

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-4085/22-01-06-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:
The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the

Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-

Contact: Nicolas Jacquemont

e-mail: nicolas.jacquemont@ingenico.com

Manufacturer

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Payment terminal

Model name: Move/5000 CL/4G/WI

FCC ID: XKB-M5000CL4GWI

ISED certification number: 2586D-M5000CL4GWI

5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz;

Frequency: 5725 MHz to 5850 MHz

Technology tested: WLAN

Lab Manager

Radio Communications

Antenna: Integrated antenna

Power supply: 3.6 V DC by battery

Temperature range: 10°C to 50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Michael Dorongovski	Andreas Kurzkurt	

Testing Manager

Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s, references and accreditations	2
4	Repor	ting statements of conformity – decision rule	5
5	Test e	environment	е
6	Test i	tem	е
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1	Shielded fully anechoic chamber	8
8	Seque	ence of testing	9
	8.1	Sequence of testing radiated spurious 1 GHz to 18 GHz	9
9	Meas	urement uncertainty	10
10	S	ummary of measurement results	11
11	Α	dditional comments	12
12	M	leasurement results	14
	12.1 12.2	Band edge compliance radiated Spurious emissions radiated 1 GHz to 40 GHz	
13	0	bservations	28
14	G	lossary	28
15	D	ocument history	29
16	Α	ccreditation Certificate – D-PL-12076-01-04	29
17	Δ	ccreditation Certificate - D-PI -12076-01-05	30

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4085/22-01-06 and dated 2022-07-08.

2.2 Application details

 Date of receipt of order:
 2022-03-30

 Date of receipt of test item:
 2022-05-18

 Start of test:*
 2022-06-24

 End of test:*
 2022-06-24

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 30

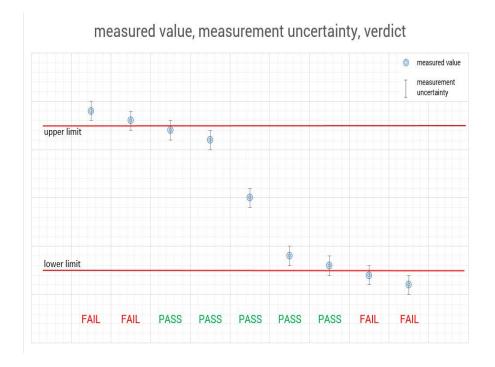
^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 789033 D02 ANSI C63.4-2014 ANSI C63.10-2013	v02r01 -/- -/-	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Description	n				
D-PL-12076-01-04		munication and EMC Canada w.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Deutsche Akkreditierungsstell D-PL-12076-01-04				
D-PL-12076-01-05		nunication FCC requirements .dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05				

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002


© CTC advanced GmbH Page 4 of 30

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 30

5 Test environment

		T_nom	22 °C during room temperature tests
Temperature	:	T_{max}	No testing under high temperature conditions required
		T_{min}	No testing under low temperature conditions required
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.6 V DC by battery
Power supply	:	V_{max}	No testing under high voltage conditions required
		V_{min}	No testing under low voltage conditions required

6 Test item

6.1 General description

Kind of test item :	Payment terminal			
Model name :	Move/5000 CL/4G/WI			
HMN :	-/-			
DMAN	Move/5000			
PMN :	Move/3500			
LIVINI	Move/5000 CL/4G/WiFi			
HVIN :	Move/3500 CL/4G/WiFi			
FVIN :	-/-			
S/N serial number :	182787303201096503249553			
Hardware status :	01			
Software status :	HTB009400			
Firmware status :	ELS81-US			
English and	5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz;			
Frequency band :	5725 MHz to 5850 MHz			
Type of radio transmission:	OFDM			
Use of frequency spectrum:	OFDM			
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM			
Number of channels :	20 MHz channels: 13			
Number of charmers :	40 MHz channels: 6			
Antenna :	Integrated antenna			
Power supply :	3.6 V DC by battery			
Temperature range :	10°C to 50°C			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-4085/22-01-01_AnnexA

1-4085/22-01-01_AnnexD

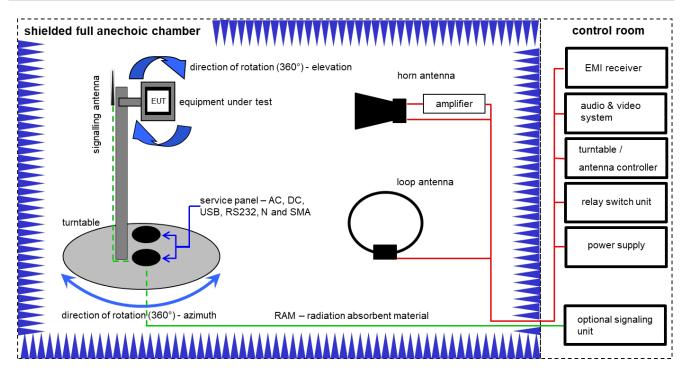
© CTC advanced GmbH Page 6 of 30

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 30

7.1 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	А	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
4	Α	Highpass Filter	WHKX2.9/18G-12SS	Wainwright	1	300003492	ev	-/-	-/-
5	А	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
6	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	А	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
11	Α	PC	ExOne	F+W		300004703	ne	-/-	-/-
12	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 8 of 30

8 Sequence of testing

8.1 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 9 of 30

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3	dB				
Power spectral density	± 1.5	6 dB				
DTS bandwidth	± 100 kHz (depends	s on the used RBW)				
Occupied bandwidth	± 100 kHz (depends	s on the used RBW)				
Maximum output power conducted	± 1.5	6 dB				
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB					
Band edge compliance radiated	± 3 dB					
	> 3.6 GHz	± 1.56 dB				
Spurious emissions conducted	> 7 GHz	± 1.56 dB				
Spurious emissions conducted	> 18 GHz	± 2.31 dB				
	≥ 40 GHz	± 2.97 dB				
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

© CTC advanced GmbH Page 10 of 30

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	dentifier Description		Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2022-12-12	Reduced testplan acc. customer demand

Test specification clause	Test case		NC	NA	NP	Remark
-/-	Output power verification (cond.)		-/	/-		Declared
-/-	Antenna gain		-/	/-		Declared
U-NII Part 15	Duty cycle		-/	/-		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)				X	-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density				X	-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth				\boxtimes	-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth			\boxtimes	-/-	
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-/-			-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	×				-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	×				-/-
§15.109 RSS-Gen	RX spurious emissions radiated				\boxtimes	-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz				\boxtimes	-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz				X	-/-
§15.407 RSS - 247 (6.3)	DFS	-/-				-/-

Notes:

C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed

© CTC advanced GmbH Page 11 of 30

11 Additional comments

Reference documents: Test report 1-2648_16-01-04.pdf

ICO-OPE-03994 Wifi_labtool_Radio_agreement_procedure

Special test descriptions: None

Used power settings:

Channel	36	40	44	48	52	56	60	64	149	153	157	161	165
11a	14	14	14	14	14	14	14	14	14	14	14	14	14
11n-20	13	13	13	13	13	13	13	13	13	13	13	13	13
11n-40	3	11	11	11	11	11	11	6	11	11	11	11	11

Configuration descriptions: None

EUT selection: Only one device available

□ Devices selected by the customer

□ Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)								
	channel number & center frequency							
channel	36	40	44	48	52	56	60	64
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency						
channel	149	153	157	161	165		
f _c / MHz							

© CTC advanced GmbH Page 12 of 30

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
	channel number & center frequency						
channel	38	46	54	62			
f _c / MHz							

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency					
channel	151	159			
f _c / MHz	5755	5795			

Note: The channels used for the tests are marked in bold in the list.

Test mode:		No test mode available. Iperf is used to transmit data to a companion device
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit	t operating mo	odes:
		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the

© CTC advanced GmbH Page 13 of 30

measurements.

12 Measurement results

12.1 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

Measurement parameter		
Detector:	Peak / RMS	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	≥ 3 x RBW	
Span:	See plots!	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.1 – A	
Measurement uncertainty:	See chapter 9	

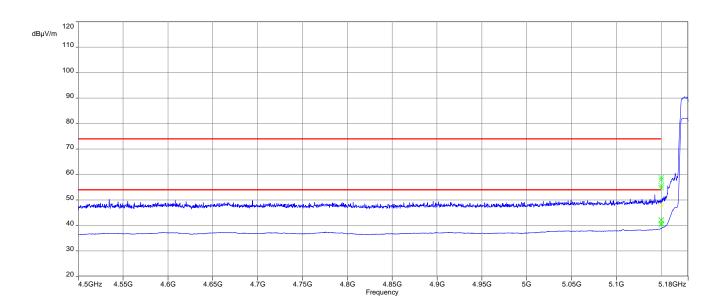
Limits:

Band Edge Compliance Radiated

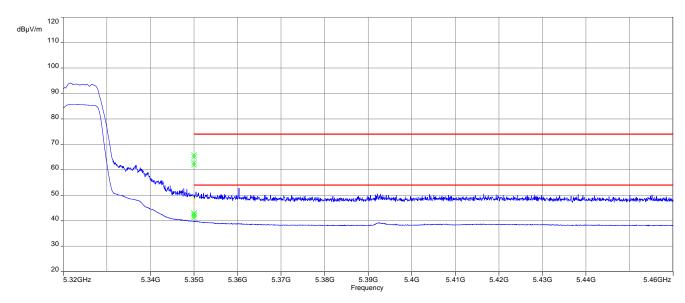
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBμV/m (peak) 54 dBμV/m (average)

Result:

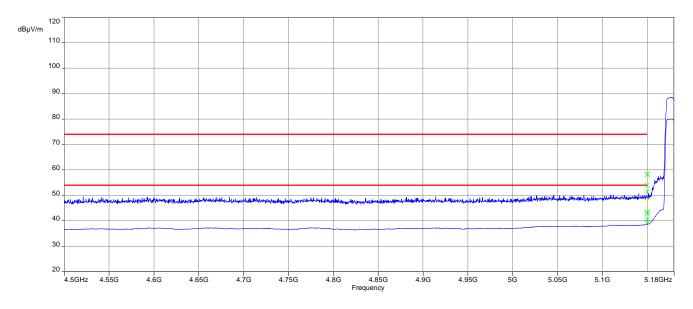

Scenario	Band Edge Compliance Radiated [dBµV/m]
I Nana Anna	< 74 dBμV/m (peak) < 54 dBμV/m (average)

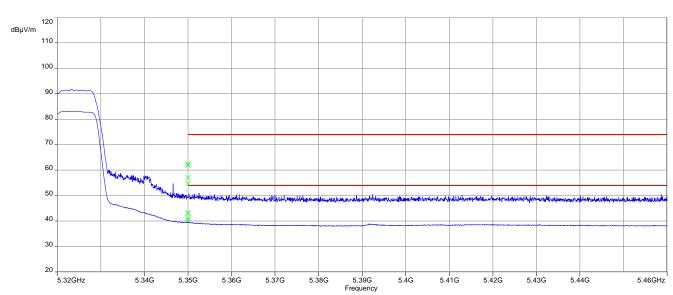
© CTC advanced GmbH Page 14 of 30



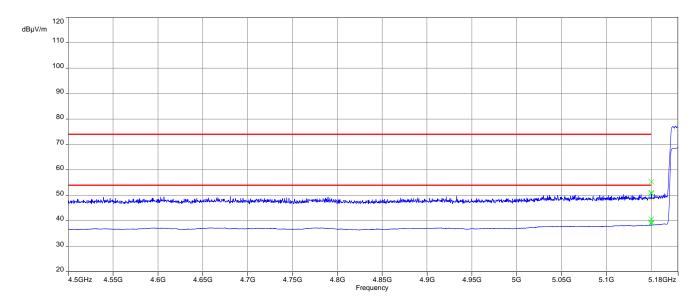
Plots:

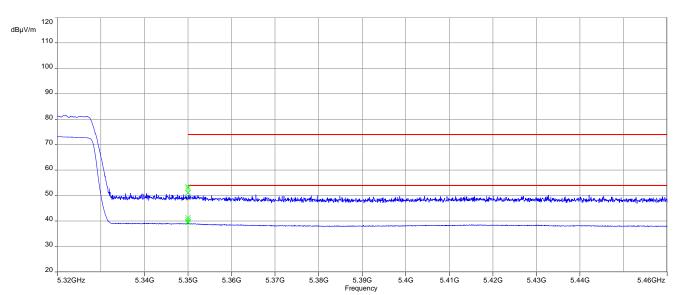
Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth a-mode


Plot 2: upper band edge; U-NII-2A; highest channel; 20 MHz channel bandwidth a-mode


© CTC advanced GmbH Page 15 of 30

Plot 3: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth n20-mode


Plot 4: upper band edge; U-NII-2A; highest channel; 20 MHz channel bandwidth n20-mode


© CTC advanced GmbH Page 16 of 30

Plot 5: lower band edge; U-NII-1; lowest channel; 40 MHz channel bandwidth n40-mode

Plot 6: upper band edge; U-NII-2A; highest channel; 40 MHz channel bandwidth n40-mode

© CTC advanced GmbH Page 17 of 30

12.2 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 18 GHz.

Measurement:

Measurement parameter	
	Quasi Peak below 1 GHz
Detector:	(alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 18 GHz
Trace mode:	Max Hold
Test setup:	See sub clause 7.1 – A
Measurement uncertainty:	See chapter 9

Limits:

	TX Spurious Emissions Radiated						
§15.209 / RSS-247							
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance					
Above 960	54.0	3					
	§15.407						
Outside the restricted bands -27 dBm / MHz							

© CTC advanced GmbH Page 18 of 30

Results: 20 MHz channel bandwidth a-mode

	TX Spurious Emissions Radiated [dBµV/m] / dBm					
Lowest channel						
F [MHz]	Detector	Level [dBµV/m]				
All detected emissions are more than 10 dB below the limit.						

The state of the s					
TX Spurious Emissions Radiated [dBµV/m] / dBm					
U-NII-2A (5250 MHz to 5350 MHz)					
		Highest channel			
		F [MHz]	Detector	Level [dBµV/m]	
		All detected emissions are more than 10 dB below the limit.			

TX Spurious Emissions Radiated [dBμV/m] / dBm							
	U-NII-3 (5725 MHz to 5850 MHz)						
Lowest channel				Hi	ghest chanr	nel	
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	
7660 RMS 50.1		50.1		All detected emissions are more		s are more	
7660	Peak	52.5		than 10	dB below th	ne limit.	

© CTC advanced GmbH Page 19 of 30

Results: 20 MHz channel bandwidth n20-mode

	TX Spurious Emissions Radiated [dBμV/m] / dBm				
	U-NII-1 (5150 MHz to 5250 MHz)				
Lowest channel		nel			
F [MHz]	Detector	Level			
1 [1411.12]		[dBµV/m]			
All detected emissions are more		s are more			
than 10 dB below the limit.		he limit.			

The state of the s						
TX Spurious Emissions Radiated [dBμV/m] / dBm						
U-NII-2A (5250 MHz to 5350 MHz)						
	Highest channel			nel		
		F [MHz]	Detector	Level [dBµV/m]		
		All detected emissions are more than 10 dB below the limit.				

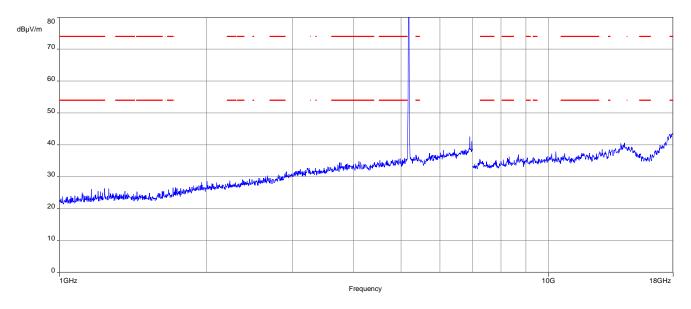
TX Spurious Emissions Radiated [dBμV/m] / dBm							
	U-NII-3 (5725 MHz to 5850 MHz)						
Lowest channel				Hi	ghest chanr	nel	
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	
7660 RMS 50.7 All detec		All detected emissions are more		s are more			
7660	Peak	53.0		than 10	dB below th	ne limit.	

© CTC advanced GmbH Page 20 of 30

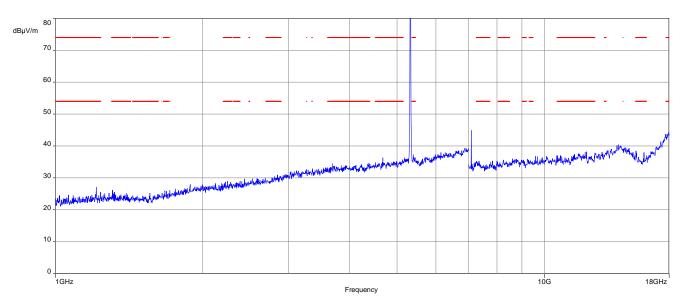
Results: 40 MHz channel bandwidth n40-mode

	TX Spurious Emissions Radiated [dBμV/m] / dBm				
			U-NII-1 (5150 MHz to 5250 MHz)		
Lowest channel		nel			
F [MHz]	Detector	Level [dBµV/m]			
All detected emissions are more than 10 dB below the limit.					

TX Spurious Emissions Radiated [dBμV/m] / dBm						
	U-NII-2A (5250 MHz to 5350 MHz)					
Highest channel			nel			
		F [MHz]	Detector	Level [dBµV/m]		
		All detected emissions are more than 10 dB below the limit.				

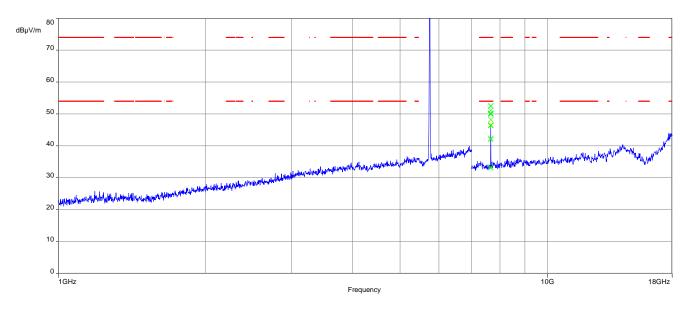

TX Spurious Emissions Radiated [dBμV/m] / dBm						
			U-NII-3 (5725 MHz to 5850 MHz)			
Lowest channel			Highest channel			nel
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]
7673	RMS	49.7		7726	RMS	49.8
	Peak	52.2			Peak	52.3

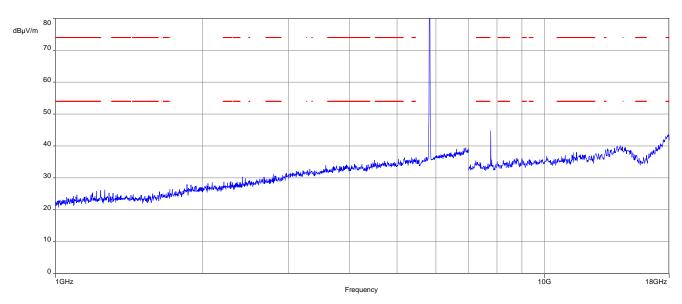
© CTC advanced GmbH Page 21 of 30



Plots: 20 MHz channel bandwidth a-mode

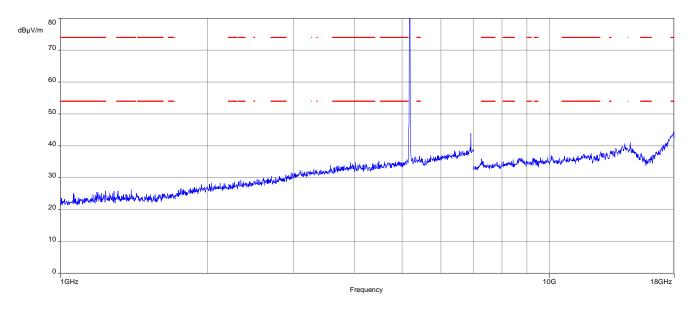
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

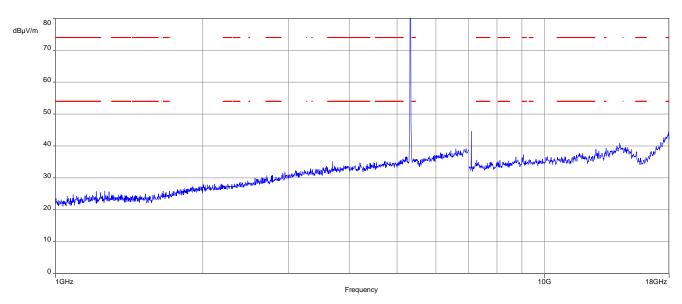

© CTC advanced GmbH Page 22 of 30

Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

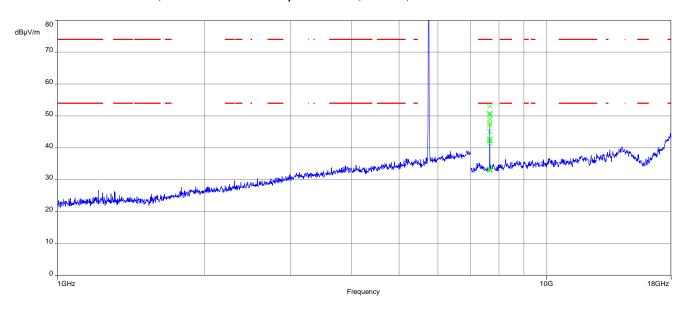


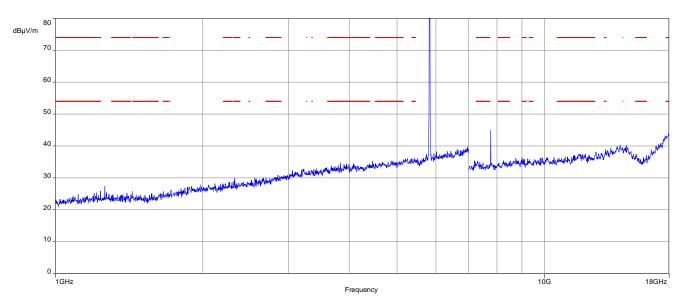
© CTC advanced GmbH Page 23 of 30



Plots: 20 MHz channel bandwidth n20-mode

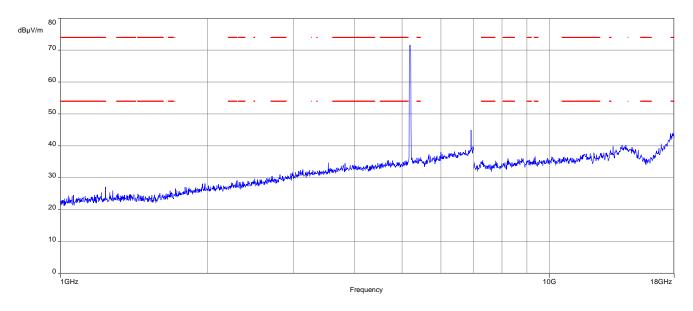
Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

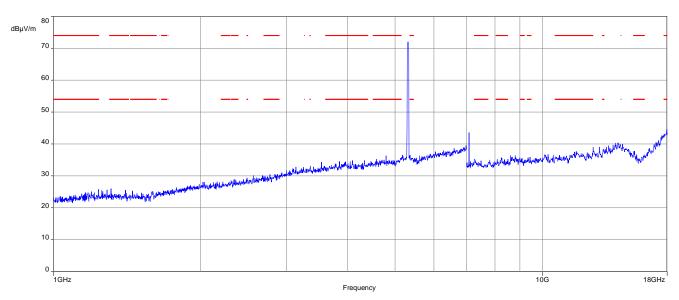

© CTC advanced GmbH Page 24 of 30

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

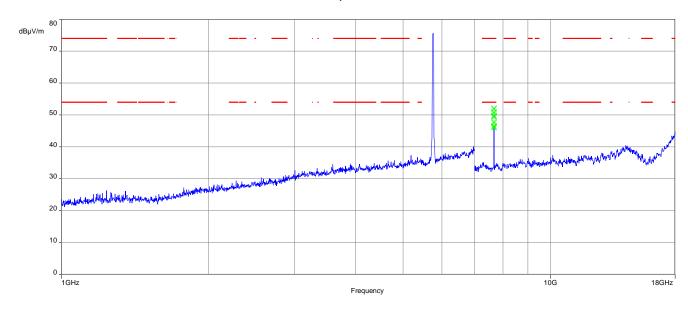


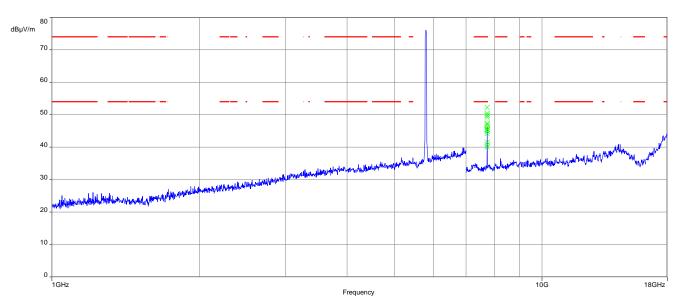
© CTC advanced GmbH Page 25 of 30



Plots: 40 MHz channel bandwidth n40-mode

Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


© CTC advanced GmbH Page 26 of 30

Plot 11: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

Plot 12: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

© CTC advanced GmbH Page 27 of 30

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
	Unit under test
UUT	Federal Communications Commission
FCC	
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 28 of 30

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-07-08
Α	HVINs changed	2022-12-12

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin Office Braunschweig Bundesallee 100 38118 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.2020 by order [Ptal. ing. (*Ptarkfit* ligner* Head of Division*) The certificate together with its annex reflects the status at the sine of the dute of issue. The carrent status of the scope of scorelisation can be found at the distallocal of accredited bodies of Deviation Asincelliterungisticite Gmbit. Matter/Fewer didbts. (Ar forly connect) accredited bodies and Deviation Asincelliterungisticite Gmbit.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditisrungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AAKStelleG) of 31 July 2009 (Federal Law Gazette) p. 2625 and the Regulation (EC) No 765/2008 of the European Parlament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Incline 1.23 of 91 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.liac.org IAAC: www.liac.org IAAC: www.liac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

© CTC advanced GmbH Page 29 of 30

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin G0327 Frankfurt am Main 38116 Braunschweig Bundesaltee 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by oright Opsi-Imp. (P-PB-IF Eigner Read of Division) The conflicate together with its owner reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the distinctor of accreditation can be sense.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation assessment body mentioned overleaf. The accreditation was granted gursanat to the Act on the Accreditation Body (AASselleG) of 3.1 July 2009 (feature law Gazate In 2.825) and the Regulation (EQN To 75/2009) of the European Perlament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products Official Journal of the European Livour 1.28 of 9 July 2008, 8.01, DAXS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Cooperation (III.AC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of memberahip can be retrieved from the following websites: EA: www.lac.org IAAC: www.lac.org IAAC: www.lac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf