

Page 1 of 4

Tissue Parameters

Recipe for liquids above 1GHz:

Water 52-75% DGBE 25-48% Salt <1.0%

SAR measurements were made within 24 hours of the measurement of liquid parameters. **2450MHz Body Liquid:**

Date	Freq.	Rel.	Condy		
	(MHz)	Perm.	(S/m)		
2012-01-23	2412	52.38	1.855		
	2437	52.15	1.936		
	2450	51.94	1.963		
	2462	51.7	1.99		

Appendix C

Page 2 of 4

Antenna Locations

Distance between the ISMP Antennas and the Ipod Touch 4th.

Distance between the RFID antenna and the Ipod Wifi-BT Antenna:

Dz = 28 mm

Distance between the ISMP BT printed Antenna and the Ipod Wifi-BT Antenna:

Dx = 15 mm Dy = 15 mm Dz = 18 mm

Page 3 of 4

Test Equipment

SAR3 Lab

Instrument	Supplier /	Model	Serial No.	Calibration	Calibration
description	Manufacturer			(date)	Due (date)
Robot	Staubli	TX90	F11/5G2MA 1/C/01	N/A	N/A
SAM Twin Phantom	Speag	SM 000 T01 DA	1637	N/A	N/A
SAM Twin Phantom	Speag	SM 000 T01 DA	1638	N/A	N/A
Eliptical Phantom	Speag	QD OVA 001 BB	1124	N/A	N/A
Software	Speag	Dasy52.8.0.692	N/A	N/A	N/A
Device Holder	Speag	SD 000H01	N/A	N/A	N/A
Data Acquisition Electronics	Speag	DAE4	1266	2011/05/30	2014/05/30
SAR Probe	Speag	ES3DV3	3261	2011/08/18	2012/08/18

Shared Equipment

Instrument	Supplier /	Model	Serial No.	Calibration	Calibration
description	Manufacturer			(date)	Due (date)
2450 MHz Body Tissue Simulant	Speag	MSL 2450	100907-2	2011-09-20	N/A
2450 MHz Dipole	Speag	D2450V2	859	2011-01-05	2013-01-05
Directional coupler	Werlatone	C6529	11249	N/A	N/A
RF Amplifier	Vectawave	VTL5400	N/A	N/A	N/A
Dielectric Measurement Kit	IndexSAR	Di-Line	N/A	N/A	N/A
Synthesized CW Generator	Agilent	8371213	US37101255	N/A	N/A
Power Meter	Agilent	E4419B	MY45101996	2011/07/29	2012/07/29
Power Sensor	Agilent	E9300A	MY41498484	2011/08/05	2012/08/05
Power Sensor	Agilent	E9300A	MY41498492	2011/08/05	2012/08/05

Appendix C

Page 4 of 4

Equipment Calibration/Performance Documents:

KDB 450824 states that the return-loss and impedance of dipoles should be measured at least annually to ensure dipoles meet specification. Section 1c) states the return loss should not deviate by more than 20% of the previuos measurement. Section 1d) states the real or imaginary parts of the impedance should not deviate by more than 5 Ω from the previous measurement.

Measurements were made with the dipole against the flat phantom, filled with body liquid for the respective frequency.

2450MHz Dipole was measured on January 25, 2012. The return-loss is -26.567 dB, -0.8% deviation from calibration measurement. The real part impedance is 45.045 Ω , 3.633 deviation from the calibration measurement. The imaginary part impedance is -0.25 Ω , 4.71 deviation from the calibration measurement. The 2450MHz Dipole is within tolerances stated by KDB 450824.

Attached: SAR Probe ES3DV3 Calibration Report 2450 MHz Dipole Calibration Report DAE Calibration Report

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: ES3-3261_Aug11

CALIBRATION CERTIFICATE

bject	ES3DV3 - SN:32	61	
alibration procedure(s)	QA CAL-01.v8, Q Calibration proce	A CAL-23.v4, QA CAL-25.v4 dure for dosimetric E-field probes	
alibration date:	August 18, 2011		
his calibration certificate docur	nents the traceability to natio	onal standards, which realize the physical units	of measurements (SI).
he measurements and the und Il calibrations have been cond alibration Equipment used (Ma	ucted in the closed laborator	y facility: environment temperature $(22 \pm 3)^{\circ}$ C a	and humidity < 70%.
he measurements and the und Il calibrations have been cond alibration Equipment used (M8 Primary Standards	ucted in the closed laborator	y facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
he measurements and the und Il calibrations have been condi alibration Equipment used (Ma Primary Standards Power meter E4419B	Artainties with confidence pr ucted in the closed laborator TE critical for calibration)	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	and humidity < 70%.
he measurements and the unc Il calibrations have been cond calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372)	Scheduled Calibration Apr-12 Apr-12
he measurements and the unc all calibrations have been cond alibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)	Scheduled Calibration Apr-12 Apr-12 Apr-12
he measurements and the und Il calibrations have been cond alibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
he measurements and the und Il calibrations have been cond alibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01372)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
he measurements and the und Il calibrations have been condi- calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01372)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
he measurements and the und all calibrations have been condi- calibration Equipment used (Ma Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12

 Secondary Standards
 ID
 Check Date (in house)
 Scheduled Check

 RF generator HP 8648C
 US3642U01700
 4-Aug-99 (in house check Oct-09)
 In house check: Oct-11

 Network Analyzer HP 8753E
 US37390585
 18-Oct-01 (in house check Oct-10)
 In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	lah
Approved by:	Katja Pokovic	Technical Manager	Lelles
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	Issued: August 18, 2011

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3261

Manufactured: Calibrated:

January 25, 2010 August 18, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3261

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.14	1.25	1.23	± 10.1 %
DCP (mV) ^B	102.1	100.3	99.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0,00	X	0.00	0.00	1.00	149.6	±3.0 %
			Y	0.00	0.00	1.00	148.2	
			Z	0.00	0.00	1.00	115.5	
10021	GSM-FDD (TDMA, GMSK)	9.20	X	7,83	83.6	22.6	117.9	±1.7 %
			Y	30.28	99.6	29.1	124.1	
			Z	29.84	99.6	29.5	142.3	
10039	CDMA2000 (1xRTT, RC1)	5.30	X	5.01	65.9	19.1	116.9	±1.2 %
			Y	5.41	66.2	19.0	121.3	
			Z	5.66	67.2	19.8	131.8	
10072	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	9.75	X	10.32	69.6	23.2	103.7	±4.6 %
			Y	12.61	72.8	24.4	124.8	
			Z	13.65	75.5	26.3	138.0	
10100	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	7.34	X	7.76	68.4	21.4	131.5	±2.7 %
			Y	8.00	68.7	21.3	133.6	
			Z	8.34	70.0	22.4	144.6	
10101	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	8.93	X	9.73	70.2	23.2	140.7	±3.5 %
			Y	10.02	70.3	23.0	144.9	
			Z	9.66	69.4	22.8	107.9	
10154	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	7.40	Х	7.27	67.5	21.0	125.3	±2.7 %
			Y	7.58	67.7	20.8	129.6	
			Z	7.90	68.9	21.9	139.9	
10155	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	8.10	X	8.39	68.8	22.0	132.2	±3.0 %
			Y	8.77	68.8	21.7	138.4	
			Z	9.10	70.0	22.8	149.7	
10175	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	6.50	X	5.29	66.0	19.9	109.4	±1.4 %
			Y	5.72	66.2	19.7	114.3	
			Z	6.00	67.2	20.5	124.5	
10176	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	7.20	X	6.32	68.9	22.0	149.5	±2.2 %
			Y	6.56	67.4	20.7	115.6	
			Z	6.89	68.5	21.5	126.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3261

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.37	6.37	6.37	1.00	1.00	± 12.0 %
835	41.5	0.90	6.16	6.16	6.16	1.00	1.00	± 12.0 %
900	41.5	0.97	6.05	6.05	6.05	1.00	1.00	± 12.0 %
1750	40.1	1.37	5.18	5.18	5.18	1.00	1.07	± 12.0 %
1900	40.0	1.40	5.02	5.02	5.02	0.93	1.10	± 12.0 %
1950	40.0	1.40	4.89	4.89	4.89	0.94	1.13	± 12.0 %
2450	39.2	1.80	4.40	4.40	4.40	0.77	1.26	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3- SN:3261

			~					
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.20	6.20	6.20	1.00	1.17	± 12.0 %
835	55.2	0.97	6.17	6.17	6.17	1.00	1.00	± 12.0 %
900	55.0	1.05	6.06	6.06	6.06	1.00	1.00	± 12.0 %
1750	53.4	1.49	4.80	4.80	4.80	1.00	1.17	± 12.0 %
1900	53.3	1.52	4.57	4.57	4.57	1.00	1.15	± 12.0 %
1950	53.3	1.52	4.71	4.71	4.71	1.00	1.16	± 12.0 %
2450	52.7	1.95	4.16	4.16	4.16	1.00	1.07	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3261

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: D2450V2-859 Jan11

CALIBRATION CERTIFICATE D2450V2 - SN: 859 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: January 05, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards 1D # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A 06-Oct-10 (No. 217-01266) GB37480704 Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205 Apr10) Apr-11 SN: 601 DAE4 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 5, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna. connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.74 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	-	(新新新報報)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 mW / g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 mW / g
SAR normalized	normalized to 1W	25.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 mW / g
SAR normalized	normalized to 1W	50.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 \mbox{cm}^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.84 mW / g
SAR normalized	normalized to 1W	23.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7 Ω + 3.3 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 4.5 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

1	
Electrical Delay (one direction)	1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 23, 2010	

DASY5 Validation Report for Head TSL

Date/Time: 04.01.2011 14:51:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:859

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.75 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.5 V/m; Power Drift = 0.042 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.32 mW/g Maximum value of SAR (measured) = 17.4 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 05.01.2011 13:26:59

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:859

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = 0.00316 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.84 mW/g

Maximum value of SAR (measured) = 16.7 mW/g

 $0 \, dB = 16.7 \, mW/g$

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: DAE4-1266_May11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D	04 BJ - SN: 1266		
Calibration procedure(s)	QA CAL-06.v23 Calibration procee	ure for the data acquisition elec	ctronics (DAE)	
Calibration date:	May 30, 2011			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
-	Luman			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Renney Mulameter Type 2001	1014.0010270	20-36p-10 (No.10570)	56p-11	
Secondary Standards	ID #	Check Date (in house)	Scheduled Check	
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11	
	Nome	Eurotion	Dispeture	
Calibrated by:	Eric Hainfeld	Technician		
Approved by:	Fin Bomholt	R&D Director	V. Rollino	
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laborator	Issued: May 30, 2011 y.	

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	Х	Y	Z
High Range	405.093 ± 0.1% (k=2)	404.409 ± 0.1% (k=2)	405.122 ± 0.1% (k=2)
Low Range	3.97923 ± 0.7% (k=2)	3.95895 ± 0.7% (k=2)	3.97746 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	58.0 ° ± 1 °
---	--------------

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199993.7	0.13	0.00
Channel X + Input	20000.50	1.10	0.01
Channel X - Input	-19998.04	1.16	-0.01
Channel Y + Input	199990.8	-2.25	-0.00
Channel Y + Input	19995.32	-4.08	-0.02
Channel Y - Input	-20002.10	-2.90	0.01
Channel Z + Input	199990.4	-1.77	-0.00
Channel Z + Input	19999.48	-0.52	-0.00
Channel Z - Input	-20000.00	-0.60	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.8	-0.19	-0.01
Channel X + Input	200.00	-0.10	-0.05
Channel X - Input	-199.96	-0.06	0.03
Channel Y + Input	2001.1	1.12	0.06
Channel Y + Input	199.45	-0.55	-0.27
Channel Y - Input	-201.26	-1.16	0.58
Channel Z + Input	2000.6	0.61	0.03
Channel Z + Input	197.91	-1.79	-0.90
Channel Z - Input	-201.52	-1.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	22.98	21.62
	- 200	-20.17	-22.17
Channel Y	200	10.57	10.64
	- 200	-12.17	-12.45
Channel Z	200	-10.40	-10.53
_	- 200	8.99	8.75

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	13.	3.84	1.47
Channel Y	200	2.54	+	4.82
Channel Z	200	1.34	-0.31	-

Certificate No: DAE4-1266_May11

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15753	16522
Channel Y	15747	15764
Channel Z	16201	15331

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M \Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.44	-1.02	2.07	0.66
Channel Y	-0.15	-1.87	1.83	0.57
Channel Z	-0.85	-3.43	0.33	0.62

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9