

FCC PART 15C TEST REPORT

For

INGENICO

9 Avenue de la gare - Rovaltain TGV BP25156 26958 Valence Cedex 9, France

FCC ID: XKB-EX6CL4GWBT

Report Type: Product Type:

Original Report Smart POS Terminal

Report Number: XMDN210630-26286E-00A

Report Date: 2021-08-04

Rocky Xiao RF Engineer

Reviewed By:

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan,

Test Laboratory:

Guangdong, China Tel: +86-769-8685888 Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	_
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
FCC §15.203- ANTENNA REQUIREMENT	7
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	
FCC §15.207 (A)– AC LINE CONDUCTED EMISSIONS	8
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup.	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	10
FCC§15.225, §15.205 & §15.209- RADIATED EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC§15.225(E) - FREQUENCY STABILITY	20
APPLICABLE STANDARD	
TEST PROCEDURE	20
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.215(C)- 20 DB BANDWIDTH	22
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	23

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

	EUT Name:	Smart POS Terminal
EUT Model:		AXIUM EX6000
Operation Frequency:		13.56 MHz
M	odulation Type:	ASK
Rate	d Input Voltage:	DC 3.85Vdc from Battery or DC 5V from Adapter
A.1. (114	Model:	SW-0983
Adapter#1 Information:	Input:	100-240Vac 50/60Hz 0.5A
inioimation.	Output:	5.0Vdc 2.0A
	Model:	A8-0502000U-US3
Adapter#2 Information:	Input:	100-240Vac 50/60Hz 0.35A
inioi mation.	Output:	5.0Vdc 2.0A
Serial Number:		XMDN210630-26286E-RF-S1
EUT Received Date:		2021.06.30
EUT Received Status:		Good

Report No.: XMDN210630-26286E-00A

Note: this model have two configuration: with Scanner Reader or without Scanner Reader, the different of the two configuration please refer to Declaration Letter which was provided by manufacturer.

Per pre-test of FCC Part 15B test, the adapter#1+With Scanner Reader was the worst, and was performed the test items in this report.

Objective

This type approval report is prepared on behalf of *INGENICO* in accordance with Part 2, Subpart J, and Part 15, Subparts A and C of the Federal Communications Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules, sec 15.203, 15.205, 15.207, 15.209 and 15.225.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Page 3 of 23

Measurement Uncertainty

Parameter	Measurement Uncertainty		
Occupied Channel Bandwidth	±5 %		
	9kHz~30MHz: 4.12dB,		
radiated Emissions	30M~200MHz: 4.55 dB,		
	200M~1GHz: 5.92 dB		
Temperature	±1 °C		
Humidity	±5%		
DC and low frequency voltages	±0.4%		
Duty Cycle	1%		
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)		

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the U.S. Government.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★".

SYSTEM TEST CONFIGURATION

Justification

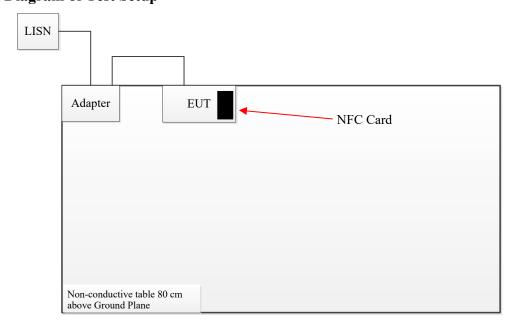
The system was configured for testing in a test mode.

EUT Exercise Software

No software used in test.

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
LANDI	NFC Card	EINOLDA	/

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	No	No	1.2	Adapter	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC§15.203	Antenna Requirement	Compliance
FCC§15.207 (a)	Conducted Emissions	Compliance
§15.225 §15.209 §15.205	Radiated Emission Test	Compliance
§15.225(e)	Frequency Stability	Compliance
§15.215(c)	20 dB Bandwidth	Compliance

FCC §15.203-ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

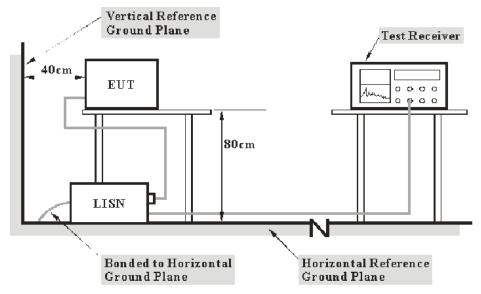
Report No.: XMDN210630-26286E-00A

Antenna Connected Construction

The EUT has one Loop antenna arrangement for NFC, fulfill the requirement of this section.

Antenna	Antenna Type	input impedance (Ohm)	Antenna Gain /Frequency Range
NFC	FPC	50	0 dBi/13.56MHz

Result: Compliance.


Page 7 of 23

FCC §15.207 (a)—AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a).

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Equipment List and Details

Manufacturer	Manufacturer Description Model Serial N		Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2021-07-06	2022-07-05
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A

Report No.: XMDN210630-26286E-00A

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

According FCC publication number 174176, for a device with a permanent antenna operating at or below 30 MHz, the measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) perform the AC line conducted tests with the permanent antenna to determine compliance with the Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the Section 15.207 limits within the transmitter's fundamental emission band.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

V_C: corrected voltage amplitude V_R: reading voltage amplitude

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: XMDN210630-26286E-00A

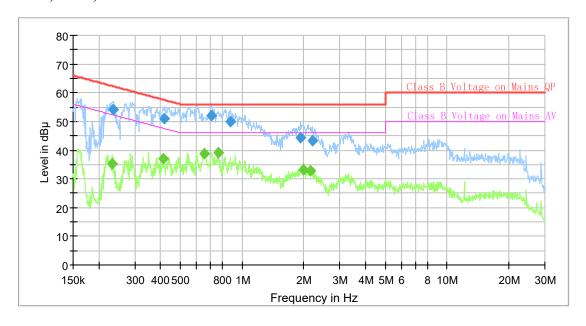
A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

 $Margin = Limit - Corrected\ Amplitude$

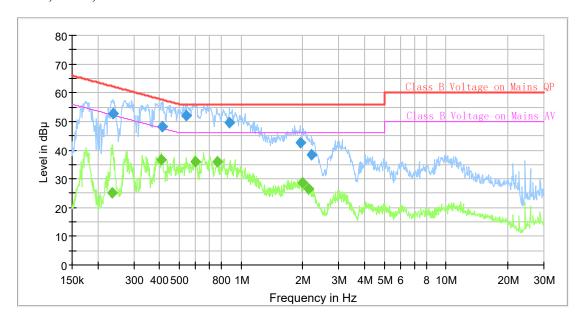
Test Data


Environmental Conditions

Temperature:	27.3℃	
Relative Humidity:	54%	
ATM Pressure:	100.1kPa	
Tester:	Walker Chen	
Test Date:	2021-07-17	

Test Mode: Transmitting

Report No.: XMDN210630-26286E-00A


AC120 V, 60 Hz, Line:

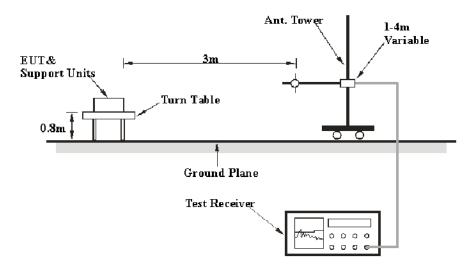
Final_Result

Corr. (dB)
9.6
9.6
9.6
9.6
9.6
9.7
9.7
9.7
9.7
9.7
9.7
9.7

AC120 V, 60 Hz, Neutral:

Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB µ V)	(dB)	(kHz)		(dB)
0.236158		25.02	52.23	27.21	9.000	N	9.6
0.237339	52.92		62.19	9.27	9.000	N	9.6
0.406728		36.59	47.71	11.12	9.000	N	9.6
0.410805	48.22		57.63	9.41	9.000	N	9.6
0.543169	52.07		56.00	3.93	9.000	N	9.6
0.600145		35.88	46.00	10.12	9.000	N	9.6
0.766291		35.93	46.00	10.07	9.000	N	9.6
0.876753	49.50		56.00	6.50	9.000	N	9.6
1.947363	42.45		56.00	13.55	9.000	N	9.6
1.986604		28.59	46.00	17.41	9.000	N	9.6
2.130277		26.39	46.00	19.61	9.000	N	9.6
2.205965	38.42		56.00	17.58	9.000	N	9.6


FCC§15.225, §15.205 & §15.209- RADIATED EMISSIONS

Applicable Standard

As per FCC Part 15.225

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

EUT Setup

The radiated emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.10-2013.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 9 kHz to 1 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
9 kHz – 150 kHz	200 Hz	1 kHz	QP
150 kHz – 30 MHz	9 kHz	30 kHz	QP
30 MHz – 1000 MHz	120 kHz	300 kHz	QP

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP measurement

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

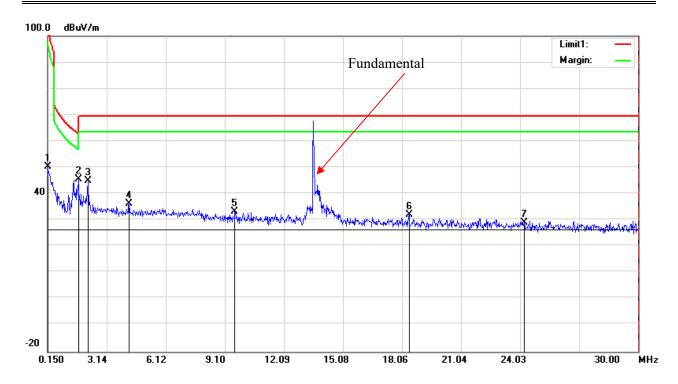
Margin = Limit - Corr. Ampl.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
TESEQ	Passive Loop	HLA6120	33561	2021-02-03	2022-02-02
Sunol Sciences	Antenna	JB3	A060611-2	2020-08-25	2023-08-25
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2020-09-24	2021-09-24
Sonoma	Amplifier	310N	185914	2020-10-13	2021-10-13
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

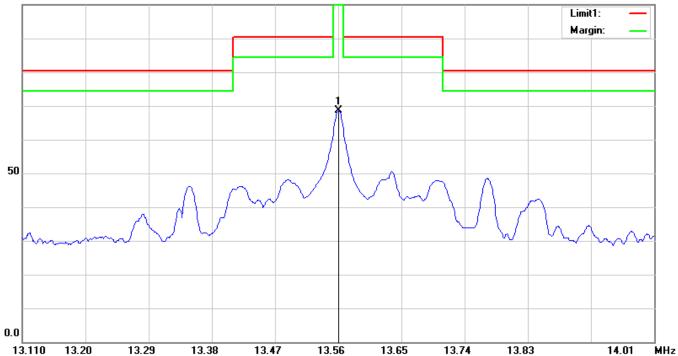
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data


Environmental Conditions

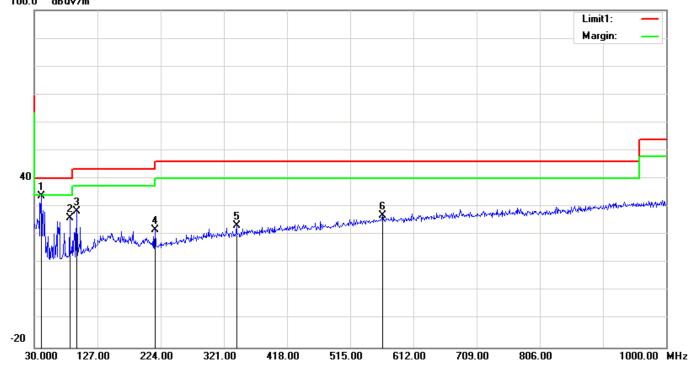
Temperature:	26.2°C
Relative Humidity:	52 %
ATM Pressure:	100.3 kPa
Tester:	Burt Hu
Test Date:	2021-07-21

Test mode: Transmitting

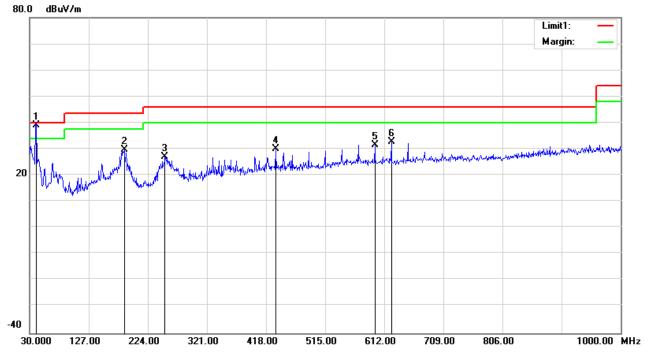

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
0.0118	38.98	peak	20.52	59.50	126.17	66.67
0.0376	39.21	peak	20.42	59.63	116.10	56.47
0.0442	40.17	peak	20.42	60.59	114.69	54.10
0.0653	36.50	peak	20.42	56.92	111.30	54.38
0.0798	35.97	peak	20.35	56.32	109.56	53.24
0.0966	30.35	peak	20.24	50.59	107.90	57.31

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
0.1500	30.16	peak	20.22	50.38	104.08	53.70
1.7022	25.43	peak	20.01	45.44	62.93	17.49
2.1798	24.96	peak	20.04	45.00	69.54	24.54
4.2693	16.25	peak	20.10	36.35	69.54	33.19
9.6125	12.80	peak	20.36	33.16	69.54	36.38
18.4182	11.58	peak	20.59	32.17	69.54	37.37

Fundamental:



Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
13.5610	48.07	peak	20.52	68.59	124.00	69.00


$30 MHz\hbox{-}1GHz$

Horizontal: 100.0 dBuV/m

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
40.6700	43.67	QP	-9.67	34.00	40.00	6.00
84.3200	41.34	peak	-15.40	25.94	40.00	14.06
94.9900	42.91	peak	-14.58	28.33	43.50	15.17
215.2700	33.15	peak	-11.19	21.96	43.50	21.54
340.4000	30.01	peak	-6.75	23.26	46.00	22.74
564.4700	28.52	peak	-1.57	26.95	46.00	19.05

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
40.6700	48.67	QP	-9.67	39.00	40.00	1.00
185.2000	39.90	peak	-10.12	29.78	43.50	13.72
252.1300	36.62	peak	-9.61	27.01	46.00	18.99
433.5200	34.52	peak	-4.52	30.00	46.00	16.00
596.4800	33.08	peak	-1.47	31.61	46.00	14.39
623.6400	33.47	peak	-0.77	32.70	46.00	13.30

FCC§15.225(e) - FREQUENCY STABILITY

Applicable Standard

As per FCC Part 15.225:

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Report No.: XMDN210630-26286E-00A

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power.

The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to the end point of the battery. The output frequency was recorded for each voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop	6512	9706-1206	2020-03-05	2023-03-04
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2020-09-05	2021-09-05
UNI-T	Multimeter	UT39A	M130199938	2020-07-24	2021-07-24
Pro instrument	DC Power Supply	pps3300	3300012	N/A	N/A
ESPEC	Constant temperature and humidity Tester	ESX-4CA	018 463	2021-02-24	2022-02-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Page 20 of 23

Test Data

Environmental Conditions

Temperature:	26.2°C
Relative Humidity:	52 %
ATM Pressure:	100.3 kPa
Tester:	Burt Hu
Test Date:	2021-07-21

Test Mode: Transmitting

Test Result: Pass

		$f_0 = 13.56 \text{ MHz}$		
Temperature	Voltage	Measured frequency E		Limit
${\mathbb C}$	V_{DC}	MHz	Hz	Hz
-20		13.56032	320	±1356
-10		13.56035	350	±1356
0		13.56025	250	±1356
10		13.56026	260	±1356
20	3.85	13.56029	290	±1356
25		13.56032	320	±1356
30		13.56026	260	±1356
40		13.56027	270	±1356
50		13.56029	290	±1356
20	3.5	13.5603	300	±1356
20	4.4	13.56027	270	±1356

Report No.: XMDN210630-26286E-00A

FCC §15.215(c)- 20 dB BANDWIDTH

Applicable Standard

Per FCC §15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through § 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Report No.: XMDN210630-26286E-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Use Occupied bandwidth test function, measure the 99% Occupied bandwidth.
- 5. Repeat above procedures until all frequencies measured were complete.

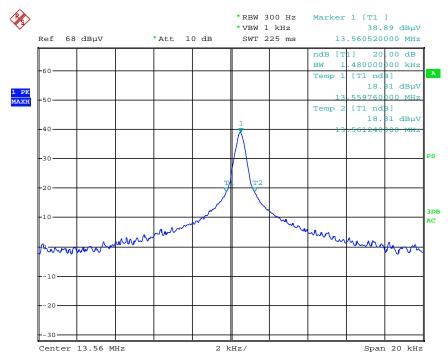
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop	6512	9706-1206	2020-03-05	2023-03-05
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2021-05-06	2022-05-06
HP	Amplifier	8447D	2727A05902	2020-09-05	2021-09-05

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Page 22 of 23

Test Data


Environmental Conditions

Temperature:	26.2°C
Relative Humidity:	38 %
ATM Pressure:	100.2 kPa
Tester:	Burt Hu
Test Date:	2021-07-22

Test Mode: Transmitting

Frequency	20 dB Bandwidth
(MHz)	(kHz)
13.56	1.48

20 dB Bandwidth

Date: 22.JUL.2021 22:37:52

END OF REPORT *****