

FCC PART 15.407 DYNAMIC FREQUENCY SELECTION TEST REPORT

For

INGENICO

9 Avenue de la Gare-Rolvatain TGV, BP 25156, Valence Cedex 9, France

FCC ID: XKB-L2500CL3GWIBT

Report Type: **Product Name:** Class II permissive change Link/2500 Edison.hu **Test Engineer:** Edison Hu **Report Number:** RXM161124051-00A1 **Report Date:** 2017-03-21 Oscar Ye Gscar. Ye Engineer **Reviewed By:** Bay Area Compliance Laboratories Corp. (Kunshan) **Test Laboratory:** No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	3
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	5
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External Cable	5
SUMMARY OF TEST RESULTS	6
APPLICABLE STANDARDS	7
DFS REQUIREMENT	
DFS MEASUREMENT SYSTEM	
SYSTEM BLOCK DIAGRAMCONDUCTED METHOD	
RADIATED METHOD	
TEST PROCEDURE	
TEST RESULTS	
DESCRIPTION OF EUT	
TEST EQUIPMENT LIST AND DETAILS.	
RADAR WAVEFORM CALIBRATION	
TEST ENVIRONMENTAL CONDITIONS	
CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	
Test Procedure	
Test Results	17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *INGENICO*'s product, model number: *LINK/2500 CL/3G/WiFi/BT (FCC ID: XKB-L2500C L3GWIBT)* (or "EUT") in this report is a *Link/2500*, which was measured approximately: 12.8 cm (L) x 7.0 cm (W) x 1.7cm (H), rated input voltage: DC 3.7V from rechargeable Li-ion battery or DC 5V from adapter. The device is a client device.

Report No.: RXM161124051-00A1

Adapter information:

MODEL: PSA105R-050QL6

INPUT: 100-240V ~ 0.3A 50-60Hz 11-15VA

OUTPUT: DC 5V, 1.0A MAX

Objective

This report is prepared on behalf of *INGENICO* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15.407 rules.

This is the Class II Permissive Change application of the device. The difference between the original device and the current one is as follows:

1. Add the frequency band: 5250~5350 MHz, 5470~5725 MHz.

The change made to the device affected all the test results, so we updated all test datas, EUT photos were copied from the report number RXM160823052-00F with FCC ID: XKB-L2500CL3GWIBT.

Related Submittal(s)/Grant(s)

Original submission with FCC ID: XKB-L2500CL3GWIBT which was granted on 2016-10-04.

Test Methodology

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 FCC KDB 905462 D03 Client Without DFS New Rules v01r02

^{*}All measurement and test data in this report was gathered from production sample serial number: 20161124051. (Assigned by the BACL. The EUT supplied by the applicant was received on 2016-11-25)

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Report No.: RXM161124051-00A1

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RXM161124051-00A1

EUT Exercise Software

No software was used in test.

Equipment Modifications

N/A

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Huawei	Wireless Router	EchoLife HG8245Q	/
Dell	Laptop	E6410	/

Note: the Wirless Router FCC ID: QISHG8245Q

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
RJ45 Cable	No	No	1.5	Router	Laptop

SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR \$47 Part 15.407(h), and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02 and KDB 905462 D03 Client Without DFS New Rules v01r02

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Not Applicable
D. C	Initial Channel Availability Check Time (CAC)	Not Applicable
Performance Requirements	Radar Burst at the Beginning of the CAC	Not Applicable
Check	Radar Burst at the End of the CAC	Not Applicable
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Not Applicable

APPLICABLE STANDARDS

DFS Requirement

CFR §47 Part 15.407(h)

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: RXM161124051-00A1

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest
Closing Transmission Time	available	BW mode available
		for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar
Detection

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 - Short Pulse Radar Test Waveforms

			se Kadai Test waveloin		
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{PRI_{\mu \text{sec}}}\right)} \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Radar Types		12 10	80%	120
1188108410	Tandar Types	- '/		0070	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

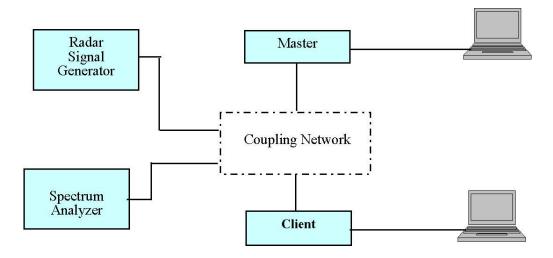
Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

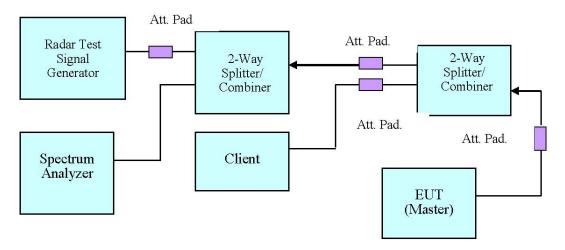
Radar Type	Number of Trials	Number of Successful	Minimum Percentage	
		Detections	of Successful	
			Detection	
1	35	29	82.9%	
2	30	18	60%	
3	30	27	90%	
4	50	44	88%	
Aggregate $(82.9\% + 60\% + 90\% + 88\%)/4 = 80.2\%$				

Table 6 - Long Pulse Radar Test Waveform

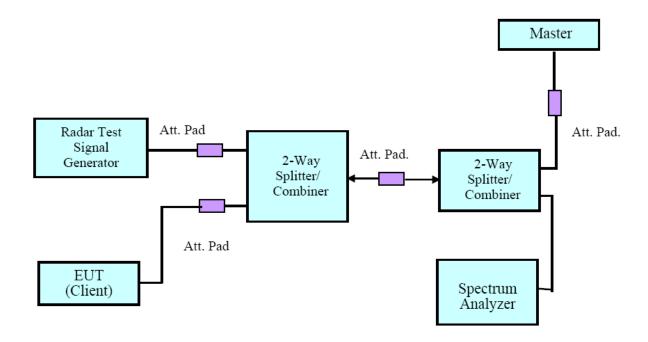
Those of Doing I those I thinking I too it in the I thinking I thought I thinking I thinking I thinking I thought I thinking							
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				


Table 7 - Frequency Hopping Radar Test Waveform

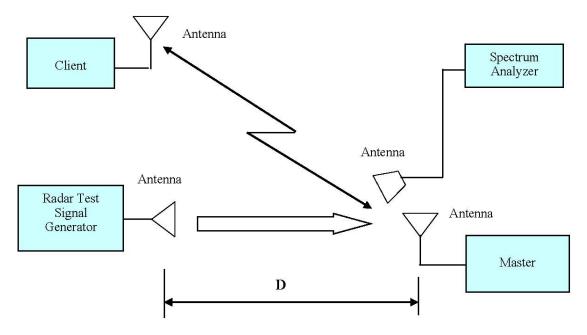
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Hop	(kHz)	Length	Successful	Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30


DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.


System Block Diagram

Conducted Method


Setup for Master with injection at the Master

Setup for Client with injection at the Master

Setup for Client with injection at the Client

Radiated Method

Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

TEST RESULTS

Description of EUT

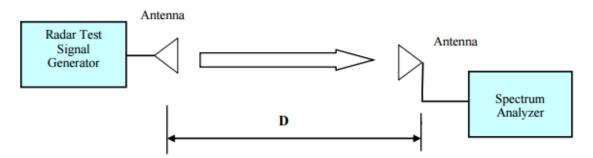
The EUT operates in 5250-5350 MHz and 5470-5725 MHz range.

The maximum EIRP of the master is 21.92dBm<23 dBm, Therefore the required interference threshold level is -62 dBm, the required radiated threshold at antenna port is -62dBm.

The calibrated radiated DFS detection threshold level was set to -64 dBm, which was more stringent.

Report No.: RXM161124051-00A1

WLAN traffic is generated by Laptop, The data streamed from the Access Point to the EUT.


Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	OSP120 BASE UNIT	OSP120	101247	2016-07-04	2017-07-03
Rohde & Schwarz	Rohde & Schwarz SIGNAL ANALYZER		101116	2016-07-04	2017-07-03
Rohde & Schwarz	VECTOR SIGNAL GENERATOR	SMBV100A	261558	2016-07-04	2017-07-03
Rohde & Schwarz	SIGNAL GENERATOR	SMB100A	110390	2016-07-04	2017-07-03
Rohde & Schwarz OSP120 BASE UNIT		OSP120	101247	2016-07-04	2017-07-03
Mini-circuits	Splitter/Combiner	ZX10-2- 1252+	N/A	N/A	N/A
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10
ETS	Horn Antenna	3115	00066542	N/A	N/A
Agilent Spectrum Analyzer		E4440A	SG43360054	2016-12-08	2017-12-08

Note: E4440A was used for Non-Occupancy Period test in 2017-03-15.

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Radar Waveform Calibration

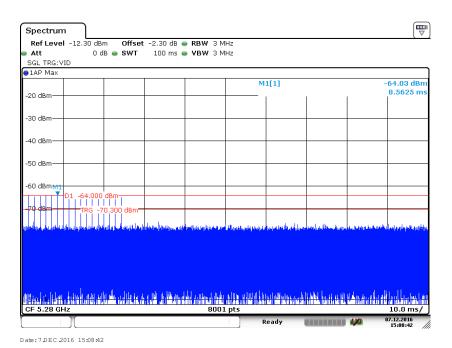
Report No.: RXM161124051-00A1

Radiated Calibration Setup Block Diagram

Test Environmental Conditions

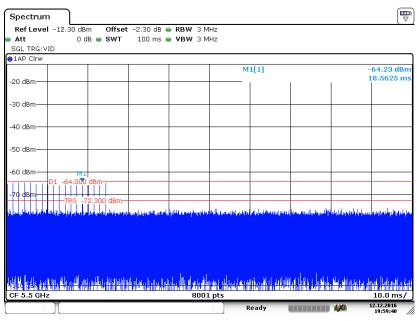
Temperature:	26.1~26.3 °C	
Relative Humidity:	32~41 %	
ATM Pressure:	100.8~101.1 kPa	

The testing was performed by Edison Hu from 2016-12-07 to 2017-03-15.


Plots of Radar Waveforms

Bay Area Comphance Laboratories Corp. (Kunshan)

5280 MHz:


Radar Type 0

Report No.: RXM161124051-00A1

5500 MHz:

Radar Type 0

Date:12.DEC 2016 19:59:40

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

Report No.: RXM161124051-00A1

Test Procedure

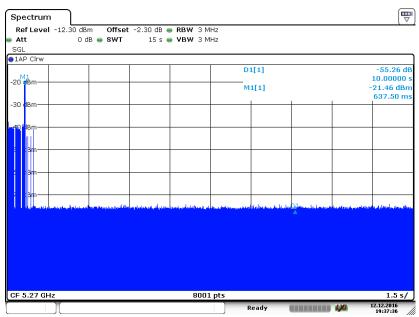
Perform type 0 short pulse radar waveform, repeat using a long pulse radar type5 waveform. The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

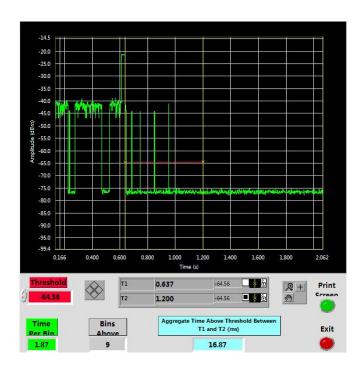
Test Results

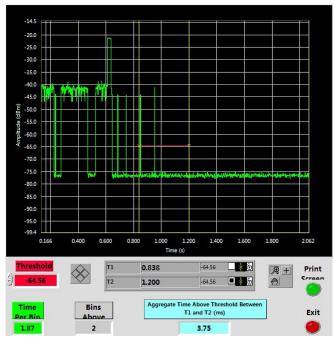
Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results
5270	40	Type 0	Compliant
5510	40	Type 0	Compliant


Please refer to the following tables and plots.

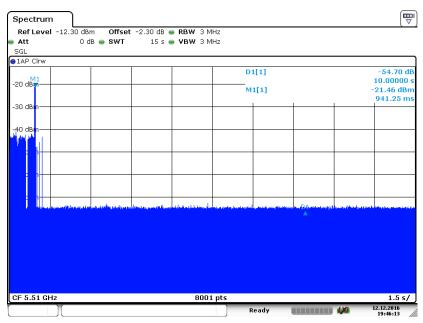
5270 MHz

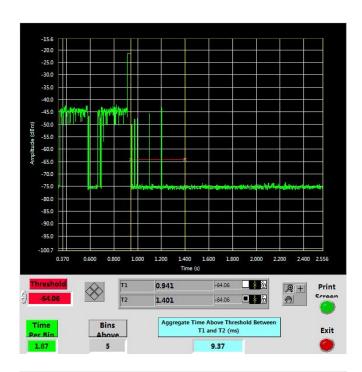
Type 0 radar channel move time result:

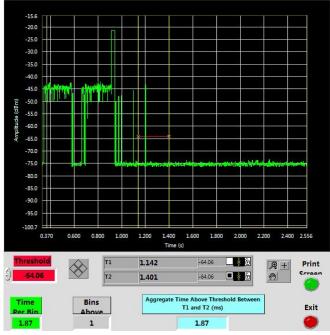

Item	Time (s)	Limit (s)
Closing Move Time	<<10	10


Report No.: RXM161124051-00A1

Date:12 DEC 2016 19:37:36


Item	Time (ms)	Limit (ms)	
Channel Closing Transmission Time	16.87	200	
Aggregate Transmission Time after 200ms	3.75	60	


5510 MHz


Type 0 radar channel move time result:

Date:12 DEC 2016 19:46:14

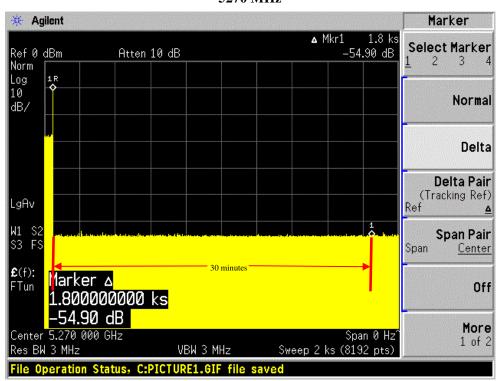
Item	Time (ms)	Limit (ms)	
Closing Transmission Time	9.37	200	
Aggregate Transmission Time after 200ms	1.87	60	

NON-OCCUPANCY PERIOD

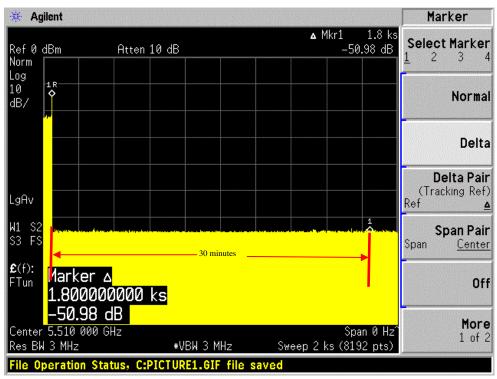
Test Procedure

Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

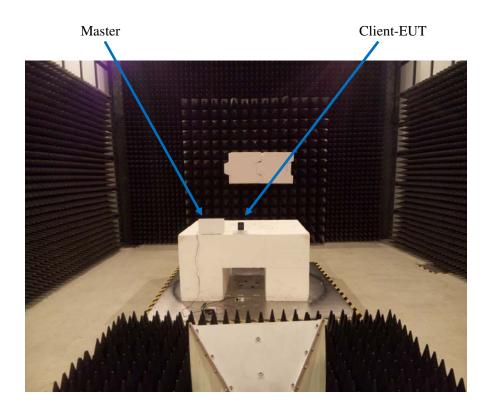
Report No.: RXM161124051-00A1


Test Result

Frequency(MHz)	Bandwidth (MHz)	Spectrum Analyzer Display
5270	40	No transmission within 30 minutes
5510	40	No transmission within 30 minutes


Please refer to the following plots.

5270 MHz


Report No.: RXM161124051-00A1

5510 MHz

APPENDIX A - TEST SETUP PHOTOGRAPHS

***** END OF REPORT *****