

DFS TEST REPORT

Applicant: INGENICO

Address: 9 Avenue de la gare - Rovaltain TGV, BP25156, Valence Cedex 9,26958, France

FCC ID: XKB-RX5CLWBT

Product Name: Smart POS Terminal

Model Number: AXIUM RX5000

Standard(s): 47 CFR Part 15, Subpart E(15.407) FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230739799-00H

Date Of Issue: 2023/9/25

Reviewed By: Julie Tan

Julie Tan

Title: RF Engineer

Approved By: Sun Zhong Title: Manager

Sun Zhong

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " \blacktriangle ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

ТЕЅТ FACILITY	2
DECLARATIONS	2
DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
2. SUMMARY OF TEST RESULTS	6
3. REQUIREMENTS AND TEST PROCEDURES	7
3.1 DFS REQUIREMENT	
3.2 TEST PROCEDURE	.11
4. EUT PHOTOGRAPHS	.12

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230739799-00H	Original Report	2023/9/25

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Smart POS Terminal
EUT Model:	AXIUM RX5000
Operation Frequency:	5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz(802.11n ht40/ac vht40) 5290 MHz(802.11ac vht80) 5500-5720 MHz (802.11a/n ht20/ac vht20) 5510-5710 MHz(802.11n ht40/ac vht40) 5530-5690MHz(802.11ac vht80)
Maximum Average Output Power	16.92dBm (5250-5350 MHz)
(Conducted):	17.25dBm (5470-5725 MHz)
Modulation Type:	OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	DC 8-14V from adapter
Serial Number:	28CQ-2
EUT Received Date:	2023/7/11
EUT Received Status:	Good

1.1.2 Antenna Information DetailA:

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
ZHONGTIAN XUN			5.25~5.35GHz	0.53 dBi
Communication Technology Co.,Ltd	IFA	50	5.47~5.725GHz	2.23 dBi

1.1.3 Accessory Information:

Accessory Description	Manufacturer	Model	Parameters
Adapter 1#	Phihong Technology Co.,Ltd.	PSC16A-080L6	Input: 100-240Vac 50/60Hz 0.5A Output: 8.0Vdc 2.0A
Adapter 2#	Phihong Technology Co., Ltd	AM24W-080B	Input: 100-240Vac 50/60Hz 0.6A Output: 8.0Vdc 3.0A
Adapter 3#	Kuantech (Beihai) Co., Ltd.	KSA-32A-080300M2	Input: 100-240Vac 50/60Hz 1.0A Output: 8.0Vdc 3.0A
Cable 1#	INGENICO	USB Cable(296114303AD)	4m
Cable 2#	INGENICO	USB Cable(296107316AD)	1.5m
Cable 3#	INGENICO	Ethernet & power cable (296248646	4m
Cable 4#	INGENICO	RS232 Cable(296114928AB)	5m
Cable 5#	INGENICO	retail USB Cable(296116381AE)	5m

2. SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR §47 Part 15.407(h), KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Not applicable
D. C	Initial Channel Availability Check Time (CAC)	Not applicable
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Not applicable
Спеск	Radar Burst at the End of the CAC	Not applicable
	Channel Move Time	Note*
In-Service Monitoring	Channel Closing Transmission Time	Note*
	Non-Occupancy Period	Not applicable
Radar Detection	Statistical Performance Check	Not applicable

Note:

Not applicable: The EUT is a client unit without radar detection.

Note*: The RF module inside the product have been certified, FCC ID: XKB-FCS950U, certified on 09/12/2023, which was change ID application based on the original module report of model: FCS950U (FCC ID: XMR2023FCS950U), per spot check the RF output power, the RF parameters identical with the RF module, the test result please refer to the original ID report: FZ2D0802.

CCICT is responsible for all the information provided in this report, except when information is provided by the customer as identified in this report.

3. REQUIREMENTS AND TEST PROCEDURES

3.1 DFS Requirement

CFR §47 Part 15.407(h)

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and	All BW modes must be	Not required	
Statistical Performance Check	tested		
Channel Move Time and Channel	Test using widest BW mode	Test using the widest	
Closing Transmission Time	available	BW mode available	
		for the link	
All other tests	Any single BW mode	Not required	
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include			
several frequencies within the radar detection bandwidth and frequencies near the edge of			
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in			
each of the bonded 20 MHz channels and the channel center frequency.			

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
$EIRP \ge 200 \text{ milliwatt}$	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm	
density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test		
transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911		
D01.		

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Radar TypePulse Width (µsec)PRI (µsec)Number of PulsesMinimum Percentage of Successful DetectionMinimum Number of Trials01142818See Note 1See Note11Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup $\left(\frac{19\cdot10^6}{PRI_{\musec}}\right)$ 60%3011Test B: 15 unique PRI values in Table 5aFest B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A $\left(\frac{19\cdot10^6}{PRI_{\musec}}\right)$ 60%3021-5150-23023-2960%3036-10200-50016-1860%30411-20200-50012-1660%30Aggregate (Radar Types 1-4)Nould be used for the detection bandwidth test, channel move120	Table 5 – Short Pulse Kadar Test Waveforms									
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $										
$ \begin{array}{ c c c c c c } \hline 0 & 1 & 1428 & 18 & Detection & Trials \\ \hline 0 & 1 & 1428 & 18 & See Note 1 & See Note \\ \hline 1 & 1 & Test A: 15 unique \\ PRI values \\ randomly selected \\ from the list of 23 \\ PRI values in \\ Table 5a & Test B: 15 unique \\ PRI values \\ randomly selected \\ within the range \\ of 518-3066 \ \mu sec, \\ with a minimum \\ increment of 1 \\ \mu sec, excluding \\ PRI values \\ selected in Test A & \\ \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\ \hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\ \hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\ \hline Aggregate (Radar Types 1-4) & 80\% & 120 \\ \hline \end{array} $	Type	Width	(µsec)		Percentage of	Number				
$ \begin{array}{ c c c c c c c } \hline 0 & 1 & 1428 & 18 & \text{See Note 1} & \text{See Note 1} \\ \hline 1 & 1 & \text{Test A: 15 unique} \\ PRI values \\ randomly selected \\ from the list of 23 \\ PRI values in \\ \hline Table 5a \\ \hline Test B: 15 unique \\ PRI values \\ randomly selected \\ within the range \\ of 518-3066 \ \mu \text{sec}, \\ with a minimum \\ increment of 1 \\ \mu \text{sec}, excluding \\ PRI values \\ selected in Test A \\ \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\ \hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\ \hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\ \hline Aggregate (Radar Types 1-4) & 80\% & 120 \\ \hline \end{array} $		(µsec)			Successful					
$ \begin{array}{ c c c c c c } \hline 1 & 1 & Test A: 15 unique \\ PRI values \\ randomly selected \\ from the list of 23 \\ PRI values in \\ Table 5a \\ \hline Test B: 15 unique \\ PRI values \\ randomly selected \\ within the range \\ of 518-3066 \ \mu sec, \\ with a minimum \\ increment of 1 \\ \mu sec, excluding \\ PRI values \\ selected in Test A \\ \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\ \hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\ \hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\ \hline Aggregate (Radar Types 1-4) & 80\% & 120 \\ \hline \end{array} $					Detection	Trials				
$\begin{array}{ c c c c c } \hline PRI \ values \\ randomly \ selected \\ from the list of 23 \\ PRI \ values in \\ \hline Table 5a \\ \hline Test B: 15 \ unique \\ PRI \ values \\ randomly \ selected \\ within the range \\ of 518-3066 \ \mu sec, \\ with a \ minimum \\ increment of 1 \\ \mu sec, \ excluding \\ PRI \ values \\ selected \ in \ Test A \\ \hline \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\ \hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\ \hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\ \hline Aggregate (Radar Types 1-4) & 80\% & 120 \\ \hline \end{array}$	0	1	See Note 1	See Note						
$\begin{array}{ c c c c c } \hline PRI \ values \\ randomly \ selected \\ from the list of 23 \\ PRI \ values in \\ \hline Table 5a \\ \hline Test B: 15 \ unique \\ PRI \ values \\ randomly \ selected \\ within the range \\ of 518-3066 \ \mu sec, \\ with a \ minimum \\ increment of 1 \\ \mu sec, \ excluding \\ PRI \ values \\ selected \ in \ Test A \\ \hline \hline 2 & 1-5 & 150-230 & 23-29 & 60\% & 30 \\ \hline 3 & 6-10 & 200-500 & 16-18 & 60\% & 30 \\ \hline 4 & 11-20 & 200-500 & 12-16 & 60\% & 30 \\ \hline Aggregate (Radar Types 1-4) & 80\% & 120 \\ \hline \end{array}$						1				
2 1-5 150-230 23-29 60% 30 3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120	1	1	PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup $\left \frac{1}{360} \right ^{\cdot}$ $\left(\frac{19 \cdot 10^6}{PRI_{\mu sec}} \right)$ Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI valuesRoundup							
3 6-10 200-500 16-18 60% 30 4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120	2	1-5		23-29	60%	30				
4 11-20 200-500 12-16 60% 30 Aggregate (Radar Types 1-4) 80% 120										
Aggregate (Radar Types 1-4) 80% 120										
	-									
				sed for the detection ha						

Table 5 – Short Pulse Radar	r Test Waveforms
-----------------------------	------------------

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup $\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Roundup}\{17.2\} = 18.$

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)		
1	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
б	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	dar Type Number of Trials Number of Successful Minimum Percentag					
		Detections of Successful				
			Detection			
1	35	29	82.9%			
2	30	18	60%			
3	30	27	90%			
4	50	44	88%			
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%						

China Certification ICT Co., Ltd (Dongguan)

Table 0 - Long Fulse Radar Test waveform								
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum	
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of	
	(µsec)	(MHz)		per Burst		Successful	Trials	
						Detection		
5	50-100	5-20	1000-	1-3	8-20	80%	30	
			2000					

Table 6 – Long Pulse Radar Test Waveform

Table 7 – Frequency Hopping Radar Test waveform								
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum	
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of	
	(µsec)		Hop	(kHz)	Length	Successful	Trials	
					(msec)	Detection		
6	1	333	9	0.333	300	70%	30	

Table 7 – Frequency Hopping Radar Test Waveform

3.2 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move.

4. EUT PHOTOGRAPHS

Please refer to the attachment CR230739799-EXP EUT EXTERNAL PHOTOGRAPHS and CR230739799-INP EUT INTERNAL PHOTOGRAPHS

***** END OF REPORT *****