Bundesnetzagentur	CTC advanced member of RWTÜV group
BNetzA-CAB-02/21-102	-3390_21-01-07
Testing laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>	Ingenico 9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE Phone: -/- Contact: Léonce Mutel e-mail: <u>leonce.mutel@ingenico.com</u>
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer Ingenico 9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE
Test sta	ndard/s

FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio FCC - Title 47 CFR Part 15 frequency devices

RSS - 247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item					
Kind of test item:	Payment Terminal				
Model name:	Desk/3500				
FCC ID:	XKB-D3500CLWIV2				
ISED certification number:	2586D-D3500CLWIV2				
Frequency:	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz; 5725 MHz to 5850 MHz				
Technology tested:	WLAN				
Antenna:	Integrated antenna				
Power supply:	110 V AC / 8 V DC by AC/DC mains adapter PSM24W-080L6				
Temperature range:	0°C to +40°C				

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Test performed:

Marco Bertolino Lab Manager **Radio Communications** Michael Dorongovski Lab Manager **Radio Communications**

1	Table o	f contents	2
2	Genera	l information	3
		Notes and disclaimer Application details	
		Test laboratories sub-contracted	
3	Test st	andard/s, references and accreditations	4
4	Reporti	ing statements of conformity – decision rule	5
5	Test en	vironment	6
6	Test ite	em	6
	6.1	General description	6
	6.2	Additional information	6
7	Descrip	otion of the test setup	7
		Shielded fully anechoic chamber	
	7.2	Conducted measurements	9
8	Sequer	nce of testing	10
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	10
	8.2	Sequence of testing radiated spurious 1 GHz to 18 GHz	11
9	Measu	rement uncertainty	12
10	Su	mmary of measurement results	13
11	Ad	ditional comments	14
12	Me	easurement results	16
	12.1	Antenna gain	16
	12.2	Testability check	
	12.2.1	Maximum output power according to FCC requirements	
	12.2.2	Maximum output power according to ISED requirements	
	12.3	Band edge compliance radiated	
	12.4	Spurious emissions radiated below 30 MHz	
	12.5	Spurious emissions radiated 1 GHz to 18 GHz	
13		ossary	
14		cument history	
15	Ac	creditation Certificate – D-PL-12076-01-04	53
16	Ac	creditation Certificate – D-PL-12076-01-05	54

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 **Application details**

Date of receipt of order: 2021-10-25 Date of receipt of test item: 2022-08-23 Start of test:* 2022-09-12 End of test:* 2022-09-21 -/-

Person(s) present during the test:

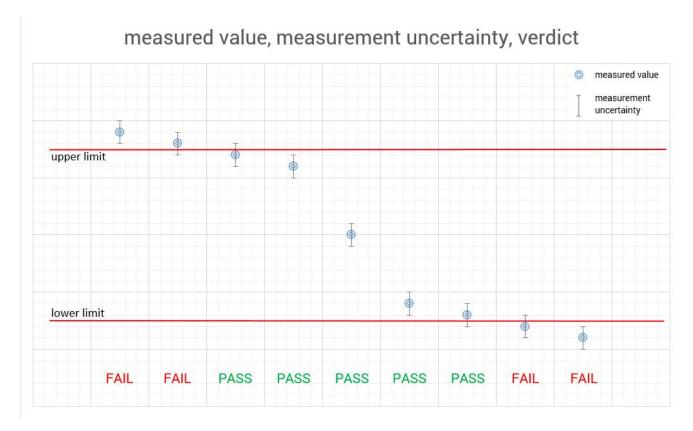
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E				
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz				
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Descriptio	n				
D-PL-12076-01-04	Telecomm	munication and EMC Canada w.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf				
D-PL-12076-01-05		unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf				


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

		_	
		T _{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme voltage conditions required.
		T_{min}	No tests under extreme voltage conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	110 V AC / 8 V DC by AC/DC mains adapter PSM24W-080L6
Power supply	:	V_{max}	No tests under extreme voltage conditions required.
		V_{min}	No tests under extreme voltage conditions required.

6 Test item

General description 6.1

Kind of test item :	Payment Terminal
Model name :	Desk/3500
HMN :	-/-
PMN :	Desk/3500
HVIN :	Desk/3500 CL/Eth/Mod/WiFiv2
FVIN :	-/-
S/N serial number :	Rad. 220807303251257424251396 Cond. 213057303301252022380465
Hardware status :	-/-
Software status :	OS 038004 _ APPLI 008400
Firmware status :	OS 038004 _ APPLI 008400
Frequency band :	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz; 5725 MHz to 5850 MHz (lowest channel 5180 MHz; highest channel 5825 MHz)
Type of radio transmission : Use of frequency spectrum :	OFDM
Type of modulation :	BPSK, QPSK, 16 – QAM, 64 – QAM
Number of channels :	20 MHz channels: 24 40 MHz channels: 11
Antenna :	Integrated antenna
Power supply :	110 V AC / 8 V DC by AC/DC mains adapter PSM24W-080L6
Temperature range :	0°C to +40°C

6.2 Additional information

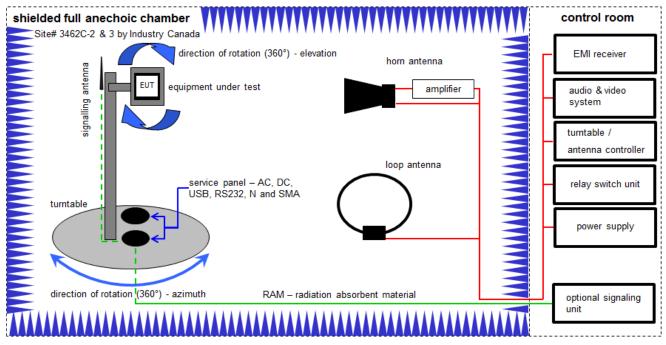
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-3390/21-01-01_AnnexA 1-3390/21-01-01_AnnexB 1-3390/21-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

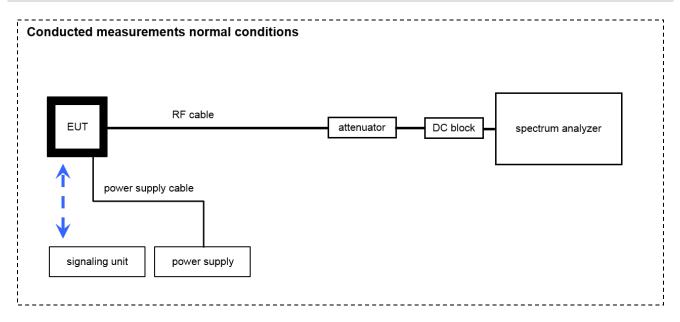
Shielded fully anechoic chamber 7.1

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	в	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
2	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vlKl!	12.03.2021	11.03.2023
3	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
4	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
5	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	А, В	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
7	А, В	NEXIO EMV- Software	BAT EMC V3.21.0.27	EMCO	-/-	300004682	ne	-/-	-/-
8	A, B	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
9	А, В	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.12.2021	31.12.2022
13	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

CTC | advanced

member of RWTÜV group

7.2 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
2	А	PC Laboratory	Exone	Fröhlich + Walter	S2642279-03 / 10	300004179	ne	-/-	-/-
3	Α	Signal analyzer	FSV30	Rohde&Schwarz	1321.3008K30/ 103809	300005359	vlKI!	08.12.2020	07.12.2022
4	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty							
Test case	Unce	Uncertainty					
Antenna gain	± 3	3 dB					
Power spectral density	± 1.5	56 dB					
DTS bandwidth	± 100 kHz (depend	s on the used RBW)					
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)					
Maximum output power conducted	± 1.56 dB						
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB						
Band edge compliance radiated	± 3	3 dB					
	> 3.6 GHz	± 1.56 dB					
Spurious emissions conducted	> 7 GHz	± 1.56 dB					
	> 18 GHz	± 2.31 dB					
	≥ 40 GHz	± 2.97 dB					
Spurious emissions radiated below 30 MHz	± 3	3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB					

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2022-09-28	Tests according to customer demand

Test specification clause	Test case	C NC NA NP		NP	Remark	
-/-	Output power verification (cond.)		-,	/-		Declared
-/-	Antenna gain		-,	/-		Declared
U-NII Part 15	Duty cycle		-/	/-		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)				\boxtimes	-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density				\boxtimes	-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth				\boxtimes	-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth				\boxtimes	-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-,	/-		-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	\boxtimes				Only a-mode tested
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	\boxtimes				Only 1 GHz to 18 GHz tested
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz				\boxtimes	-/-
§15.407 RSS - 247 (6.3)	DFS	-/-				-/-

Notes:

C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed
----	-----------	-----	---------------	-----	----------------	-----	---------------

11 Additional comments

Reference documents: None

Special test descriptions: Used power settings for all tests:

 \times

Channel	36	40	44	48	52	56	60	64	100	120	140	149	157	165
11a	13	13	13	13	13	13	13	13	13	13	13	13	13	13
11n-20	12	12	12	12	12	12	12	12	12	12	12	12	12	12
11n-40	9	9	9	9	9	9	9	9	6	9	9	9	9	9

Configuration descriptions: None

EUT selection:

Only one device available

Devices selected by the customer

Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
	channel number & center frequency							
channel	channel 36 40 44 48 52 56 60 64							
f _c / MHz	f _c / MHz 5180 5200 5220 5240 5260 5280 5300 5320							

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency								
channel	channel 100 104 108 112 116 120 124 128 132 136 140								
f _c / MHz	f _c / MHz 5500 5520 5540 5560 5580 5600 5620 5640 5660 5680 5700								

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency							
channel	149	153	157	161	165			
f _c / MHz	f _c / MHz 5745 5765 5785 5805 5825							

Channels with 40 MHz channel bandwidth:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
	channel number & center frequency							
channel	channel 38 46 54 62							
f _c / MHz	5190	5230	5270	5310				

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency							
channel	102	110	118	126	134			
f _c / MHz								

	U-NII-3 (5725 MHz to 5850 MHz)						
	channel number & center frequency						
channel	151	159					
f _c / MHz	f _c / MHz 5755 5795						

Note: The channels used for the tests were marked in bold in the list.

 \mathbf{X}

Test mode:

- No test mode available.
 Iperf is used to transmit data to a companion device
- Special software is used.
 EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

Operating mode 1 (single antenna)

- Equipment with 1 antenna,

- Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,
- Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

Operating mode 2 (multiple antennas, no beamforming)

- Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
- Operating mode 3 (multiple antennas, with beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.
 In addition to the antenna assembly gain (G), the beamforming

gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

Limits:

Antenna Gain	
6 dBi / > 6 dBi output power and power density reduction required	

Results: Extracted from test report no. 1-4862_17-01-03

U-NII-1	Antenna gain				
(5150 MHz to 5250 MHz)	Lowest channel	Middle channel	Highest channel		
Conducted power / dBm @ 3 MHz RBW	14.4	14.3	13.8		
Radiated power / dBm @ 3 MHz RBW	18.3	18.1	17.4		
Gain / dBi calculated	4.0	3.8	3.6		

U-NII-2A		Antenna gain	
(5250 MHz to 5350 MHz)	Lowest channe	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	13.9	14.3	14.9
Radiated power / dBm @ 3 MHz RBW	18.1	18.7	19.6
Gain / dBi calculated	4.2	4.4	4.7

U-NII-2C		Antenna gain	
(5470 MHz to 5725 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	17.3	15.0	14.7
Radiated power / dBm @ 3 MHz RBW	22.6	19.5	18.2
Gain / dBi calculated	5.3	4.5	3.5

U-NII-3	Antenna gain		
(5725 MHz to 5850 MHz)	Lowest channel	Middle channel	Highest channel
Conducted power / dBm @ 3 MHz RBW	15.4	15.0	16.0
Radiated power / dBm @ 3 MHz RBW	19.3	18.4	19.1
Gain / dBi calculated	3.9	3.4	3.1

12.2 Testability check

12.2.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter	
According to: KDB789033 D02, E.2.e.	
Used test setup:	See chapter 7.2 – A
Measurement uncertainty:	See chapter 9
Standard parts:	FCC: § 15.407 (a)

Limits:

Lin	nits
Radiated output power	Conducted output power
Band 5150 MH	lz – 5250 MHz
For an outdoor access point: Conducted power + 6 dBi antenna gain For an indoor access point: Conducted power + 6 dBi antenna gain For fixed point-to-point access points Conducted power + 23 dBi antenna gain For client devices Conducted power + 6 dBi antenna gain (If the Antenna gain is greater than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	For an outdoor access point: output power ≤ 1W/30dBm The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm) For an indoor access point output power ≤ 1W/30dBm For fixed point-to-point access points output power ≤ 1W/30dBm For client devices output power ≤ 250 mW/24dBm
Band 5250MH	z – 5350 MHz

Conducted power + 6 dBi antenna gain	
(Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5470MH	z – 5725 MHz
Conducted power + 6 dBi antenna gain	
(Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5725MH	z – 5850 MHz
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit Exception: fixed point-to-point U-NII devices, no corresponding reduction in transmitter conducted power)	output power ≤ 1W/30dBm

Results:

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
a-mode	11.8	11.8	11.6
	U	-NII-2A (5250 MHz to 5350 MHz	z)
Original test	Lowest channel	Middle channel	Highest channel
results from test report	11.7	12.6	12.7
no. 1-	U	-NII-2C (5470 MHz to 5725 MHz	z)
4862_17-01-	Lowest channel	Middle channel	Highest channel
03	15.0	13.6	12.2
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	13.1	12.9	13.6

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	11.0	12.0	12.0
	U-NII-2A (5250 MHz to 5350 MHz)		
a-mode	Lowest channel	Middle channel	Highest channel
New test	12.5	11.3	12.4
results	U-NII-2C (5470 MHz to 5725 MHz)		
results	Lowest channel	Middle channel	Highest channel
	15.7	14.8	13.8
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	14.3	14.5	14.8

12.2.2 Maximum output power according to ISED requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter	
Used test setup:	See chapter 7.2 – A
Measurement uncertainty:	See chapter 9

Limits:

Radiated output power	Conducted output power for mobile equipment
The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz 1 W or 17 dBm + 10 log Bandwidth 5.250-5.350 GHz 1 W or 17 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) Conducted power + 6dBi antenna gain 5.725-5.825 GHz Devices other than client devices 5925-7125 MHz: ≤ 30dBm Client devices 5925-7125 MHz: ≤ 24dBm	The lesser one of 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) 1W 5.725-5.825 GHz

Results:

		Maximum output power [dBm]	
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
		Conducted	
	12.0	11.6	11.4
a-mode	U	-NII-2A (5250 MHz to 5350 MH	z)
	Lowest channel	Middle channel	Highest channel
Original test results from	Conducted		
test report	11.5	12.4	12.5
no. 1-	U-NII-2C (5470 MHz to 5725 MHz)		
4862_17-01-	Lowest channel	Middle channel	Highest channel
03		Conducted	
	14.8	12.4	12.1
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
		Conducted	
	12.9	12.7	13.8

		Maximum output power [dBm]			
	L	J-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel		
	Conducted				
	11.3	12.0	11.9		
	U	-NII-2A (5250 MHz to 5350 MHz	z)		
	Lowest channel	Middle channel	Highest channel		
a-mode		Conducted			
New test	12.3	11.2	12.3		
results	U	U-NII-2C (5470 MHz to 5725 MHz)			
recurre	Lowest channel	Middle channel	Highest channel		
		Conducted			
	15.7	14.3	13.7		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	Conducted				
	14.3	14.6	15.0		

12.3 Band edge compliance radiated

Description:

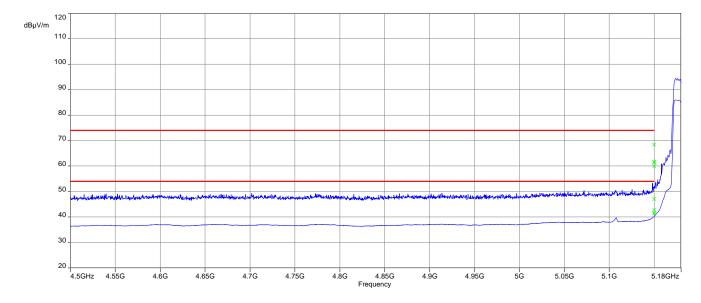
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

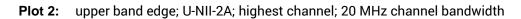
Measurement parameter	
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	≥ 3 x RBW
Span:	See plots!
Trace mode:	Max Hold
Test setup:	See sub clause 7.1 – A
Measurement uncertainty:	See chapter 9

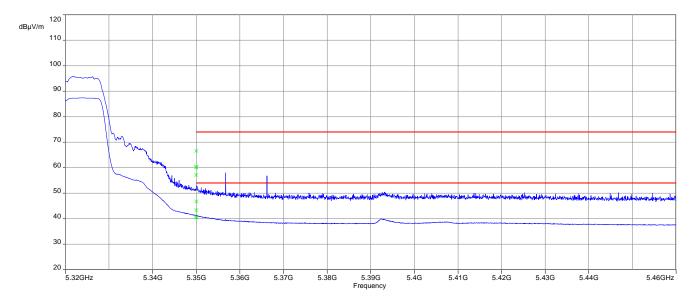
Limits:

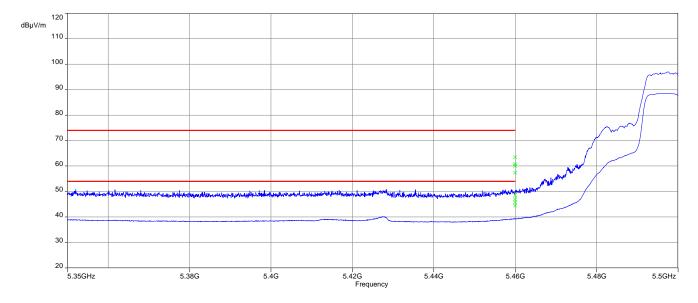
Band Edge Compliance Radiated
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated
intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall
be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the
desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general
limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the
restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits
specified in Section 15.209(a) (see Section 5.205(c)).
74 dBµV/m (peak)
54 dBµV/m (average)



Result:


Band Edge Compliance radiated	Emission frequency [MHz]	Detector	Level [dBuV/m]
Lower band edge; U-NII-1; lowest	5150	Peak	68.4
channel, 802.11a	5150	AVG	47.0
Upper band edge; U-NII-2A; highest	5250	Peak	66.6
channel, 802.11a	5350	AVG	46.8
Lower band edge; U-NII-2C; lowest	E460	Peak	63.5
channel, 802.11a	5460	AVG	48.5




Plots:

Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth

Plot 3: lower band edge; U-NII-2C; lowest channel; 20 MHz channel bandwidth

12.4 Spurious emissions radiated below 30 MHz

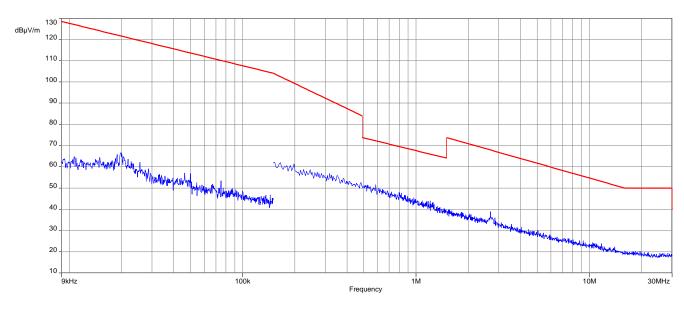
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

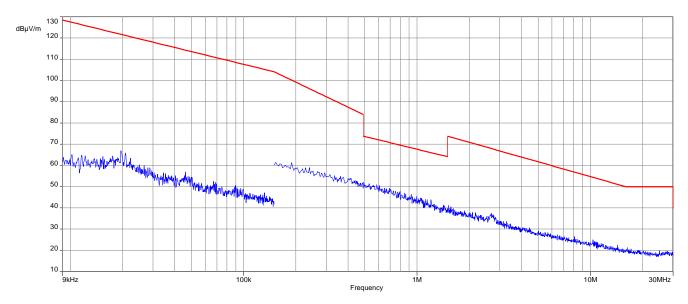
Measurement parameter		
Detector:	Peak / Quasi Peak	
Sweep time:	Auto	
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz	
Span:	9 kHz to 30 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.1 – B	
Measurement uncertainty:	See chapter 9	

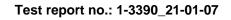
Limits:

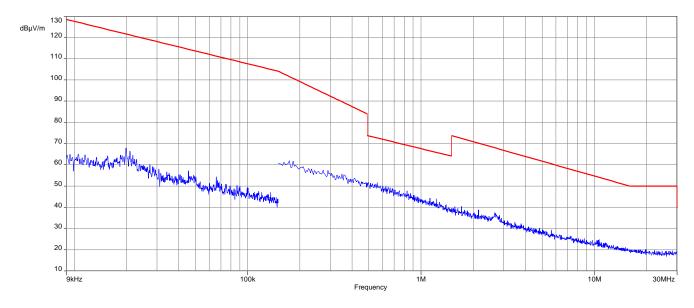

Spurious Emissions Radiated < 30 MHz				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		

Results:

Spurious Emissions Radiated < 30 MHz [dBµV/m]				
F [MHz]	Detector	Level [dBµV/m]		
All detected emissions are more than 20 dB below the limit.				

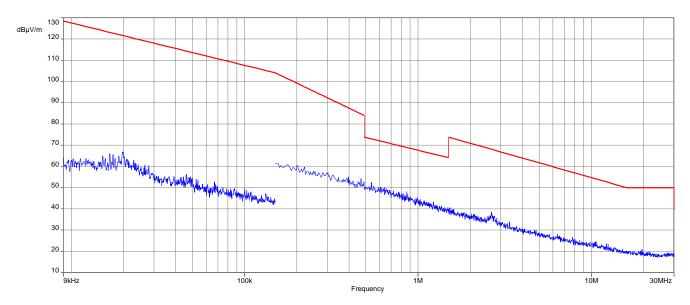


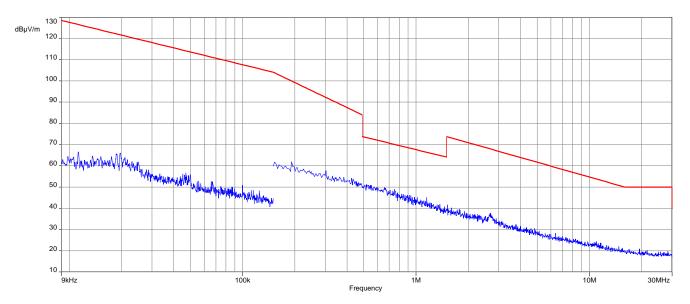

Plots: 20 MHz channel bandwidth



Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

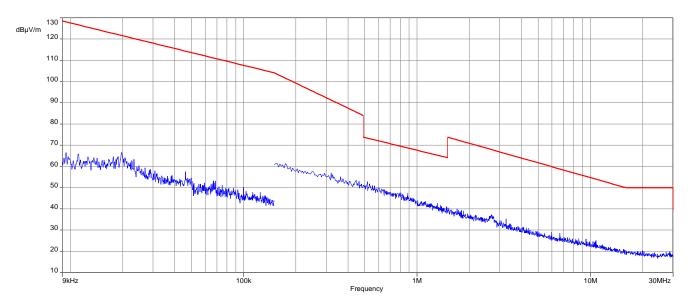
Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel

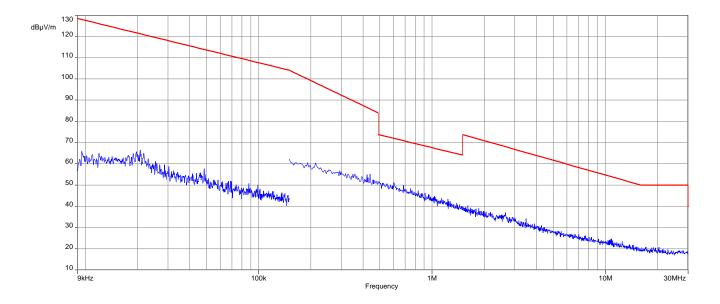




Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; lowest channel

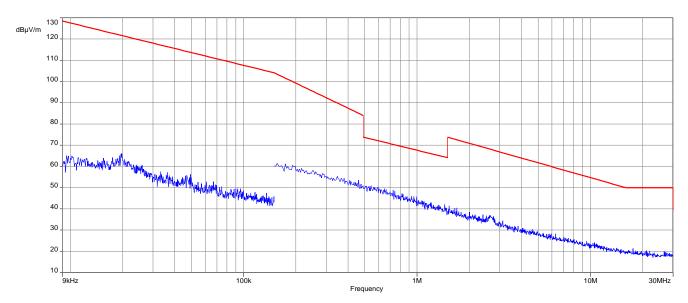


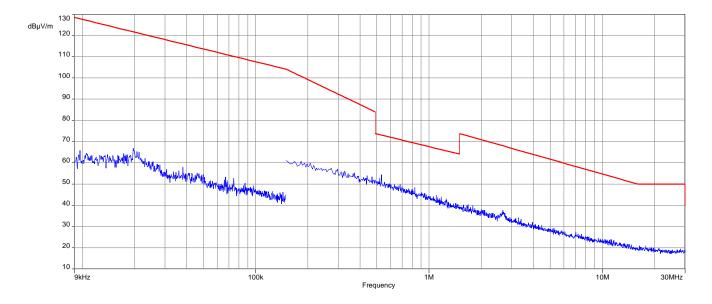


Plot 5: 9 kHz to 30 MHz, U-NII-2A; middle channel

Test report no.: 1-3390_21-01-07

Plot 6: 9 kHz to 30 MHz, U-NII-2A; highest channel

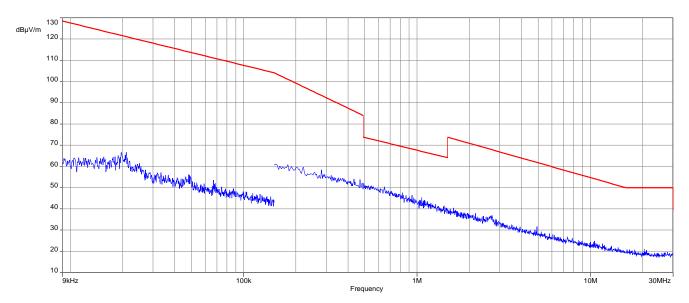


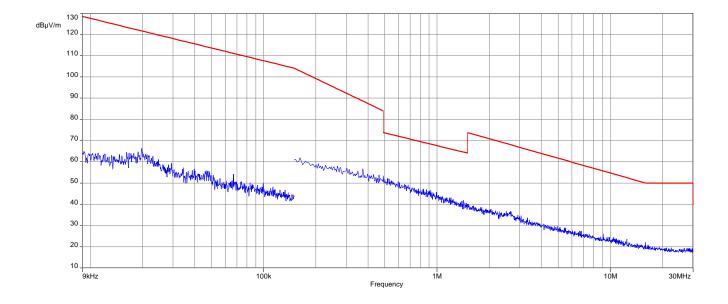


Plot 7: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Test report no.: 1-3390_21-01-07

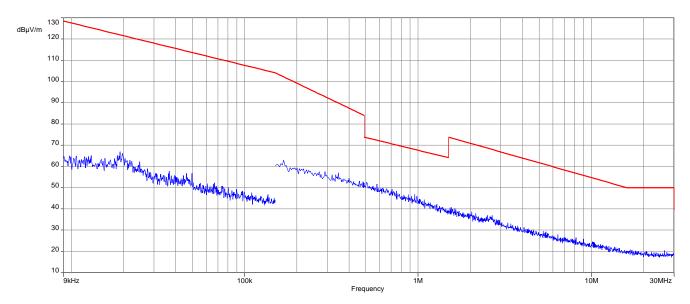
Plot 8: 9 kHz to 30 MHz, U-NII-2C; middle channel



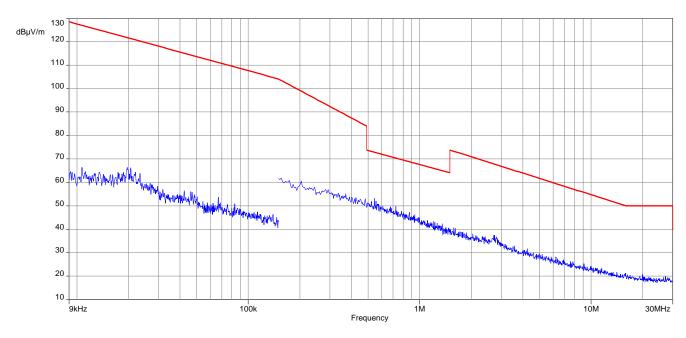


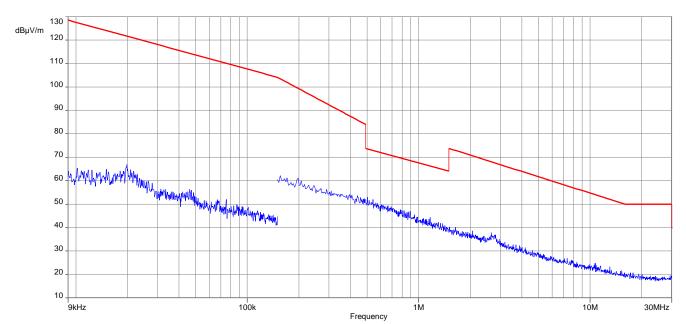
Plot 9: 9 kHz to 30 MHz, U-NII-2C; highest channel

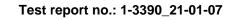
Test report no.: 1-3390_21-01-07

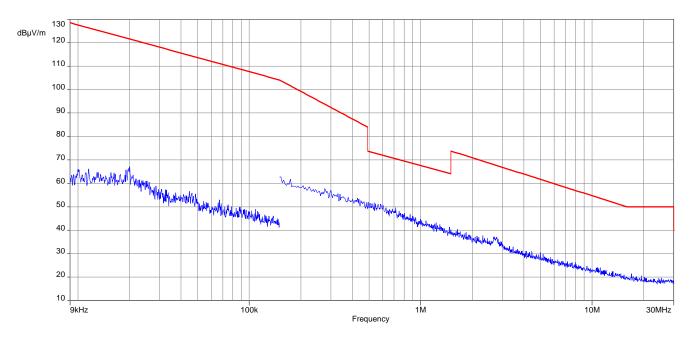

Plot 10: 9 kHz to 30 MHz, U-NII-3; lowest channel

Plot 11: 9 kHz to 30 MHz, U-NII-3; middle channel


Plot 12: 9 kHz to 30 MHz, U-NII-3; highest channel

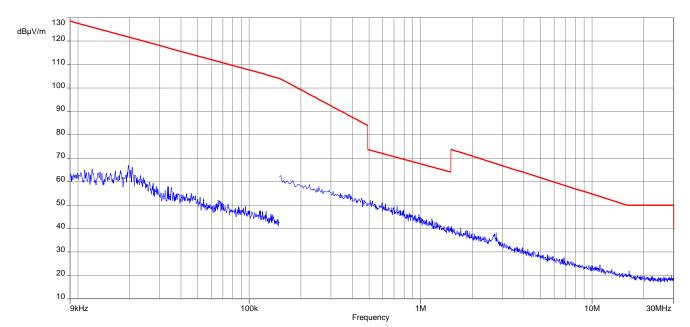


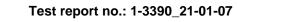

Plots: 40 MHz channel bandwidth

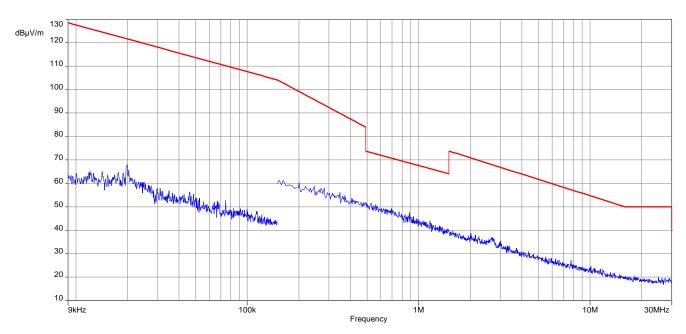


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

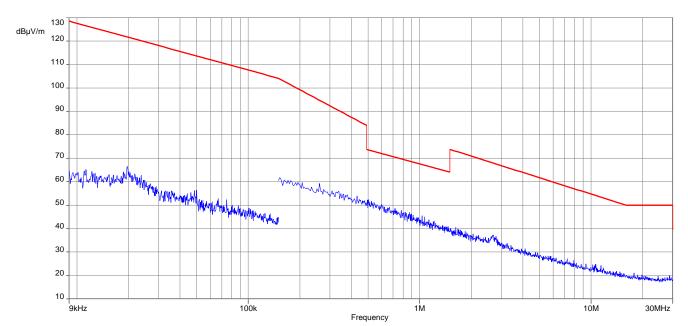


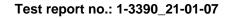


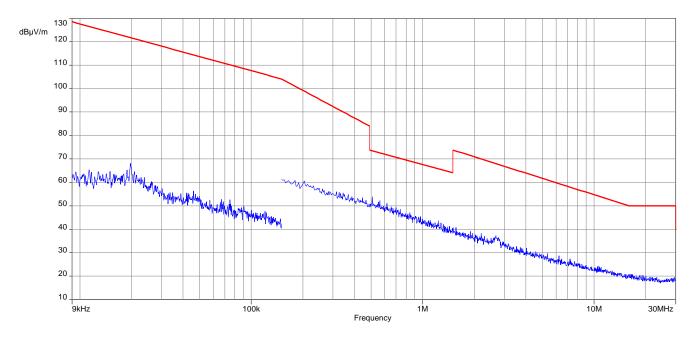


Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

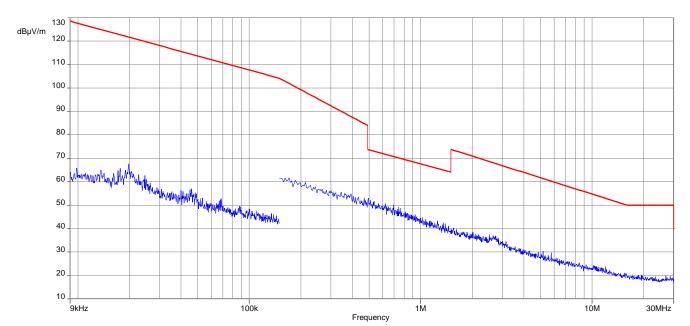


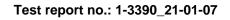


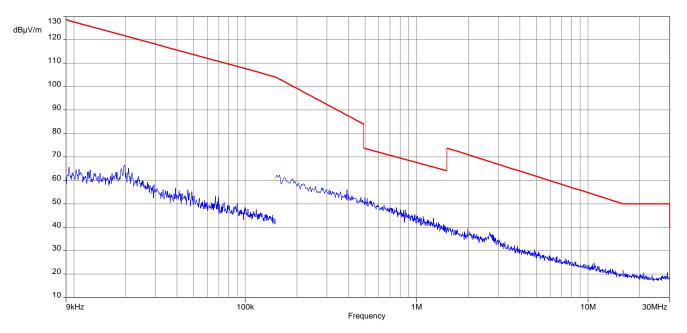


Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel







Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

Plot 9: 9 kHz to 30 MHz, U-NII-3; highest channel

12.5 Spurious emissions radiated 1 GHz to 18 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 18 GHz.

Measurement:

Measurement parameter	
	Quasi Peak below 1 GHz
Detector:	(alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 18 GHz
Test setup:	See sub clause 7.1 – A
Measurement uncertainty:	See chapter 9

Limits:

	TX Spurious Emissions Radiated							
§15.209 / RSS-247								
Frequency (MHz) Field Strength (dBµV/m) Measurement distance								
Above 960	54.0	3						
	§15.407							
Outside the restricted bands!	Outside the restricted bands! -27 dBm / MHz							

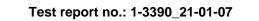
Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm									
U-NII-1 (5150 MHz to 5250 MHz)										
Lowest channel Middle channel Highest channel						nel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
1250	Peak	44.4	1250	Peak	44.4	1250	Peak	44.4		
1350	1350 AVG		1350	AVG	42.3	1350	AVG	42.3		
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	he plots.	please take look at the plots.			please take look at the plots.				

TX Spurious Emissions Radiated [dBµV/m] / dBm									
U-NII-2A (5250 MHz to 5350 MHz)									
Lowest channel Middle channel Highest channel							nel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
1350	Peak	44.4	1350	Peak	44.4	1250	Peak	44.4	
1550	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3	
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz			
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please take look at the plots.			

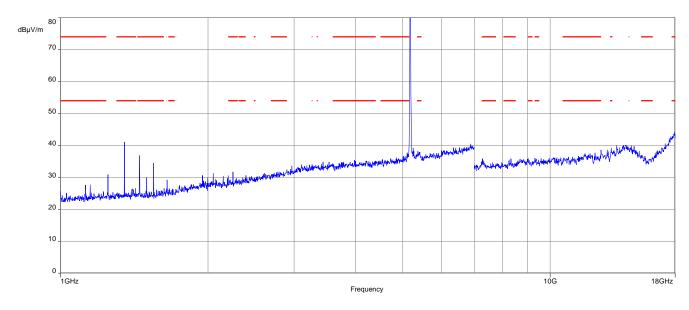
	TX Spurious Emissions Radiated [dBµV/m] / dBm									
U-NII-2C (5470 MHz to 5725 MHz)										
Lowest channel Middle channel Highest channel							nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
1350	Peak	44.4	1250	Peak	44.4	1250	Peak	44.4		
1350	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3		
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please take look at the plots.				

TX Spurious Emissions Radiated [dBµV/m] / dBm										
	U-NII-3 (5725 MHz to 5850 MHz)									
L	owest chanr	nel	М	iddle chanr	el	Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
11490	Peak	63.3	11570	Peak	59.4	11651	Peak	63.7		
11490	AVG	53.0	11573	AVG	50.9	11651	AVG	52.2		

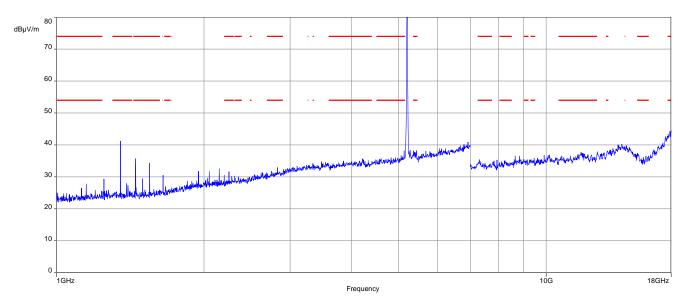

Results: 40 MHz channel bandwidth

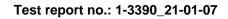
	TX Spurious Emissions Radiated [dBµV/m] / dBm								
U-NII-1 (5150 MHz to 5250 MHz)									
Lowest channel Middle channel Highest cha					ghest chanr	nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
1350	Peak	44.4	1350	Peak	44.4	1250	Peak	44.4	
1350	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3	
	ssions abov ake look at t		For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			

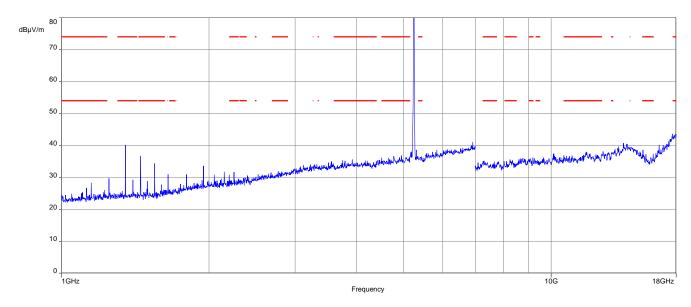
	TX Spurious Emissions Radiated [dBµV/m] / dBm									
	U-NII-2A (5250 MHz to 5350 MHz)									
Lowest channel Middle channel Highest channel						nel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
1350	Peak	44.4	1250	Peak	44.4	1250	Peak	44.4		
1350	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3		
	ssions abov ake look at t		For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.				


TX Spurious Emissions Radiated [dBµV/m] / dBm									
U-NII-2C (5470 MHz to 5725 MHz)									
L	owest chanr	nel	М	iddle chann	iel	Hi	ighest chanr	nel	
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
1350	Peak	44.4	1250	Peak	44.4	1250	Peak	44.4	
1350	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3	
	For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.		

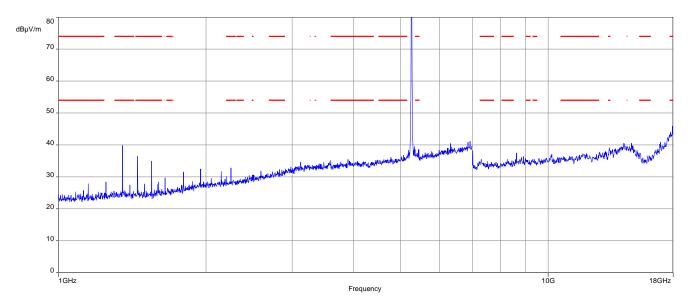
	TX Spurious Emissions Radiated [dBµV/m] / dBm								
	U-NII-3 (5725 MHz to 5850 MHz)								
Lowest channel Middle channel Highest channel						nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
1350	Peak	44.4	1250	Peak	44.4	1250	Peak	44.4	
1350	AVG	42.3	1350	AVG	42.3	1350	AVG	42.3	
For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			

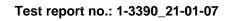


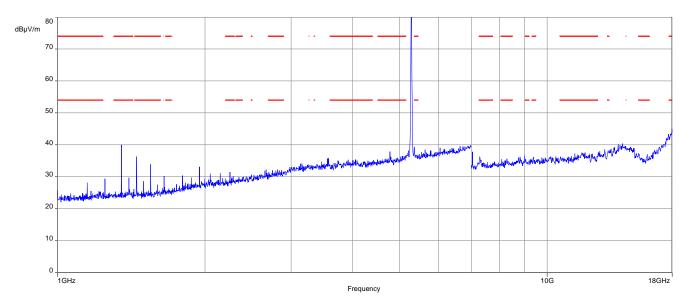

Plots: 20 MHz channel bandwidth


Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

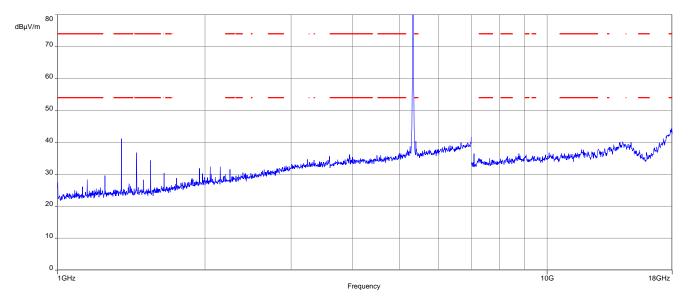


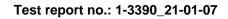


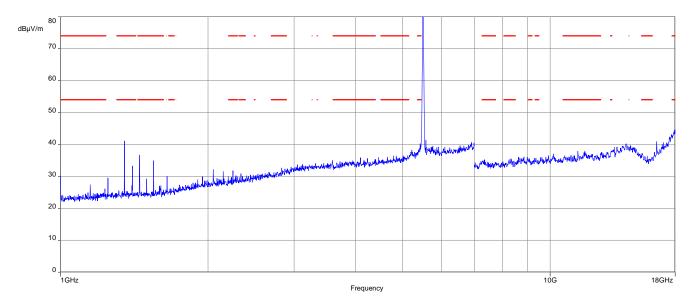


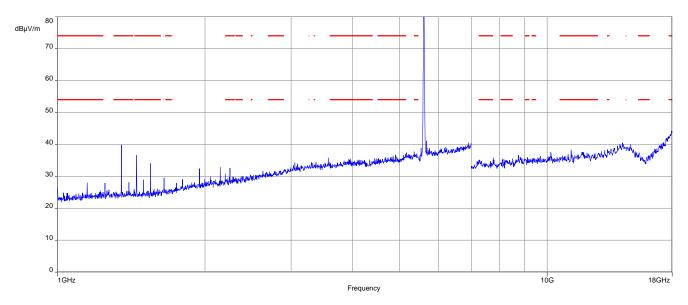
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

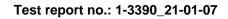

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

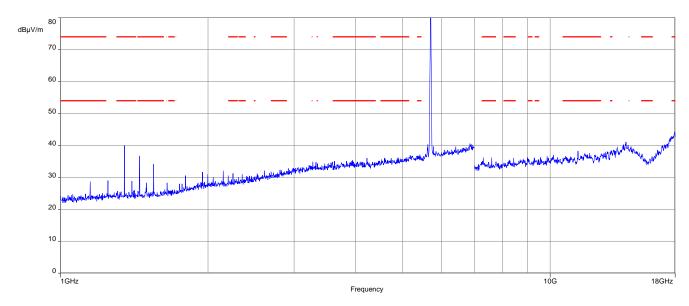


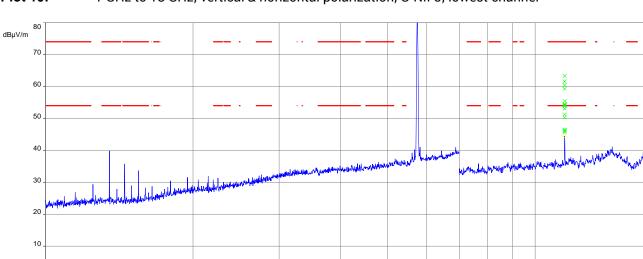



Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

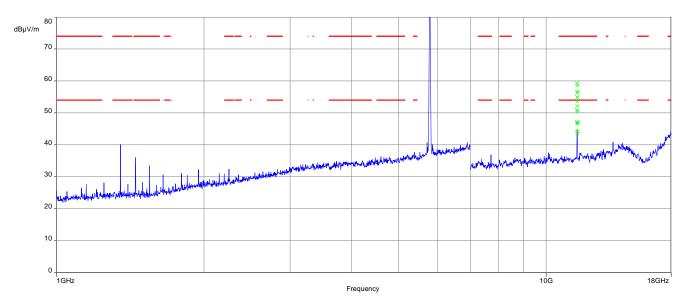




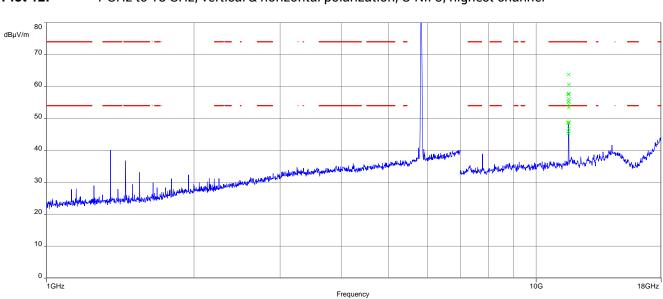

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel



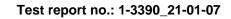
Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Frequency

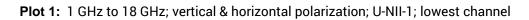
Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

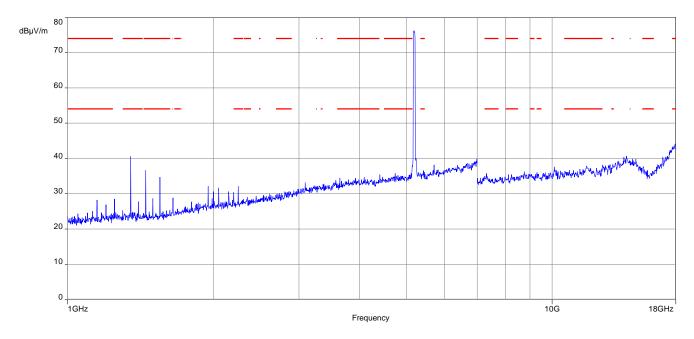

0 _____ 1GHz

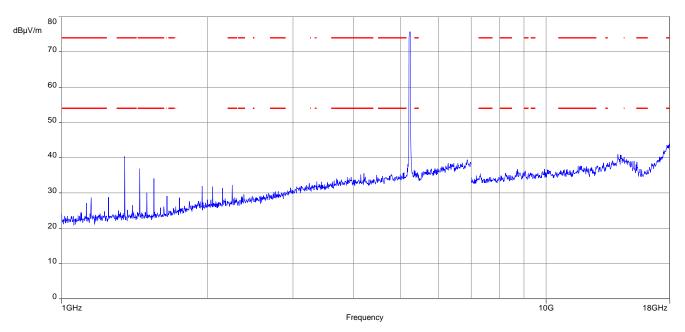
18GHz

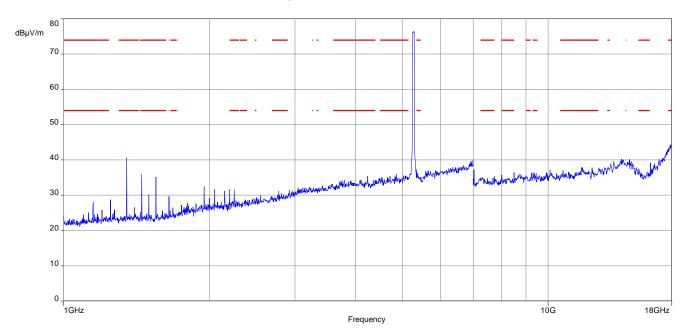

10G

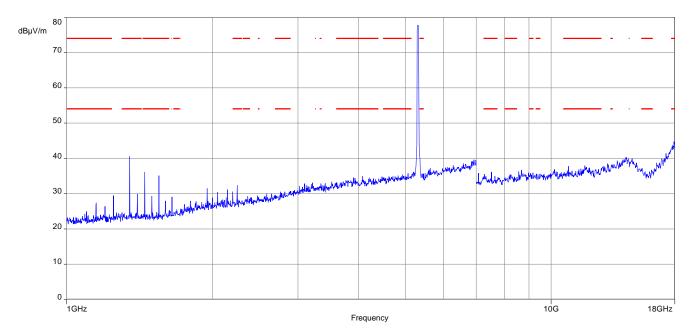
Plot 11: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

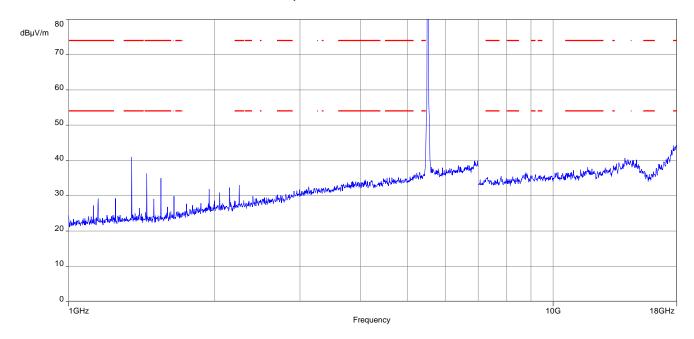



Plot 12: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

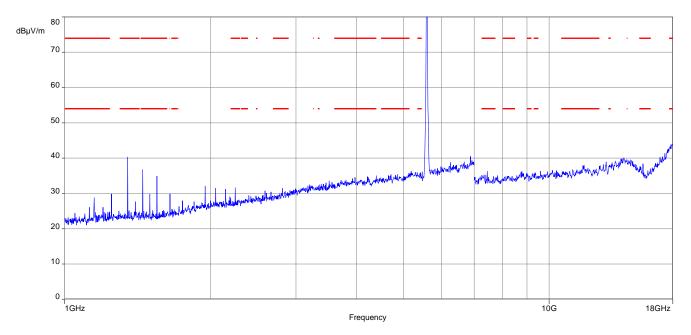


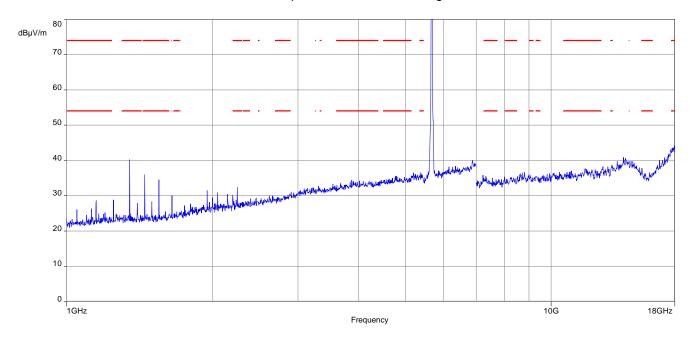

Plots: 40 MHz channel bandwidth


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

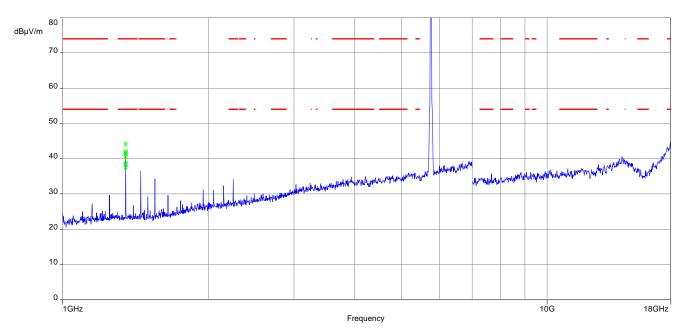


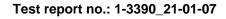
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

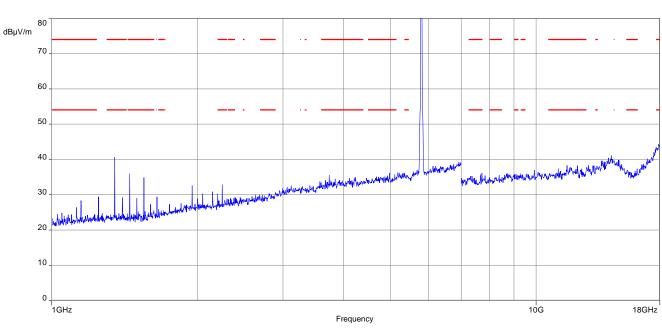

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel



Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel





Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Glossary 13

EUT	Fauinment under test
	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
0/110	ourner to holde denoity rutio, expressed in dD Hz

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-09-28

15 Accreditation Certificate – D-PL-12076-01-04

first page	last page
<image/> <image/> <image/> <image/> <section-header><image/><image/><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>	<section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header>
The certificate tagebor with its annex reflects the status at the time of the date of issue. The current status of the scope of accordination can be found in the database of according bodies of Deutsche Akkreditarungsstelle GmbH. https://www.iduk.org/en/content/accredited-Bodies-datks tensets winke.	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

16 Accreditation Certificate – D-PL-12076-01-05

<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	first page	last page
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation and market surveylance relating to the council of 9.04 y2008 setting of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the marketing of products (Official Journal of the European and market surveylance relating to the surgements for Mutual Recognition of the European and market surveylance relations. Registration number of the certificate: D-PL-12076-01-05 International Laboration (LAC). The signatories to these agreements recognise each other's accreditation. Frankfurt am Main, 09.05.200 Export (Market Structure) International Laboration (LAC). The signatories to the survey of the following websites: Export (Market Structure) Export (Market Structure) International Laboration (LAC). The signatories to the survey of the survey	Aktreditiorungsstelle Deutsche Akkreditierungsstelle GmbH Entrustei according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGW Signatory to the Multileareral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation Image: Constraint of the Const	Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akterediterungsstelle GmbH (DA&&S). Deempted is the unchanged form of separate disseminations of the cover sheat by the conformity assessment body mentioned overleaf. No impression shall be made that the accredition also extends to fields beyond the scope of
The certificate logether with its onnex reflects the status at the time of the date of issue. The current status of the scope of accorditation can be found in the database of accordited balance database database and the scope of https://www.corditabase.com/corditabase/com/corditabase/com/corditabase/com/com/com/com/com/com/com/com/com/com	09.06.2020 with the accreditation number D-PL-12076-01.1t comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate side of the cover sheet at the time of the dote of issue. The current status of the scope of accorditation can be found in the diabature of accredited badies of Donatoh Alkreditorungstelle Ganesi.	(Federal Law Gastet I p. 2622) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of July 2008 service journet and the regulation of market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). AdXAG is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILA). International Accreditation Forum (IAF) and International Laboratory Accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org LIAC: www.european-accreditation.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf