

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS - 247 Issue 2 Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

	Test Item
Kind of test item:	Payment Terminal
Model name:	Link/2500
FCC ID:	XKB-L25CLWIBTV2
ISED certification number:	2586D-L25CLWIBTV2
Frequency:	5150 MHz to 5350 MHz & 5470 MHz to 5850 MHz
Technology tested:	IEEE 802.11 (W-LAN)
Antenna:	Integrated antenna
Power supply:	3.7 V DC by rechargeable Lithium Ion battery

-10°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Temperature range:

Michael Dorongovski Lab Manager **Radio Communications**

Test performed:

David Lang Lab Manager **Radio Communications**

1 Table of contents

1	Table of	f contents	2
2	General	information	4
		lotes and disclaimer	
		Application details	
	2.3 T	est laboratories sub-contracted	4
3	Test sta	Indard/s, references and accreditations	5
4	Reporti	ng statements of conformity – decision rule	6
5	Test en	vironment	7
6	Test ite	m	7
	6.1 0	General description	7
		Additional information	
7	Descrip	tion of the test setup	8
	-	Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
		Radiated measurements > 18 GHz	
		AC conducted	
	7.5 0	Conducted measurements with peak power meter & spectrum analyzer	14
8	Sequen	ce of testing	15
	8.1 5	Sequence of testing radiated spurious 9 kHz to 30 MHz	15
		Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3 5	Sequence of testing radiated spurious 1 GHz to 18 GHz	17
	8.4 5	Sequence of testing radiated spurious above 18 GHz	18
9	Measur	ement uncertainty	19
10	Su	nmary of measurement results	20
11	Ado	ditional comments	21
12	Ме	asurement results	24
	12.1	Identify worst case data rate	24
	12.2	Antenna gain	25
	12.3	Duty cycle	26
	12.4	Maximum output power	
	12.4.1	Maximum output power according to FCC requirements	
	12.4.2	Maximum output power according to ISED requirements	
	12.5	Power spectral density	
	12.5.1	Power spectral density according to FCC requirements	
	12.5.2	Power spectral density according to ISED requirements	
	12.6	Minimum emission bandwidth for the band 5.725-5.85 GHz	
	12.7	Spectrum bandwidth / 26 dB bandwidth	
	12.8	Occupied bandwidth / 99% emission bandwidth	
	12.9	Band edge compliance radiated	
	12.10	Spurious emissions radiated below 30 MHz	
	12.11	Spurious emissions radiated 30 MHz to 1 GHz	
	12.12	Spurious emissions radiated 1 GHz to 40 GHz	

	12.13	Spurious emissions conducted < 30 MHz	91
13	Ob	servations	93
14	Glo	ossary	93
15	Do	cument history	94
16	Ace	creditation Certificate – D-PL-12076-01-04	94
17	Ace	creditation Certificate – D-PL-12076-01-05	95

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-07-04
Date of receipt of test item:	2022-09-15
Start of test:*	2022-09-15
End of test:*	2022-11-22
Person(s) present during the test:	-/-

Person(s) present during the test:

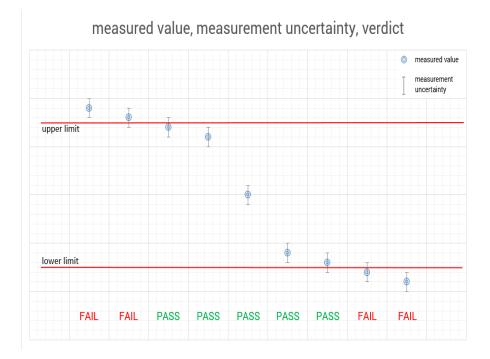
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description					
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices					
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices					
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus					
Guidance	Version	Description					
KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of					
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz					
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices					
Accreditation	Description	n					
D-PL-12076-01-04		unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf					
D-PL-12076-01-05		unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf					


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No testing under extreme temperature conditions required No testing under extreme temperature conditions required
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		Vnom	3.7 V DC by rechargeable Lithium Ion battery
Power supply	:	V_{max}	No testing under extreme voltage conditions required
		V_{min}	No testing under extreme voltage conditions required

6 **Test item**

General description 6.1

Kind of test item :	Payment Terminal
Model name :	Link/2500
HMN :	-/-
PMN :	Link/2500
HVIN :	Link/2500 CL/WiFi/BT V2
FVIN :	-/-
C/N coriol number	Rad. 221377303201293724913261
S/N serial number :	Cond. 221367303091293324901471
Hardware status :	RTS
Software status :	039303_HTB308
Firmware status :	039303_HTB308
Frequency band :	5150 MHz to 5350 MHz & 5470 MHz to 5850 MHz
Type of radio transmission :	
Use of frequency spectrum :	OFDM
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels :	24 with 20 MHz channel bandwidth
Number of channels .	11 with 40 MHz channel bandwidth
Antenna :	Integrated antenna
Power supply :	3.7 V DC by rechargeable Lithium Ion battery
Temperature range :	-10°C to +50°C
Temperature range :	-10°C to +50°C

6.2 Additional information

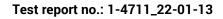
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

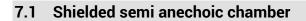
Test setup and EUT photos are included in test report:

1-4711/22-01-01_AnnexA 1-4711/22-01-01_AnnexB 1-4711/22-01-01_AnnexD

7 Description of the test setup

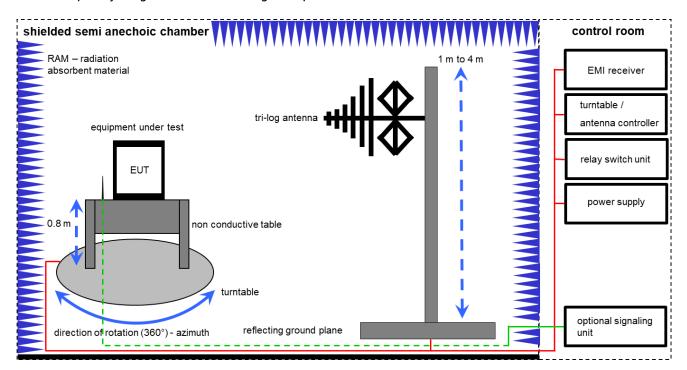
Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- periodic self verification ev
- long-term stability recognized Ve
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- limited calibration EΚ
- zw cyclical maintenance (external cyclical maintenance)
- internal cyclical maintenance izw
- blocked for accredited testing g
- *) next calibration ordered / currently in progress

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

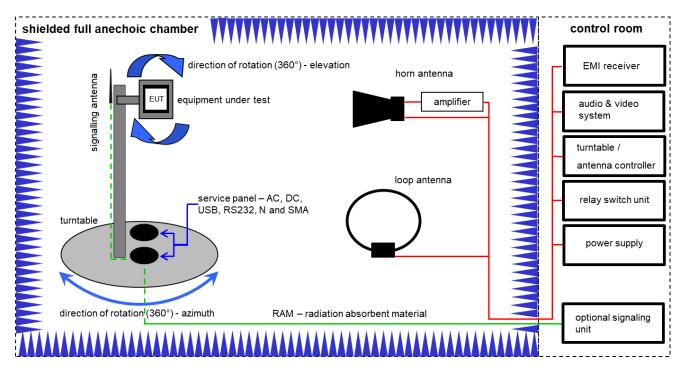
CTC | advanced

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	Batch no. 699714	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-

5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKl!	21.04.2021	20.04.2023
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	31.05.2023

7.2 Shielded fully anechoic chamber

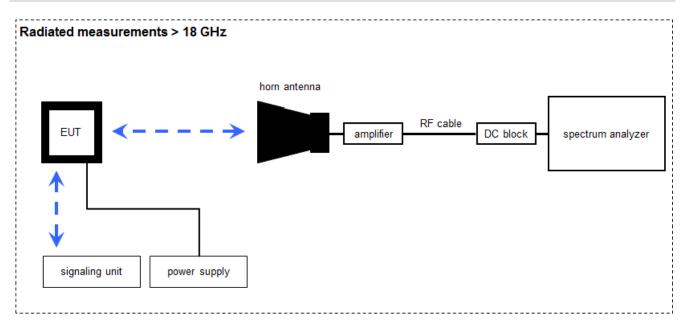
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

Equipment table:


No.		Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
2	2	В	Double-Ridged Waveguide Horn Antenna 1- 18.0GHz	3115	EMCO	9107-3696	300001604	vlKl!	12.03.2021	11.03.2023
3	3	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
4	4	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
5	5	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	6	A,B	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
7	7	A,B	NEXIO EMV- Software	BAT EMC V3.22.0.13	Nexio		300004682	ne	-/-	-/-
8	8	A,B	Anechoic chamber		TDK		300003726	ne	-/-	-/-
9	9	A,B	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.12.2021	31.12.2022
10	13	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

© CTC advanced GmbH

CTC || advanced

member of RWTÜV group

7.3 Radiated measurements > 18 GHz

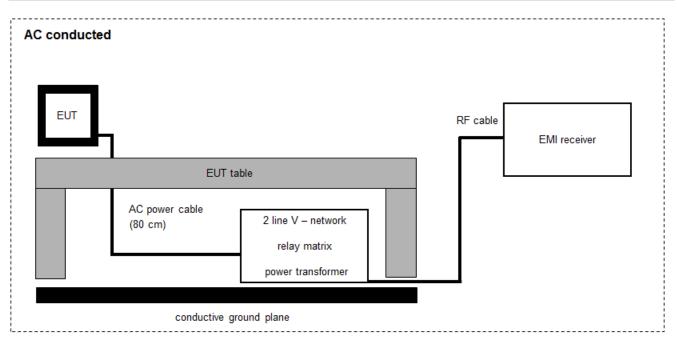
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$


Equipment table:

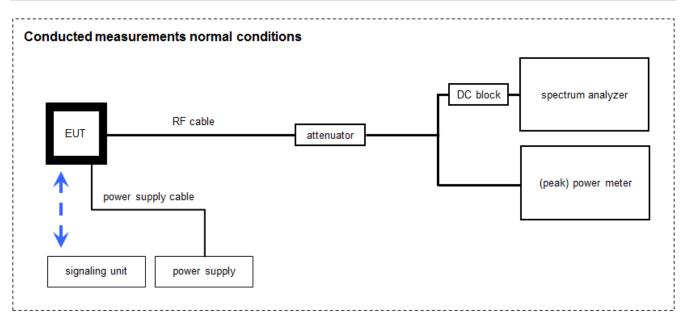
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	17.01.2022	31.01.2024
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024
4	А	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	A,B	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2022	31.01.2023
7	В	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	NK!	-/-	-/-
8	В	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
9	В	Signal- and Spectrum Analyzer 2 Hz - 50 GHz	FSW50	Rohde&Schwarz	101560	300006179	k	07.03.2022	31.03.2023

CTC I advanced

7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)


Example calculation:

FS [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKl!	14.12.2021	13.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	08.12.2022
4	A	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKl!	29.12.2021	28.12.2023
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-
7	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

7.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101353	300004819	k	10.12.2021	31.12.2022
2	А	RF-Cable WLAN- Tester Port 1	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 601494	400001216	g	-/-	-/-
3	А	RF-Cable WLAN- Tester Analyzer	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 54876	400001220	ev	-/-	-/-
4	A	Open Switch and Control Unit and Power Sensors	OSP120 incl. B157 W8 Plus	Rohde & Schwarz	101115, 100837	300006329	k	22.06.2022	30.06.2023
5	A	Rack mounted PC	Precision 3930 Rack-Workstation i5- 9500 CTO	Dell	J15D873	300006115	ne	-/-	-/-
6	Α	Switch matrix	RSM 004 TS	CTC advanced	001	400001578	ev	-/-	-/-
7	A	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

CTC I advanced

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Measurement uncertainty 9

Measurement uncertainty							
Test case	Unce	Uncertainty					
Antenna gain	± 3	3 dB					
Power spectral density	± 1.5	56 dB					
DTS bandwidth	± 100 kHz (depend	s on the used RBW)					
Occupied bandwidth	± 100 kHz (depends on the used RBW)						
Maximum output power conducted	± 1.56 dB						
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB						
Band edge compliance radiated	± 3 dB						
	> 3.6 GHz	± 1.56 dB					
Spurious emissions conducted	> 7 GHz	± 1.56 dB					
Spundus emissions conducted	> 18 GHz	± 2.31 dB					
	≥ 40 GHz	± 2.97 dB					
Spurious emissions radiated below 30 MHz	± 3	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3	3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.	7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB					
Spurious emissions conducted below 30 MHz (AC conducted) ± 2.6 dB							

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2022-11-24	-/-

Test specification clause	Test case		NC	NA	NP	Remark
-/-	Output power verification (cond.)		-/	/_		Declared
-/-	Antenna gain		-/	/_		See section 12.2
U-NII Part 15	Duty cycle		-/	/_		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density	\boxtimes				-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth					-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth	\boxtimes				-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-/-			-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	\boxtimes				-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions radiated	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz	\boxtimes				-/-
§15.407 RSS - 247 (6.3)	DFS	-/-				See report 1-4711/22-01-18

Notes:

C: Compliant NC: Not compliant NA: Not applicable	NP:	Not performed
---	-----	---------------

11 Additional comments

Reference documents:		eport: 1-4711/22-01-18 Wifi agreement procedure.pdf
Special test descriptions:	None	
Configuration descriptions:	None	
EUT selection:		Only one device available
		Devices selected by the customer
	\boxtimes	Devices selected by the laboratory (Randomly)

Settings used for measurements:

Test mode:	Data rate:	Power setting
a-mode	6 Mbit/s	8
nHT20-mode	MCS0	8
nHT40-mode	MCS0	8

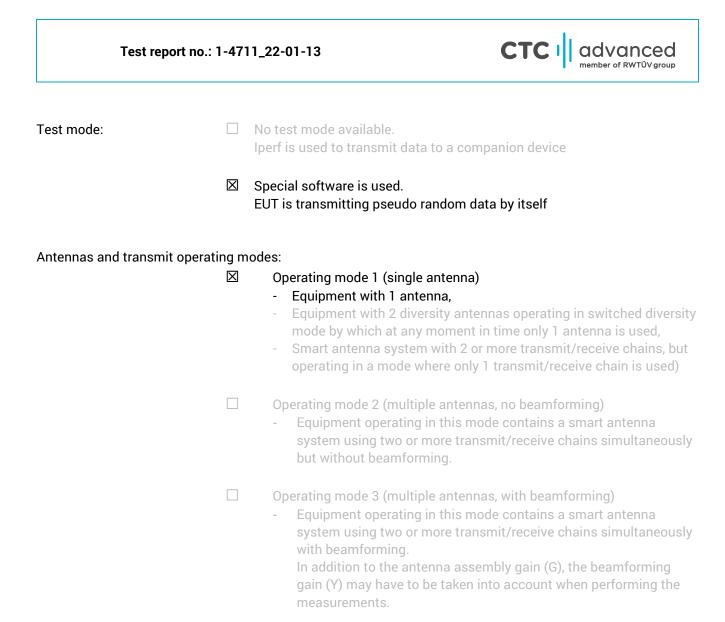
Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)									
channel number & center frequency									
channel	36	40	44	48	52	56	60	64	
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320	

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency											
channel	100	104	108	112	116	120	124	128	132	136	140
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency							
channel	149	153	157	161	165		
f _c / MHz	5745	5765	5785	5805	5825		


Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)								
channel number & center frequency								
channel	38	46	54	62				
f _c / MHz	5190	5230	5270	5310				

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency					
channel 102 110 118 126 134					134
f _c / MHz	5510	5550	5590	5630	5670

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency				
channel	151	159		
f _c / MHz	5755	5795		

Note: The channels used for the tests were marked in bold in the list.

12 Measurement results

12.1 Identify worst case data rate

Worst case data rates for testing are declared by the manufacturer (see section 11).

12.2 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters:

Measurement parameter			
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf Peak OP 3MHz/3MHz		
Test setup:	See chapter 7.2 – A (radiated) See chapter 7.5 – A (conducted)		
Measurement uncertainty:	See chapter 9		

Limits:

Antenna Gain	
6 dBi / > 6 dBi output power and power density reduction required	

Results: a-mode, Power Setting 12

U-NII-1	Antenna gain		
(5150 MHz to 5250 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	15.7	-/-	15.1
Radiated power / dBm @ 3 MHz RBW	13.6	-/-	14.8
Gain / dBi (calculated or declared)	-2.1	-/-	-0.3

U-NII-2A	Antenna gain		
(5250 MHz to 5350 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	15.2	-/-	15.1
Radiated power / dBm @ 3 MHz RBW	14.0	-/-	13.5
Gain / dBi (calculated or declared)	-1.2	-/-	-1.6

U-NII-2C	Antenna gain		
(5470 MHz to 5725 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	14.3	14.1	12.9
Radiated power / dBm @ 3 MHz RBW	13.3	12.9	12.3
Gain / dBi (calculated or declared)	-1.0	-1.2	-0.6

U-NII-3	Antenna gain		
(5725 MHz to 5850 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	16.1	16.3	16.1
Radiated power / dBm @ 3 MHz RBW	16.4	13.6	12.5
Gain / dBi (calculated or declared)	0.3	-2.7	-3.6

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter		
According to: KDB789033 D02, B.		
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty: See chapter 9		

Results:

Duty cycle and correction factor:

Duty cycle is higher than 99%. therefore 0 dB correction factor is used.

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter				
According to: KDB789033 D02, E.2.e.				
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf			
External result file(s)	FCC Part 15.407 Max Output Power and PSD			
Used test setup:	See chapter 7.5 – A			
Measurement uncertainty:	See chapter 9			
Standard parts:	FCC: § 15.407 (a)			

Limits:

Limits				
Radiated output power	Conducted output power			
Band 5150 MF	lz – 5250 MHz			
For client devices Conducted power + 6 dBi antenna gain				
(If the Antenna gain is greater than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	For client devices output power ≤ 250 mW/24dBm			
Band 5250MHz – 5350 MHz				
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)			
Band 5470MHz – 5725 MHz				
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)			

Band 5725MHz – 5850 MHz			
Conducted power + 6 dBi antenna gain			
(Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit Exception: fixed point-to-point U-NII devices, no corresponding reduction in transmitter conducted power)	output power ≤ 1W/30dBm		

Results:

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	10.0	10.2	5.9	
	L	I-NII-2A (5250 MHz to 5350 MHz)	
	Lowest channel Middle channel Highest channel			
а	6.0	6.1	5.8	
	L	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel	
	7.4	5.9	6.2	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Middle channel Highest			
	8.1	7.8	7.6	

Results:

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	7.8	7.9	7.4	
	L	I-NII-2A (5250 MHz to 5350 MHz)	
Lowest channel Middle channel Highes				
n HT20	7.6	7.6	7.4	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	6.8	7.1	6.6	
		U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	9.9	9.6	9.5	

Results:

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	8.2		7.9	
	U-NII-2A (5250 MHz to		Hz to 5350 MHz	;)
	Lowest channel		Highest channel	
n HT40	8.1		7.8	
	U-NII-2C (5470 M		IHz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	7.3	7.7		7.8
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	1		Highest channel
	9.9		9.9	

12.4.2 Maximum output power according to ISED requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter			
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf ISED Max Output Power and PSD		
Used test setup:	See chapter 7.5 – A		
Measurement uncertainty:	See chapter 9		
Standard parts	RSS-248 4.6		
Standard parts:	RSS-248i 4.6.2 / 4.6.3		

Limits:

Radiated output power	Conducted output power for mobile equipment
The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz 1 W or 17 dBm + 10 log Bandwidth 5.250-5.350 GHz 1 W or 17 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) Conducted power + 6dBi antenna gain 5.725-5.825 GHz	The lesser one of 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz
Devices other than client devices 5925-7125 MHz: ≤ 30dBm	(where Bandwidth is the 99% Bandwidth [MHz]) 1W 5.725-5.825 GHz
Client devices 5925-7125 MHz: ≤ 24dBm	

© CTC advanced GmbH

Test report no.: 1-4711_22-01-13

Results:

		Maximum output power [dBm]		
	l	J-NII-1 (5150 MHz to 5250 MHz))	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	10.0	10.1	5.8	
	Radiated	(calculated - see chapter anter	nna gain)	
	7.9	9.8	5.5	
	U	-NII-2A (5250 MHz to 5350 MHz	<u>z)</u>	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	5.9	6.0	5.7	
	Radiated	(calculated – see chapter anter	nna gain)	
а	4.7	4.8	4.1	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	7.3	5.8	6.1	
	Radiated	(calculated - see chapter anter	nna gain)	
	6.3	4.6	5.5	
	l	J-NII-3 (5725 MHz to 5850 MHz))	
	Lowest channel	Middle channel	Highest channel	
	8.0	7.7	7.5	
		(calculated – see chapter anter		
	8.3	5.0	3.9	

	-		7	
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	7.5	7.5	7.3	
	Radiated (calculated – see chapter antenna gain)			
nHT20	6.3	6.3	5.7	
	U	-NII-2C (5470 MHz to 5725 MHz	:)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	6.8	7.0	6.6	
	Radiated	(calculated - see chapter anter	nna gain)	
	5.8	5.8	6.0	
	l	J-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	9.9	9.6	9.4	
	Radiated (calculated – see chapter antenna gain)			
	9.6	6.9	5.8	

Maximum output power [dBm] U-NII-1 (5150 MHz to 5250 MHz) Middle channel

Conducted

7.8

 Radiated (calculated – see chapter antenna gain)

 7.5

U-NII-2A (5250 MHz to 5350 MHz)

Test report no.: 1-4711_22-01-13

Lowest channel

7.7

5.6

Results:

Highest channel

7.3

7.0

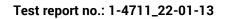
Results:

		Maximum outp	ut power [dBm]	
		J-NII-1 (5150 MF	-)
	Lowest channel			Highest channel
		Cond	ucted	
	8.2		7.9	
	Radiated (calculated – see chapter antenna gain)			nna gain)
	6.1			7.6
		-NII-2A (5250 M		
	Lowest channel			Highest channel
		Cond	ucted	
	8.1			7.7
				<u> </u>
n HT40	6.9			6.1
		•	/Hz to 5725 MHz)	
	Lowest channel	Middle		Highest channel
		Conducted		
	7.2	7.	.6	7.7
	Radiated (calculated – see chapter an		ee chapter antei	nna gain)
	6.2	6.4		7.1
	U-NII-3 (5725 MHz to 5850 MHz))	
	Lowest channel	inel		Highest channel
	Conducted			
	9.9		9.9	
	Radiated (calculated – see chapter antenna gain)		nna gain)	
	9.6			6.3

12.5 Power spectral density

12.5.1 Power spectral density according to FCC requirements

Description:


Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
According to: KDB789033 D02, F.			
Euternel result file (c) 1-4711/22-01-13_Annex_MR_A_1.pdf			
External result file(s)	FCC Part 15.407 Max Output Power and PSD		
Used test setup: See chapter 7.5 – A			
Measurement uncertainty:	See chapter 9		
Standard parts:	FCC: § 15.407 (a)		

Limits:

Band 5150 MHz – 5250 MHz			
For an outdoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band* For an indoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band* For fixed point-to-point access points power spectral density conducted ≤ 17 dBm in any 1 MHz band**			
For client devices point power spectral density conducted ≤ 11 dBm in any 1 MHz band*			
*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi			
**Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.			
Band 5250MHz – 5350 MHz			
power spectral density conducted ≤ 11 dBm in any 1 MHz band*			
*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi			
Band 5470MHz – 5725 MHz			
power spectral density conducted ≤ 11 dBm in any 1 MHz band*			
*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi			

Band 5725MHz - 5850 MHz

power spectral density conducted ≤ 30 dBm in any 500 kHz band

If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Results:

	Power spe	ctral density (dBm/1MHz or dBn	n/500kHz)	
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-1.4	-1.4	-5.7	
	L	I-NII-2A (5250 MHz to 5350 MHz	;)	
	Lowest channel Middle channel Highest chann			
а	-5.4	-5.5	-5.6	
	L	NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel	
	-4.1	-5.6	-5.2	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Middle channel Highest			
	-6.1	-6.5	-6.7	

Results:

	n/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-3.5	-3.4	-3.9	
	L	I-NII-2A (5250 MHz to 5350 MHz)	
	Highest channel			
n HT20	-3.7	-3.7	-3.9	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-4.4	-4.2	-4.6	
U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel	
	-4.1	-4.5	-4.7	

	Power spectral density (dBm/1MHz or dBm/500kHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Lowest channel		Highest channel	
	-6.1			-6.3	
	U	I-NII-2A (5250 M	Hz to 5350 MHz	<u>z</u>)	
	Lowest channel -6.3 U-NII-2C (5470 M		Highest channel		
n HT40			-6.4		
			Hz to 5725 MHz)		
	Lowest channel	Middle	channel	Highest channel	
	-7.0 -		.7	-6.6	
	U-NII-3 (5725 MHz to 5850 MHz))		
	Lowest channel			Highest channel	
	-7.0			-7.6	

12.5.2 Power spectral density according to ISED requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf		
External result me(s)	ISED Max Output Power and PSD		
Used test setup:	See chapter 7.5 – A		
Measurement uncertainty:	See chapter 9		
Standard parts:	RSS-248i 4.6.2 / 4.6.3		

Limits:

Power Spectral Density
power spectral density e.i.r.p. ≤ 10 dBm in any 1 MHz band (band 5150 – 5250 MHz)
power spectral density conducted \leq 11 dBm in any 1 MHz band (band 5250 – 5350 MHz) power spectral density conducted \leq 11 dBm in any 1 MHz band (band 5470 – 5725 MHz)
power spectral density conducted \leq 30 dBm in any 500 kHz band (band 5725 – 5850 MHz)
for devices other than client devices
power spectral density e.i.r.p. ≤ 5 dBm in any 1 MHz band (band 5925 – 7125 MHz)
Ffor client devices
power spectral density e.i.r.p. \leq 1 dBm in any 1 MHz band (band 5925 – 7125 MHz)

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-1.4	-1.4	-5.7	
	Radiated	(calculated - see chapter anter	nna gain)	
	-3.5	-1.7	-6.0	
	U-NII-2A (5250 MHz to 5350 MHz)			
а	Lowest channel	Middle channel	Highest channel	
	-5.4	-5.5	-5.6	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-4.1	-5.6	-5.2	
U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel	
	-6.2	-6.5	-6.7	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-3.5	-3.4	-3.9	
	Radiated	(calculated - see chapter anter	nna gain)	
	-5.6	-3.7	-4.2	
n HT20	U-NII-2A (5250 MHz to 5350 MHz)			
11 11 20	Lowest channel	Middle channel	Highest channel	
	-3.7	-3.7	-3.9	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-4.4	-4.2	-4.6	
	l	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	-4.1	-4.4	-4.4	

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
		Cond	ucted	
	-6.1			-6.3
	Radiated	(calculated - s	ee chapter anter	nna gain)
	-8.2		-6.6	
n HT40	U-NII-2A (5250 MHz to 5350 MHz)			
11 11 40	Lowest channel			Highest channel
	-6.3			-6.4
	U	-NII-2C (5470 M	Hz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	-7.0 -6		.7	-6.6
	U-NII-3 (5725 MHz to 5850 MHz)			
Lowest channel			Highest channel	
	-7.0			-7.6

12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.2.		
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf	
	FCC Part 15.407 & ISED Minimum Emission BW	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC	ISED	
The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

	6 dB emission bandwidth (MHz)			
	U-NII-3 (5725 MHz to 5850 MHz)			
а	Lowest channel Middle channel Highest channel			
	17.7	17.8	17.8	

Results:

	6 dB emission bandwidth (MHz)			
- LIT20	U-NII-3 (5725 MHz to 5850 MHz)			
n HT20	Lowest channel Middle channel Highest channel			
	16.6	16.6	16.6	

	6 dB emission bandwidth (MHz)		
- UT40	n HT40 U-NII-3 (5725 MHz to 5850 MHz) Lowest channel Highest channel		
n H140			
	36.4	36.5	

12.7 Spectrum bandwidth / 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.1.		
External result file(s) 1-4711/22-01-13_Annex_MR_A_1.pdf FCC Part 15.407 & ISED Bandwidths		
Used test setup:	see chapter 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

Spectrum Bandwidth – 26 dB Bandwidth

IC: Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

FCC: Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

Results:

	26 dB bandwidth (MHz)			
	l	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel		Highest channel
	33.7	33	3.5	20.4
	Lowest frequency	у	Н	ighest frequency
	5170.9			5248.9
	U	-NII-2A (5250 M	Hz to 5350 MHz	;)
	Lowest channel	Middle	channel	Highest channel
а	20.5	20.4 20.4 U-NII-2C (5470 MHz to 5725 MHz) Middle channel Middle channel Highest channel 20.7 20.3		20.4
	U			:)
	Lowest channel			Highest channel
	23.3			20.3
	l	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel Highest ch		Highest channel
	20.2 20.3).3	20.3
	Lowest frequency	ency Hi		ighest frequency
	5736.2		5833.9	

	26 dB bandwidth (MHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel		Highest channel
	22.7	22	2.7	22.6
	Lowest frequency	у	Н	ighest frequency
	5171.6			5248.5
	U	I-NII-2A (5250 M	Hz to 5350 MHz	;)
	Lowest channel	Middle channel		Highest channel
n HT20	22.7	22.7		22.7
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle	channel	Highest channel
	20.3	20.3 20.5		20.5
	l	U-NII-3 (5725 MHz to 5850 MHz)		l
	Lowest channel	Middle channel		Highest channel
	20.2	20.1		20.2
	Lowest frequency Highest fre		lighest frequency	
	5735.0			5835.2

Results:

	26 dB bandwidth (MHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	42.0		41.3	
	Lowest frequency	y	Н	ighest frequency
	5169.4			5250.7*
	U-NII-2A (5250 M		Hz to 5350 MHz)
	Lowest channel		Highest channel	
n HT40	41.8		42.0	
	U	-NII-2C (5470 M	Hz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	41.3	41	.2	41.3
	U-NII-3 (5725 MI		Hz to 5850 MHz)	
	Lowest channel		Highest channel	
	41.1		41.1	
	Lowest frequency		Highest frequency	
	5734.6		5815.7	

* Acc. KDB 789033 D02 v02r01 the 99% bandwidth is used in lieu of the 26dB bandwidth to comply with standard DFS requirements for UNII-1 band.

12.8 Occupied bandwidth / 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter		
External result file(s)	1-4711/22-01-13_Annex_MR_A_1.pdf FCC Part 15.407 & ISED Bandwidths	
Test setup:	See sub clause 7.5 – B	
Measurement uncertainty:	See chapter 9	

Usage:

-/-	ISED
OBW is necessary for	r Emission Designator

Results:

	99% bandwidth (kHz)			
		U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel	
	18331.7	18331.7	17732.3	
	L	J-NII-2A (5250 MHz to 5350 MHz	:)	
	Lowest channel	Middle channel	Highest channel	
а	17782.2	17732.3	17782.2	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	17882.1	17782.2	17732.3	
U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel	
	17732.3	17732.3	17732.3	

	99% bandwidth (kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	17033.0	17033.0	17033.0	
	L	J-NII-2A (5250 MHz to 5350 MHz	:)	
	Lowest channel	Middle channel	Highest channel	
n HT20	17033.0	17033.0	17033.0	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	16933.1	16933.1	16933.1	
		U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	16933.1	16883.1	16933.1	

		90% handy	width (kHz)	
	99% bandwidth (kHz) U-NII-1 (5150 MHz to 5250 MHz)			
	(J-INII-1 (5150 MI	HZ to 5250 MHZ)
	Lowest channel		Highest channel	
	36563.4			36563.4
	U-NII-2A (5250 MHz to 5350 MHz)			z)
	Lowest channel		Highest channel	
n HT40	36563.4	1		36663.3
	U-NII-2C (5470 MHz to 5725 MHz)		z)	
	Lowest channel	Middle	channel	Highest channel
	36363.6	36363.6		36363.6
	U-NII-3 (5725 MHz to 5850 MHz))	
	Lowest channel	اد		Highest channel
	36563.4	36363		36363.6

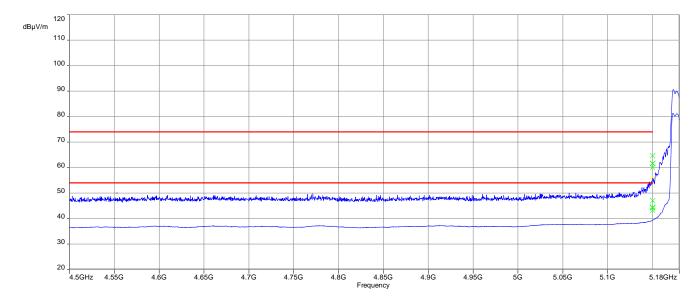
12.9 Band edge compliance radiated

Description:

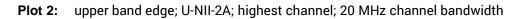
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

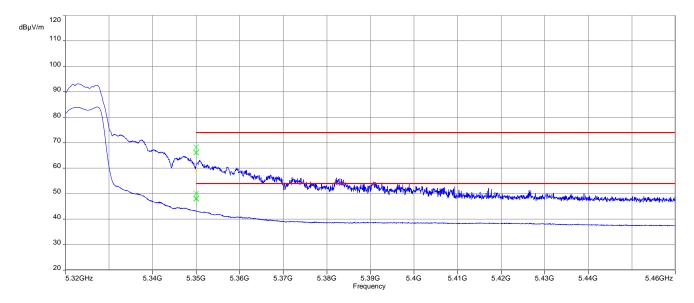
Measurement:

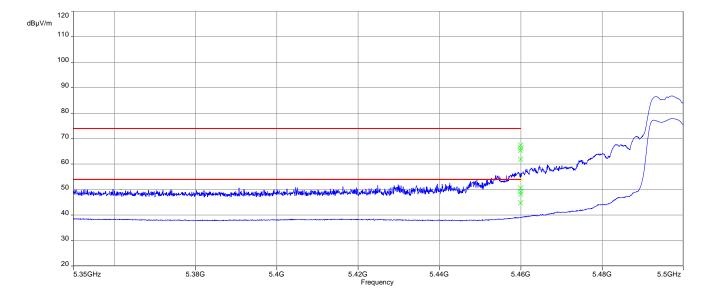
Measurement parameter			
Detector:	Peak / RMS		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 x RBW		
Span:	See plots!		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 – A		
Measurement uncertainty:	See chapter 9		


Limits:

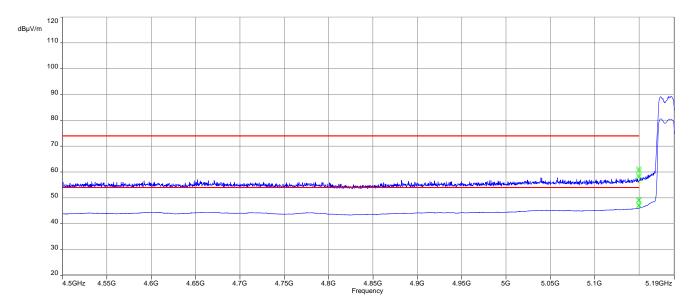
Band Edge Compliance Radiated
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).
74 dBµV/m (peak)
54 dBµV/m (average)

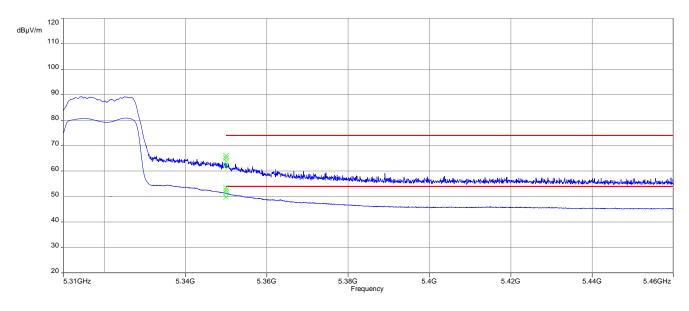

	OFDM (20 MHz nominal channel bandwidth)	OFDM (40 MHz nominal channel bandwidth)
Lower	64.6 Peak	61.2 Peak
band edge UNII-1	47.0 RMS	49.3 RMS
Upper	68.3 Peak	66.0 Peak
band edge UNII-2A	50.1 RMS	53.5 RMS
Lower	67.5 Peak	51.6 Peak
band edge UNII-2C	50.6 RMS	48.3 RMS

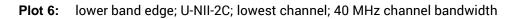


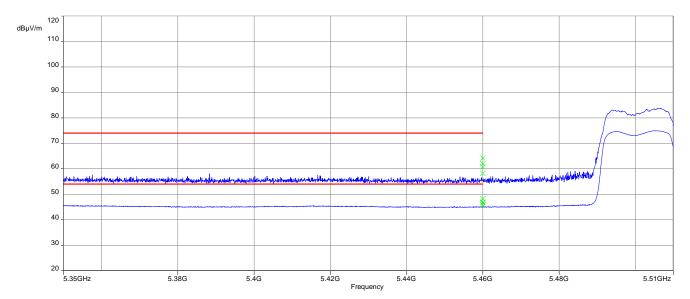

Plots:

Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth






Plot 3: lower band edge; U-NII-2C; lowest channel; 20 MHz channel bandwidth

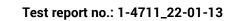


Plot 5: upper band edge; U-NII-2A; highest channel; 40 MHz channel bandwidth

12.10 Spurious emissions radiated below 30 MHz

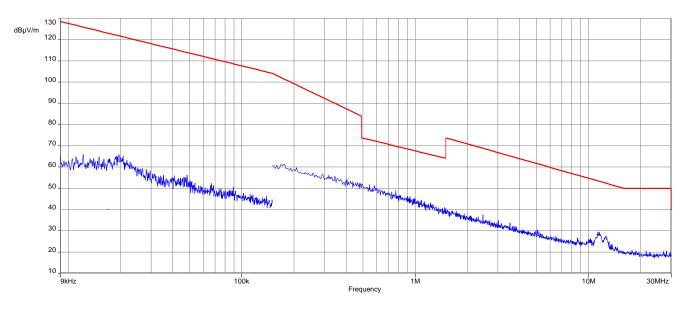
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

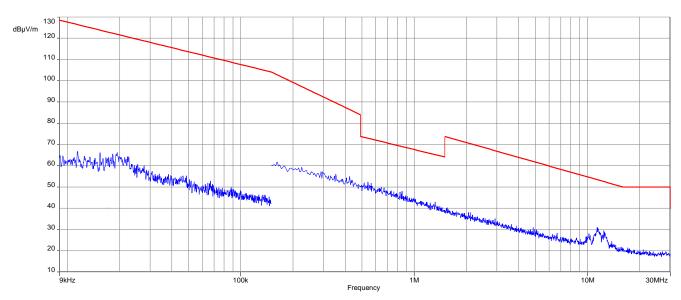

Measurement:

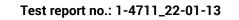
Measurement parameter			
Detector:	Peak / Quasi Peak		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 – A		
Measurement uncertainty:	See chapter 9		

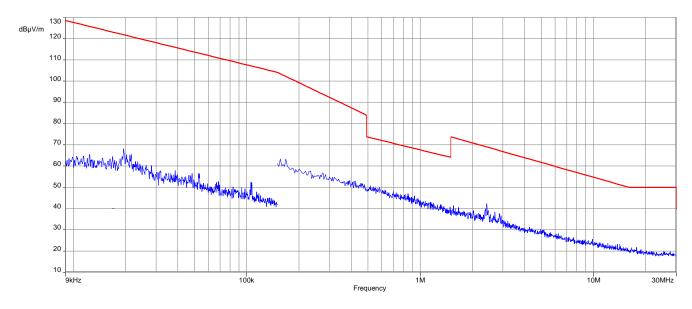
Limits:


Spurious Emissions Radiated < 30 MHz								
Frequency (MHz)	Frequency (MHz)Field Strength (dBµV/m)Measurement distance							
0.009 - 0.490	2400/F(kHz)	300						
0.490 - 1.705	24000/F(kHz)	30						
1.705 - 30.0	30	30						

Spurious Emissions Radiated < 30 MHz [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected emissions are more than 20 dB below the limit.								

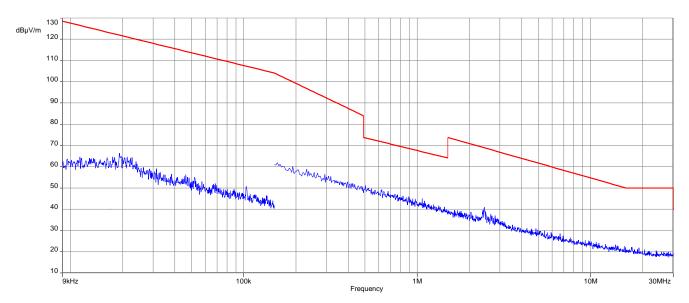


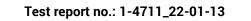

Plots: 20 MHz channel bandwidth

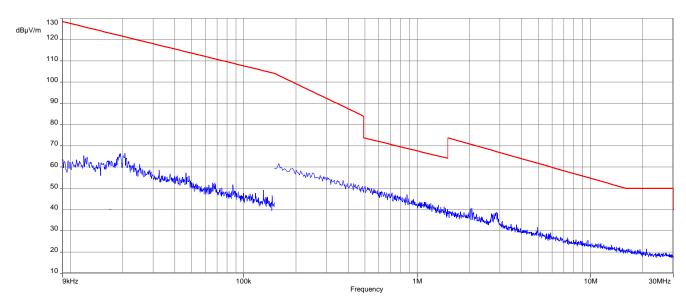


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel

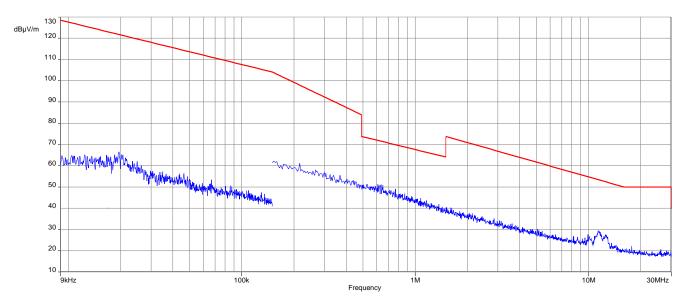


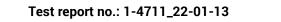


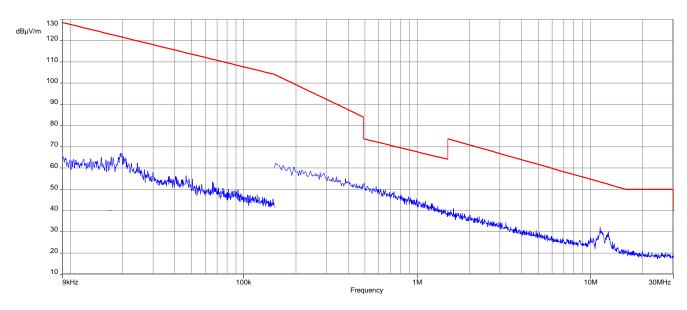


Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; lowest channel

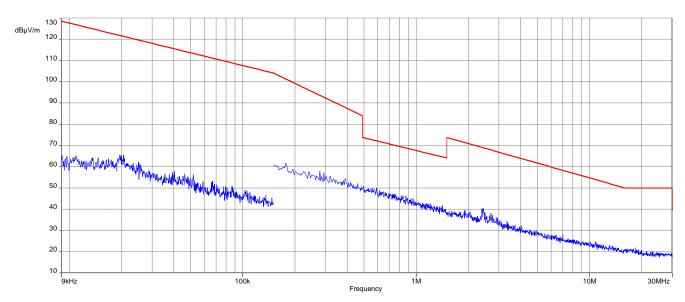


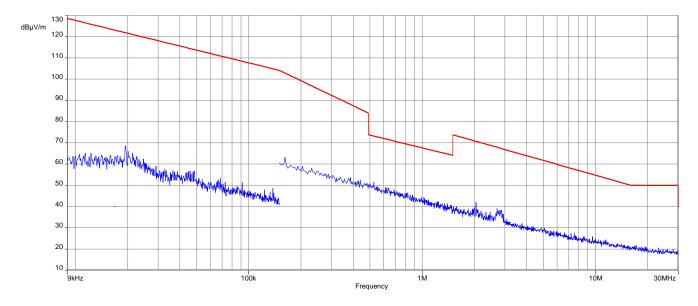




Plot 5: 9 kHz to 30 MHz, U-NII-2A; middle channel

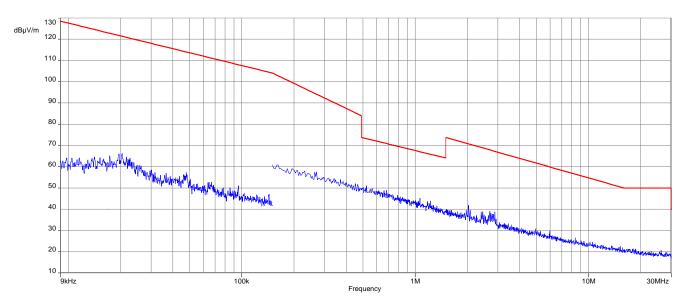
Plot 6: 9 kHz to 30 MHz, U-NII-2A; highest channel

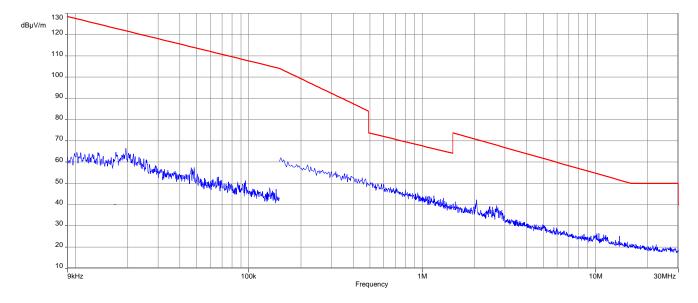




Plot 7: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 8: 9 kHz to 30 MHz, U-NII-2C; middle channel

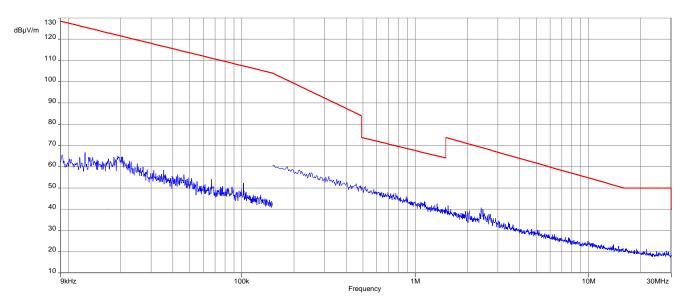




Plot 9: 9 kHz to 30 MHz, U-NII-2C; highest channel

Test report no.: 1-4711_22-01-13

Plot 10: 9 kHz to 30 MHz, U-NII-3; lowest channel

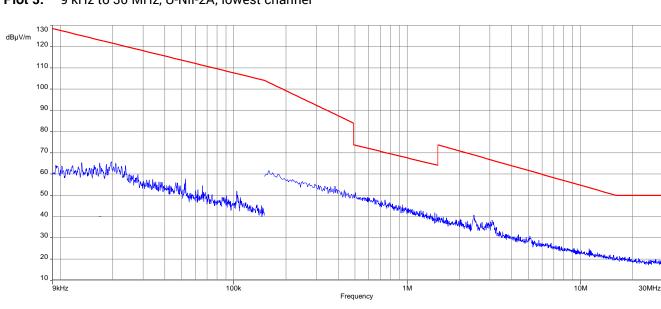




Plot 11: 9 kHz to 30 MHz, U-NII-3; middle channel

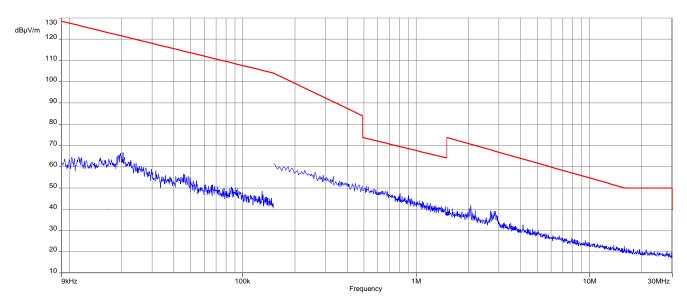
Test report no.: 1-4711_22-01-13

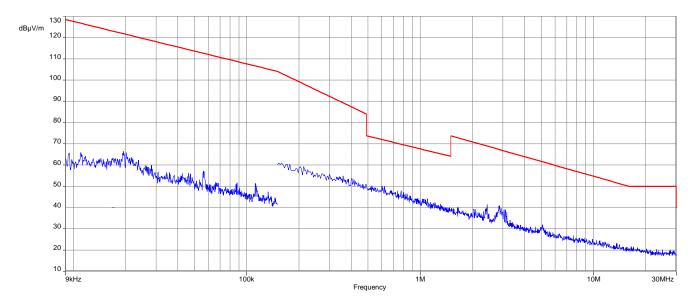
Plot 12: 9 kHz to 30 MHz, U-NII-3; highest channel


Plots: 40 MHz channel bandwidth

Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

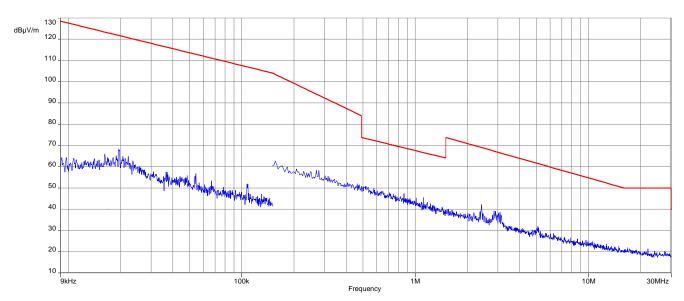


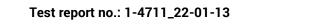


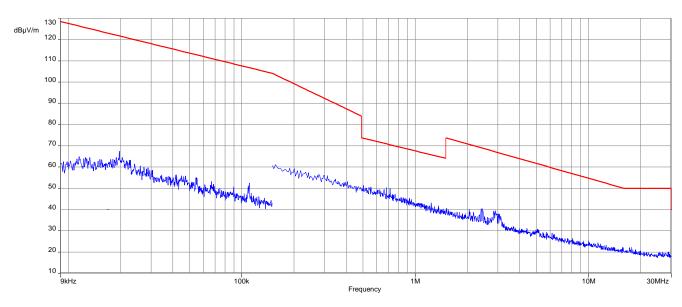
Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel

Test report no.: 1-4711_22-01-13

Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

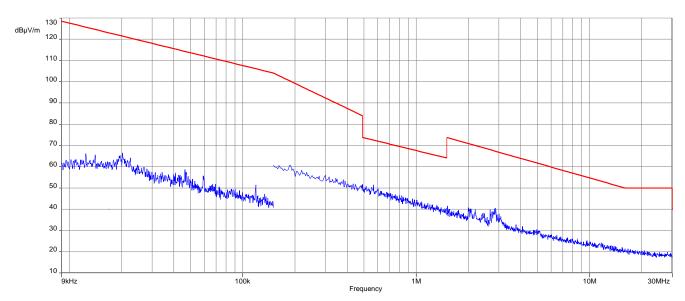


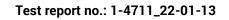



Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Test report no.: 1-4711_22-01-13

Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel






Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

Plot 9: 9 kHz to 30 MHz, U-NII-3; highest channel

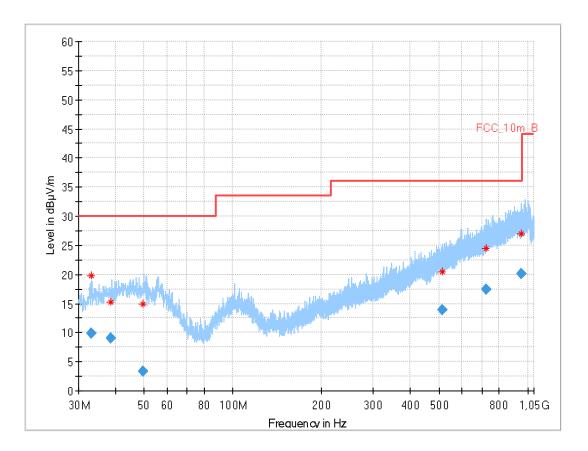
12.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

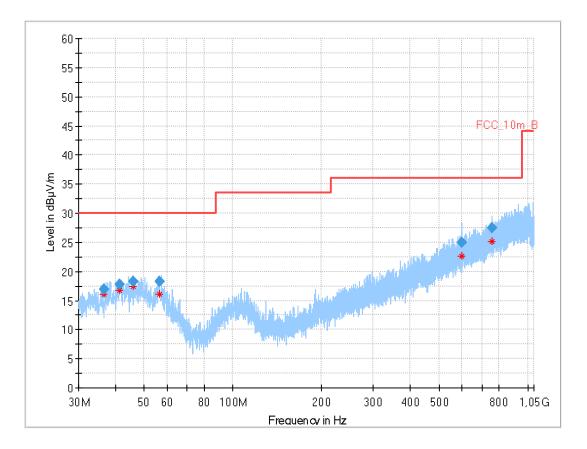
Measurement:

Measurement parameter					
Detector:	Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	120 kHz				
Video bandwidth:	500 kHz				
Span:	30 MHz to 1 GHz				
Test setup:	See sub clause 7.1 – A				
Measurement uncertainty:	See chapter 9				

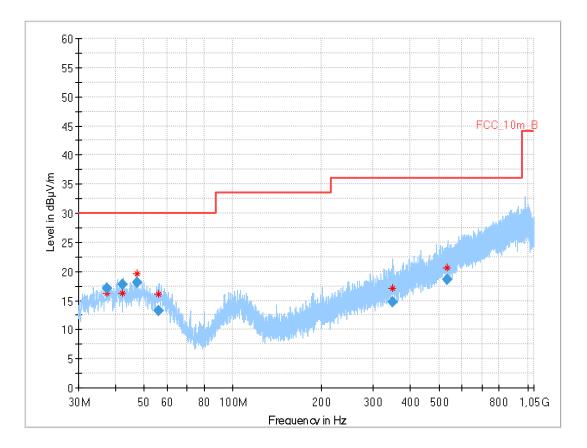

Limits:

	TX Spurious Emissions Radiated								
	§15.209 / RSS-247								
Frequency (MHz)	Frequency (MHz) Field Strength (dBµV/m) Measurement dis								
30 - 88	30.0	10							
88 – 216	33.5	10							
216 - 960	36.0	10							
Above 960	54.0	3							
	§15.407								
Outside the restricted bands!	-27 dBn	n / MHz							

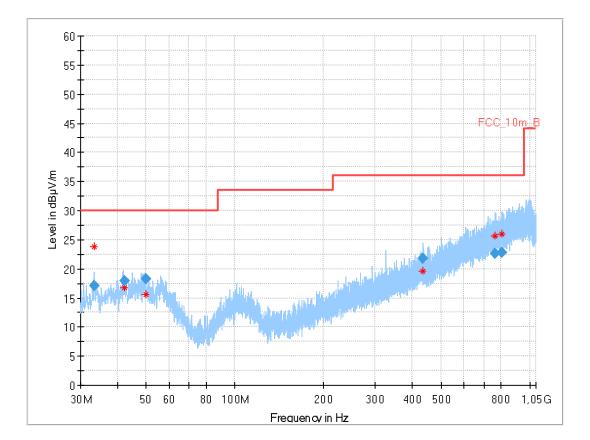
Plots: 20 MHz channel bandwidth


Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1 (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.024	9.83	30.0	20.2	1000	120.0	368.0	н	45	14
38.476	9.07	30.0	20.9	1000	120.0	400.0	V	212	15
49.508	3.30	30.0	26.7	1000	120.0	117.0	V	51	16
513.918	13.87	36.0	22.1	1000	120.0	200.0	Н	77	20
723.744	17.45	36.0	18.6	1000	120.0	200.0	Н	262	23
947.912	20.06	36.0	15.9	1000	120.0	288.0	Н	0	25

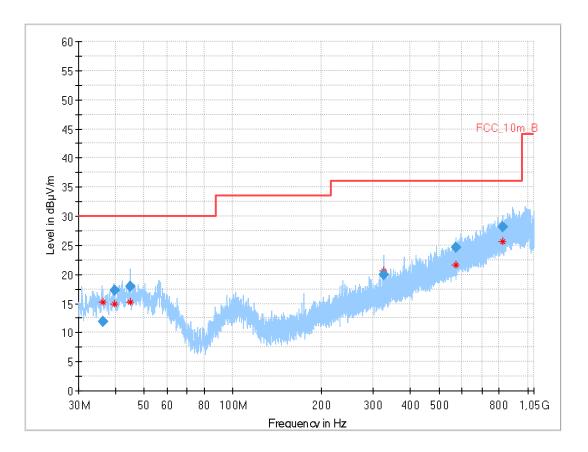

Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-2A (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.548	16.98	30.0	13.0	1000	120.0	104.0	Н	52	15
41.397	17.70	30.0	12.3	1000	120.0	158.0	Н	52	16
45.978	18.24	30.0	11.8	1000	120.0	176.0	Н	-37	16
56.289	18.24	30.0	11.8	1000	120.0	195.0	V	236	16
596.085	24.91	36.0	11.1	1000	120.0	195.0	V	119	22
756.275	27.46	36.0	8.5	1000	120.0	171.0	V	-37	24



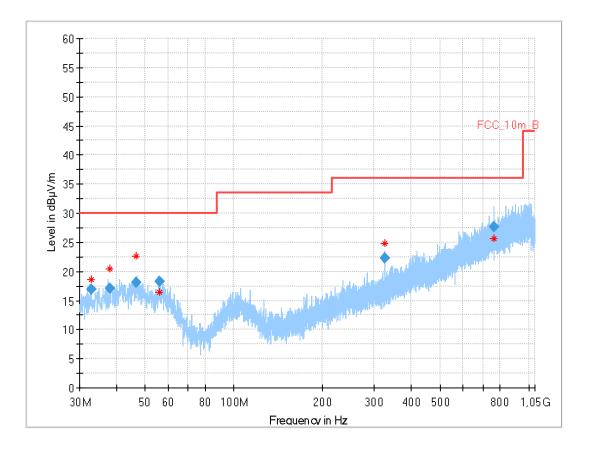
Plot 3: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-2C (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.406	17.10	30.0	12.9	1000	120.0	195.0	V	162	15
42.195	17.83	30.0	12.2	1000	120.0	167.0	V	241	16
47.212	18.08	30.0	11.9	1000	120.0	141.0	V	10	16
55.975	13.26	30.0	16.7	1000	120.0	118.0	V	142	16
348.639	14.75	36.0	21.3	1000	120.0	195.0	V	142	17
534.788	18.66	36.0	17.3	1000	120.0	195.0	Н	105	20

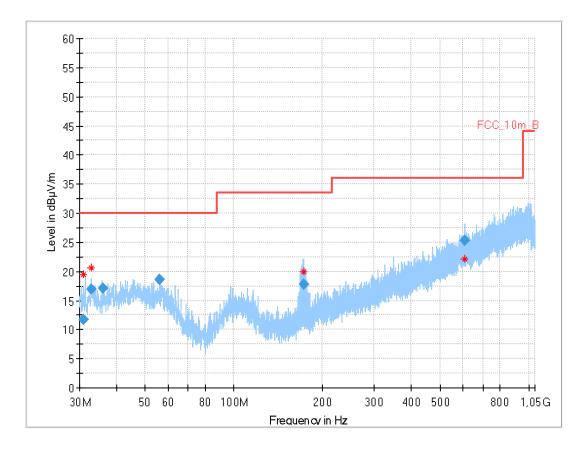

Plot 4: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3 (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.255	17.02	30.0	13.0	1000	120.0	121.0	V	148	14
42.122	17.88	30.0	12.1	1000	120.0	195.0	Н	142	16
49.912	18.33	30.0	11.7	1000	120.0	195.0	Н	190	16
435.435	21.82	36.0	14.2	1000	120.0	173.0	V	283	19
763.562	22.58	36.0	13.4	1000	120.0	195.0	Н	142	24
804.744	22.84	36.0	13.2	1000	120.0	180.0	V	232	24

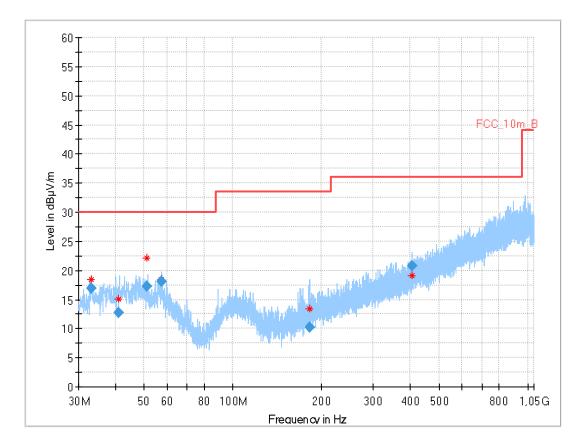
Plots: 40 MHz channel bandwidth


Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1 (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.233	11.89	30.0	18.1	1000	120.0	175.0	Н	-37	14
39.905	17.33	30.0	12.7	1000	120.0	195.0	V	237	15
44.779	17.88	30.0	12.1	1000	120.0	195.0	Н	-37	16
325.002	20.01	36.0	16.0	1000	120.0	104.0	V	52	16
571.057	24.57	36.0	11.4	1000	120.0	154.0	Н	232	20
823.532	28.13	36.0	7.9	1000	120.0	189.0	V	232	24


Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-2A (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.899	16.93	30.0	13.1	1000	120.0	98.0	V	152	14
37.843	17.13	30.0	12.9	1000	120.0	136.0	Н	232	15
46.565	18.11	30.0	11.9	1000	120.0	106.0	V	238	16
56.032	18.20	30.0	11.8	1000	120.0	195.0	Н	142	16
324.993	22.28	36.0	13.7	1000	120.0	195.0	Н	142	16
761.028	27.62	36.0	8.4	1000	120.0	195.0	Н	232	24


Plot 3: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-2C (worst case)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.968	11.77	30.0	18.2	1000	120.0	114.0	V	127	13
32.978	16.93	30.0	13.1	1000	120.0	177.0	Н	26	14
36.055	17.02	30.0	13.0	1000	120.0	195.0	Н	265	14
56.038	18.54	30.0	11.5	1000	120.0	195.0	V	209	16
172.496	17.82	33.5	15.7	1000	120.0	101.0	V	62	11
605.076	25.28	36.0	10.7	1000	120.0	195.0	Н	52	22

Plot 5: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3 (worst case)

Results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.243	17.00	30.0	13.0	1000	120.0	113.0	V	240	14
41.016	12.66	30.0	17.3	1000	120.0	195.0	V	142	15
51.249	17.32	30.0	12.7	1000	120.0	195.0	V	247	15
57.494	18.02	30.0	12.0	1000	120.0	153.0	V	127	15
182.598	10.26	33.5	23.2	1000	120.0	195.0	V	-37	11
405.474	20.75	36.0	15.3	1000	120.0	195.0	Н	142	18

12.12 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measureme	nt parameter
Detector:	Quasi Peak below 1 GHz (alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %
Test setup:	See sub clause 7.2 – B See sub clause 7.3 – A (26GHz), B (40GHz)
Measurement uncertainty:	See chapter 9

Limits:

	TX Spurious Emissions Radiated								
	§15.209 / RSS-247								
Frequency (MHz) Field Strength (dBµV/m) Measurement distance									
Above 960	54.0	3							
	§15.407								
Outside the restricted bands! -27 dBm / MHz									

Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm											
	U-NII-1 (5150 MHz to 5250 MHz)											
L	Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]				
15540	Peak	59.5	15601	Peak	60.8	15720	Peak	62.8				
15540	AVG	52.0	15001	AVG	52.7	15720	AVG	53.4				
For emi	For emissions above 18 GHz For emissions above 18 GHz For emissions above 18 GHz											
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please ta	ake look at t	he plots.				

		TX Spu	irious Emissi	ons Radiate	ed [dBµV/m] ,	′ dBm					
U-NII-2A (5250 MHz to 5350 MHz)											
L	Lowest channel Middle channel Highest channel										
F [MHz]	Detector	Level	F [MHz]	Detector	Level	F [MHz]	Detector	Level			
	Detector	[dBµV/m]		Delector	[dBµV/m]		Detector	[dBµV/m]			
15780	Peak	61.9	15840	Peak	60.6	10640	Peak	58.2			
15760	AVG	52.4	13640	AVG	53.0	10040	AVG	49.0			
/	Peak	-/-	/	Peak	-/-	15054	Peak	64.8			
-/-	AVG	-/-	-/- AVG		-/-	15954	AVG	53.5			
For emi	ssions abov	e 18 GHz	For emissions above 18 GHz			For emissions above 18 GHz					
please t	ake look at t	he plots.	please take look at the plots. please take look at the				he plots.				

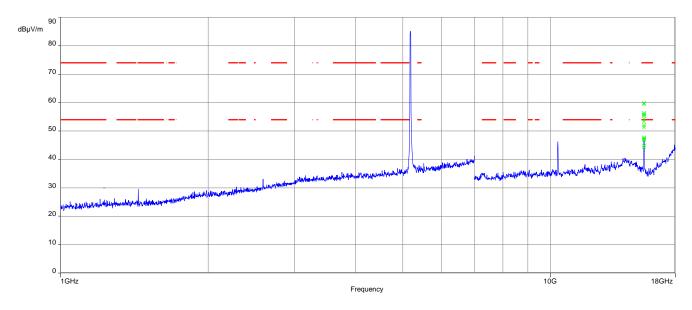
	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-2C (5470 MHz to 5725 MHz)											
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
11004	Peak	59.1	11200	Peak	61.5	11404	Peak	61.0			
11004	AVG	51.3	11200	AVG	53.5	11404	AVG	52.4			
	ssions abov ake look at t			sions above ake look at t			ssions above ake look at t				

		TX Spu	urious Emissi	ons Radiate	ed [dBµV/m] /	/ dBm						
	U-NII-3 (5725 MHz to 5850 MHz)											
L	Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Detector	Level [dBµV/m]						
11490	Peak	57.6	11574	Peak	59.8	11651	Peak	57.6				
11490	AVG	49.9	11574	AVG	51.1	11051	AVG	48.8				
-/-	Peak	-/-	/	Peak	-/-		Peak					
-/-	AVG	-/-	-/- AVG -/-		-/-		AVG					
For emi	For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz					
please t	ake look at t	he plots.	please ta	please take look at the plots. please take look at the plot								

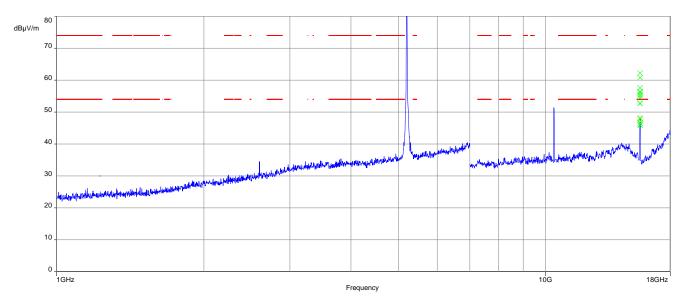
Results: 40 MHz channel bandwidth

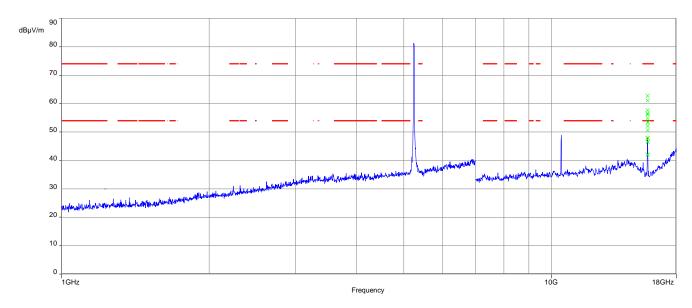
		TX Spu	urious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm					
	U-NII-1 (5150 MHz to 5250 MHz)										
L	Lowest channel -/- Highest channel										
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	F [MHz]	Detector	Level [dBµV/m]				
-/-	Peak	-/-				15682	Peak	57.8			
-/-	AVG	-/-	,			15062	AVG	49.8			
	ssions abov ake look at t			-/-			ssions above ake look at t				

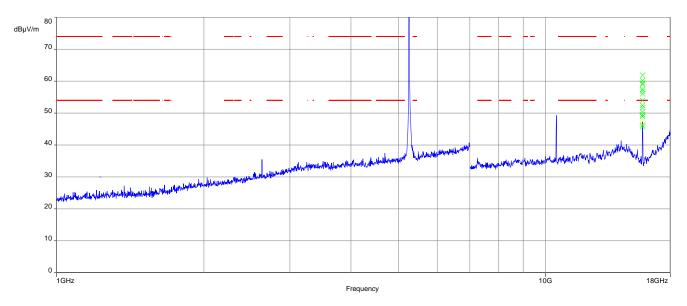

	TX Spurious Emissions Radiated [dBµV/m] / dBm										
	U-NII-2A (5250 MHz to 5350 MHz)										
Lowest channel -/- Highest channel											
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
15826	Peak	60.5				15024	Peak	60.2			
10820	AVG	51.9	,			15934	AVG	52.6			
	ssions abov ake look at t			-/-			ssions above ake look at t				

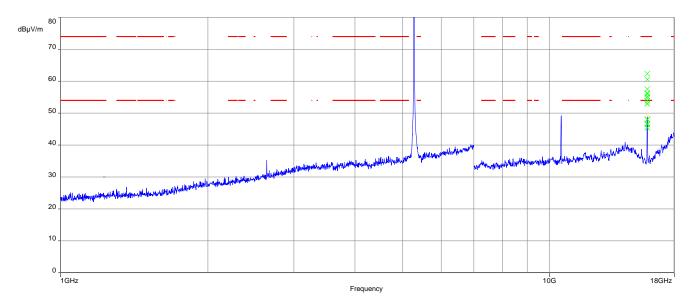

	TX Spurious Emissions Radiated [dBµV/m] / dBm										
	U-NII-2C (5470 MHz to 5725 MHz)										
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detecto							
2755	Peak	42.6	11100	Peak	58.9	2025	Peak	42.2			
2755	AVG	37.2	11180	AVG	51.6	2835	AVG	36.2			
11010	Peak	61.0	1	Peak	-/-	11240	Peak	58.9			
11019	AVG	53.6	-/-	AVG	-/-	11340	AVG	51.0			
For emi	For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please take look at the plots.					

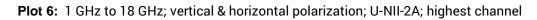
		TX Spu	irious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm					
	U-NII-3 (5725 MHz to 5850 MHz)										
L	owest chanr	nel		-/-		Hi	ghest chanr	nel			
F [MHz]	Detector	Level	F [MHz]	Detector	Level	F [MHz]	Detector	Level			
	Delector	[dBµV/m]		Delector	[dBµV/m]		Delector	[dBµV/m]			
3837	Peak	47.0				11586	Peak	53.6			
3037	AVG	37.9				11560	AVG	44.8			
11510	Peak	55.0		/		/	Peak	-/-			
11510	AVG	46.9	-/-			-/-	AVG	-/-			
For emi	ssions abov	e 18 GHz				For emis	sions above	e 18 GHz			
please t	ake look at t	he plots.				please ta	ake look at t	he plots.			

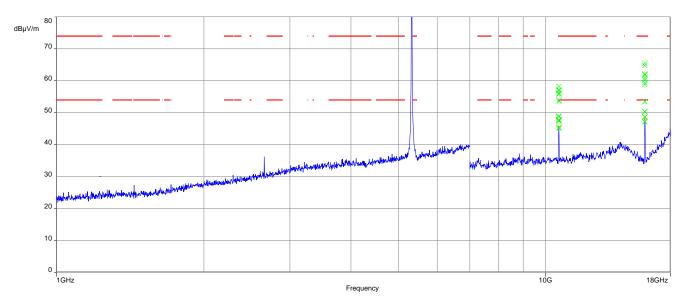



Plots: 20 MHz channel bandwidth

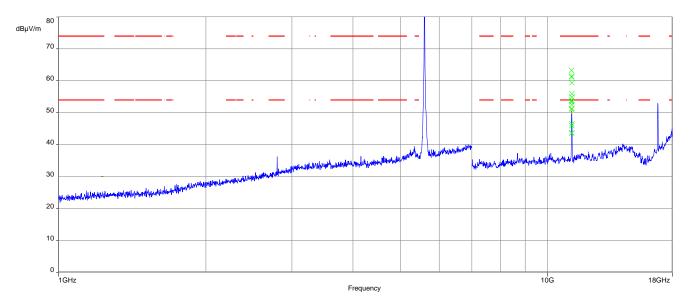

Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

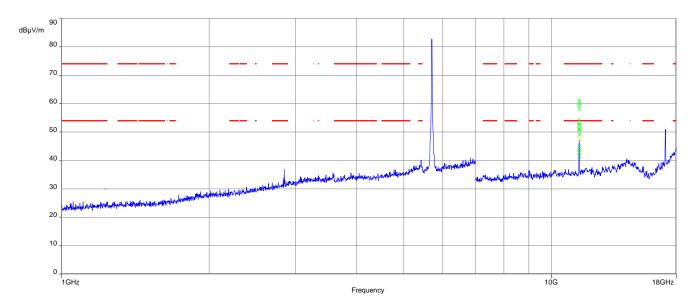


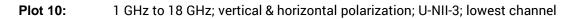

Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

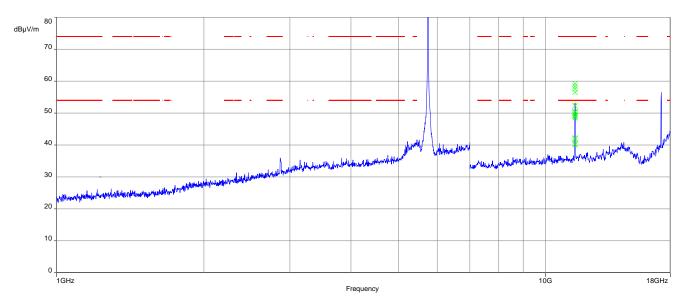

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

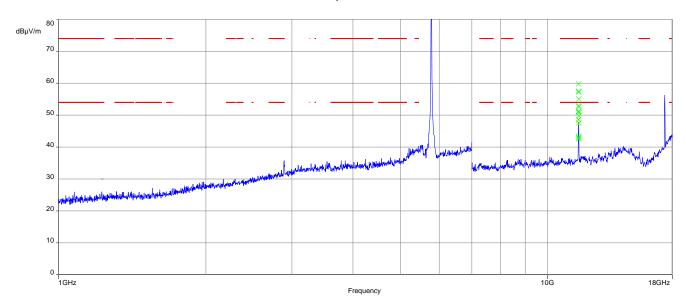
Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel



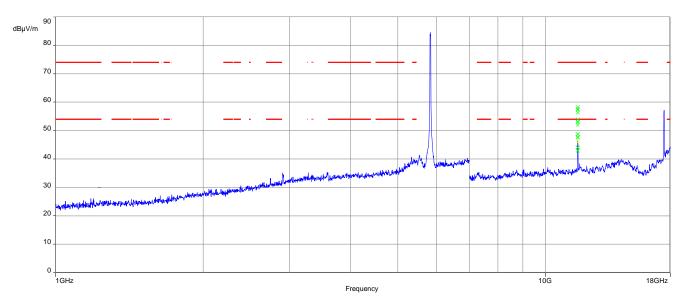


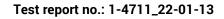

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

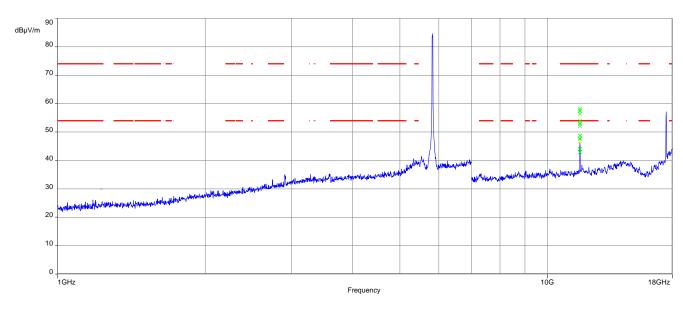

Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

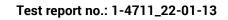


Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

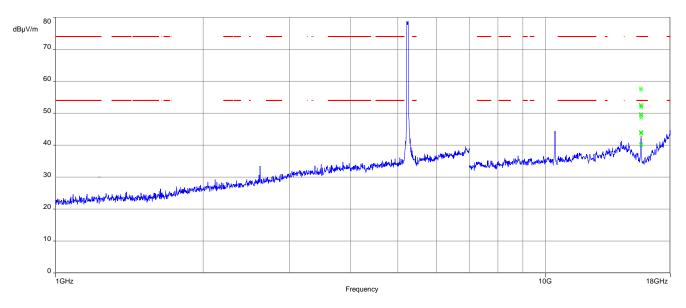


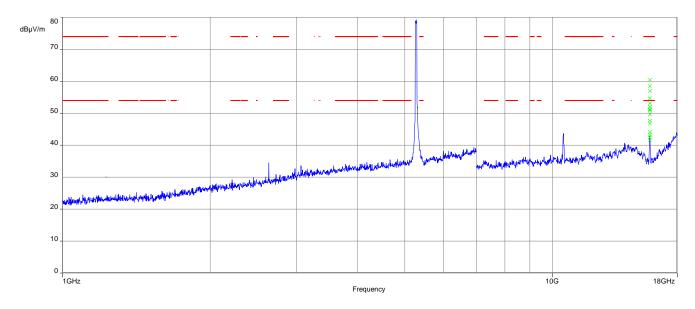


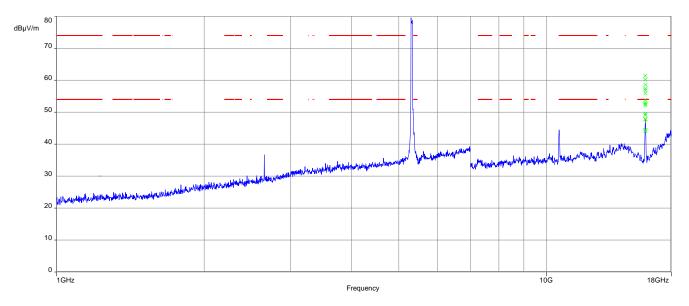

Plot 11: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

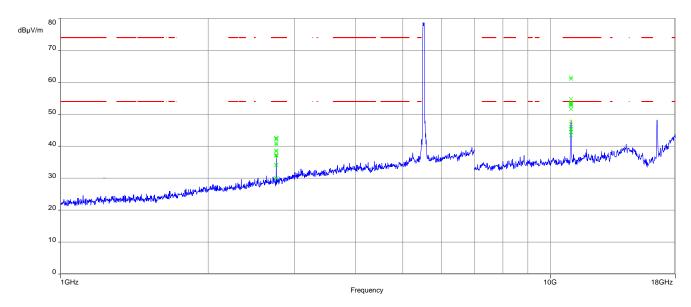


Plot 13: 1 GHz to 18 GHz, 5825 MHz, vertical & horizontal polarization, cabinet radiation

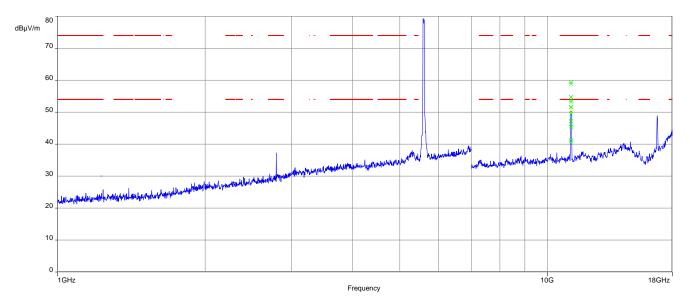


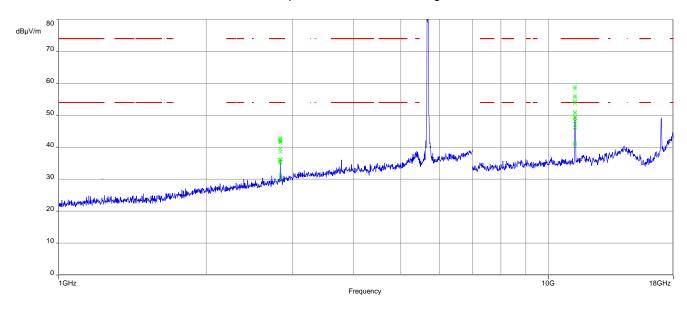

Plots: 40 MHz channel bandwidth


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

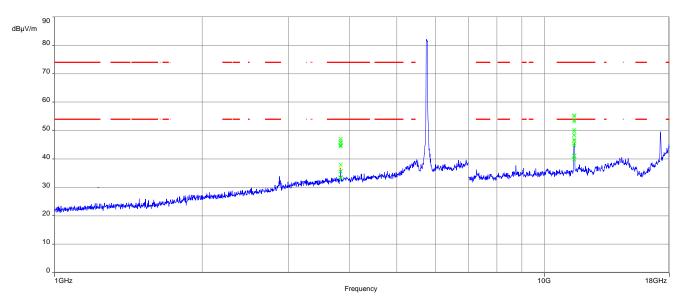


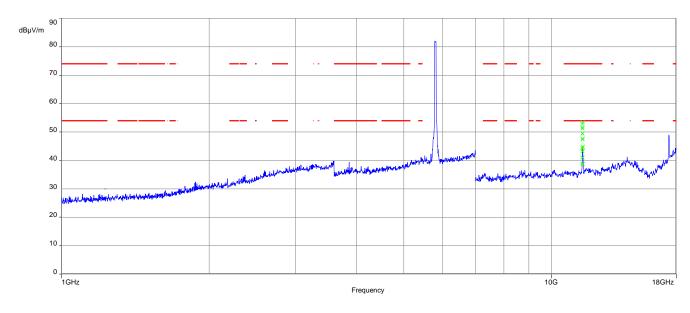
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

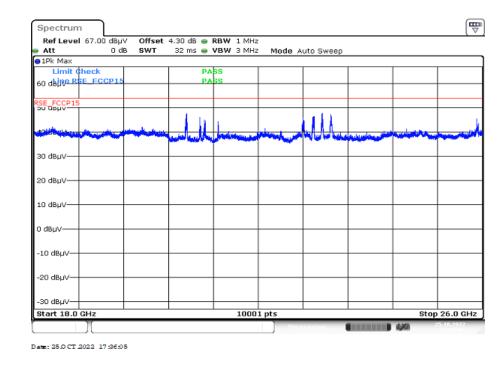


Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

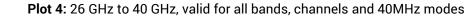


Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel



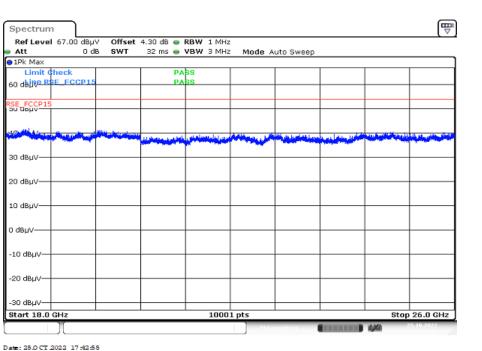
Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Plots: 18GHz to 40GHz



Plot 1: 18 GHz to 26 GHz, valid for all bands, channels and 20MHz modes

Plot 2: 26 GHz to 40 GHz, valid for all bands, channels and 20MHz modes


									<u> </u>
MultiView	Spectrum								
Ref Level 100).00 dBµV	• RBV	V 1 MHz						
Att	0 dB SW1	56 ms 🖷 VBV	V 3 MHz Mode	Auto Sweep					
DF "LHAF180_C	CABLE503_CBL1_	18-40G_50CM	_DBUV"						- 101 11
Frequency S	weep							M1[1	 1Pk Mar 44.04 dB
								MILI	33.0140 G
0 dBµV									33.0140 0
o uppr									
0 dBµ∨									
o dBµV									
0 dBµV									
		v							
0 dBµV									
				P	11				
d dBµV		A i			1		h.	1	manne
	ň	11		لير مسجب	walnut	Mr. Whowywood	would have that	thathurant	
11 James a	June Marine Mark	1 h h h h h h h h h h	mound	Ware and and]			
iO dBμV									
0 dBµV									
o aop.									
0 dBµV									
6.0 GHz			1001 pt	L	L,	4 GHz/			40.0 G
0.0 GHZ			1001 pt	>			Measuring		+0.0 G + 26.10.20 13:56:

13:56:14 26.10.2022

MultiView	•								
	00 dBµV								
Att DF "LHAF180_CA			W 3 MHz Mode	Auto Sweep					
Frequency Sw		.0 100_0001							o1Pk Ma
								M1[1	
									37.1540 G
D dBµV									
D dBµV									
D dBµV									
0 dBµV									
0 dBµV									
							M	1	
0 dBµV								and the second strength	monthe
			much marine	whomether	manne	man	mannon		
White have a server and the server a	amunum	www.www.w							
0 dBµV									
0 dBµV									
26.0 GHz			1001 pt	s	1	.4 GHz/			40.0 GF
							Measuring		+ 26.10.20 14:23:

Plot 3: 18 GHz to 26 GHz, valid for all bands, channels and 40MHz modes

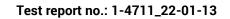
12.13 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

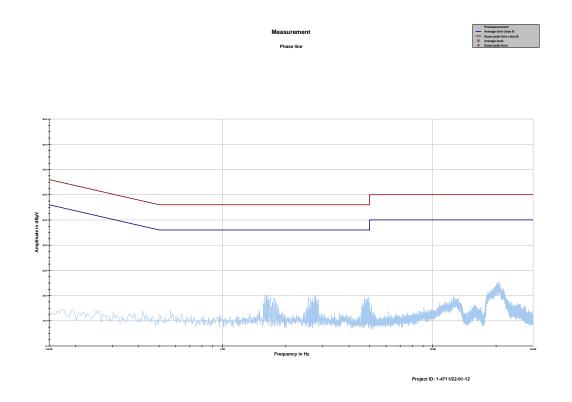
Measurement parameter			
Detector:	Peak - Quasi Peak / Average		
Sweep time:	Auto		
Video bandwidth:	9 kHz		
Resolution bandwidth:	100 kHz		
Span:	150 kHz to 30 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 6.4 – A		
Measurement uncertainty:	See chapter 9		

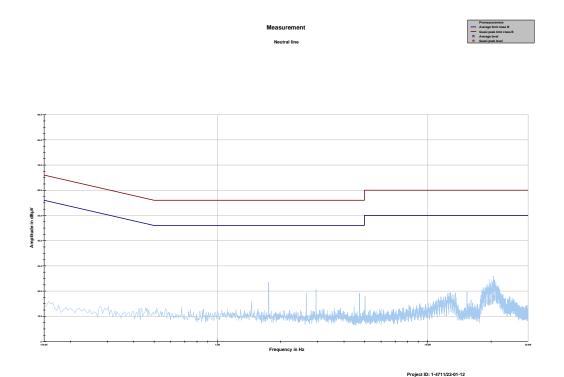

Limits:

Spurious Emissions Conducted < 30 MHz				
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 - 30.0	60	50		

*Decreases with the logarithm of the frequency

Results:


Spurious Emissions Conducted < 30 MHz [dBµV/m]				
F [MHz] Detector Level [dBµV/m]				
All detected emissions are more than 20 dB below the limit.				



Plots:

Plot 1: 150 kHz to 30 MHz, phase line

Plot 2: 150 kHz to 30 MHz, neutral line

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-11-24

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Every	Deutsche Akkreditierungsstelle GmbH Office Brein Spittelmant 10 10117 Berlin Office Standburt am Main Office Braunschweig Bundeallies 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.3020 The certificate shall only by order the status at the line of the date of laws. The curvet status of the score of accreditation can be found in the database of accredited balars date defined methods. Hence the status at the line of the date of laws. The curvet status of the score of accreditation can be found in the database of accredited balars dates defined methods. Hence the status at the line of the date of busider Akleditereangustele Gmbd. Http://two.org/total.com/total.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DASS. The accreditation (DKAKS) are accessed as the cover sheet by the conformity assessment body (MakStelleG) of 31 July 2009 (Federal as Gaszette) = 0.2503 and the Regulation (CIX No 7502 do the European Parliament and of the Council of 9 July 2009 setting out the requirements for accreditation and market surveillance relating to the machenitor (DKA) of 502 and the Regulation (CIX O) 7502 do the European co-operation for Accreditation (CIX). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.iac.org July 2009 July

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	Deutsche Akkreditierungsstelle GmbH Spitzelmant 10 Spitzelmant 10 JUL7 Berlin Office Berlin Spitzelmant 10 Spitzelmant 10
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of OS pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020	(Federal Law Gazette 1 p. 2523) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of July 2008 sering out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Conformation and market surveillance relating a signatory to the Multilateral Agreements for Multila Recogniton of the European cooperation for Accreditation (EA), International Accreditation forum (IAF) and International Laboratory Accreditation Cooperation (ICA). The signatories to these agreements freqognites each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org LIAC: www.european-accreditation.org LIAC: www.iaf.nu
The certificate together with its once reflects the status at the time of the date of issue. The current status of the scope of accordination can be found in the distatus of accordinal badles of Destache Akkreditionungsstelle GmbH. https://www.dakks.do/en/content/accredited-badles-dakks In mater montal.	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf