445593 -4407 -11.0 55 402.447297 -2003 -5.0 Worst case: -7612 -18.9 Trequency Stability Over Input Voltage Mominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Moret case: -2724<				Config. Use	d: 1
Nominal Frequency: 402.45 MHz requency Stability Over Temperature he EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature (Celsius) Frequency Measured Drift (Ppm) 0 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.44399 -801 -2.0 30 402.44539 -4561 -111.3 40 402.447397 -2003 -5.0 50 402.447593 -4407 -11.0 55 402.447397 -2003 -5.0 Worst case: -7612 -18.9 requency Stability Over Input Voltage Morst case: -7612 trip (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8	Te	est Engineer: Jude Semana		Config Chang	e: None
requency Stability Over Temperature he EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature Frequency Measured Drift (Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447196 -2885 -7.2 20 402.449199 -801 -2.0 30 402.445439 -4561 -11.3 40 402.442388 -7612 -18.9 50 402.447997 -2003 -5.0 Worst case: -7612 -18.9 requency Stability Over Input Voltage lominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8	Te	est Location: Frement EMC La	b #3	EUT Voltag	e: 100 - 240V, 60 Hz
Prequency Stability Over Temperature the EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT hamber had stabilized at that temperature. Temperature (Celsius) Frequency Measured Drift (Celsius) 0 402.447596 -2404 -0 402.447596 -2404 -0 402.447115 -2885 -20 402.449199 -801 -20 402.445439 -4561 -11.3 -40 402.442588 -7612 -18.9 50 402.447997 -2003 -5.0 Worst case: -7612 -7612 -18.9 Frequency Stability Over Input Voltage Iominal Voltage is 100-240VAC Voltage Frequency Measured Morst case: -2724 -6.8 -30 Worst case: -2724 -6.8 -2724		Nominal Frequency:	402.45 MHz		
Voltage Prift (Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.445439 -4561 -11.3 40 402.445439 -4561 -11.3 40 402.445593 -4407 -11.0 55 402.44593 -4407 -11.0 55 402.44593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 requency Stability Over Input Voltage Iominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -2724 -6.8 Worst case:	roquopev				
Imperature interpretative interpretatintext interpretative interpretative interpret			for a minimum of 30) minutes prior to makir	ng the measurements to ensure the FLIT and
Temperature Frequency Measured Drift (Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.449199 -801 -2.0 30 402.445439 -4561 -11.3 40 402.44593 -4407 -11.0 55 402.447997 -2003 -5.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 Frequency Stability Over Input Voltage Voltage Frequency Measured Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 <td></td> <td>•</td> <td></td> <td></td> <td></td>		•			
(Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.445439 -801 -2.0 30 402.44539 -4561 -11.3 40 402.442388 -7612 -18.9 50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 - - 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 15					
(Celsius) (MHz) (Hz) (ppm) 0 402.447596 -2404 -6.0 10 402.447115 -2885 -7.2 20 402.445439 -801 -2.0 30 402.445439 -4561 -11.3 40 402.442388 -7612 -18.9 50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 Sol 402.447997 -2003 -5.0 Worst case: -7612 -18.9 Worst case: -7612 -18.9 Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured	Temperature	Frequency Measured	D	rift	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Celsius)		(Hz)	(ppm)	
20 402.449199 -801 -2.0 30 402.445439 -4561 -11.3 40 402.442388 -7612 -18.9 50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 irequency Stability Over Input Voltage Iominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (HZ) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Yoltage Frequency Measured Drift	1	402.447596	-2404		
30 402.445439 -4561 -11.3 40 402.442388 -7612 -18.9 50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 Worst case: -7612 -18.9 Worst case: -7612 -18.9 Voltage Is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	10	402.447115	-2885	-7.2	
40 402.442388 -7612 -18.9 50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 irequency Stability Over Input Voltage Iominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Voltage Voltage Frequency Measured Drift (AC) (MHz) (Hz) -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	20	402.449199	-801	-2.0	
50 402.445593 -4407 -11.0 55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 irequency Stability Over Input Voltage Jominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Voltage Voltage Voltage Yoltage Frequency Measured Drift (AC) (MHz) (Hz) -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	30	402.445439	-4561	-11.3	
55 402.447997 -2003 -5.0 Worst case: -7612 -18.9 irequency Stability Over Input Voltage Jominal Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Voltage Voltage Frequency Measured Drift (AC) (MHz) (Hz) -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	40	402.442388	-7612	-18.9	
Worst case: -7612 -18.9 Grequency Stability Over Input Voltage Image: Stability Over Input Voltage Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Yoltage Frequency Measured Drift Worst case: -2724 -6.8 Yoltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	50	402.445593	-4407	-11.0	
Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (cpm) 73 402.447276 -2724 -6.8	55	402.447997	-2003	-5.0	
Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8		Worst case:	-7612	-18.9	
Voltage is 100-240VAC Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	requency	Stability Over Input Voltage			
Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8					
(AC) (MHz) (Hz) (ppm) 85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8				rift	-
85% 402.447276 -2724 -6.8 115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8					-1
115% 402.447276 -2724 -6.8 Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	· · /	()	()		-1
Worst case: -2724 -6.8 Voltage Frequency Measured Drift (AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8		· · · · · · · · · · · · · · · · · · ·			
VoltageFrequency MeasuredDrift(AC)(MHz)(Hz)(ppm)73402.447276-2724-6.8	11570				-
(AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8		worst case.		-0.0	
(AC) (MHz) (Hz) (ppm) 73 402.447276 -2724 -6.8	Voltage	Frequency Measured	D	rift	
73 402.447276 -2724 -6.8					7
	<u> </u>				7
N. L. A. Maximum drift of fundamental frequency before it abut down at 72 \/AC was 0.11-		• I		•	
Note 1: Maximum drift of fundamental frequency before it shut down at 73 VAC was 0 Hz	Note 1:	Maximum drift of fundamenta	frequency before it	shut down at 73 VAC w	vas 0 Hz

	NTS	EMO	C Test Data
Client:	Nevro Corporation	Job Number:	PR085867
Model	PW1000	T-Log Number:	TL085867-RA
	- 1000	Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Coordinator:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	N/A
	LBT, FCC Part 95 and	EN 301 839	
Test Spec	ific Details		
	Objective: The objective of this test session is to perform final qua specification listed above.	alification testing of the EUT with r	espect to the
C	ate of Test: 11/2/2018 Confi	g. Used: 1	
	•	Change: None	
Te	st Location: Fremont Chamber #2 EUT	Voltage: 120V/60Hz	
	est Configuration nents are made with the EUT's rf port connected to the signal gene	erating and measurement instrume	nts via combiners.
Ambient (Conditions: Temperature: 21 °C Rel. Humidity: 40 %		
Summarv	of Results		
Run #	Test	Requirement / Limit	Result / Margin
1	LBT threshold power level	EUT shall select only the Least Interferred Channel (LIC)	Pass
2	Monitoring system bandwidth	>= 20 dB EBW	Pass
3	Monitoring system scan cycle time	<= 5 s	Pass
4	Monitoring system Minimum Channel monitoring period	0.1 ms / 10 ms	Pass
5	Channel access based on ambient level above PTh	Correct channel selection	Pass
6	Discontinuation of MICS session	<= 5 seconds	Pass
7	Use of pre-scanned alternative channel Th	ne EUT does not use this feature	N/A
The follow The inte firmware	ons Made During Testing ing modifications were made to the EUT prior to testing in order to rnal antenna was removed and a short coax to an SMA connector was used to allow continuous attempts to establish a communicat	was connected instead to allow co	nducted testing. Specia
	s From The Standard ons were made from the requirements of the standard.		
Sample N Sample S	otes N: 11080-0000122		

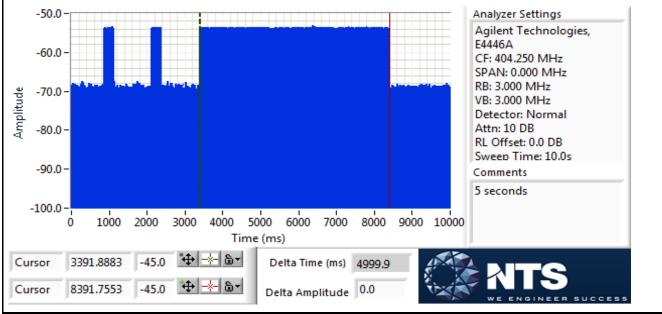
Model: PW1000 T-Log Number: TL085867-RA Project Manager: Christine Krebill Indard: FCC part 95, EN 301 839 Class: N/A #2: Monitoring system bandwidth Class: N/A st Configuration Details: Class: N/A e PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at; Ch1 402.45 MHz -99.3 dBm Ch2 402.75 MHz Turned off Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch7 A04.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Ch8 Pass Pass Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass	Client: No	evro Corporation				Job Number:	PR085867
Project Manager: Christine Krebill Initiat: Ryan Greenstreet Project Coordinator: David Bare Initiat: FCC part 95, EN 301 839 Class: N/A Initiat: FCC part 95, EN 301 839 Class: N/A Initiat: FCC part 95, EN 301 839 Class: N/A Initiat: FCC part 95, EN 301 839 Class: N/A Initiat: State Class: N/A Initiat: FCC part 95, EN 301 839 Class: N/A Initiat: State Class: N/A Initiat: State Class: N/A Initiat: State Class: N/A Initiat: State State State State Initiat: State State State State State Initiat: State State State State State State Initiat: Result State						T-Log Number:	TL085867-RA
Indard: FCC part 95, EN 301 839 Class: N/A #2: Monitoring system bandwidth	/lodel: P	W1000				Project Manager:	Christine Krebill
#2: Monitoring system bandwidth st Configuration Details: e PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at; Ch1 402.45 MHz -99.3 dBm 3 dB above minimum LBT threshold level Ch2 402.75 MHz Turned off Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	ontact: R	yan Greenstreet				Project Coordinator:	David Bare
st Configuration Details: e PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at; Ch1 402.45 MHz - 99.3 dBm 3 dB above minimum LBT threshold level Ch2 402.75 MHz Turned off Ch3 403.05 MHz - 99.3 dBm Ch4 403.35 MHz - 99.3 dBm Ch4 403.35 MHz - 99.3 dBm Ch5 403.65 MHz - 99.3 dBm Ch6 403.95 MHz - 99.3 dBm Ch6 403.95 MHz - 99.3 dBm Ch7 404.25 MHz - 99.3 dBm Ch7 404.25 MHz - 99.3 dBm Pa: -87 dBm @402.750 MHz Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass St Result	ndard: F	CC part 95, EN 301	839			Class:	N/A
e PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at; Ch1 402.45 MHz -99.3 dBm 3 dB above minimum LBT threshold level Ch2 402.75 MHz Turned off Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	2: Moni	toring system ban	dwidth				
e PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at; Ch1 402.45 MHz -99.3 dBm 3 dB above minimum LBT threshold level Ch2 402.75 MHz Turned off Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	t Config	uration Details:					
Ch2 402.75 MHz Turned off Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	-		configured to produce 7 ι	un-modulated carrie	ers at 7 of th	ne 8 channels at;	
Ch3 403.05 MHz -99.3 dBm Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	Ch1	402.45 MHz	-99.3 dBm	3 dB above mir	nimum LBT	threshold level	
Ch4 403.35 MHz -99.3 dBm Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Ch5 403.65 MHz -99.3 dBm Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Ch6 403.95 MHz -99.3 dBm Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Ch7 404.25 MHz -99.3 dBm Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Ch8 404.55 MHz -99.3 dBm Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Pa: -87 dBm @402.750 MHz Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass							
Pb: -81 dBm @402.624 MHz D1: 6.0 dB Pass Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass tt Result	Ch8	404.55 MHz	-99.3 dBm				
Pc: -77 dBm @402.876 MHz D2: 10.0 dB Pass	Pa:		@402.750 MHz				
st Result	Pb:		@402.624 MHz			Pass	
	Pc:	-77 dBm	@402.876 MHz	D2:	10.0 dB	Pass	
			0dB, the EUT complies w	ith the 20 dB monit	oring band	width requirement.	

Client: N	levro Corporation			Job Number:	PR085867
	-			T-Log Number:	
Model: F	W1000			Project Manager:	
Contact: F	lyan Greenstreet			Project Coordinator:	
	CC part 95, EN 301 839	9		Class:	N/A
#3: Mon	itoring system scan cy	vcle time			
: The EU	T performs a clear chan	nel assessment prior	to initiating any transmission		
st Confi	guration Details:				
Ch1	402.45 MHz	-99.3 dBm	3 dB above minimum LBT		
Ch2	402.75 MHz	-96.3	Turned off after starting a c	communication session	
Ch3	403.05 MHz	-99.3 dBm			
Ch4	403.35 MHz	-99.3 dBm			
Ch5	403.65 MHz	-99.3 dBm			
Ch6	403.95 MHz	-99.3 dBm			
Ch7	404.25 MHz	-99.3 dBm -99.3 dBm			
Ch8	404.55 MHz	-99.5 0011			
est result	:				
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
st result	:		after the signal on that channel	l is switched off.	
st result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
est result	:		after the signal on that channel	l is switched off.	
st result	:		after the signal on that channel	l is switched off.	

Client:	Nevro Corporation				Job Numb	per: PR085867
Madala	DW4000				T-Log Numb	er: TL085867-RA
Model:	PW1000				Project Manag	er: Christine Krebill
Contact:	Ryan Greenstreet				Project Coordina	tor: David Bare
Standard:	FCC part 95, EN 301 83	9			Cla	ss: N/A
<u>Fest Con</u> Ch1	nitoring system Minimu figuration Details: 402.45 MHz 402.75 MHz	-96.3 dBm		3 dB above	minimum I BT throobs	ld lovel
<u>Test Con</u> Ch1 Ch2	figuration Details: 402.45 MHz 402.75 MHz	-96.3 dBm -99.3 dBm	ng period MXG	3 dB above	minimum LBT thresho	ld level
<u>Test Con</u> Ch1 Ch2 Ch3	figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz	-96.3 dBm -99.3 dBm -96.3 dBm		3 dB above	minimum LBT thresho	ld level
<u>Test Con</u> Ch1 Ch2	figuration Details: 402.45 MHz 402.75 MHz	-96.3 dBm -99.3 dBm		3 dB above	minimum LBT thresho	ld level
<u>Test Con</u> Ch1 Ch2 Ch3 Ch4	figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz 403.35 MHz 403.65 MHz	-96.3 dBm -99.3 dBm -96.3 dBm -96.3 dBm		3 dB above	minimum LBT thresho	ld level
Test Con Ch1 Ch2 Ch3 Ch4 Ch5	figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz 403.35 MHz 403.65 MHz	-96.3 dBm -99.3 dBm -96.3 dBm -96.3 dBm -96.3 dBm		3 dB above	minimum LBT thresho	ld level

MHz. The output of the PSG was switched back on and the amplitude increased by 3 dB. The EUT was set to initiate a transmission. The EUT only transmitted at 402.75 MHz. The PSG generator was configured with **pulse modulation** on all the carriers. The modulation was 0.1 ms pulse with a repetition rate of 10 ms corresponding to a silent period between pulses of 9.9 ms. The EUT was set to initiate a transmission 10 times. In each case, the EUT only transmitted at 402.75 MHz.

Test result:


The test has been repeated 10 times and the channel selection occurred only on 403.65 MHz in each test run. The EUT complies with this requirement.

Client:	Nevro Corporation			Job Number: PR085867
Model [.]	PW1000			T-Log Number: TL085867-RA
				Project Manager: Christine Krebill
	Ryan Greenstreet			Project Coordinator: David Bare
tandard:	FCC part 95, EN 301 83	39		Class: N/A
n #5: Ch	annel access based on	ambient level above	PTh	
est Con	figuration Details:			
Ch1		-92.3 dBm	10 dB above minimum L	BT threshold level
Ch2	402.75 MHz	-105.3 dBm	Increased: -96.3 dBm	(MXG)
Ch3	403.05 MHz	-92.3 dBm		
Ch4	403.35 MHz	-92.3 dBm		
Ch5		-92.3 dBm		
Ch6	403.95 MHz	-92.3 dBm		
Ch7	404.25 MHz	-99.3 dBm	3 dB above minimum LB	T threshold le
Ch8	404.55 MHz	-92.3 dBm		
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT		nel 2 (402.75 MHz) with 3 dB below the thres plitude of the MXG generator was increased
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a t	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	
evel. The EUT and the E	was set to initiate a trans UT was set to initiate a tr I <u>II</u> :	smission, it only transm ransmission. The EUT	itted at 402.75 MHz. The am	

Client:	Nevro Corporation			Job Number:	PR085867
Madal	DW/4000			T-Log Number:	TL085867-RA
wodei:	PW1000			Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet			Project Coordinator:	David Bare
	FCC part 95, EN 301 83	9		Class:	N/A
CS sessio ceed 5 se Test Con	n is established, it may c conds figuration Details:	continue as long as a s		is interrupted for a period of 5 se y communication between co-op	
CS sessio ceed 5 se <u>Test Con</u> Ch1	n is established, it may c conds f <u>iguration Details</u> : 402.45 MHz	ontinue as long as a s -96.2 dBm	ilent period in two-wa		
CS session ceed 5 sec <u>Test Con</u> Ch1 Ch2	n is established, it may c conds f <u>iguration Details</u> : 402.45 MHz 402.75 MHz	ontinue as long as a s -96.2 dBm -96.2 dBm			
CS sessio ceed 5 se <u>Test Con</u> Ch1 Ch2 Ch3	n is established, it may c conds figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz	ontinue as long as a s -96.2 dBm -96.2 dBm -96.2 dBm	ilent period in two-wa		
CS sessio ceed 5 se <u>Test Con</u> Ch1 Ch2 Ch3 Ch4	n is established, it may c conds figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz 403.35 MHz	ontinue as long as a s -96.2 dBm -96.2 dBm	ilent period in two-wa		
CS sessio ceed 5 se <u>Test Con</u> Ch1 Ch2 Ch3	n is established, it may c conds figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz	ontinue as long as a s -96.2 dBm -96.2 dBm -96.2 dBm -96.2 dBm	ilent period in two-wa		
CS session ceed 5 se <u>Test Con</u> Ch1 Ch2 Ch3 Ch4 Ch5	n is established, it may c conds figuration Details: 402.45 MHz 402.75 MHz 403.05 MHz 403.35 MHz 403.65 MHz	-96.2 dBm -96.2 dBm -96.2 dBm -96.2 dBm -96.2 dBm -99.2 dBm	ilent period in two-wa		

Test result:

The transmissions from the EUT has stopped in less than 5 seconds and did not re-initiate, the EUT complied with this requirement

S NTS		EMC Test Data	
Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Coordinator:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	N/A

Run #7: Use of pre-scanned alternative channel

The test is not applicable, The EUT does not use this feature

Test result: N/A

End of Report

This page is intentionally blank and marks the last page of this test report.