

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-1294/16-01-19

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-Fax: -/-

Contact: Jean-Baptiste Palisse

e-mail: jean-baptiste.palisse@ingenico.com

Phone: +33 4 75 84 21 74

Manufacturer

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Smart Terminal

Model name: iSMPv4

FCC ID: XKB-ISMP4CLBT IC: 2586D-ISMP4CLBT

Frequency: 13.56 MHz
Technology tested: RFID

Antenna: Integrated loop antenna

Power supply: 3.80 V DC by Li-ion battery (Type: 296196699) 110 V AC by mains adapter (Type: PSM10R-050)

Temperature range: 0°C to 40°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:					

Andreas Luckenbill Lab Manager

Radio Communications & EMC

Marco Bertolino Lab Manager Radio Communications & EMC

Table of contents

1	Table of contents						
2	Gene	ral information					
	2.1	Notes and disclaimer					
	2.2	Application details					
3	Test s	standard/s and references					
4		environment					
-							
5	Test i	tem					
	5.1	General description					
	5.2	Additional information	5				
6	Test I	aboratories sub-contracted					
7	Descr	iption of the test setup	6				
-	7.1	Shielded semi anechoic chamber					
	7.1 7.2	Shielded fully anechoic chamber					
	7.3	AC conducted					
8	_	ence of testing					
•	•	· ·					
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz					
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz					
9	Meas	urement uncertainty	12				
10	Sur	nmary of measurement results	13				
11	Add	litional comments	14				
12		asurement results					
	12.1	Field strength of the fundamental					
	12.1	Field strength of the fundamental					
	12.3	Conducted limits					
Anı	nex A	Document history	23				
Δnı	nex B	Further information					
Ani	nex C	Accreditation Certificate	24				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-04-06
Date of receipt of test item: 2016-04-11
Start of test: 2016-04-26
End of test: 2016-04-28

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	December 2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic
ANSI C63.10-2013	-/-	equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature		T_{max}	No test under extreme conditions performed.
		T_{min}	No test under extreme conditions performed.
Relative humidity content :			44 %
Barometric pressure			not relevant for this kind of testing
		V_{nom}	3.80 V DC by Li-ion battery (Type: 296196699)
Power supply			110 V AC by mains adapter (Type: PSM10R-050)
Fower supply	•	V_{max}	No test under extreme conditions performed.
		V_{min}	No test under extreme conditions performed.

5 Test item

5.1 General description

Kind of test item :	Smart Terminal
Type identification :	iSMPv4
HMN :	-/-
PMN :	ISMP4
HVIN :	ISMP4 CL/BT
FVIN :	Based on SDK9.29
S/N serial number :	Radiated unit: 16084PP00008773
HW hardware status :	296194103
SW software status :	SDK9.x
Frequency band :	13.56 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	ASK
Number of channels :	1
Antenna :	Integrated loop antenna
Power supply :	3.80 V DC by Li-ion battery (Type: 296196699) 110 V AC by mains adapter (Type: PSM10R-050)
Temperature range :	0°C to 40°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1294/16-01-21_AnnexA

1-1294/16-01-21_AnnexB 1-1294/16-01-21_AnnexD

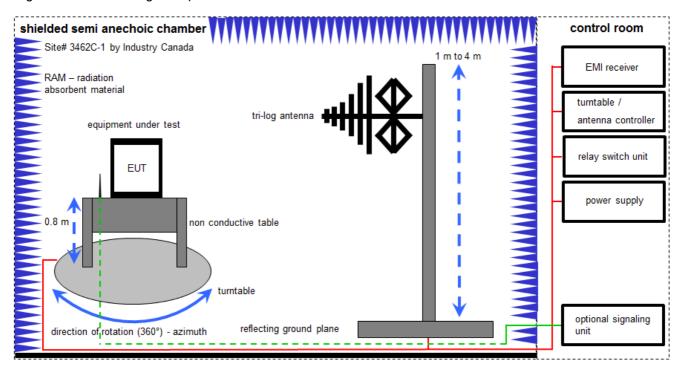
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

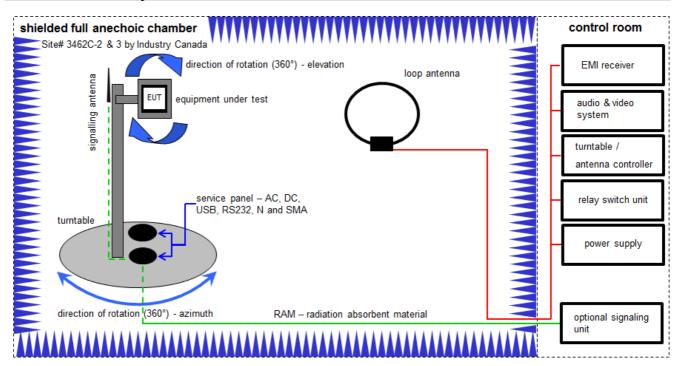
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
2	Α	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

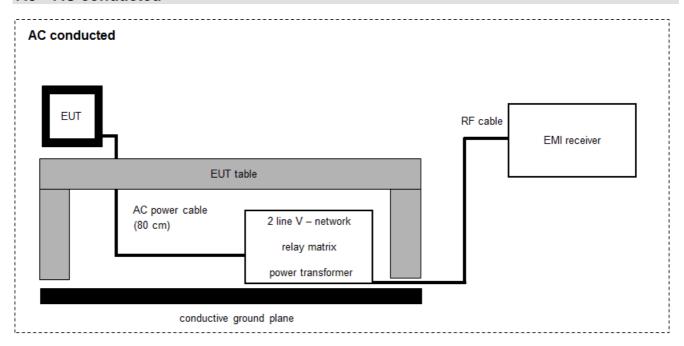
7.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
4	Α	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	SPS_PHE 1.4f	SPS_PHE 1.4f	Spitzenberger & Spiess	B5981; 5D1081;B5979	300000210	ne	-/-	-/-
2	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
3	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
4	Α	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.201	26.01.2017
5	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210 Issue 8 RSS Gen Issue 4	See table!	2016-04-29	Delta test according customer demand!

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4	Occupied bandwidth	Nominal	Nominal				\boxtimes	*
§ 15.225 (a)	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 & § 15.225 (b-d)	Field strength of the harmonics and spurious	Nominal	Nominal	X				*
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal			\boxtimes		No stand- alone receiver mode.
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a)	Frequency tolerance	Normal & extreme conditions	Normal & extreme conditions				×	*

Note:

C Compliant
NC Not compliant
NA Not applicable
NP Not performed

^{*} See main report 1-1294/16-01-03

11 Additional comments

Reference documents: Customer Questionnaire _CETECOM_ISMP4

Main report: CETECOM ICT report 1-1294/16-01-03

Special test descriptions: None

Configuration descriptions: None

12 Measurement results

12.1 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters				
Detector:	Quasi peak / peak (worst case)			
Resolution bandwidth:	120 kHz			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Used equipment:	See chapter 7.2 – A			
Measurement uncertainty:	See chapter 9			

Limit:

FCC & IC							
Frequency	Field strength	Measurement distance					
(MHz)	(µV/m) ¯	(m)					
13.553 to 13.567	15,848 (84 dBµV/m)	30					

Recalculation:

According to ANSI C63.10							
Frequency	Formula Correction value						
13.56 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{\textit{measure}}}{d_{\textit{measure}}}\right) - 20 \log \left(\frac{d_{\textit{limit}}}{d_{\textit{mearfield}}}\right)$ is the calculation of field strength at the limit distance, expressed in dBpV/m is the measured field strength, expressed in dBpV/m is the $N2\pi$ distance dnear field is the distance of the measurement point from EUT is the reference limit distance	-21.39 dB					

According to ANSI C63.10

Result:

Field strength of the fundamental						
Frequency 13.56 MHz						
Distance	@ 3 m @ 30 m					
Measured / calculated value	70.1 dBµV/m (peak) 61.8 dBµV/m (average)	48.7 dBμV/m (peak) 40.4 dBμV/m (average)				

12.2 Field strength of the harmonics and spurious

Measurement:

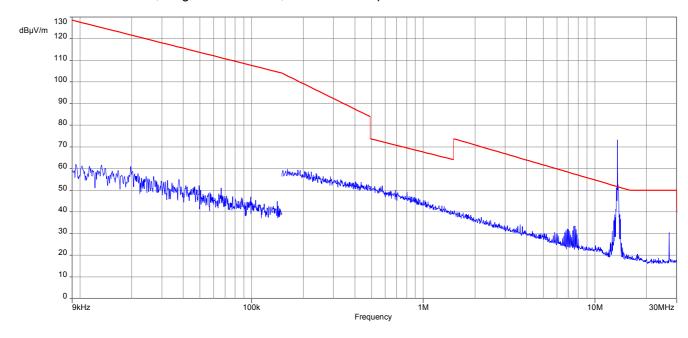
The maximum detected field strength for the harmonics and spurious.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Lload aquipment:	See chapter 7.1 – A			
Used equipment:	See chapter 7.2 – A			
Measurement uncertainty:	See chapter 9			

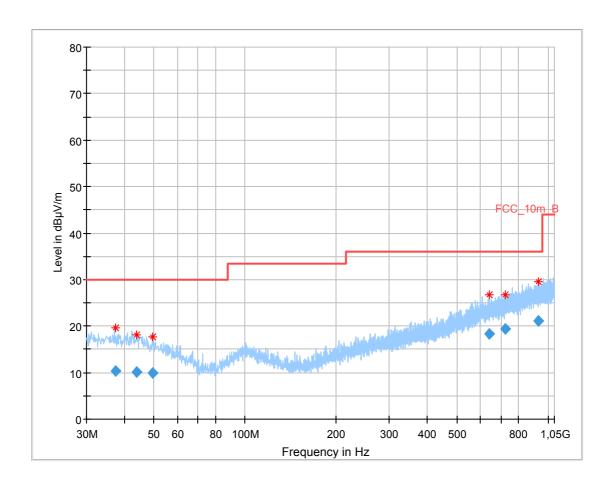
Limit:

FCC & IC							
Frequency	Field strength	Measurement distance					
(MHz)	(dBµV/m)	(m)					
0.009 - 0.490	2400/F(kHz)	300					
0.490 - 1.705	24000/F(kHz)	30					
1.705 – 30	30 (29.5 dBμV/m)	30					
30 – 88	100 (40 dBμV/m)	3					
88 – 216	150 (43.5 dBµV/m)	3					
216 – 960	200 (46 dBμV/m)	3					

Note: For a reduced measurement distance, please take a look at the limit line and the ANSI C63.10-2013 sub clause 6.4 radiated emissions from unlicensed wireless devices below 30 MHz.

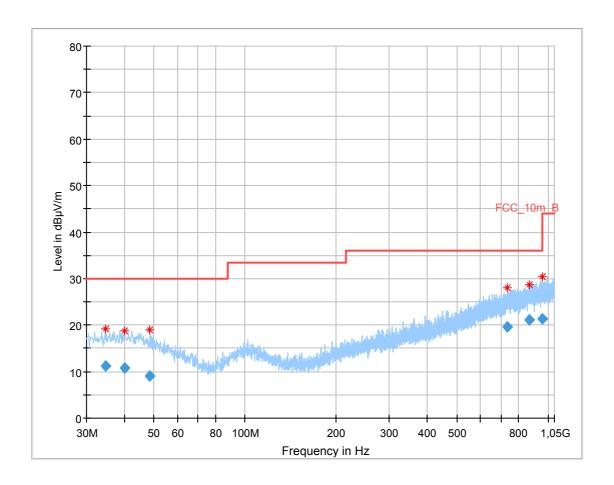

Result:

Detected emissions						
Frequency (MHz) Detector Resolution bandwidth (kHz) Detected value						
,	All detected emissions are more than 20 dB below the limit.					
For emissions above 30 MHz, please look at the table below the 1 GHz plot.						


Plots:

Plot 1: 9 kHz – 30 MHz, magnetic emissions, with mains adapter

Plot 2: 30 MHz – 1 GHz, vertical and horizontal polarization, battery powered



Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.297200	10.35	30.00	19.65	1000.0	120.000	100.0	٧	260.0	13.9
43.897800	10.04	30.00	19.96	1000.0	120.000	170.0	٧	261.0	13.9
49.739250	9.97	30.00	20.03	1000.0	120.000	101.0	٧	170.0	12.7
637.833150	18.23	36.00	17.77	1000.0	120.000	170.0	٧	260.0	21.0
724.067700	19.42	36.00	16.58	1000.0	120.000	98.0	٧	170.0	22.1
929.150550	21.20	36.00	14.80	1000.0	120.000	170.0	٧	280.0	24.2

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarization, with mains adapter

Final_Result:

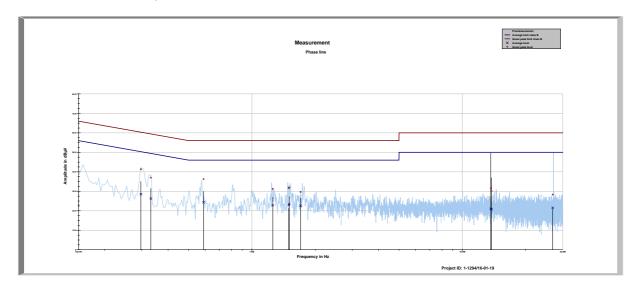
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.708200	11.12	30.00	18.88	1000.0	120.000	101.0	٧	-10.0	13.8
40.117500	10.88	30.00	19.12	1000.0	120.000	101.0	٧	81.0	14.0
48.484500	8.97	30.00	21.03	1000.0	120.000	170.0	٧	190.0	13.0
736.951350	19.66	36.00	16.34	1000.0	120.000	170.0	٧	100.0	22.4
864.799200	21.07	36.00	14.93	1000.0	120.000	170.0	٧	-10.0	23.7
959.693700	21.45	36.00	14.55	1000.0	120.000	98.0	٧	280.0	24.4

12.3 Conducted limits

Measurement:

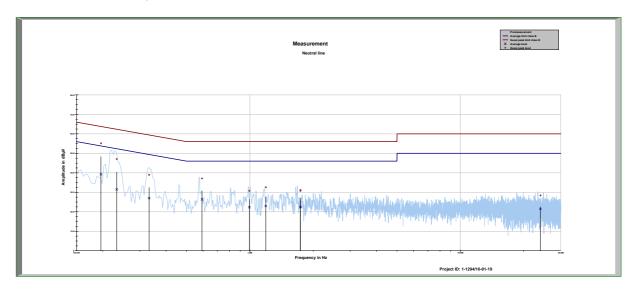
Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.

Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case – pre-scan)				
Resolution bandwidth:	F < 150 kHz: 200 Hz				
Resolution bandwidth.	F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz				
Video baridwidtii.	F > 150 kHz: 100 kHz				
Trace mode:	Max hold				
Used equipment:	See chapter 7.3 – A				
Measurement uncertainty:	See chapter 9				


Limit:

FCC & IC				
Frequency	Quasi-peak	Average		
(MHz)	(dBµV/m)	(dBµV/m)		
0.15 – 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30.0	60	50		

Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.149047	29.32			22.90		
0.296933	41.32	19.01	60.328	28.47	23.33	51.802
0.331024	37.00	22.43	59.425	26.27	24.56	50.828
0.588879	36.25	19.75	56.000	24.33	21.67	46.000
1.257066	31.24	24.76	56.000	22.79	23.21	46.000
1.494804	31.67	24.33	56.000	22.86	23.14	46.000
1.506428	31.94	24.06	56.000	23.47	22.53	46.000
1.702424	29.65	26.35	56.000	22.57	23.43	46.000
13.645615	31.49	28.51	60.000	21.04	28.96	50.000
13.760450	30.14	29.86	60.000	20.75	29.25	50.000
26.866994	28.30	31.70	60.000	21.54	28.46	50.000

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.196051	55.15	8.63	63.776	39.21	15.47	54.684
0.232883	47.04	15.31	62.346	31.47	22.16	53.632
0.331922	38.97	20.43	59.403	26.98	23.82	50.802
0.592331	37.10	18.90	56.000	26.34	19.66	46.000
0.994377	30.76	25.24	56.000	22.31	23.69	46.000
1.189529	32.58	23.42	56.000	22.99	23.01	46.000
1.736700	30.75	25.25	56.000	22.38	23.62	46.000
1.739397	31.13	24.87	56.000	22.49	23.51	46.000
24.012952	28.39	31.61	60.000	21.46	28.54	50.000

Annex A **Document history**

Version	Applied changes	Date of release
	Initial release	2016-04-29

Further information Annex B

Glossary

SW

AVG Average

DUT Device under test

EMC Electromagnetic Compatibility

ΕN European Standard EUT Equipment under test

European Telecommunications Standard Institute **ETSI**

Federal Communication Commission FCC

FCC ID -Company Identifier at FCC

HW Hardware Industry Canada IC Inventory number Inv. No. -N/A Not applicable PP Positive peak QΡ Quasi peak S/N Serial number

Software Product marketing name PMN HMN Host marketing name

Hardware version identification number HVIN **FVIN** Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkummen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services Gmbl Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereicher durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL VolP und DECT Akustik Akustik
Funk einschließlich WLAN
Suor Kange Devices (SRD)
Williax und Richtfunk
William (Daniel William)
William und Richtfunk
William und Hannen
William

Die Akkreditierungsurkundt gilt nur in Verbindung mit dem Bescheld vom 07.03 2014 mit der Akkreditierungsurmmer D-Pt-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Deokblart, der Rückseite des Deokblarts und der folgenden Anlage mit Inagesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt om Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Die auszugsweise Veröffentlichung der Akkreditierungsuntunde becanf der verhertigen sehriftlichen Zustimmung der Deutsche Akkrediterungsstelle GribH (DAMS). Ausgenommen diesen ist die separat Weitzrerereitung des Decklisites durch die umseitig generatie Kunformititishewertungsstelle in unweit dieterer Form.

Die Akkreditierung erfolgte gemößt des Grectzes über din Akkreditierungsstalle (AkistelleG) vom 31. Juli 2009 (Richi L. S. 2023) sewie der Verordrung (KG) Nr. 7657-2028 des Europäischen Parlament und des Battes vom S. Juli 2008 über die Veruschriffun Geit des Akkreditierung und Marktüberweitung im Zusammenhang mit der Vermanktung von Perduktien (Abl. 1.218 vom s. Juli 2008, S. 30). Die DAkk Sist Utervert betreit der Walthilten eilen Akkremmen ung egenet begen Arende nung der European ers operation für Ausreditätien (EA), des Heinnattenal Accenditation form (MA) und der International Jakendurg Ausreditätion Goognation (BAC). Die Unterzeichner Gleser Abkommen orkonnen ihre Akkreditierungen gegenzeitig an.

Der aktue is Stund der Wilglindschaft kann folgenden Webselten ertnommen werden: F&: www.tarepiean-accred tation.org ILBC: www.flacurg J&: www.flacurg

Note:

The current certificate including annex may be received from CETECOM ICT Services GmbH on request.