








#### **CETECOM ICT Services**

consulting - testing - certification >>>

# **TEST REPORT**

Test report no.: 1-1294/16-01-18



#### **Testing laboratory**

#### **CETECOM ICT Services GmbH**

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

#### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

### **Applicant**

#### Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-Fax: -/-

Contact: Jean-Baptiste Palisse

e-mail: jean-baptiste.palisse@ingenico.com

Phone: +33 4 75 84 21 74

#### Manufacturer

#### **Ingenico Group**

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

#### Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

#### **Test Item**

Kind of test item: Smart Terminal

Model name: iSMPv4

FCC ID: XKB-ISMP4CLBT IC: 2586D-ISMP4CLBT

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth®, +EDR

Antenna: Integrated PCB monopole antenna

Power supply: 3.80 V DC by Li-ion-battery (Type: 296196699) 110 V AC by mains adapter (Type: PSM10R-050)

Temperature range: 0°C to 40°C



This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Andreas Luckenbill
Lab Manager
Radio Communications 8

Radio Communications & EMC

Marco Bertolino Lab Manager Radio Communications & EMC



# Table of contents

| 1   | Table of contents2                   |                                                                                                                                                                                                                   |                |  |  |  |  |
|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| 2   | Gener                                | al information                                                                                                                                                                                                    | 3              |  |  |  |  |
|     | 2.1<br>2.2                           | Notes and disclaimerApplication details                                                                                                                                                                           |                |  |  |  |  |
| 3   | Test s                               | tandard/s and references                                                                                                                                                                                          | 3              |  |  |  |  |
| 4   | Test e                               | nvironment                                                                                                                                                                                                        | 5              |  |  |  |  |
| 5   | Test it                              | em                                                                                                                                                                                                                | 5              |  |  |  |  |
|     | 5.1<br>5.2                           | General descriptionAdditional information                                                                                                                                                                         | 5              |  |  |  |  |
| 6   | Test la                              | aboratories sub-contracted                                                                                                                                                                                        | 5              |  |  |  |  |
| 7   | Descr                                | iption of the test setup                                                                                                                                                                                          | 6              |  |  |  |  |
|     | 7.1<br>7.2<br>7.3<br>7.4             | Shielded semi anechoic chamber                                                                                                                                                                                    | <br>99         |  |  |  |  |
| 8   | Seque                                | ence of testing                                                                                                                                                                                                   | 11             |  |  |  |  |
|     | 8.1<br>8.2<br>8.3<br>8.4             | Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious 1 GHz to 18 GHzSequence of testing radiated spurious above 18 GHz | 12<br>13       |  |  |  |  |
| 9   | Measu                                | rement uncertainty                                                                                                                                                                                                | 15             |  |  |  |  |
| 10  | Sun                                  | nmary of measurement results                                                                                                                                                                                      | 16             |  |  |  |  |
| 11  | Add                                  | litional comments                                                                                                                                                                                                 | 17             |  |  |  |  |
| 12  | Mea                                  | surement results                                                                                                                                                                                                  | 18             |  |  |  |  |
|     | 12.1<br>12.2<br>12.3<br>12.4<br>12.5 | Band edge compliance radiated                                                                                                                                                                                     | 22<br>25<br>30 |  |  |  |  |
| 13  | Obs                                  | ervations                                                                                                                                                                                                         | 43             |  |  |  |  |
| Anı | nex A                                | Document history                                                                                                                                                                                                  | 43             |  |  |  |  |
| Anı | nex B                                | Further information                                                                                                                                                                                               | 43             |  |  |  |  |
| Anı | Annex C Accreditation Certificate    |                                                                                                                                                                                                                   |                |  |  |  |  |



### 2 General information

#### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

#### 2.2 Application details

Date of receipt of order: 2016-04-06
Date of receipt of test item: 2016-04-11
Start of test: 2016-04-26
End of test: 2016-04-28

Person(s) present during the test: -/-

#### 3 Test standard/s and references

| Test standard     | Date             | Description                                                                                                                                               |
|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15    | -/-              | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                 |
| RSS - 247 Issue 1 | May 2015         | Digital Transmission Systems (DTSs), Frequency Hopping<br>Systems (FHSs) and Licence - Exempt Local Area Network (LE-<br>LAN) Devices                     |
| RSS - Gen Issue 4 | November<br>2014 | Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus |



| Guidance         | Version | Description                                                                                                                               |
|------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.4-2014  | -/-     | American national standard for methods of measurement of radio-<br>noise emissions from low-voltage electrical and electronic             |
| ANSI C63.10-2013 | -/-     | equipment in the range of 9 kHz to 40 GHz  American national standard of procedures for compliance testing of unlicensed wireless devices |



### 4 Test environment

|                           |   | $T_{nom}$        | +22 °C during room temperature tests          |
|---------------------------|---|------------------|-----------------------------------------------|
| Temperature               | : | $T_{max}$        | No tests under extreme conditions required.   |
|                           |   | $T_{min}$        | No tests under extreme conditions required.   |
| Relative humidity content |   |                  | 55 %                                          |
| Barometric pressure       |   |                  | not relevant for this kind of testing         |
|                           |   | $V_{nom}$        | 3.80 V DC by Li-ion-battery (Type: 296196699) |
| Power supply              |   |                  | 110 V AC by mains adapter (Type: PSM10R-050)  |
| Power supply              | • | $V_{\text{max}}$ | No tests under extreme conditions required.   |
|                           |   | $V_{min}$        | No tests under extreme conditions required.   |

#### 5 Test item

### 5.1 General description

| Kind of test item :                                    | Smart Terminal                                                                             |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Type identification :                                  | iSMPv4                                                                                     |
| HMN :                                                  | -/-                                                                                        |
| PMN :                                                  | ISMP4                                                                                      |
| HVIN :                                                 | ISMP4 CL/BT                                                                                |
| FVIN :                                                 | Based on SDK9.29                                                                           |
| S/N serial number :                                    | Radiated unit: 16084PP00008773                                                             |
| HW hardware status :                                   | 296194103                                                                                  |
| SW software status :                                   | SDK9.x                                                                                     |
| Frequency band :                                       | DTS band 2400 MHz to 2483.5 MHz<br>(lowest channel 2402 MHz; highest channel 2480 MHz)     |
| Type of radio transmission: Use of frequency spectrum: | FHSS                                                                                       |
| Type of modulation :                                   | GFSK, Pi/4 QPSK, 8 DPSK                                                                    |
| Number of channels :                                   | 79                                                                                         |
| Antenna :                                              | Integrated PCB monopole antenna                                                            |
| Power supply :                                         | 3.80 V DC by Li-ion-battery (Type: 296196699) 110 V AC by mains adapter (Type: PSM10R-050) |
| Temperature range :                                    | 0°C to 40°C                                                                                |

### 5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1294/16-01-21\_AnnexA

1-1294/16-01-21\_AnnexB 1-1294/16-01-21\_AnnexD

#### 6 Test laboratories sub-contracted

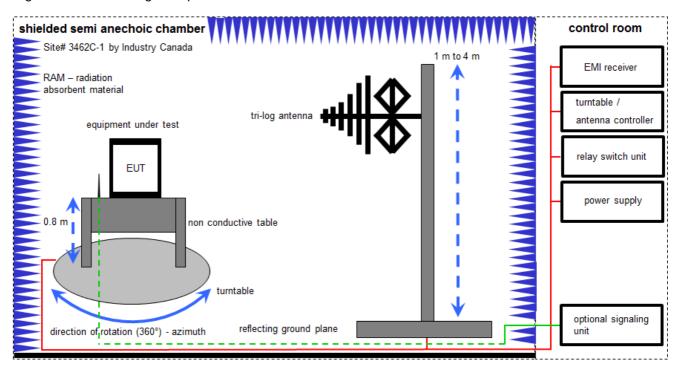
None



#### 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


#### Agenda: Kind of Calibration

| k     | calibration / calibrated                   | EK  | limited calibration                              |
|-------|--------------------------------------------|-----|--------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | ZW  | cyclical maintenance (external cyclical          |
|       |                                            |     | maintenance)                                     |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                    |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                   |
| vlkl! | Attention: extended calibration interval   |     |                                                  |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress |



#### 7.1 Shielded semi anechoic chamber

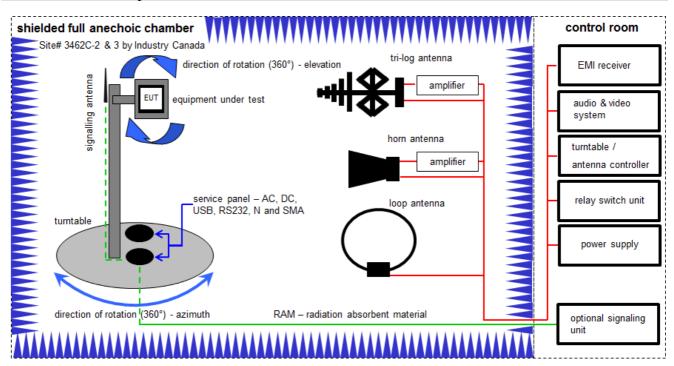
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


#### Example calculation:

FS  $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ 

| No. | Lab /<br>Item | Equipment                                          | Туре             | Manufacturer | Serial No. | INV. No<br>Cetecom | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|------------------|--------------|------------|--------------------|------------------------|------------------|---------------------|
| 1   | Α             | Switch-Unit                                        | 3488A            | HP           | 2719A14505 | 300000368          | ev                     | -/-              | -/-                 |
| 2   | Α             | EMI Test Receiver                                  | ESCI 3           | R&S          | 100083     | 300003312          | k                      | 08.03.2016       | 08.03.2017          |
| 3   | Α             | Antenna Tower                                      | Model 2175       | ETS-Lindgren | 64762      | 300003745          | izw                    | -/-              | -/-                 |
| 4   | Α             | Positioning<br>Controller                          | Model 2090       | ETS-Lindgren | 64672      | 300003746          | izw                    | -/-              | -/-                 |
| 5   | Α             | Turntable Interface-<br>Box                        | Model 105637     | ETS-Lindgren | 44583      | 300003747          | izw                    | -/-              | -/-                 |
| 6   | А             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz | VULB9163         | Schwarzbeck  | 295        | 300003787          | k                      | 22.04.2014       | 22.04.2016          |
| 7   | Α             | CBT (Bluetooth<br>Tester + EDR<br>Signalling)      | CBT 1153.9000K35 | R&S          | 100185     | 300003416          | vIKI!                  | 28.01.2015       | 28.01.2017          |



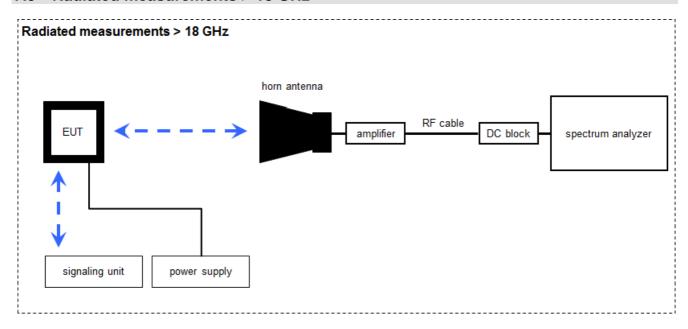
## 7.2 Shielded fully anechoic chamber



Measurement distance: tri-log antenna and loop antenna 3 meter; horn antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


#### Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$ 

| No. | Lab /<br>Item | Equipment                                            | Туре                                | Manufacturer | Serial No. | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-------------------------------------|--------------|------------|--------------------|---------------------|------------------|---------------------|
| 1   | А             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                                | EMCO         | 8812-3088  | 300001032          | vIKI!               | 20.05.2015       | 20.05.2017          |
| 2   | A, B, C       | Anechoic chamber                                     | FAC 3/5m                            | MWB / TDK    | 87400/02   | 300000996          | ev                  | -/-              | -/-                 |
| 3   | A, B, C       | Switch / Control Unit                                | 3488A                               | HP           | *          | 300000199          | ne                  | -/-              | -/-                 |
| 4   | С             | Active Loop Antenna<br>10 kHz to 30 MHz              | 6502                                | EMCO/2       | 8905-2342  | 300000256          | k                   | 24.06.2015       | 24.06.2017          |
| 5   | А             | Amplifier                                            | js42-00502650-28-<br>5a             | Parzich GMBH | 928979     | 300003143          | ne                  | -/-              | -/-                 |
| 6   | Α             | Band Reject filter                                   | WRCG2400/2483-<br>2375/2505-50/10SS | Wainwright   | 11         | 300003351          | ev                  | -/-              | -/-                 |
| 7   | Α             | Highpass Filter                                      | WHKX7.0/18G-8SS                     | Wainwright   | 18         | 300003789          | ne                  | -/-              | -/-                 |
| 8   | A, B          | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz   | VULB9163                            | Schwarzbeck  | 371        | 300003854          | vIKI!               | 29.10.2014       | 29.10.2017          |
| 9   | A, B, C       | CBT (Bluetooth<br>Tester + EDR<br>Signalling)        | CBT 1153.9000K35                    | R&S          | 100185     | 300003416          | vIKI!               | 28.01.2015       | 28.01.2017          |
| 10  | A, B, C       | EMI Test Receiver<br>9kHz-26,5GHz                    | ESR26                               | R&S          | 101376     | 300005063          | k                   | 04.09.2015       | 04.09.2016          |



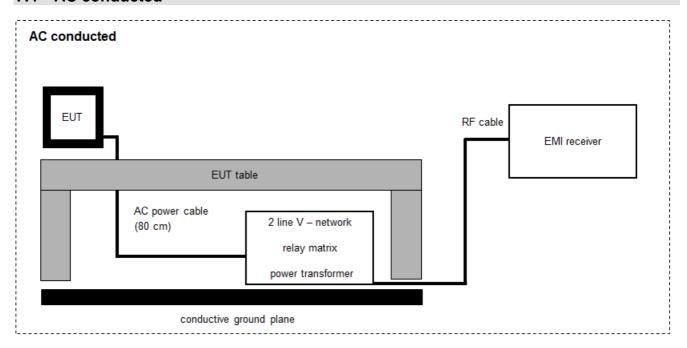
#### 7.3 Radiated measurements > 18 GHz



Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$ 

(FS-field strength; U<sub>R</sub>-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


#### Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 [dB\mu\text{V/m}] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu\text{V/m}] (6.79 \mu\text{V/m})$ 

| No. | Lab /<br>Item | Equipment                                     | Туре                    | Manufacturer   | Serial No.          | INV. No<br>Cetecom | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-----------------------------------------------|-------------------------|----------------|---------------------|--------------------|---------------------|------------------|---------------------|
| 1   | А             | Std. Gain Horn<br>Antenna 12.4 to 18.0<br>GHz | 639                     | Narda          | 8402                | 300000787          | k                   | 14.08.2015       | 14.08.2017          |
| 2   | Α             | Std. Gain Horn<br>Antenna 18.0 to 26.5<br>GHz | 638                     | Narda          | 8402                | 300000486          | k                   | 10.09.2015       | 10.09.2017          |
| 3   | Α             | Signal Analyzer 40<br>GHz                     | FSV40                   | R&S            | 101042              | 300004517          | k                   | 21.01.2016       | 21.01.2017          |
| 4   | Α             | Amplifier 2-40 GHz                            | JS32-02004000-57-<br>5P | MITEQ          | 1777200             | 300004541          | ev                  | -/-              | -/-                 |
| 5   | А             | RF-Cable                                      | ST18/SMAm/SMAm/<br>60   | Huber & Suhner | Batch no.<br>606844 | 400001181          | ev                  | -/-              | -/-                 |
| 6   | А             | RF-Cable                                      | ST18/SMAm/SMAm/<br>48   | Huber & Suhner | Batch no.<br>600918 | 400001182          | ev                  | -/-              | -/-                 |
| 7   | А             | DC-Blocker 0.1-40<br>GHz                      | 8141A                   | Inmet          | Batch no.<br>600918 | 400001185          | ev                  | -/-              | -/-                 |
| 8   | А             | CBT (Bluetooth<br>Tester + EDR<br>Signalling) | CBT 1153.9000K35        | R&S            | 100185              | 300003416          | vIKI!               | 28.01.2015       | 28.01.2017          |



### 7.4 AC conducted



FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

#### Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \( \mu V/m \))$ 

| No. | Lab /<br>Item | Equipment                                       | Туре         | Manufacturer              | Serial No.             | INV. No<br>Cetecom | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-------------------------------------------------|--------------|---------------------------|------------------------|--------------------|------------------------|------------------|---------------------|
| 1   | А             | Two-line V-Network<br>(LISN) 9 kHz to 30<br>MHz | ESH3-Z5      | R&S                       | 892475/017             | 300002209          | k                      | 17.06.2014       | 17.06.2016          |
| 2   | Α             | MXE EMI Receiver<br>20 Hz to 26,5 GHz           | N9038A       | Agilent Technologies      | MY51210197             | 300004405          | k                      | 04.02.2016       | 04.02.2017          |
| 3   | Α             | software                                        | SPS_PHE 1.4f | Spitzenberger &<br>Spiess | B5981;<br>5D1081;B5979 | 300000210          | ne                     | -/-              | -/-                 |



#### 8 Sequence of testing

### 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
  emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.



#### 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize
  the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



#### 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
  the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
  positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



#### 8.4 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### **Premeasurement**

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.



# 9 Measurement uncertainty

| Measurement uncertainty                                  |                                          |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Test case                                                | Uncertainty                              |  |  |  |  |  |
| Antenna gain                                             | ± 3 dB                                   |  |  |  |  |  |
| Carrier frequency separation                             | ± 21.5 kHz                               |  |  |  |  |  |
| Number of hopping channels                               | -/-                                      |  |  |  |  |  |
| Time of occupancy                                        | According BT Core specification          |  |  |  |  |  |
| Spectrum bandwidth                                       | ± 21.5 kHz absolute; ± 15.0 kHz relative |  |  |  |  |  |
| Maximum output power                                     | ± 1 dB                                   |  |  |  |  |  |
| Detailed conducted spurious emissions @ the band edge    | ± 1 dB                                   |  |  |  |  |  |
| Band edge compliance radiated                            | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions conducted                             | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated below 30 MHz                 | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated 30 MHz to 1 GHz              | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated 1 GHz to 12.75 GHz           | ± 3.7 dB                                 |  |  |  |  |  |
| Spurious emissions radiated above 12.75 GHz              | ± 4.5 dB                                 |  |  |  |  |  |
| Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB                                 |  |  |  |  |  |



# 10 Summary of measurement results

| No deviations from the technical specifications were ascertained                                                       |
|------------------------------------------------------------------------------------------------------------------------|
| There were deviations from the technical specifications ascertained                                                    |
| This test report is only a partial test report.  The content and verdict of the performed test cases are listed below. |

| TC Identifier | Description        | Verdict              | Date       | Remark               |
|---------------|--------------------|----------------------|------------|----------------------|
| DE Tooting    | CFR Part 15        | Coo toblol           | 2016-04-29 | Delta test according |
| RF-Testing    | RSS - 247, Issue 1 | See table!   2016-04 | 2010-04-29 | customer demand!     |

| L                                                     |                                                                  | 217,1000               |                       | J                            |             |    |    |             |        |
|-------------------------------------------------------|------------------------------------------------------------------|------------------------|-----------------------|------------------------------|-------------|----|----|-------------|--------|
| Test specification clause                             | Test case                                                        | Temperature conditions | Power source voltages | Mode                         | С           | NC | NA | NP          | Remark |
| §15.247(b)(4)<br>RSS - 247 / 5.4 (2)                  | Antenna gain                                                     | Nominal                | Nominal               | GFSK                         |             |    |    | ×           | *      |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (2)                  | Carrier frequency separation                                     | Nominal                | Nominal               | GFSK                         |             |    |    | X           | *      |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (4)                  | Number of hopping channels                                       | Nominal                | Nominal               | GFSK                         |             |    |    | X           | *      |
| §15.247(a)(1) (iii)<br>RSS - 247 / 5.1 (4)            | Time of occupancy (dwell time)                                   | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK |             |    |    | ×           | *      |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (1)                  | Spectrum<br>bandwidth of a<br>FHSS system<br>bandwidth           | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK |             |    |    | ⊠<br>⊠<br>⊠ | *      |
| §15.247(b)(1)<br>RSS - 247 / 5.4 (2)                  | Maximum output power                                             | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK |             |    |    | ⊠<br>⊠<br>⊠ | *      |
| §15.247(d)<br>RSS - 247 / 5.5                         | Detailed spurious<br>emissions @ the<br>band edge -<br>conducted | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK |             |    |    | ⊠<br>⊠<br>⊠ | *      |
| §15.205<br>RSS - 247 /<br>5.5 RSS - Gen               | Band edge<br>compliance<br>radiated                              | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK | X<br>X<br>X |    |    |             | -/-    |
| §15.247(d)<br>RSS - 247 / 5.5                         | Spurious<br>emissions<br>conducted                               | Nominal                | Nominal               | GFSK<br>Pi/4 DQPSK<br>8 DPSK |             |    |    | ×<br>×<br>× | *      |
| §15.209(a)<br>RSS - Gen                               | Spurious<br>emissions<br>radiated<br>below 30 MHz                | Nominal                | Nominal               | GFSK                         | ×           |    |    |             | -/-    |
| §15.247(d)<br>RSS - 247 / 5.5<br>§15.109<br>RSS - Gen | Spurious<br>emissions<br>radiated<br>30 MHz to 1 GHz             | Nominal                | Nominal               | GFSK<br>RX mode              | ×           |    |    |             | -/-    |
| §15.247(d)<br>RSS - 247 / 5.5<br>§15.109<br>RSS - Gen | Spurious<br>emissions<br>radiated<br>above 1 GHz                 | Nominal                | Nominal               | GFSK<br>RX mode              | $\boxtimes$ |    |    |             | -/-    |
| §15.107(a)<br>§15.207                                 | Conducted<br>emissions<br>below 30 MHz<br>(AC conducted)         | Nominal                | Nominal               | GFSK<br>RX mode              | ×           |    |    |             | -/-    |

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

<sup>\*</sup> See main report 1-1294/16-01-02



### 11 Additional comments

The Bluetooth $^{\odot}$  word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

| Reference documents:                   | Customer Questionnaire _CETECOM_ISMP4                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                        | Main re                                                                                                                                    | port: CETECOM ICT report 1-1294/16-01-02                                                                                                                                                                                                                                                                                                          |  |  |  |
| Special test descriptions:             | None                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Configuration descriptions:            | TX tests: were performed with x-DH5 packets and static PRBS pattern payload. RX/Standby tests: BT test mode enabled, scan enabled, TX Idle |                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test mode:                             | $\boxtimes$                                                                                                                                | Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)                                                                                                                                                                                                                                                                            |  |  |  |
|                                        |                                                                                                                                            | Special software is used. EUT is transmitting pseudo random data by itself                                                                                                                                                                                                                                                                        |  |  |  |
| Antennas and transmit operating modes: |                                                                                                                                            | Operating mode 1 (single antenna)     Equipment with 1 antenna,     Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,     Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)         |  |  |  |
|                                        |                                                                                                                                            | Operating mode 2 (multiple antennas, no beamforming)  - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.                                                                                                                                        |  |  |  |
|                                        |                                                                                                                                            | Operating mode 3 (multiple antennas, with beamforming)  - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.  In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements. |  |  |  |



#### 12 Measurement results

### 12.1 Band edge compliance radiated

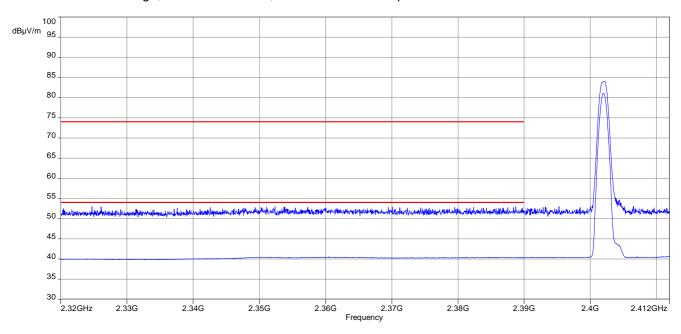
#### **Description:**

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

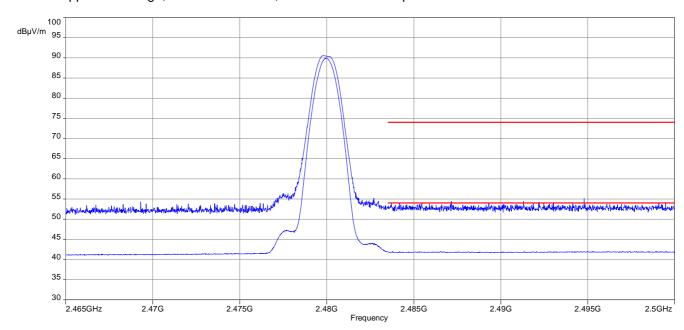
| Measurement parameters  |                                                            |  |  |  |
|-------------------------|------------------------------------------------------------|--|--|--|
| Detector                | Peak / RMS                                                 |  |  |  |
| Sweep time              | Auto                                                       |  |  |  |
| Resolution bandwidth    | 1 MHz                                                      |  |  |  |
| Video bandwidth         | 3 MHz                                                      |  |  |  |
| Span                    | Lower Band: 2370 – 2400 MHz<br>Upper Band: 2480 – 2500 MHz |  |  |  |
| Trace mode              | Max hold                                                   |  |  |  |
| Test setup              | See sub clause 7.2 – B                                     |  |  |  |
| Measurement uncertainty | See sub clause 9                                           |  |  |  |

#### Limits:

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Band edge com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | apliance radiated |  |  |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)). |                   |  |  |  |  |
| 54 dBμV/m AVG<br>74 dBμV/m Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |  |  |  |

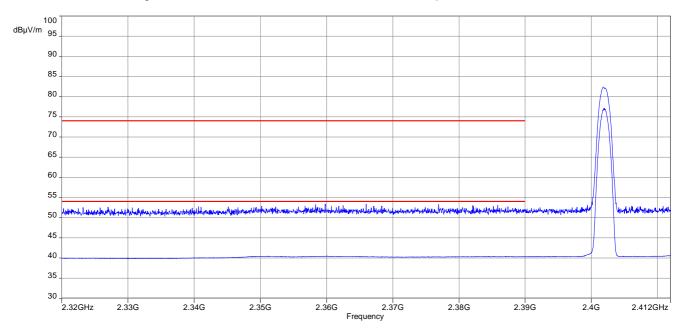

### Results:

| Scenario              | Band edge          | e compliance radiated | I [dBµV/m]         |
|-----------------------|--------------------|-----------------------|--------------------|
| Modulation            | GFSK               | Pi/4 DQPSK            | 8DPSK              |
| Lower restricted band | < 54 AVG / < 74 PP | < 54 AVG / < 74 PP    | < 54 AVG / < 74 PP |
| Upper restricted band | < 54 AVG / < 74 PP | < 54 AVG / < 74 PP    | < 54 AVG / < 74 PP |

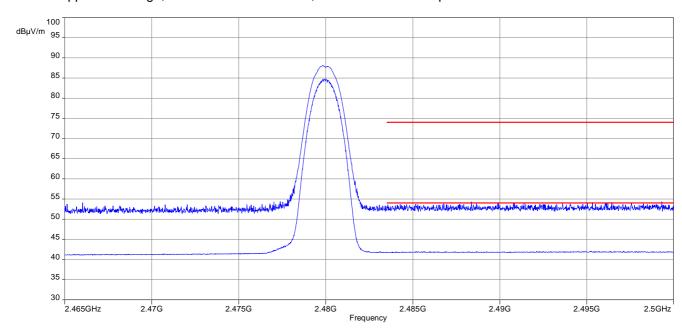



#### Plots:

Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization

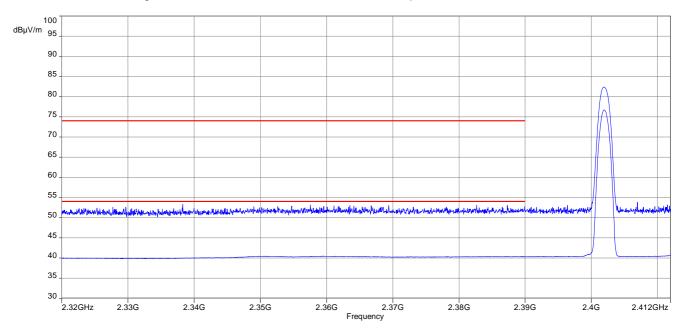



Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization

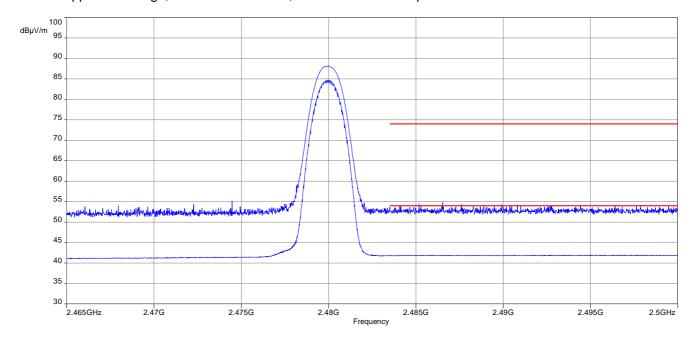





Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization




Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization






Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization



Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization





### 12.2 Spurious emissions radiated below 30 MHz

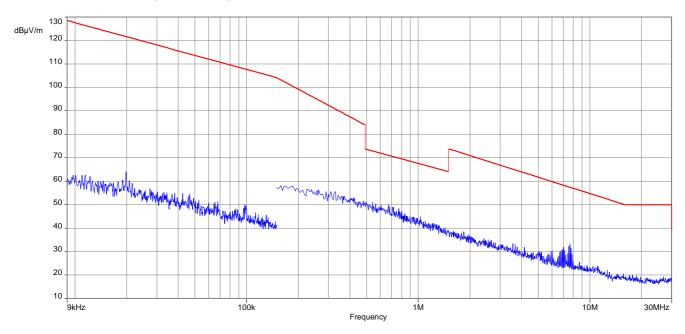
### **Description:**

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

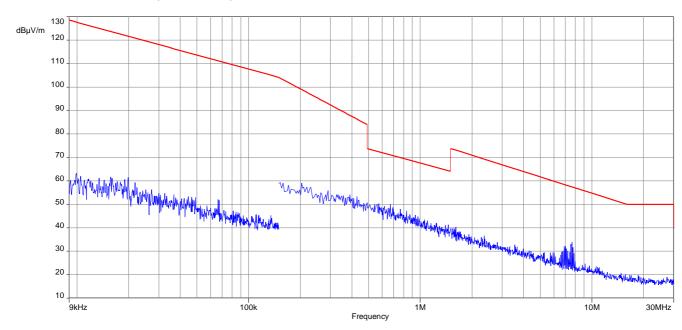
| Measurement parameters  |                                            |  |  |  |  |
|-------------------------|--------------------------------------------|--|--|--|--|
| Detector                | Peak / Quasi peak                          |  |  |  |  |
| Sweep time              | Auto                                       |  |  |  |  |
| Resolution bandwidth    | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |  |  |  |  |
| Video bandwidth         | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |  |  |  |  |
| Span                    | 9 kHz to 30 MHz                            |  |  |  |  |
| Trace mode              | Max hold                                   |  |  |  |  |
| Test setup              | See sub clause 7.2 – C                     |  |  |  |  |
| Measurement uncertainty | See sub clause 9                           |  |  |  |  |

### **Limits:**

| FCC                                         |                         | IC |          |               |  |
|---------------------------------------------|-------------------------|----|----------|---------------|--|
| TX spurious emissions radiated below 30 MHz |                         |    |          |               |  |
| Frequency (MHz)                             | Field strength (dBµV/m) |    | Measuren | nent distance |  |
| 0.009 – 0.490                               | 2400/F(kHz)             |    | ;        | 300           |  |
| 0.490 – 1.705                               | 24000/F(kHz)            |    |          | 30            |  |
| 1.705 – 30.0                                | 30                      |    |          | 30            |  |

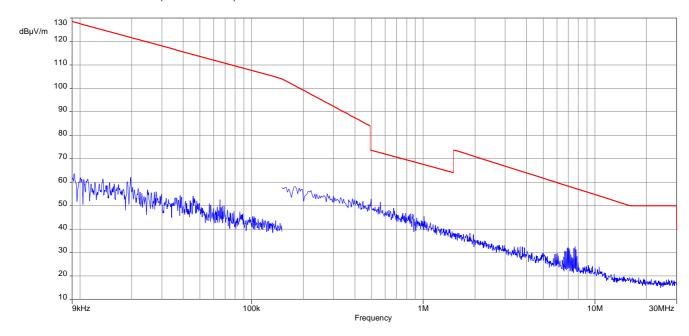

### Results:

| TX spurious emissions radiated below 30 MHz [dBμV/m]        |  |  |  |  |  |  |  |
|-------------------------------------------------------------|--|--|--|--|--|--|--|
| F [MHz] Detector Level [dBμV/m]                             |  |  |  |  |  |  |  |
| All detected emissions are more than 20 dB below the limit. |  |  |  |  |  |  |  |
|                                                             |  |  |  |  |  |  |  |
|                                                             |  |  |  |  |  |  |  |




### Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode




Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode





Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode





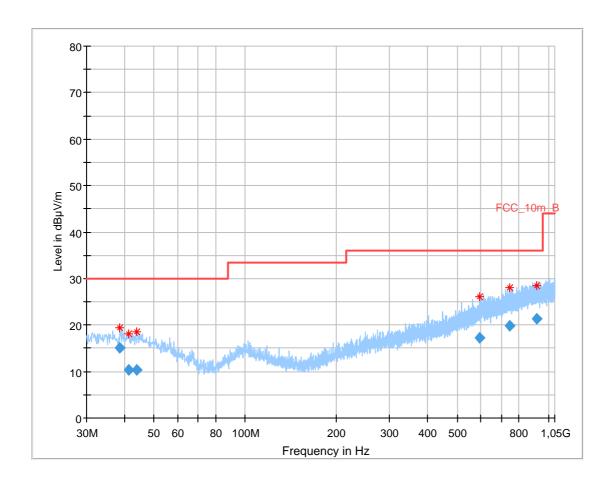
### 12.3 Spurious emissions radiated 30 MHz to 1 GHz

### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

| Measurement parameters  |                             |  |  |  |  |
|-------------------------|-----------------------------|--|--|--|--|
| Detector                | Peak / Quasi Peak           |  |  |  |  |
| Sweep time              | Auto                        |  |  |  |  |
| Resolution bandwidth    | 3 x VBW                     |  |  |  |  |
| Video bandwidth         | 120 kHz                     |  |  |  |  |
| Span                    | 30 MHz to 1 GHz             |  |  |  |  |
| Trace mode              | Max hold                    |  |  |  |  |
| Measured modulation     | ☑ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK |  |  |  |  |
| Test setup              | See sub clause 7.1 – A      |  |  |  |  |
| Measurement uncertainty | See sub clause 9            |  |  |  |  |

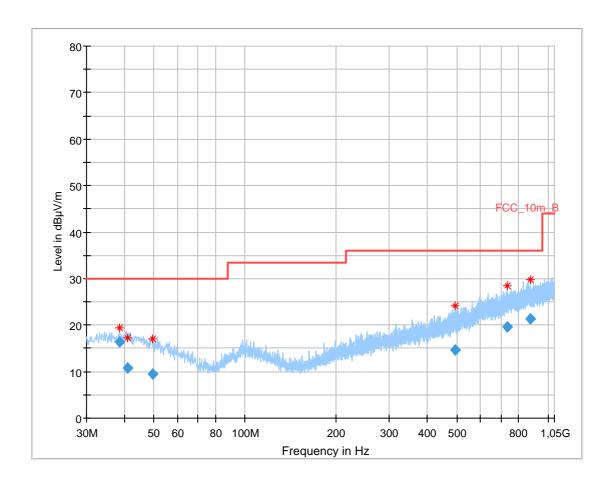
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.


#### **Limits:**

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             | IC                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------------|--|--|--|
| TX spurious emissions radiated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |                      |  |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |              |             |                      |  |  |  |
| §15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |             |                      |  |  |  |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field streng | th (dBµV/m) | Measurement distance |  |  |  |
| 30 - 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30           | 0.0         | 10                   |  |  |  |
| 88 – 216 33.5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |                      |  |  |  |
| 216 – 960 36.0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |                      |  |  |  |
| Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54           | .0          | 3                    |  |  |  |



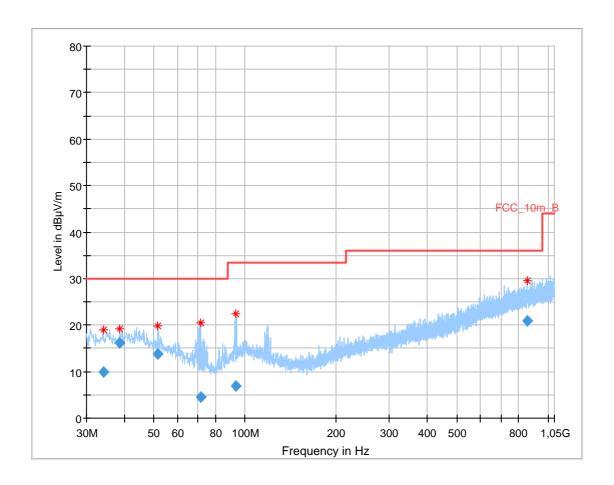
**Plots:** Transmit mode


Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|---------------|
| 38.682600          | 15.06                 | 30.00             | 14.94          | 1000.0                | 120.000            | 170.0          | ٧   | 80.0          | 14.0          |
| 41.335650          | 10.44                 | 30.00             | 19.56          | 1000.0                | 120.000            | 170.0          | Н   | 81.0          | 14.0          |
| 43.975350          | 10.37                 | 30.00             | 19.63          | 1000.0                | 120.000            | 100.0          | ٧   | 260.0         | 13.9          |
| 593.120100         | 17.31                 | 36.00             | 18.69          | 1000.0                | 120.000            | 170.0          | ٧   | 80.0          | 20.5          |
| 746.563200         | 19.84                 | 36.00             | 16.16          | 1000.0                | 120.000            | 98.0           | Н   | -10.0         | 22.6          |
| 913.968150         | 21.30                 | 36.00             | 14.70          | 1000.0                | 120.000            | 170.0          | ٧   | 10.0          | 24.2          |



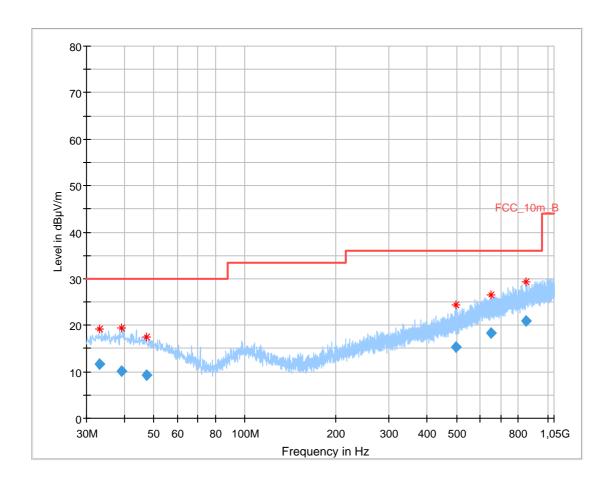

Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|---------------|
| 38.709750          | 16.31                 | 30.00             | 13.69          | 1000.0                | 120.000            | 98.0           | ٧   | 261.0         | 14.0          |
| 41.107050          | 10.76                 | 30.00             | 19.24          | 1000.0                | 120.000            | 170.0          | ٧   | 10.0          | 14.0          |
| 49.596300          | 9.42                  | 30.00             | 20.58          | 1000.0                | 120.000            | 98.0           | ٧   | 280.0         | 12.7          |
| 493.545150         | 14.68                 | 36.00             | 21.32          | 1000.0                | 120.000            | 98.0           | ٧   | 280.0         | 18.6          |
| 734.256450         | 19.59                 | 36.00             | 16.41          | 1000.0                | 120.000            | 170.0          | ٧   | -9.0          | 22.3          |
| 874.343250         | 21.24                 | 36.00             | 14.76          | 1000.0                | 120.000            | 170.0          | ٧   | 170.0         | 23.8          |



Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization




| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|---------------|
| 34.104450          | 10.01                 | 30.00             | 19.99          | 1000.0                | 120.000            | 101.0          | Н   | 100.0         | 13.7          |
| 38.695200          | 16.17                 | 30.00             | 13.83          | 1000.0                | 120.000            | 98.0           | ٧   | 10.0          | 14.0          |
| 51.353250          | 13.86                 | 30.00             | 16.14          | 1000.0                | 120.000            | 98.0           | ٧   | 280.0         | 12.4          |
| 71.524800          | 4.48                  | 30.00             | 25.52          | 1000.0                | 120.000            | 170.0          | ٧   | 190.0         | 8.4           |
| 92.940600          | 6.84                  | 33.50             | 26.66          | 1000.0                | 120.000            | 101.0          | ٧   | 100.0         | 11.0          |
| 856.897650         | 20.86                 | 36.00             | 15.14          | 1000.0                | 120.000            | 170.0          | Н   | 190.0         | 23.5          |



**Plots:** Receiver mode

**Plot 1:** 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|---------------|
| 33.193350          | 11.66                 | 30.00             | 18.34          | 1000.0                | 120.000            | 101.0          | ٧   | 170.0         | 13.6          |
| 39.096450          | 10.19                 | 30.00             | 19.81          | 1000.0                | 120.000            | 101.0          | Н   | 190.0         | 14.0          |
| 47.345550          | 9.21                  | 30.00             | 20.79          | 1000.0                | 120.000            | 170.0          | ٧   | 81.0          | 13.3          |
| 499.220550         | 15.33                 | 36.00             | 20.67          | 1000.0                | 120.000            | 101.0          | Н   | -10.0         | 18.7          |
| 651.163800         | 18.25                 | 36.00             | 17.75          | 1000.0                | 120.000            | 170.0          | Н   | 100.0         | 21.1          |
| 846.624600         | 20.81                 | 36.00             | 15.19          | 1000.0                | 120.000            | 170.0          | V   | 81.0          | 23.4          |



### 12.4 Spurious emissions radiated above 1 GHz

### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

| Measurement parameters  |                                                                                       |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Detector                | Peak / RMS                                                                            |  |  |  |  |  |
| Sweep time              | Auto                                                                                  |  |  |  |  |  |
| Resolution bandwidth    | 1 MHz                                                                                 |  |  |  |  |  |
| Video bandwidth         | 3 x RBW                                                                               |  |  |  |  |  |
| Span                    | 1 GHz to 26 GHz                                                                       |  |  |  |  |  |
| Trace mode              | Max hold                                                                              |  |  |  |  |  |
| Measured modulation     | ☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK                                                           |  |  |  |  |  |
| Test setup              | See sub clause 7.2 A (1 GHz - 12.75 GHz)<br>See sub clause 7.3 A (12.75 GHz - 26 GHz) |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9                                                                      |  |  |  |  |  |

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

#### Limits:

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FCC IC           |      |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|--|--|--|--|--|--|
| TX spurious emissions radiated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |      |  |  |  |  |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |                  |      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | §15              | .209 |  |  |  |  |  |  |
| Frequency (MHz) Field strength (dBµV/m) Measurement distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |      |  |  |  |  |  |  |
| Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Above 960 54.0 3 |      |  |  |  |  |  |  |



#### **Results:** Transmitter mode

|         | TX spurious emissions radiated [dBµV/m] |                   |         |             |          |                   |             |        |  |  |
|---------|-----------------------------------------|-------------------|---------|-------------|----------|-------------------|-------------|--------|--|--|
|         | 2402 MHz                                |                   |         | 2441 MHz    |          | 2480 MHz          |             |        |  |  |
| F [MHz] | Detector                                | Level<br>[dBµV/m] | F [MHz] | Detector    | Detector | Level<br>[dBµV/m] |             |        |  |  |
|         | Peak                                    | 58.37             |         | Peak        | 60.83    |                   | Peak        | 60.60  |  |  |
| 4804    | AVG                                     | 53.60*            | 4882    | AVG         | 57.28*   | 4960              | AVG         | 56.80* |  |  |
|         | Re-cal. AVG                             | 28.27             |         | Re-cal. AVG | 30.73    |                   | Re-cal. AVG | 30.50  |  |  |
| ,       | Peak                                    | -/-               | ,       | Peak        | -/-      | ,                 | Peak        | -/-    |  |  |
| -/-     | AVG                                     | -/-               | -/-     | AVG         | -/-      | -/-               | AVG         | -/-    |  |  |
| ,       | Peak                                    | -/-               | ,       | Peak        | -/-      | ,                 | Peak        | -/-    |  |  |
| -/-     | AVG                                     | -/-               | -/-     | AVG         | -/-      | -/-               | AVG         | -/-    |  |  |

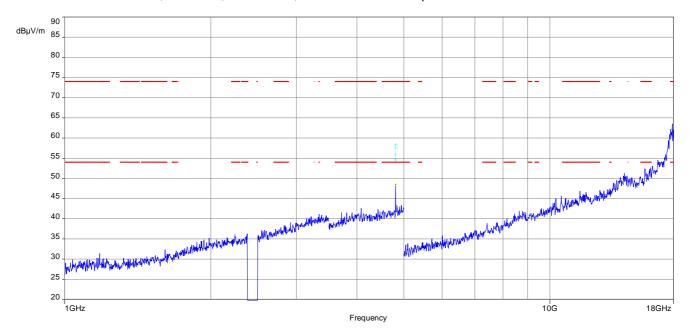
<sup>\*)</sup> For radiated spurious emission the limits of 15.209 apply for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

#### F = 20 \* log (dwell time / 100 ms)

The dwell time of the longest possible Bluetooth transmission (DH5-packet) is 3.125 ms.

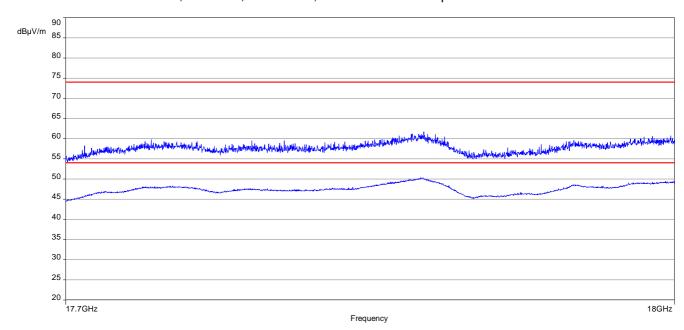
In a period of 100 ms, we have a maximum of 1 transmission and that implies a correction factor for spurious measurement emissions:

$$F = 20 * log (1 * 3.125 / 100) = -30.1 dB$$


#### **Results:** Receiver mode

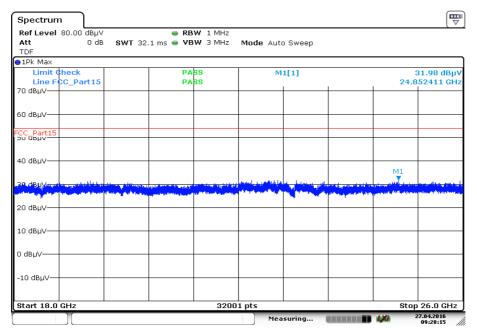
| RX spurious emissions radiated [dBµV/m] |                                        |            |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------|------------|--|--|--|--|--|--|
| F [MHz] Detector Level [dBµV/m]         |                                        |            |  |  |  |  |  |  |
| All detect                              | ed emissions are more than 20 dB below | the limit. |  |  |  |  |  |  |
| 1                                       | Peak                                   | -/-        |  |  |  |  |  |  |
| -/-                                     | AVG                                    | -/-        |  |  |  |  |  |  |




**Plots:** Transmitter mode

Plot 1: 1 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

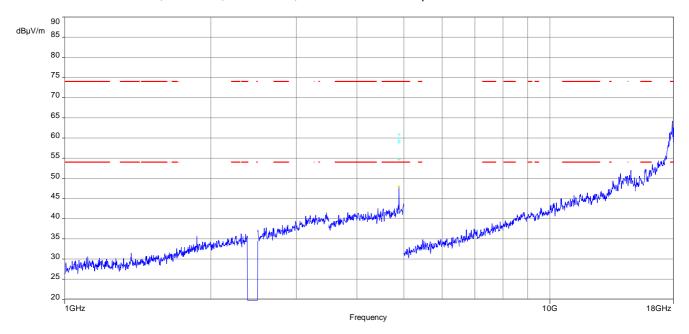



The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 17.7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

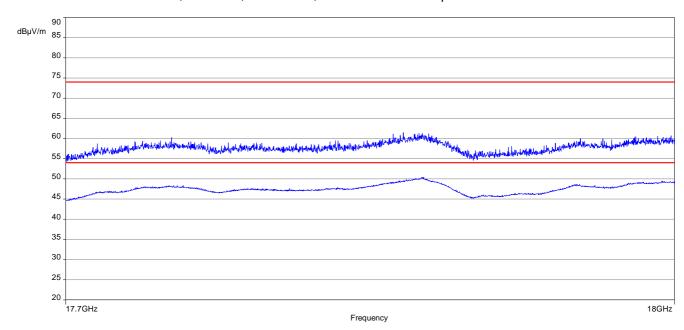





Plot 3: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

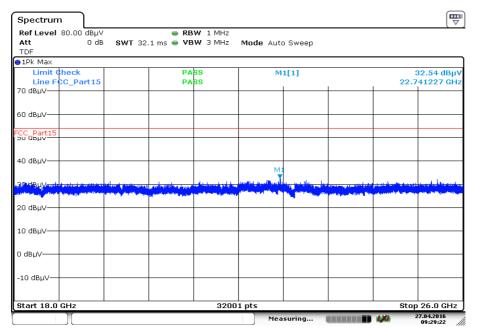


Date: 27.APR.2016 09:28:16




Plot 4: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

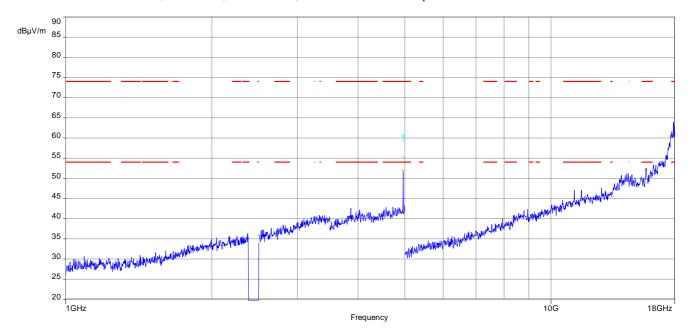



The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: 17.7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

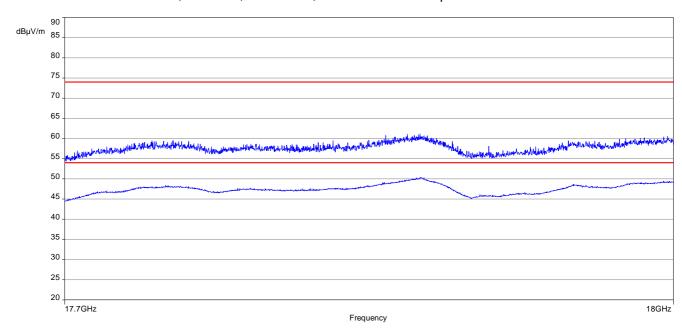





Plot 6: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

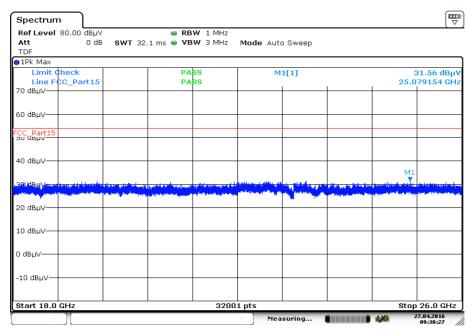


Date: 27.APR.2016 09:29:23




Plot 7: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization



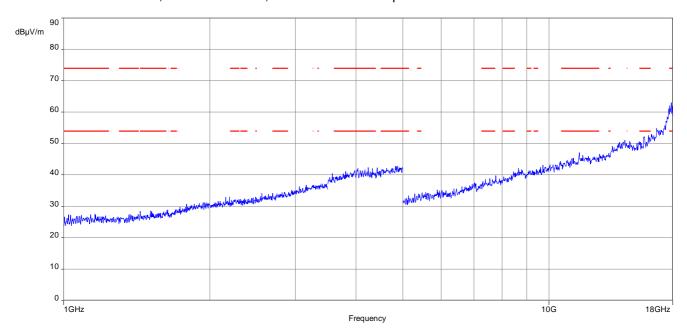

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: 17.7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

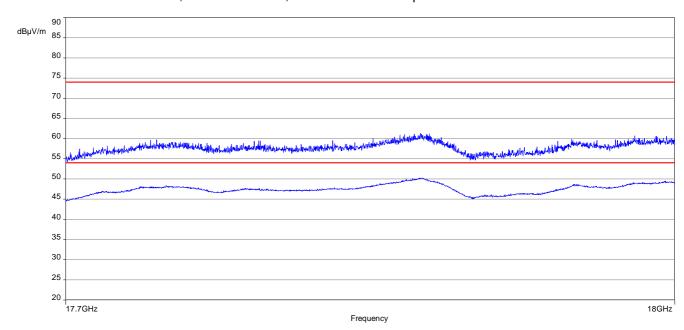




Plot 9: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

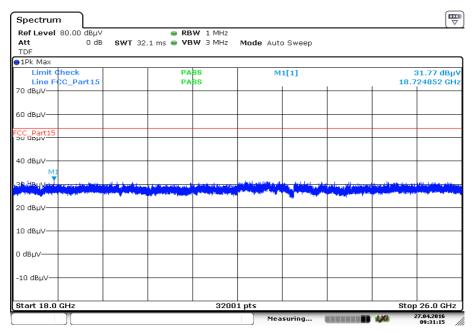



Date: 27.APR.2016 09:30:27




Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization




Plot 2: 17.7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization





Plot 3: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization



Date: 27.APR.2016 09:31:16



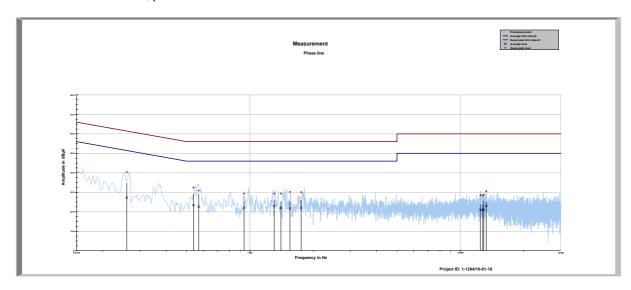
### 12.5 Spurious emissions conducted below 30 MHz (AC conducted)

#### **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

| Measurement parameters  |                                            |  |  |  |  |  |  |
|-------------------------|--------------------------------------------|--|--|--|--|--|--|
| Detector                | Peak - Quasi peak / average                |  |  |  |  |  |  |
| Sweep time              | Auto                                       |  |  |  |  |  |  |
| Resolution bandwidth    | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |  |  |  |  |  |  |
| Video bandwidth         | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |  |  |  |  |  |  |
| Span                    | 9 kHz to 30 MHz                            |  |  |  |  |  |  |
| Trace mode              | Max hold                                   |  |  |  |  |  |  |
| Test setup              | See sub clause 7.5. A                      |  |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9                           |  |  |  |  |  |  |

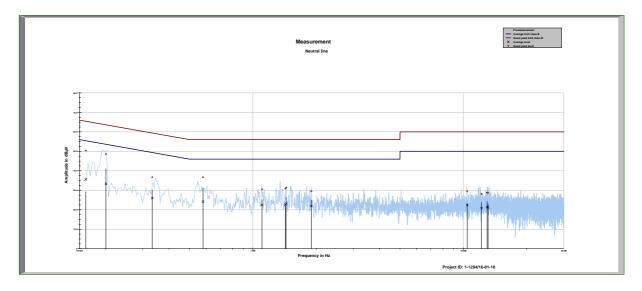
#### **Limits:**


| FCC                                      |            | IC         |                  |  |    |
|------------------------------------------|------------|------------|------------------|--|----|
| TX spurious emissions conducted < 30 MHz |            |            |                  |  |    |
| Frequency (MHz)                          | Quasi-peal | κ (dBμV/m) | Average (dBμV/m) |  |    |
| 0.15 – 0.5                               | 66 to      | 56*        | 56 to 46*        |  |    |
| 0.5 – 5                                  | 56         |            | 56               |  | 46 |
| 5 – 30.0                                 | 6          | 0          | 50               |  |    |

<sup>\*</sup>Decreases with the logarithm of the frequency



### Plots:


Plot 1: 150 kHz to 30 MHz, phase line



| Frequency | Quasi<br>peak<br>level | Margin<br>quasi peak | Limit QP | Average<br>level | Margin<br>average | Limit AV |
|-----------|------------------------|----------------------|----------|------------------|-------------------|----------|
| MHz       | dΒμV                   | dB                   | dΒμV     | dΒμV             | dB                | dΒμV     |
|           |                        |                      |          |                  |                   |          |
| 0.260139  | 40.29                  | 21.14                | 61.427   | 27.24            | 25.61             | 52.853   |
| 0.539562  | 32.44                  | 23.56                | 56.000   | 23.34            | 22.66             | 46.000   |
| 0.571243  | 30.90                  | 25.10                | 56.000   | 22.65            | 23.35             | 46.000   |
| 0.938635  | 29.33                  | 26.67                | 56.000   | 22.11            | 23.89             | 46.000   |
| 1.304487  | 29.26                  | 26.74                | 56.000   | 22.90            | 23.10             | 46.000   |
| 1.404742  | 29.32                  | 26.68                | 56.000   | 21.92            | 24.08             | 46.000   |
| 1.549647  | 30.17                  | 25.83                | 56.000   | 21.69            | 24.31             | 46.000   |
| 1.753193  | 30.05                  | 25.95                | 56.000   | 22.17            | 23.83             | 46.000   |
| 12.455619 | 28.55                  | 31.45                | 60.000   | 20.96            | 29.04             | 50.000   |
| 12.775069 | 28.42                  | 31.58                | 60.000   | 21.02            | 28.98             | 50.000   |
| 12.920435 | 28.70                  | 31.30                | 60.000   | 21.00            | 29.00             | 50.000   |
| 13.280606 | 30.60                  | 29.40                | 60.000   | 22.91            | 27.09             | 50.000   |



Plot 2: 150 kHz to 30 MHz, neutral line



| Frequency | Quasi peak<br>level | Margin<br>quasi peak | Limit QP | Average<br>level | Margin<br>average | Limit AV |
|-----------|---------------------|----------------------|----------|------------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV             | dB                | dΒμV     |
|           |                     |                      |          |                  |                   |          |
| 0.160793  | 50.34               | 15.08                | 65.423   | 35.58            | 20.12             | 55.692   |
| 0.200331  | 48.60               | 15.00                | 63.597   | 33.33            | 21.23             | 54.562   |
| 0.332562  | 36.67               | 22.72                | 59.387   | 25.99            | 24.80             | 50.784   |
| 0.579747  | 36.70               | 19.30                | 56.000   | 24.22            | 21.78             | 46.000   |
| 1.104565  | 30.47               | 25.53                | 56.000   | 22.45            | 23.55             | 46.000   |
| 1.426949  | 30.83               | 25.17                | 56.000   | 22.56            | 23.44             | 46.000   |
| 1.438824  | 31.39               | 24.61                | 56.000   | 23.17            | 22.83             | 46.000   |
| 1.895960  | 29.48               | 26.52                | 56.000   | 21.88            | 24.12             | 46.000   |
| 10.430714 | 29.44               | 30.56                | 60.000   | 22.39            | 27.61             | 50.000   |
| 12.200738 | 28.15               | 31.85                | 60.000   | 20.80            | 29.20             | 50.000   |
| 12.959519 | 28.85               | 31.15                | 60.000   | 21.33            | 28.67             | 50.000   |
| 13.108423 | 28.73               | 31.27                | 60.000   | 21.17            | 28.83             | 50.000   |



### 13 Observations

No observations except those reported with the single test cases have been made.

### Annex A Document history

| Version | Applied changes | Date of release |
|---------|-----------------|-----------------|
|         | Initial release | 2016-04-29      |

#### Annex B Further information

#### **Glossary**

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number



#### **Annex C Accreditation Certificate**

Front side of certificate

Back side of certificate



Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, II.AC und IAF zur gegenseitigen Anerkennung

# Akkreditierung



Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

**CETECOM ICT Services GmbH** Untertürkheimer Straße 6-10, 66117 Saarbrücken

dir Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Ourchaumren:

Drahtgebundene Kommunikation einschileßlich xDSL
volf und DECT
Akustik
Funk einschileßlich WLAN
Short Range Devices (SRO)
RFID
WilMax und Richtfunk
Mobiltunk (GSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschileßlich Automotive
Produktsichen Bid Compatibility (MAC)
Unweltsmulation

Die Akkreditierungsurkunde gijt nur in Verbindung mit dem Bescheld von 07.03.2014 mit der Akkreditierungsnummer D-Pt-12076-01 und ist g3/ltig 17.01.2018. Sie besteht aus diesem Deckblart, der Rückseite des Deckblart, sund der fulgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Die auszugsweise Veröffentlichung der Akkreditierungsufunde bedanf der verherigen schriftlichen Zuschmnung der Deutsche Akkreditierungsstelle GmbH (DANKS). Ausgunstenen devon ist ülle separate Weitervereitung des Deckle attes durch die umzeitig genomme Konformillishowertungsstelle in unweiß deter Formatierungsstelle in unweiß deter Formatierungsstelle in

Die Akkreditierung erfolgte gemäß des Geschres über die Akkreditierungsstelle (Akkstellac) vom 31. Juli 2008 (BGRI. 15, 2005) zweise der Veronfrung (FG) Ar. 765/2008 des Europäischen Parlaments und des Ratts vom 9. Juli 2008 (Born die Verschriftlin feit de Akkoel Hierung und Markfehrevschurg im Zusammenhang mit der Vermanklung von Produkten (Abl. L. 18 von 9. Juli 2008, S. 90). Die DAAKS ist Unterzeichberind der Walliktoteilen Akkommen zur gegenes tigen Anselte nung der European en operation fin Azzerdistation (Ed.), des Harmatienal Accreditation Forzin (IAV) and der Intermolinal Jahansterie Azzerdistation (Ed.), des Harmatienal Accreditation (Ed.) und der Intermolinal Jahansterie Azzerdistation (Ed.).

Der aktue le Stand der Wilgliedschaft kann folgenden Webseiten entnommen werden: FAL: www.mropean.accrad tation.org IACC: www.ibcump IAC: www.ibcump

#### Note:

The current certificate including annex may be received from CETECOM ICT Services GmbH on request.