

TEST REPORT

Test report no.: 1-8662/19-01-02-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-

Contact: Nicolas Jacquemont

e-mail: <u>nicolas.jacquemont@ingenico.com</u>

Phone: +33475842123

Manufacturer

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 5 Spectrum Management and Telecommunications Radio Standards Specification

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Payment Terminal

Model name: Lane/5000

FCC ID: XKB-L5000CLV3
IC: 2586D-L50000CLV3

Frequency: 13.56 MHz
Technology tested: RFID

Antenna: Integrated loop antenna

Power supply: 8.0 V DC via external AC/DC adaptor

Temperature range: 0°C to +45°C

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Marco Bertolino	David Lang	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table	of contents	2
2		ral information	
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s and references	.4
4	Test e	environment	5
5	Test i	tem	5
	5.1 5.2	General descriptionAdditional information	
6	Descr	iption of the test setup	6
	6.1 6.2 6.3 6.4	Shielded semi anechoic chamber	8 9
7	Seque	ence of testing	11
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious above 1 GHz	12
8	Measi	urement uncertainty	14
9	Sumn	nary of measurement results	15
10	Add	litional comments	15
11	Mea	asurement results	16
	11.1 11.2 11.3 11.4 11.5	Occupied bandwidthField strength of the fundamentalField strength of the harmonics and spurious	18 19 22
12	Obs	servations	26
Anr	nex A	Glossary	26
Anr	nex B	Document history	27
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	27
Δnr	nay D	Accreditation Certificate = D-PL-12076-01-05	28

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-8662/19-01-02 and dated 2019-07-15.

2.2 Application details

Date of receipt of order: 2019-06-11
Date of receipt of test item: 2019-07-09
Start of test: 2019-07-10
End of test: 2019-07-11

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 28

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

© CTC advanced GmbH Page 4 of 28

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+20 °C during room temperature tests +45 °C during high temperature tests 0 °C during low temperature tests
Relative humidity content	:		42 %
Barometric pressure	:		1019 hpa
Power supply	:	V _{nom} V _{max} V _{min}	8.0 V DC via external AC/DC adaptor 9.2 V 7.1 V

5 Test item

5.1 General description

Kind of test item :	:	Payment Terminal
Type identification :	:	Lane/5000
HMN :	:	-/-
PMN :	:	Lane/5000
HVIN :	:	Lane/5000 CLv3
FVIN :	:	-/-
S/N serial number :	:	190517323031012503981498
Hardware status :	:	Not provided!
Software status :	:	Not provided!
Firmware status :	:	Not provided!
Frequency band :	:	13.56 MHz
Type of radio transmission: Use of frequency spectrum:		modulated carrier
Type of modulation :	:	ASK
Number of channels :	:	1
Antenna :	:	Integrated loop antenna
Power supply :	:	8.0 V DC via external AC/DC adaptor
Temperature range :	:	0°C to +45°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-8662/19/01-01_AnnexA

1-8662/19/01-01_AnnexD

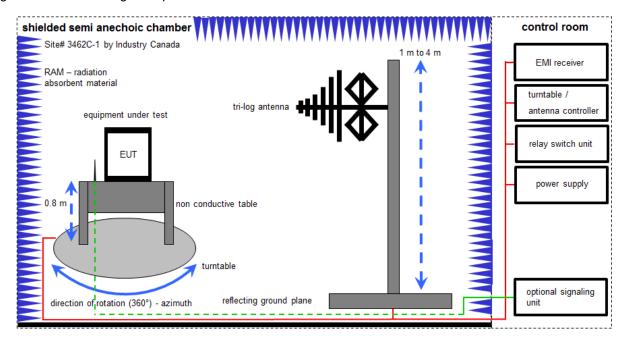
© CTC advanced GmbH Page 5 of 28

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 28

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

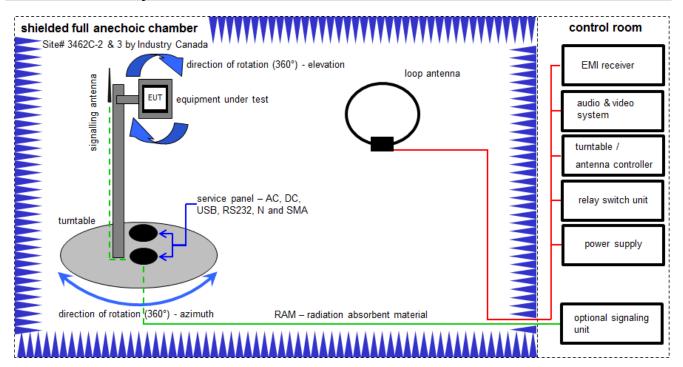
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	Α	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
9	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

© CTC advanced GmbH Page 7 of 28

6.2 Shielded fully anechoic chamber

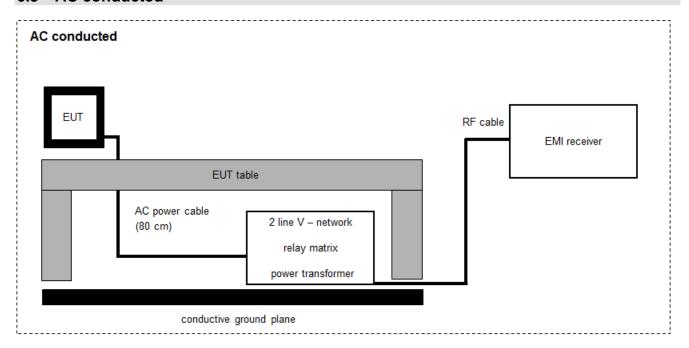
Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
2	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	А	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
5	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
6	А	NEXIO EMV- Software	BAT EMC V3.19.1.8	EMCO	-/-	300004682	ne	-/-	-/-
7	Α	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

© CTC advanced GmbH Page 8 of 28

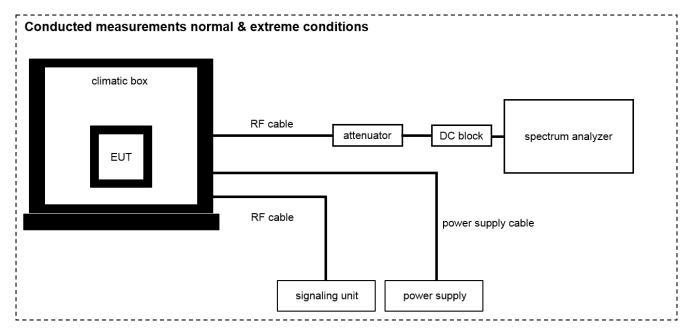
6.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019
5	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
6	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-

© CTC advanced GmbH Page 9 of 28

6.4 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	vIKI!	12.12.2017	11.12.2019
2	Α	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	13.12.2018	12.12.2019
3	Α	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/84193	300003889	ev	07.05.2018	06.05.2020
4	A+B	RF-Cable WLAN- Tester Port 1	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 601494	400001216	g	-/-	-/-

© CTC advanced GmbH Page 10 of 28

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 28

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 28

7.3 Sequence of testing radiated spurious above 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 28

8 Measurement uncertainty

Measurement uncertainty			
Test case	Uncertainty		
Occupied bandwidth	± used RBW		
Field strength of the fundamental	± 3 dB		
Field strength of the harmonics and spurious	± 3 dB		
Receiver spurious emissions and cabinet radiations	± 3 dB		
Conducted limits	± 2.6 dB		

© CTC advanced GmbH Page 14 of 28

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210 Issue 9	See table!	2019-07-18	-/-
_	RSS Gen Issue 5			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 5	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a) RSS 210 Issue 9	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 & § 15.225 (b-d)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal			\boxtimes		-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a) RSS 210 Issue 9	Frequency tolerance	Normal & extreme conditions	Normal & extreme conditions	\boxtimes				-/-

Note:

C Compliant
NC Not compliant
NA Not applicable
NP Not performed

10 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

© CTC advanced GmbH Page 15 of 28

11 Measurement results

11.1 Occupied bandwidth

Measurement:

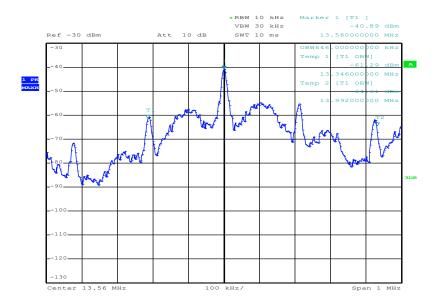
The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters			
Detector:	Peak		
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Analyser function:	99 % power function		
Used equipment:	See chapter 6.4 B		
Measurement uncertainty:	See chapter 8		

Limit:

IC
for RSP-100 test report coversheet only

Result:


99% emission bandwidth
0070 dillicolori barratriatri
646 kHz

© CTC advanced GmbH Page 16 of 28

Plot:

Plot 1: 99 % emission bandwidth

Date: 12.JUL.2019 13:22:34

© CTC advanced GmbH Page 17 of 28

11.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters			
Detector:	Quasi peak / peak (worst case)		
Resolution bandwidth:	120 kHz		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Used equipment:	See chapter 6.2 A		
Measurement uncertainty:	See chapter 8		

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(µV/m)	(m)		
13.553 to 13.567	15,848 (84 dBµV/m)	30		

Recalculation:

According to ANSI C63.10				
Frequency	Formula Correction value			
13.56 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{\textit{nearfield}}}{d_{\textit{measure}}}\right) - 20 \log \left(\frac{d_{\textit{limit}}}{d_{\textit{nearfield}}}\right)$ is the calculation of field strength at the limit distance, expressed in dB μ V/m is the measured field strength, expressed in dB μ V/m is the λ 2 π distance diseasure is the distance of the measurement point from EUT distance is the reference limit distance	-21.4 from 3m to 30m		

Result:

Field strength of the fundamental			
Frequency	13.56	6 MHz	
Distance	@ 3 m	@ 30 m	
Measured / calculated value (PP)	77.1 dBµV/m	55.7 dBµV/m	
Measured / calculated value (QP)	75.6 dBµV/m	54.2 dBµV/m	

© CTC advanced GmbH Page 18 of 28

11.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.

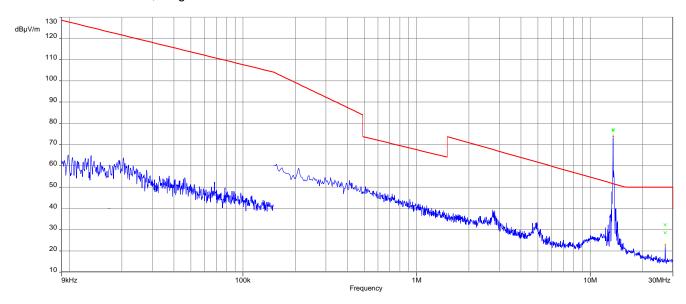
Measurement parameters			
Detector:	Quasi peak / average or		
	peak (worst case – pre-scan)		
	F < 150 kHz: 200 Hz		
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz		
	30 MHz < F < 1 GHz: 120 kHz		
	F < 150 kHz: 1 kHz		
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz		
	30 MHz < F < 1 GHz: 300 kHz		
Trace mode:	Max hold		
Used equipment:	See chapter 6.1 A & 6.2 A & 6.4 A+B		
Measurement uncertainty:	See chapter 8		

Limit:

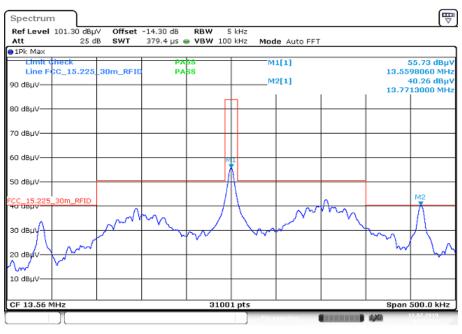
FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30	30 (29.5 dBµV/m)	30		
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBµV/m)	3		
216 – 960	200 (46 dBμV/m)	3		

Note: For a reduced measurement distance, please take a look at the limit line and the ANSI C63.10-2013 sub clause 6.4 radiated emissions from unlicensed wireless devices below 30 MHz.

Result:


Detected emissions						
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value (dBμV/m @ 3m)			
13.77	Peak	10	40.26			
13.77	QP	9	26.60			
27.12	Peak	10	32.70			
Between 30 MHz and 1 GHz: See the table below the plot.						

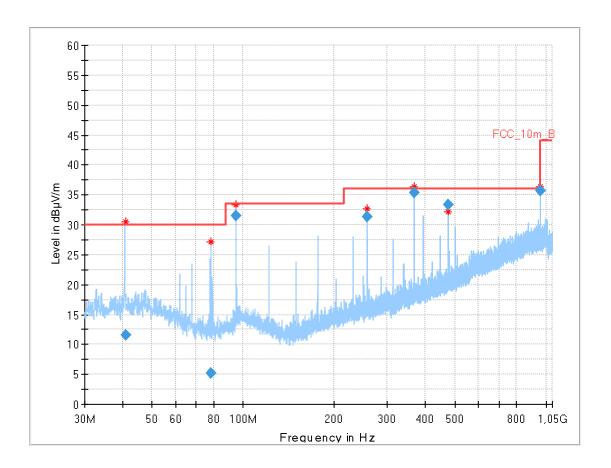
© CTC advanced GmbH Page 19 of 28



Plots:

Plot 1: 9 kHz - 30 MHz, magnetic emissions

Plot 2: Spectrum mask (the limits are recalculated according to the ANSI C63.10-2013 sub clause 6.4)



Date: 12.JUL 2019 08:24:29

© CTC advanced GmbH Page 20 of 28

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.136	11.54	30.0	18.46	1000	120	144.0	٧	171.0	14
78.239	5.27	30.0	24.73	1000	120	144.0	٧	49.0	11
94.919	31.58	33.5	1.92	1000	120	103.0	V	275.0	12
257.634	31.29	36.0	4.71	1000	120	98.0	٧	293.0	14
366.112	35.44	36.0	0.56	1000	120	244.0	Н	285.0	16
474.599	33.36	36.0	2.64	1000	120	200.0	Н	261.0	18
960.012	35.66	44.0	8.34	1000	120	100.0	Н	-8.0	24

© CTC advanced GmbH Page 21 of 28

11.4 Conducted limits

Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.

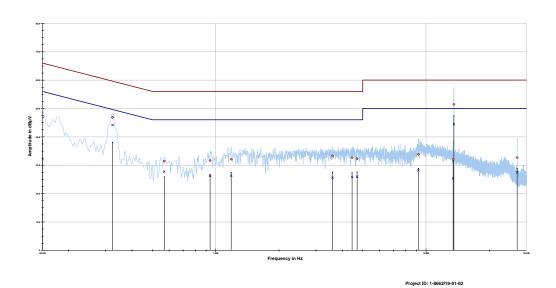
Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case – pre-scan)				
Resolution bandwidth:	F < 150 kHz: 200 Hz				
	F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz				
video baridwidtri.	F > 150 kHz: 100 kHz				
Trace mode:	Max hold				
Used equipment:	See chapter 6.3 A				
Measurement uncertainty:	See chapter 8				

Limit:

FCC & IC					
Frequency	Quasi-peak	Average			
(MHz)	(dBµV/m)	(dBµV/m)			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 – 30.0	60	50			

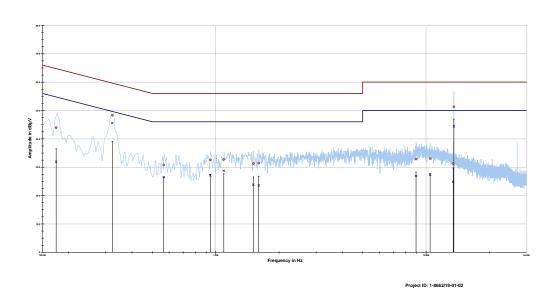
Result:

Detected emissions						
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value			
See result table below plots!						


© CTC advanced GmbH Page 22 of 28

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Quasi peak Margin **Average** Margin **Frequency Limit QP** Limit AV average level quasi peak level MHz dΒμV dBµV dBµV dB dΒμV dB 0.150111 46.89 19.11 65.994 32.16 23.84 55.997 0.323253 46.88 12.74 59.623 44.15 6.89 51.050 24.57 27.74 0.569479 31.43 56.000 18.26 46.000 0.940678 26.23 31.64 24.36 19.77 46.000 56.000 1.184808 32.12 23.88 56.000 26.31 19.69 46.000 3.593367 33.30 22.70 56.000 25.57 20.43 46.000 4.451399 32.65 23.35 56.000 25.85 20.15 46.000 4.702897 32.32 56.000 25.91 20.09 46.000 23.68 9.193098 33.84 26.16 60.000 28.19 21.81 50.000 13.453709 32.01 27.99 60.000 25.33 24.67 50.000 13.561595 51.44 44.46 5.54 8.56 60.000 50.000 27.118033 32.67 27.33 60.000 27.46 22.54 50.000

© CTC advanced GmbH Page 23 of 28

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.174370	43.95	20.80	64.750	31.94	23.37	55.304
0.322277	48.31	11.33	59.648	45.56	5.52	51.078
0.566336	30.79	25.21	56.000	26.50	19.50	46.000
0.942667	32.57	23.43	56.000	27.15	18.85	46.000
1.093057	32.75	23.25	56.000	28.76	17.24	46.000
1.509526	31.28	24.72	56.000	23.81	22.19	46.000
1.601554	31.47	24.53	56.000	23.57	22.43	46.000
8.960744	32.91	27.09	60.000	26.87	23.13	50.000
10.453122	33.03	26.97	60.000	27.30	22.70	50.000
13.461925	31.28	28.72	60.000	24.81	25.19	50.000
13.558680	51.28	8.72	60.000	44.37	5.63	50.000

© CTC advanced GmbH Page 24 of 28

11.5 Frequency error

Measurement:

The maximum detected field strength for the spurious.

Measurement parameters				
Detector:	Peak detector			
Resolution bandwidth:	10 Hz / 100 Hz			
Video bandwidth:	> RBW			
Trace mode:	Max hold			
Used equipment:	See chapter 6.4 A			
Measurement uncertainty:	See chapter 8			

Limit:

FCC & IC

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. (±1.356 kHz)

Carrier frequency stability shall be maintained to ±0.01% (±100 ppm)

Result: Temperature variation

Frequency tolerance					
Measured frequency (MHz)	Frequency error (kHz)	Conditions	Result		
13.55977850	0.22	-20 °C & 100% voltage	compliant		
13.55978125	0.21	-10 °C & 100% voltage	compliant		
13.55979837	0.20	0 °C & 100% voltage	compliant		
13.55982323	0.17	+10 °C & 100% voltage	compliant		
13.55984538	0.15	+20 °C & 100% voltage	compliant		
13.55985973	0.14	+30 °C & 100% voltage	compliant		
13.55986158	0.13	+40 °C & 100% voltage	compliant		
13.55982933	0.17	+50 °C & 100% voltage	compliant		

Result: Voltage variation

Frequency tolerance					
Measured frequency (MHz)	Frequency error (kHz)	Conditions	Result		
13.559866	0.13	+20 °C & 85% voltage*	compliant		
13.559866	0.13	+20 °C & 115% voltage	compliant		

^{*85%} of the nominal voltage = 6.8V. The DUT stops transmitting when the voltage drops below 7.1V. Tests are made with 7.1V DC.

© CTC advanced GmbH Page 25 of 28

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
OFDM	Orthogonal frequency division multiplexing

© CTC advanced GmbH Page 26 of 28

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-07-15
А	Editorial changes	2019-07-18

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
DakkS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025;2005 to carry out tests in the following fields:	
Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 758/2008 of the European Parliament and of the Council of 3 July 2008 serving out the requirements for accreditation and market surveillance relating
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number 0-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30), DAMAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org
Frankfurt am Main; 11.01.2019 Topid Sisk User Zimmermann Head of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 27 of 28

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
	Deutsche Anneutierungsstehe ambir
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleG W Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory	
CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover-sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extend to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette Lo. 2629) and the Regulation (EC) No 765/2008 of the European Parliament and of
	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Linnol. 128 do 9 July 2008, p. 30), DAMS: js a signatory to the Multitakeral Agreements for Multual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditation.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.	The up-to-date state of membership can be retrieved from the following websites: EX: www.european-accreditation.org ILAC: www.lac.org IAF: www.lacf.ru
Registration number of the certificate: D-PL-12076-01-05	
Frankfurt am Main, 1.101.2019 Dipl. Sale. Use: Zimmerridan Mead of Division	
See notice section.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 28 of 28