

RFID 13,56MHz Template: Release March 30th, 2020

TEST REPORT

N°: 167401-751432-B-(FILE#1047427)

Version: 01

Subject

Radio spectrum matters tests according to standards: 47 CFR Part 15.225 & RSS 210 Issue 10 & RSS-Gen Issue 5

Issued to

INGENICO 9 avenue de la gare 26958 - Valence cedex 9 France

Apparatus under test

♥ Product Strade mark Manufacturer
School under test Serial number Section 4 Sectio

♥ IC

Conclusion

Test date Test location Test Site Sample receipt date **Composition of document**

Document issued on

Written by : Mounir BOUAMARA **Tests operator**

Payment Terminal INGENICO INGENICO Self/4000 CL 193407313031143912221149 XKB-SELF4000 2586D-SELF4000

See Test Program chapter

May 25, 2020 to May 29, 2020 Moirans 6230B-1 May 25, 2020 36 pages

June 18, 2020

Approved by : Gaëtan DESCHAMPS Technical management central des ES EDECTRIQUES

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related 5614 to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified or rule defined by the test method, the decision of conformity doesn't take into account the uncertainty of measures. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas

ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél: +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

PUBLICATION HISTORY

Version	Date	Author	Modification
01	May 29, 2020	Mounir BOUAMARA	Creation of the document

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

รเ	JM	MA	ARY
0		1417	

1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3.	OCCUPIED BANDWIDTH	9
4.	FREQUENCY TOLERANCE	. 12
5.	AC POWER LINE CONDUCTED EMISSIONS	. 15
6.	FIELD STRENGTH OUTSIDE OF THE BANDS 13.110-14.010 MHZ	. 22
7.	FIELD STRENGTH WITHIN THE BAND 13.110-14.010MHZ	. 31
8.	UNCERTAINTIES CHART	. 36

1. TEST PROGRAM

References

- > 47 CFR Part 15.225 (2020)
- > RSS 210 Issue 10
- > RSS Gen Issue 5
- > ANSI C63.10 (2013)

Radio requirement:

Clause (47CFR Part 15.225 & RSS-210 Issue 9 & RSS-Gen Issue 5) Test Description		Test result -	Comments	
Occupied Bandwidth	☑ PASS			□ NP(1)
AC Power Line Conducted Emission	☑ PASS		□ NA(2)	□ NP(1)
Frequency Tolerance	☑ PASS			□ NP(1)
Field strength within the band 13.110-14.010MHz	⊠ PASS			□ NP(1)
Field strength outside of the bands 13.110-14.010 MHz	☑ PASS			□ NP(1)
Receiver Radiated Emissions	□ PASS (3)		⊠ NA	□ NP(1)

This table is a summary of test report, see conclusion of each clause of this test report for detail.

(1): Limited program

(2): EUT not directly or indirectly connected to the AC Power Public Network

(3)Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

PASS: EUT complies with standard's requirement FAIL: EUT does not comply with standard's requirement

NA: Not Applicable

NP: Test Not Performed

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): INGENICO Self/4000 CL

Serial Number: 193407313031143912221149

Power supply:

Name	Туре	Rating	Reference / Sn	Comments
Supply1	□ AC Ø DC □ Battery	12		

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
2	USB A	-				
1	RJ45	-				
2	RJ11	-				
1	USB B	-				
1	Power Supply	-				

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop			Use to set the EUT

Equipment information:

Туре:			☑ RFID				
Frequency band:	[13.553 to 13.567] MHz						
Number of Channel:				1			
Antenna Type:	☑ Integral		External			Dedicated	
Transmit chains:				1			
Receiver chains				1			
Type of equipment:	☑ Stand-alone		🗆 Plug-in		□ Combined		
Equipment arrangement:	□ Tabletop		□ Floor-standing		Multiple orientations		
Equipment type:	Production me		odel 🛛 🗆 Pre		e-produ	e-production model	
	Tmin:	[□ -20°C □ 0°0			☑ -20°C	
Operating temperature range:	Tnom:	20°C					
	Tmax:		□ 35°C	□ 50°C		⊠ 65°C	
	Vmin:		□ 102V/60Hz		⊠ 9Vdc		
Operating voltage:	Vnom:		□ 120V/60Hz		⊠ 12Vdc		
	Vmax:		□ 138V/60Hz		⊠ 16Vdc		

Antenna Characteristic					
Antenna assembly	Gain (dBi)	Frequency Band (MHz)	Impedance(Ω)		
1	0	Nc*	50		

Modulation Type
Nc*
Nc*

Hardware information				
Software (if applicable):	V . :	Nc*		

Nc*: Not communicated

2.2. RUNNING MODE

Test mode	Description of test mode
Test mode 1	Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
Test mode 2	Permanent reception

Test	Runni	ng mode
Occupied Bandwidth	☑ Test mode 1	□ Alternative test mode()
Frequency Tolerance	☑ Test mode 1	□ Alternative test mode()
AC Power Line Conducted Emission	☑ Test mode 1	□ Alternative test mode()
Field strength within the band 13.110-14.010MHz	☑ Test mode 1	□ Alternative test mode()
Field strength outside of the bands 13.110-14.010 MHz	☑ Test mode 1	□ Alternative test mode()
Receiver Radiated Emissions	☑ Test mode 2 (1)	□ Alternative test mode()

(1) Note: The test can't be performed because the transmitter and receiver are operating at the same frequency and the transmitter cannot be switched off as the carrier is used as receiver injection signal

2.3. EQUIPMENT LABELLING

Ingenico Product: Sell/4000 CL HVN:SEL40BA Mac Adr: B40016C43804	
iP54 Made in: VIETNAM Rating: 9 – 16V 2A 07	
PN: TSR30311439A	

2.4. EQUIPMENT MODIFICATION

 $\ensuremath{\boxtimes}$ None $\hfill\square$ Modification:

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF – AG

- Where FS = Field Strength
 - RA = Receiver Amplitude
 - AF = Antenna Factor
 - CF = Cable Factor
 - AG = Amplifier Gain

Assume a receiver reading of 52.5dB μ V is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB μ V/m.

FS = 52.5 + 7.4 + 1.1 – 29 = 32 dBµV/m

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+4 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

3. OCCUPIED BANDWIDTH

3.1. TEST CONDITIONS

Test performed by	: Mounir BOUAMARA
Date of test	: May 25, 2020 to May 29, 2020
Ambient temperature	: 23 °C
Relative humidity	: 39 %

3.2. TEST SETUP

- The Equipment Under Test is installed:

- □ On a table
- $\ensuremath{\boxtimes}$ In a climatic chamber
- \Box In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- $\hfill\square$ Conducted Method

Radiated Method

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

- Test Procedure:

☑ RSS-Gen Issue 5 § 6.7

- RBW used in the range of 1% to 5% of the anticipated emission bandwidth
- Set the video bandwidth (VBW) \ge 3 x RBW.
- Detector = Peak.
- Trace mode = Max Hold.
- \circ Sweep = Auto couple.
- Allow the trace to stabilize.
- o OBW 99% function of spectrum analyzer used

Test set up of Occupied Bandwidth

Photograph for Occupied bandwidth

3.3. LIMIT

None

3.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED									
Description	Manufacturer	Identifier	Cal_Date	Cal_Due					
AC source 1kW	KEYSIGHT	AC6802A	A7042305						
Antenna Loop (near field)	ELECTRO-METRICS	EM-6993	C2040215	06/19	06/21				
Climatic chamber	BIA CLIMATIC	CL 6-25	D1022117	02/19	06/20				
Multimeter - CEM	FLUKE	87	A1240251	11/18	11/20				
SMA 1.5m	SUCOFLEX	18GHz	A5329863	11/18	06/20				
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642020	06/18	06/20				
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20				
Thermocouple K (radio)	FLUKE	Туре К	B4045005	09/19	09/20				
Thermocouple K (radio)	FLUKE	Туре К	B4045004	09/19	09/20				
Thermometer (radio)	FLUKE	52 II	B4043150	09/19	09/20				

3.5. RESULTS

3.6. CONCLUSION

Occupied Channel Bandwidth measurement performed on the sample of the product **INGENICO Self/4000 CL**, SN: **193407313031143912221149**, in configuration and description presented in this test report, show levels **compliant** to the **RSS-GEN** limits.

4. FREQUENCY TOLERANCE

4.1. TEST CONDITIONS

Test performed by	: Mounir BOUAMARA
Date of test	: May 25, 2020 to May 29, 2020
Ambient temperature	: 23 °C
Relative humidity	: 39 %

4.2. TEST SETUP

- The Equipment Under Test is installed:

- \square In a climatic chamber
- \Box In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- □ Conducted Method
- ☑ Radiated Method

- Test Procedure: ☑ ANSI C63.10 § 6.8

Test set up of Frequency Tolerance

Photograph for Frequency Tolerance

4.3. LIMIT

±0.01% (± 100ppm)

4.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED									
Description	Manufacturer	Identifier	Cal_Date	Cal_Due					
AC source 1kW	KEYSIGHT	AC6802A	A7042305						
Antenna Loop (near field)	ELECTRO-METRICS	EM-6993	C2040215	06/19	06/21				
Climatic chamber	BIA CLIMATIC	CL 6-25	D1022117	02/19	06/20				
Multimeter - CEM	FLUKE	87	A1240251	11/18	11/20				
SMA 1.5m	SUCOFLEX	18GHz	A5329863	11/18	06/20				
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642020	06/18	06/20				
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20				
Thermocouple K (radio) FLUKE		Туре К	B4045005	09/19	09/20				
Thermocouple K (radio) FLUKE		Туре К	B4045004	09/19	09/20				
Thermometer (radio)	FLUKE	52 II	B4043150	09/19	09/20				

4.5. RESULTS

EUT activation:		Startup							
Voltage:		Vnom							
Temperature:	-20°C	20°C -10°C 0°C 10°C 20°C 35°C 45°C 55°C 6							65°C
Frequency (MHz)	41.27	41.25	41.25	41.3	41.57	41.10	40.67	40.59	40.46
Frequency Drift (%)	0.0022%	0.0022%	0.0022%	0.0022%	0.0026%	0.0029%	0.0028%	0.0024%	0.0024%
EUT activation:					2min				
Voltage:		-	-	-	Vnom		-	-	
Temperature:	-20°C	-10°C	0°C	10°C	20°C	35°C	45°C	55°C	65°C
Frequency (MHz)	41.27	41.25	41.25	41.3	41.57	41.10	40.67	40.59	40.46
Frequency Drift (%)	0.0022%	0.0022%	0.0022%	0.0022%	0.0026%	0.0029%	0.0028%	0.0024%	0.0024%
EUT activation:					5min				
Voltage:					Vnom				
Temperature:	-20°C	-10°C	0°C	10°C	20°C	35°C	45°C	55°C	65°C
Frequency (MHz)	41.27	41.25	41.25	41.3	41.57	41.10	40.67	40.59	40.46
Frequency Drift (%)	0.0022%	0.0022%	0.0022%	0.0022%	0.0026%	0.0029%	0.0028%	0.0024%	0.0024%
EUT activation:					10min				
Voltage:					Vnom				
Temperature:	-20°C	-10°C	0°C	10°C	20°C	35°C	45°C	55°C	65°C
Frequency (MHz)	41.27	41.25	41.25	41.3	41.57	41.10	40.67	40.59	40.46
Frequency Drift (%)	0.0022%	0.0022%	0.0022%	0.0022%	0.0026%	0.0029%	0.0028%	0.0024%	0.0024%

Temperature	Tnom						
Voltage:	Vmin Vnom Vmax						
Frequency (MHz)	41.58	41.57	41.58				
Frequency Drift (%)	13,559641	13,559641	13,559601				

4.6. CONCLUSION

Frequency tolerance measurement performed on the sample of the product **INGENICO Self/4000 CL**, SN: **193407313031143912221149**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.225 & RSS 210 limits.

5. AC POWER LINE CONDUCTED EMISSIONS

5.1. ENVIRONMENTAL CONDITIONS

Date of test	: February 19, 2020
Test performed by	: Loïc BOURET
Atmospheric pressure (hPa)	: January 1, 1900
Relative humidity (%)	: 30
Ambient temperature (°C)	: 21

5.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:

 \square 40cm from the vertical ground and 80cm above horizontal ground on the non-conducting table (Table-top equipment) \square 40cm above the horizontal ground on the non-conducting table (Table-top equipment)

□ 10cm above the ground on isolating support (Floor standing equipment)

The distance between the EUT and the LISN is 80cm.

The EUT is powered by V_{nom}.

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Test set up of AC Power Line Conducted Emissions

Test setup

Telecommunication line

Shielded cable:

Measurement is performed with a current probe on the shield of the cable. A 150Ω impedance is connected between the cable's shield and the ground reference plane.

Test setup

5.3. TEST EQUIPMENT LIST

TEST EQUIPMENT USED									
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due				
BAT EMC	NEXIO	v3.19.1.18	L1000115						
Cable + self	_	_	A5329585	12/18	06/20				
EMC comb generator	LCIE SUD EST	_	A3169098						
LISN	ROHDE & SCHWARZ	ENV216	C2320291	02/19	06/20				
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	06/20				
Thermo-hygrometer (PM1/2/3)	grometer (PM1/2/3) KIMO		B4206022	08/18	08/20				
Transient limiter	ROHDE & SCHWARZ	ESH3-Z2	A7122204	02/19	06/20				
Load 50Ω - N	AEROFLEX	_	A7152067	02/19	06/20				
Load 50Ω - BNC	AEROFLEX	_	A7152074	02/19	06/20				

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None \Box Divergence:

5.5. **TEST RESULTS**

Mains terminals:

Supply1

Measurements are performed on the phase (+24VDC) and neutral (0V) of the power line. **Results: (PEAK detection)**

Graph identifier	Line	Comments	
Emc# 1	Phase	-	See below
Emc# 2	Neutral	-	See below

Frequency (MHz)	Mes.Peak (dBµV)	Mes.QPea k (dBµV)	LimQP (dBµV)	Mes.QPea k-LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correction (dB)
0.150	48.2	45.0	66.0	-21.0	35.3	56.0	-20.7	Phase 1	19.4
0.334	32.0	27.1	59.4	-32.3	21.4	49.4	-27.9	Phase 1	19.5
0.630	30.7	25.0	56.0	-31.0	19.3	46.0	-26.7	Phase 1	19.7
9.624	26.1	20.1	60.0	-39.9	14.5	50.0	-35.5	Phase 1	20.2
23.128	32.8	29.9	60.0	-30.1	26.0	50.0	-24.0	Phase 1	21.0
27.160	32.8	29.4	60.0	-30.6	25.0	50.0	-25.0	Phase 1	21.2

Frequency (MHz)	Mes.Peak (dBµV)	Mes.QPea k (dBµV)	LimQP (dBµV)	Mes.QPea k-LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correction (dB)
0.150	49.5	45.6	66.0	-20.4	34.0	56.0	-22.0	Neutre	19.4
0.210	37.5	32.4	63.2	-30.8	25.7	53.2	-27.5	Neutre	19.6
0.482	33.8	27.6	56.3	-28.7	21.9	46.3	-24.4	Neutre	19.6
0.826	29.2	24.1	56.0	-31.9	18.3	46.0	-27.7	Neutre	19.6
3.848	39.2	21.1	56.0	-34.9	14.9	46.0	-31.1	Neutre	19.8
4.172	26.9	20.6	56.0	-35.4	15.0	46.0	-31.0	Neutre	19.8
23.128	32.8	29.7	60.0	-30.3	25.9	50.0	-24.1	Neutre	21.0
26.488	33.8	30.4	60.0	-29.6	26.2	50.0	-23.8	Neutre	21.2

5.6. CONCLUSION

Ac Power Line Conducted Emission measurement performed on the sample of the product **INGENICO Self/4000 CL**, SN: **193407313031143912221149**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.225 & RSS Gen limits.

6. FIELD STRENGTH OUTSIDE OF THE BANDS 13.110-14.010 MHz

6.1. TEST CONDITIONS

Test performed by	: Mounir BOUAMARA
Date of test	: May 25, 2020 to May 29, 2020
Ambient temperature	: 23 °C
Relative humidity	: 39 %

6.2. TEST SETUP

The product has been tested according to ANSI C63.10 and FCC part 15 subpart C.

Test is performed in parallel, perpendicular and ground parallel axis with a loop antenna below 30MHz. Measurement bandwidth was 200Hz below 150kHz and 9kHz between 150kHz & 30MHz. The level has been maximised by the turntable rotation of 360 degrees range on all axis of EUT used in normal configuration. Antenna height was 1m. The EUT is placed **in a semi-anechoic chamber**. Distance between measuring antenna and the EUT is **3m**.

Test is performed in horizontal (H) and vertical (V) polarization with **biconic and bilog** between 30MHz & 1GHz. Measurement bandwidth was 120kHz below 1GHz. The level has been maximised by the turntable rotation of 360 degrees range on all axis of EUT used in normal configuration. The EUT is place at 0.8m high under 1GHz. The EUT is placed in **a full anechoic chamber** from 30MHz to 1GHz. Distance between measuring antenna and the EUT is **Distance**. The height antenna is varied from 1m to 4m from 30MHz to 1GHz.

Test Set up for radiated measurement in open area test site

Photograph for Field strength outside of the bands 13.110-14.010 MHz

6.3. LIMIT

	Measure at 300m										
Frequency range	Level	Detector									
9kHz-490kHz	67.6dBµV/m /F(kHz)	QPeak									
Measure at 30m											
Frequency range	Level	Detector									
490kHz-1.705MHz	87.6dBµV/m /F(kHz)	QPeak									
1.705MHz-30MHz	29.5dBµV/m	QPeak									
Measure at 10m											
Frequency range	Level	Detector									
30MHz to 88MHz	29.5dBµV/m	QPeak									
88MHz to 216MHz	33dBµV/m	QPeak									
216MHz to 960MHz	35.5BµV/m	QPeak									
960MHz to 1000MHz	43.5dBµV/m	QPeak									
Above 1000MHz	63.5dBµV/m	Peak									
	43.5dBµV/m	Average									
	Measure at 3m										
Frequency range	Level	Detector									
30MHz to 88MHz	40dBµV/m	QPeak									
88MHz to 216MHz	43.5dBµV/m	QPeak									
216MHz to 960MHz	46BµV/m	QPeak									
960MHz to 1000MHz	54dBµV/m	QPeak									
Above 1000MHz	74dBµV/m	Peak									
	54dBµV/m	Average									

6.4. TEST EQUIPMENT LIST

	TEST EQUIPMENT USED										
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due						
Amplifier 9kHz - 40GHz	LCIE SUD EST	_	A7102082	10/18	06/20						
Antenna Bi-Log	CHASE	UPA6192	C2040221	01/18	06/20						
Antenna Loop	ELECTRO-METRICS	EM-6879	C2040052	06/19	06/21						
BAT EMC	NEXIO	v3.19.1.18	L1000115								
Comb EMR HF	YORK	CGE01	A3169114								
Emission Cable (SMA 30cm)	TELEDYNE	26GHz	A5329873	01/19	07/20						
Emission Cable <1GHz (Ampl <-> Cage)	-	18GHz	A5329562	08/19	08/20						
Emission Cable <1GHz (Ampl <-> Cage)	-	18GHz	A5329907	08/19	08/20						
Multimeter - CEM	FLUKE	87	A1240251	11/18	11/20						
Radiated emission comb generator	BARDET	_	A3169050								
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	06/20						
Rehausse Table C3	LCIE	_	F2000511								
Semi-Anechoic chamber #3 (BF)	SIEPEL	_	D3044017_BF	12/19	12/22						
Semi-Anechoic chamber #3 (VSWR)	SIEPEL	_	D3044017_VSWR	12/19	12/22						
Spectrum analyzer	ROHDE & SCHWARZ	FSU 26	A4060058	09/19	09/21						
Table C3	LCIE	_	F2000461								
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20						
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371								
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444								
Antenna Mat (OATS)	ETS Lingren	2071-2	F2000392								
Cable (OATS)	_	1GHz	A5329623	05/20	05/21						
Emission Cable	SUCOFLEX	6GHz	A5329061	02/19	08/20						
OATS	_	_	F2000409	04/20	04/21						
Rehausse Table C1/OATS	LCIE	_	F2000512								
Table C1/OATS	LCIE	_	F2000445								
Turntable (OATS)	ETS Lingren	Model 2187	F2000403								
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372								

6.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

6.6. RESULTS

TYPE A Configuration

Graph name: Emr#1 Test configuration: Limit: FCC CFR47 Part15C (0°/90°) - Cnom - TX mode - Axis XY type A Class: Image: [9kHz - 30MHz] Image: [9kHz - 30MHz] Antenna polarization: 0/90° RBW: 500Hz & 10kHz Azimuth: 0° - 360° VBW: 2kHz & 30kHz Image: Image		RADIATED EI	MISSIONS					
Limit: FCC CFR47 Part15C (0°/90°) - Cnom - TX mode - Axis XY type A Antenna polarization: 0/90° RBW : 500Hz & 10kHz Azimuth: 0° - 360° VBW : 2kHz & 30kHz dBµV/m 0° - 360° VBW : 2kHz & 30kHz How 500Hz & 10kHz 00Hz & 10kHz 00Hz How 130 0 0 - 360° VBW : 2kHz & 30kHz How 130 0 - 400 - 400 - 400 - 400 - 400 - 400 How 130 - 400	Graph name:	Emr#1	Test co	nfiguration:				
Class: Frequency range: [9kHz - 30MHz] Antenna polarization: 0/90° RBW : 500Hz & 10kHz Azimuth: 0° - 360° VBW : 2kHz & 30kHz dBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 2kHz & 30kHz gBµV/m 0° - 360° VBW : 30kHz gBµV/m 0° - 360° 0° - 360°	Limit:	FCC CFR47 Part15C	(0°/00°)	$(0^{\circ}/90^{\circ})$ - Chom - TX, mode - Axis XX type A				
Frequency range: [9kHz - 30MHz] Antenna polarization: 0/90° RBW : 500Hz & 10kHz Azimuth: 0° - 360° VBW : 2kHz & 30kHz 130 dBµV/m 100 0° - 360° VBW : 2kHz & 30kHz 140 100 100 100 100 100 130 100	Class:		(0 /90)	- Chom - TX mode - Axis XT type A				
Antenna polarization: 0/90° RBW : 500Hz & 10kHz Azimuth: 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz 100 00 00 00 00 gBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz 100 00 00 00 00 gBµV/m ¹⁰ 00 00 00 00 00 gg/y 00		Frequency range:	[9kHz - 30N	/Hz]				
polarization: 0.930 NDW : 0.0012 & 10K12 Azimuth: 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz dBµV/m ¹⁰ 0° - 360° VBW : 2kHz & 30kHz 20 9kHz 760° 760° 760° 30MHz Fréquence 30MHz 30MHz	Antenna	0/00°						
Azimuth: 0° - 360° VBW : 2kHz & 30kHz 130 130 1412 <th>polarization:</th> <th>0/90</th> <th>RBW.</th> <th></th>	polarization:	0/90	RBW.					
dBµV/m ¹³⁰ dBµV/m ¹³⁰ dBµV/	Azimuth:	0° - 360°	VBW :	2kHz & 30kHz				
20 9kHz 30MHz Fréquence	130 dBµV/m			FCC/FCC CFR47/Part15C - Classe: r QCr8te/3.0m/				
	20 9kHz	z F	réquence	30MHz				

Spurious emissions

Frequency (MHz)	Peak (dBµV/m) LimQP (dBµV/m) Pea		Peak-LimQP (dB)	Polarization	Correction (dB)
13.559	60.1	69.5	-9.4	0°	37.7
13.559	72.0	69.5	2.5	90°	37.7

	RADIATED	EMISSIONS					
Graph name:	Emr#2	Test con	Test configuration:				
Limit:	FCC CFR47 Part15C	(180°) - ((180°) Chom TX mode Avis XX type A				
Class:		(100)-					
	Frequency rang	e: [9kHz - 30N	/Hz]				
Antenna	180°	RBW :	500Hz & 10kHz				
polarization:							
Azimuth:	0' - 360'	VBW:					
dBµV/m							
	N. International Contraction of the International Contractional Contractiona						
" MAN	Matheman washedded by Mr.	A. 0x	FCC/FCC CFR47 Part15C - Classe: - QCrête/3.0m/				
		- Marial					
		The second second	N 1 A LAND A REPORT OF A LAND AND A LAND A L				
			A CONTRACT OF A CO				
20							
9kHz		Fréquence	30MHz				
		Frequence					

Spurious emissions

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization	Correction (dB)
13.562	58.3	69.5	-11.2	180°	37.7

							RADI	ATED	EMISSIC	ONS								
Graph na	ame:	Emr#3							Tes	st con	figurat	tion:						
Limit:		FCC C	FCC CFR47 Part15C						(H)									
Class:									(11)	v)-C	- NOITI -	TX mout		S X I LY	he Y			
					F	Frequ	iency	[,] range	: [30MH	z - 1G	Hz]							
Antenna									RB	w٠	100k	Hz						
polarizat	ion:		» 260°								TOOK	1 12						
Azimuth		0° - 360)°						VB	W :	300k	Hz						
dBµV/m												F	CC/FCC CF	R47 Part15	5C - Clas	sse: - Q	Crête/:	3.0m
0	ridaNner;sanny	had by the general	- Alban Star	tha quicked spin	al-preservat	hillschick	Winner	a had her was a start of the	distanter de la constante de la	i and when	tan ha banda ba	a ber afin har side	apoldossarikati	ul makerisin sadiri	MyWaka			
	30MHz								Fréquence								1G	Hz

Frequency (MHz)	Peak (dBµV/m)	LimQP (dBµV/m)	Peak-LimQP (dB)	Polarization	Correction (dB)	
67.733*	31.7	40.0	-8.3	Horizontal	11.2	
67.733*	35.1	40.0	-4.9	Vertical	11.2	

Final measurement:

9kHz to 30MHz										
Polarization	Frequency(MHz)	QPeak Level(dBµV/m)	Limit (dBµV/m)	Margin QPeak (dBµV/m)	Comment					
Horizontal	27.12	20.7	29.5	-8.3	Туре В					

Final measurement:

30MHz to 1GHz						
Polarization	Frequency(MHz)	QPeak Level (dBµV/m)	Limit (dBµV/m)	Margin QPeak (dBµV/m)	Comment	
Vertical	40.680	38.8	40.0	-1.2	Туре В	
Vertical	40.680	32.8	40.0	-7.2	Туре А	
Vertical	67.800	35.9	40.0	-4.1	Туре В	
Vertical	67.800	36.2	40.0	-3.8	Туре А	
Vertical	122.053	37.9	43.5	-5.6	Туре В	
Vertical	122.053	37.4	43.5	-6.1	Type A	

6.7. CONCLUSION

Field strength outside of the bands 13.110-14.010 MHz measurement performed on the sample of the product **INGENICO Self/4000 CL**, SN: **193407313031143912221149**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.225 & RSS-Gen limits.

7. FIELD STRENGTH WITHIN THE BAND 13.110-14.010MHz

7.1. TEST CONDITIONS

: Mounir BOUAMARA
: May 25, 2020 to May 29, 2020
: 23 °C
: 39 %

7.2. TEST SETUP

Measurement procedure:

- ☑ Open Area Test Site
 - □ Open Area Test Site + Test fixture in climatic chamber

The product has been tested according to ANSI C63.10.

The EUT is placed on an open area test site. Distance between measuring antenna and the EUT is 10m.

Test is performed in parallel, perpendicular and ground parallel axis with a loop antenna below 30MHz.

Measurement bandwidth was 9kHz between 150kHz & 30MHz. The level has been maximised by the turntable rotation of 360 degrees range on all axis of EUT used in normal configuration. Antenna height search was performed from 1 to 4m. The EUT is place at 0.8m.

Test Set up for radiated measurement in open area test site

For measurement with test fixture is used, the power level calibration of the spectrum analyzer shall then be related to the power level or field strength measured with temperature during OATS measure taking in consideration in climatic chamber. The calculation will be used to calculate the absolute level of the sideband power.

Frequency band 13.110-14.010MHz

Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasipeak detector. The graphs are obtained with a measuring receiver.

Photograph for Field strength within the band 13.110-14.010MHz

7.3. LIMIT

Frequency (MHz)	Field strength (µV/m) @30m	Field strength (dBµV/m) @30m	Field strength (dBµV/m) @3m
13.553-13.567	15 848	84.0	124.0
13.410-13.553 13.567-13.710	334.0	50.5	90.5
13.110-13.410 13.710-14.010	106.0	40.5	80.5
Below 13.110MHz Above 14.010MHz	30.0	29.5	69.5

7.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED						
Description	Manufacturer	Model	Model Identifier		Cal_Due	
Antenna Bi-log	CHASE	CBL6111A	C2040051	06/19	06/20	
Antenna Mat (OATS)	ETS Lingren	2071-2	F2000392			
BAT EMC	NEXIO	v3.19.1.18	L1000115			
Cable (OATS)	_	1GHz	A5329623	05/20	05/21	
Emission Cable	SUCOFLEX	6GHz	A5329061	02/19	08/20	
Multimeter - CEM	FLUKE	87	A1240251	11/18	11/20	
OATS	_	_	F2000409	04/20	04/21	
Radiated emission comb generator	BARDET	_	A3169050			
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	04/20	
Rehausse Table C1/OATS	LCIE	_	F2000512			
Table C1/OATS	LCIE	_	F2000445			
Thermo-hygrometer (PM1/2/3) KIMO		HQ 210	B4206022	08/18	08/20	
Turntable (OATS)	ETS Lingren	Model 2187	F2000403			
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372			

7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

7.6. RESULTS

Frequency (MHz)	QPeak Limit (dBµV/m) @ 30m	Qpeak (dBµV/m) @ 30m	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. Factor (dB)	Comments
13.56	84	41.1	42.9	89	90°	150	35.4	

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

7.7. CONCLUSION

Field strength within the band 13.110-14.010MHz measurement performed on the sample of the product **INGENICO Self/4000 CL**, SN: **193407313031143912221149**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.225 & RSS 210 limits.

8. UNCERTAINTIES CHART

47 CFR Part 15.209 & 15.207 Kind of test	Wide uncertainty laboratory (k=2) ±x(dB) / (Hz)/ ms	Uncertainty limit
Measurement of conducted disturbances in voltage on the AC power port (9 kHz – 150 kHz)	2,67	3.8
Measurement of conducted disturbances in voltage on the AC power port (150 kHz - 30 MHz)	2,67	3.4
Measurement of conducted disturbances in voltage on the telecommunication port. (AAN)	3,67	5.0
Measurement of conducted disturbances in current (current clamp)	2,73	2.9
Measurement of disturbance power	2,67	4.5
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC V01	4,48	/
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC C01	4,48	/
Measurement of radiated electric field from 30 to 1000MHz in horizontal position on the OATS (Ecuelles)	4,88	6.3
Measurement of radiated electric field from 1 to 18GHz on the Ecuelles site	5.16	/
Measurement of radiated electric field from 30 to 1000MHz in vertical position on the OATS (Ecuelles)	4,99	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC C01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC C01	5,16	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC V01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC V01	5,15	6.3
Measurement of radiated electric field from 1 to 6 GHz C01	5,1	5.2
Measurement of radiated electric field from 1 to 6 GHz V01	4,85	5.2
Measurement of radiated magnetic field from 10kHz to 30MHz on the OATS (Ecuelles)	4,48	/

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report