	TEST F	CETECOM ICT Services is now CTC advanced member of RWTÜVgroup
[Test report no.:	E 1-2654/16-01-02
Testing la CTC advanced GmbH Untertuerkheimer Strasse 6 – 66117 Saarbruecken / Germa Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 90 Internet: http://www.ctcadva e-mail: mail@ctcadvanced Accredited Testing Laborate The testing laboratory (area according to DIN EN ISO/ Deutsche Akkreditierungsstel The accreditation is valid procedures as stated in the act the registration number: D-PL	10 ny 75 nced.com .com ory: a of testing) is accredited EC 17025 (2005) by the e GmbH (DAkkS) for the scope of testing ccreditation certificate with	Applicant Ingenico Group 9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE Phone: -/- Fax: -/- Contact: Jean-Baptiste Palisse e-mail: jean-baptiste.palisse@ingenico.com Phone: +33 4 75 84 21 74 Manufacturer Ingenico Group 9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE
	itle 47 of the Code of Feder	andard/s ral Regulations; Chapter I; Part 15 - Radio frequency
		s (DTSs), Frequency Hopping Systems (FHSs) and a Network (LE-LAN) Devices
RSS - Gen Issue 4	pectrum Management and	Telecommunications Radio Standards Specifications - nformation for the Certification of Radio Apparatus
	·	

		Test Item	
Ki	ind of test item:	Docking station for payment terminal	
M	odel name:	Base Eth/Mod/BT	
FC	CC ID:	XKB-BASE5000BT	
IC	:	2586D-BASE5000BT	
Fr	equency:	DTS band 2400 MHz to 2483.5 MHz	
Τe	echnology tested:	Bluetooth [®] , +EDR	
Ar	ntenna:	Metallic frame antenna	
Po	ower supply:	5.0 V DC by external power supply (PSM08A-050I-R)	
Te	emperature range:	10°C to +50°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

p. o. Mihail Dorongovskij Testing Manager Radio Communications & EMC

Test report no.: 1-2654/16-01-02

1 Table of contents

1	Table of	f contents	2
2	Genera	l information	3
	2.1 I	Notes and disclaimer	3
	2.3	Test laboratories sub-contracted	3
3	Test st	andard/s and references	4
4	Test er	vironment	5
5	Test ite	m	5
	5.1 (Seneral description	5
6	Descri	otion of the test setup	6
	6.1 \$	Shielded semi anechoic chamber	7
	-		
_			
7	Sequer	ice of testing	12
	7.1 \$	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	7.4 \$	Sequence of testing radiated spurious above 18 GHz	15
8	Measu	ement uncertainty	16
9	Summa	ary of measurement results	17
		-	
-			
11	Meas	surement results	19
	11.1	Antenna gain	19
	11.2		
	11.3	Number of hopping channels	22
	11.4	Time of occupancy (dwell time)	24
	11.5	Spectrum bandwidth of a FHSS system	25
	11.6		
	11.6 11.7	Maximum output power Detailed spurious emissions @ the band edge - conducted	32 38
	-	Maximum output power Detailed spurious emissions @ the band edge - conducted	32 38
	11.7	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted	32
	11.7 11.8 11.9 11.10	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz	
	11.7 11.8 11.9 11.10 11.11	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz	
	11.7 11.8 11.9 11.10 11.11 11.12	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz	
	11.7 11.8 11.9 11.10 11.11	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz	
12	11.7 11.8 11.9 11.10 11.11 11.12 11.13	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz Spurious emissions conducted below 30 MHz (AC conducted)	
2.1 Notes and disclaimer 2.2 Application details 2.3 Test laboratories sub-contracted 3 Test standard/s and references 4 Test environment 5 Test item 5.1 General description 5.2 Additional information 6 Description of the test setup 6.1 Shielded semi anechoic chamber 6.2 Shielded fully anechoic chamber 6.3 Radiated measurements > 18 GHz 6.4 Conducted measurements C.BER system 6.5 AC conducted 7 Sequence of testing radiated spurious 9 kHz to 30 MHz 7.1 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.3 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 7.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 10 Additional comments 111 <td></td>			
Anr	11.7 11.8 11.9 11.10 11.11 11.12 11.13 Obse	Maximum output power Detailed spurious emissions @ the band edge - conducted Band edge compliance radiated Spurious emissions conducted Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz Spurious emissions conducted below 30 MHz (AC conducted) ervations	32 38 45 49 57 60 65 75 75 78 78

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2016-12-08
Date of receipt of test item:	2017-01-03
Start of test:	2017-01-04
End of test:	2017-02-21
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22°C during room temperature tests No tests under extreme conditions required! No tests under extreme conditions required!
Relative humidity content	:		35 %
Barometric pressure	:		1022 hpa
Power supply	:	V _{nom} V _{max} V _{min}	5.0 V DC by external power supply (PSM08A-050I-R) No tests under extreme conditions required! No tests under extreme conditions required!

5 Test item

5.1 General description

h	
Kind of test item	Docking station for payment terminal
Type identification	Base Eth/Mod/BT
HMN	-/-
PMN	Move/Base
HVIN	Move/Base Eth/Mod/BT
FVIN	-/-
S/N serial number	Rad. 161087313241005601044036 Cond. 161197313241005601060234
HW hardware status	02
SW software status	Not available
Frequency band	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)
Type of radio transmission Use of frequency spectrum	
Type of modulation	GFSK
Number of channels	79
Antenna	Metallic frame antenna
Power supply	5.0 V DC by external power supply (PSM08A-050I-R)
Temperature range	10°C to +50°C

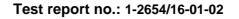
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-2654/16-01-01_AnnexA 1-2654/16-01-01_AnnexB 1-2654/16-01-01_AnnexD

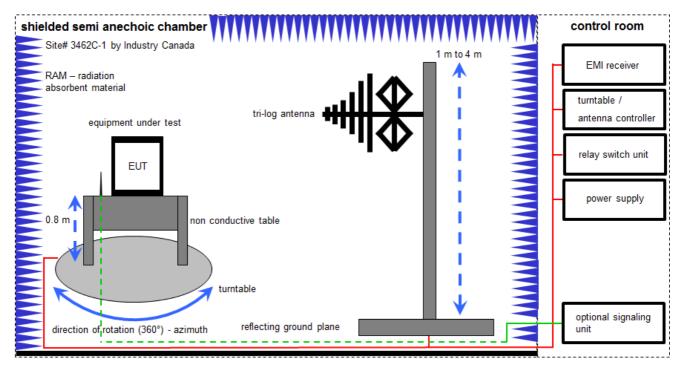
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

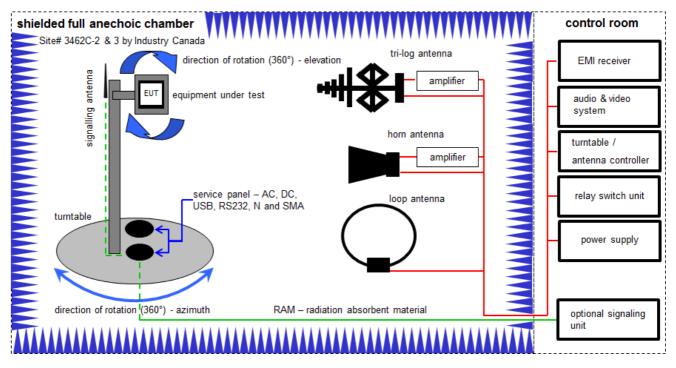
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

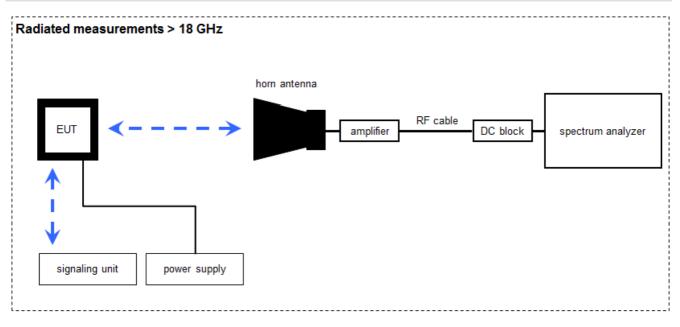
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
7	A	Bluetooth Tester	CBT35	R&S	100635	300003907	k	01.02.2016	01.02.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	A, B, C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
5	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
6	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	02.02.2016	02.02.2017
8	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
9	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
10	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	A, B, C	Bluetooth Tester	CBT35	R&S	100635	300003907	k	01.02.2016	01.02.2018

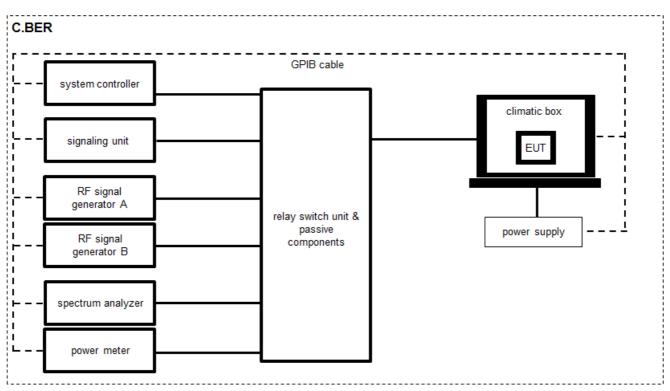
6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:


 \overline{FS} [dBµV/m] = 40.0 [dBµV/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dBµV/m] (6.79 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017
2	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
3	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
7	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	k	01.02.2016	01.02.2018

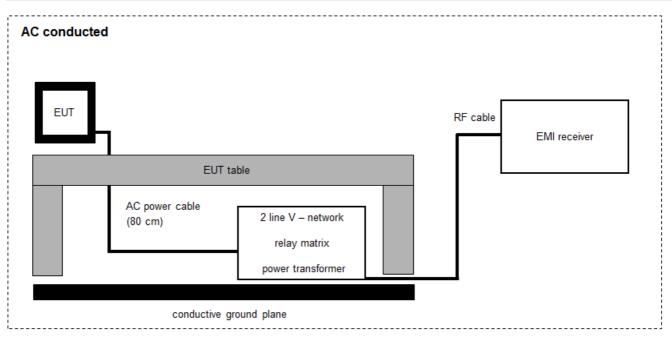
This measurements were performed between 2017-01-04 and 2017-01-05

6.4 Conducted measurements C.BER system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch / Control Unit	3488A	HP		300000929	ne	-/-	-/-
2	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	viKi!	28.01.2015	28.01.2017
3	A	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
4	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	25.01.2016	25.01.2017
5	Α	USB-GPIB-Interface	82357B	Agilent Technologies	103170	300004852	ne	-/-	-/-
6	Α	Power Sensor	NRP-Z81	R&S	100010	300003780	k	25.01.2016	25.01.2017
7	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
8	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
9	Α	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
10	Α	Messplatzrechner	Tecline	F+W	none	300003580	ne	-/-	-/-
11	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
12	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-
13	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 699866	400001189	ev	-/-	-/-
14	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 14844	400001190	ev	-/-	-/-

This measurements were performed between 2017-01-04 and 2017-01-15

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

 $\frac{Example \ calculation:}{FS \ [dB\muV/m] = 37.62 \ [dB\muV/m] + 9.90 \ [dB] + 0.23 \ [dB] = 47.75 \ [dB\muV/m] \ (244.06 \ \muV/m)}$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	02.02.2016	02.02.2017
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	А	Power Supply	NGSM 32/10	R&S	3939	400000192	vlKI!	22.01.2015	22.01.2017
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	16.08.2016	16.08.2017
5	A	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	11.12.2017
6	А	Bluetooth Tester	CBT35	R&S	100635	300003907	k	01.02.2016	01.02.2017

This measurements were performed between 2017-01-04 and 2017-01-15

Test report no.: 1-2654/16-01-02

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Carrier frequency separation	± 21.5 kHz			
Number of hopping channels	-/-			
Time of occupancy	According BT Core specification			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2017-03-06	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (b)	Antenna gain	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XX				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XXX				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XXX				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFSK	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFSK RX mode	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFSK RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK RX mode					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

Test report no.: 1-2654/16-01-02

10 Additional comments

The Bluetooth[®] word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	None				
Special test descriptions:	None				
Configuration descriptions:	payload	s: were performed with x-DH5 packets and static PRBS pattern I. ndby tests: BT test mode enabled, scan enabled, TX Idle			
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)			
		Special software is used. EUT is transmitting pseudo random data by itself			
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) 			

11 Measurement results

11.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth[®] devices, the GFSK modulation is used.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.4 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

Results:

Tnom	Vnom	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		16.6	19.8	21.8
Radiated power [dBm] Measured with GFSK modulation		19.9	21.1	21.0
Gain [dBi] Calculated		3.3	1.3	-0.8

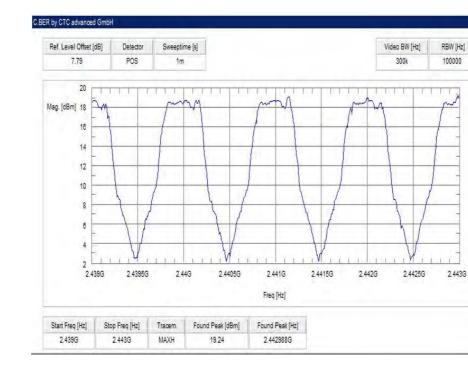
11.2 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz			
Span	4 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

Limits:


FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		

Result:

Carrier frequency separation	~ 1 MHz
------------------------------	---------

Plot:

Plot 1: Carrier frequency separation (GFSK modulation)

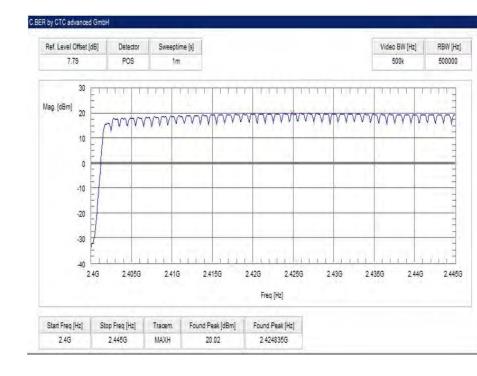
11.3 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

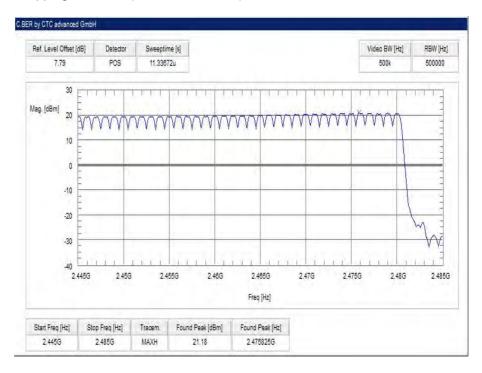
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	500 kHz	
Video bandwidth	500 kHz	
Span	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:


FCC	IC
Number of hopping channels	
At least 15 non overlapping hopping channels	

Result:

Number of hopping channels	79



Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

11.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth[®] devices no measurements mandatory depending on the fixed requirements according to the Bluetooth[®] Core Specifications!

For Bluetooth[®] devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \ \mu s + 1600 + 1/s / 79 + 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 \times 625 \ \mu s \times 1600/3 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 \times 625 \ \mu s \times 1600/5 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

This is according the Bluetooth[®] Core Specification V2.0 & V2.1 & V3.0 & V4.0 (+ critical errata) for all Bluetooth[®] devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

* according Bluetooth[®] specification

Results:

		Max. number of	Dwell time
Packet Size	Pulse Width [ms]*	transmissions	[Pulse width * Number of
		in 31.6 sec	transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC
Time of occupancy (dwell time)	
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.	

11.5 Spectrum bandwidth of a FHSS system

Description:

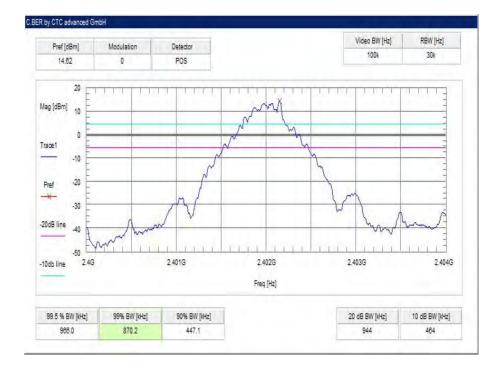
Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	3 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

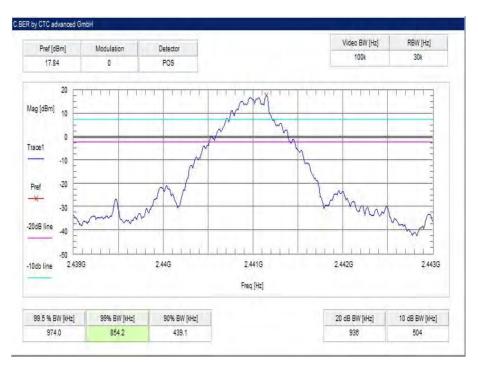
FCC	IC
Spectrum bandwidth of a FHSS system	
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz	

Results:

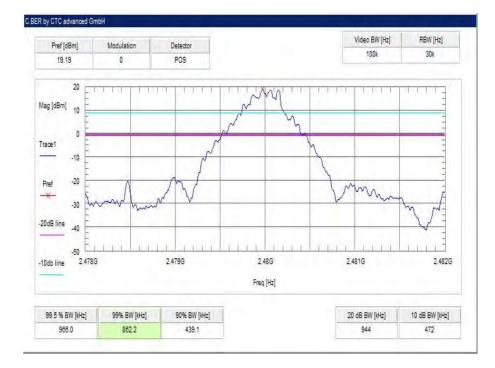

Modulation	2	20 dB bandwidth [kHz	:]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	944	936	944
Pi/4 DQPSK	1280	1280	1312
8DPSK	1264	1264	1274

Results:

Modulation		99 % bandwidth [kHz]	I
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	870	854	862
Pi/4 DQPSK	1149	1157	1157
8DPSK	1157	1165	1165

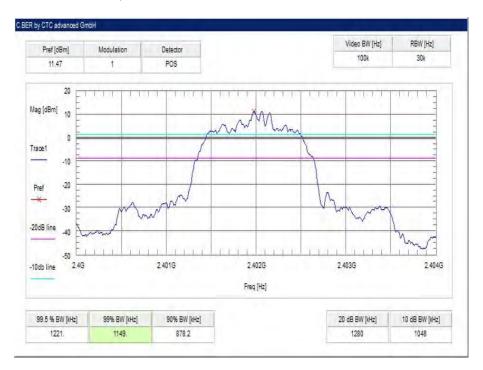


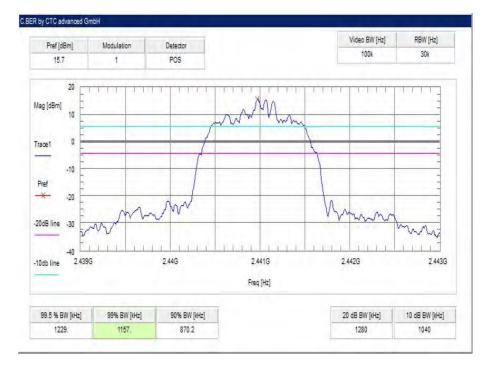
Plots:



Plot 1: lowest channel – 2402 MHz, GFSK modulation

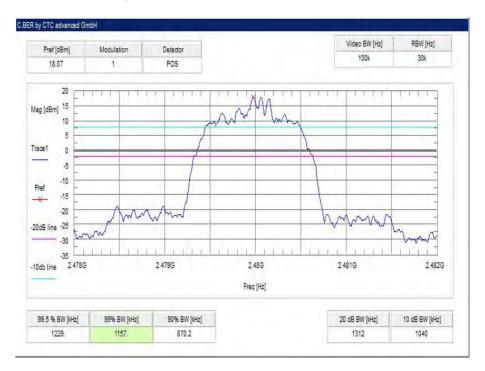
Plot 2: middle channel - 2441 MHz, GFSK modulation

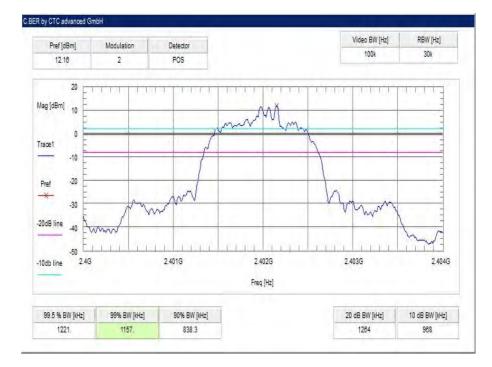




Plot 3: highest channel – 2480 MHz, GFSK modulation

Plot 4: lowest channel - 2402 MHz, Pi / DQPSK modulation





Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

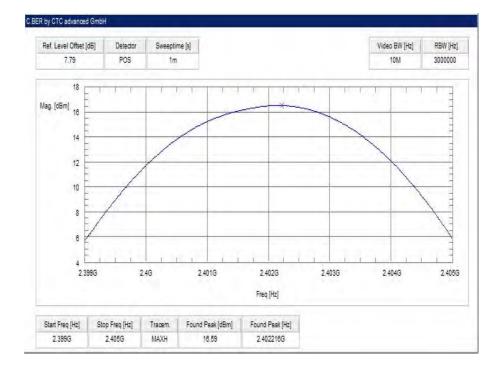
11.6 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

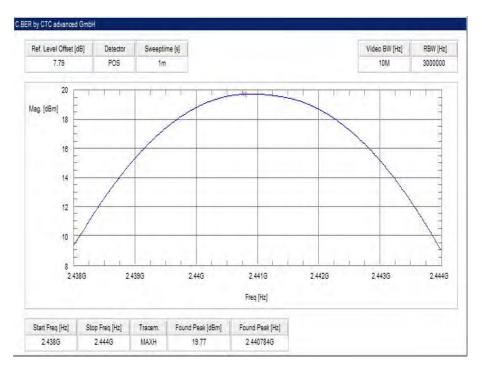
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	6 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

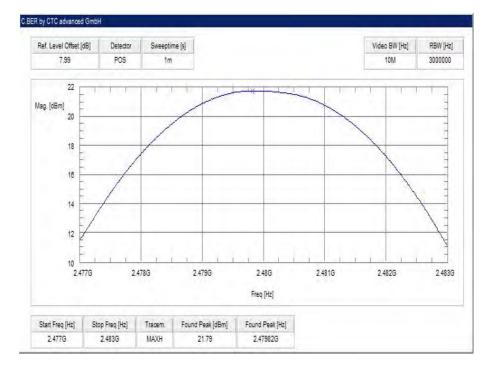

FCC	IC
Maximum output power	
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi

Results:

Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	16.6	19.8	21.8
Pi/4 DQPSK	15.9	19.4	21.5
8 DPSK	16.5	19.6	21.7

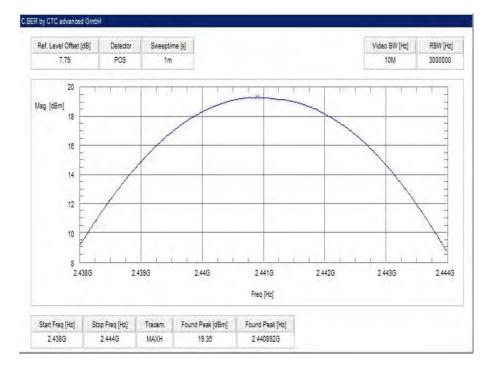


Plots:



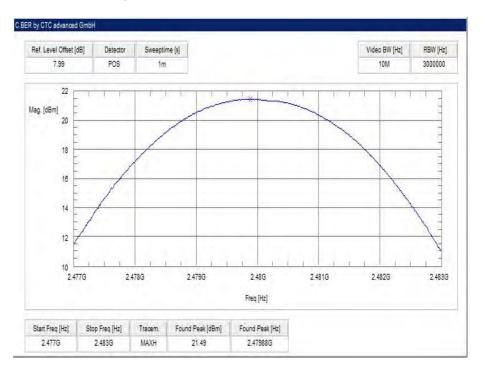
Plot 1: lowest channel – 2402 MHz, GFSK modulation

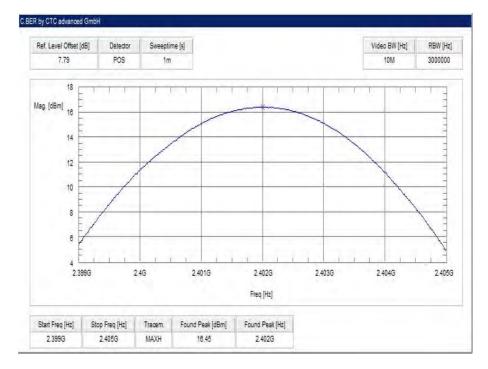
Plot 2: middle channel - 2441 MHz, GFSK modulation



Plot 3: highest channel – 2480 MHz, GFSK modulation

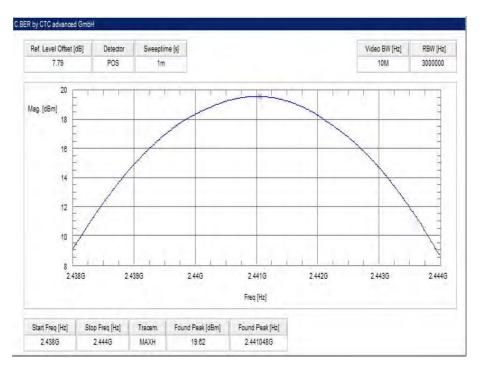
Plot 4: lowest channel - 2402 MHz, Pi / DQPSK modulation

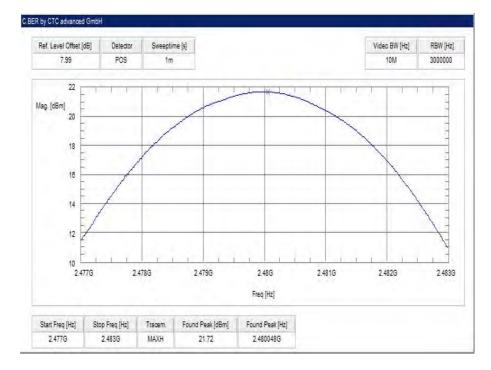




Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

11.7 Detailed spurious emissions @ the band edge - conducted

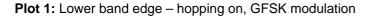
Description:

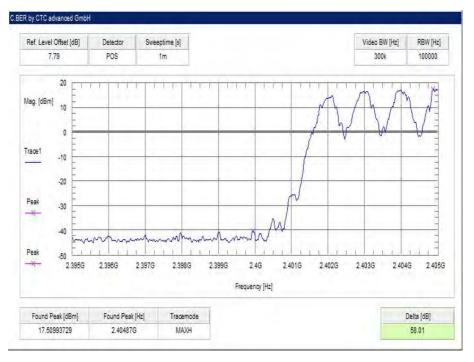
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

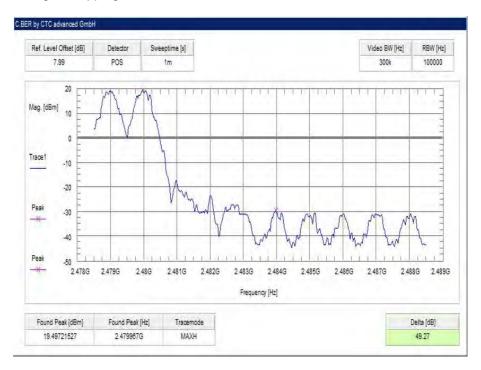
Limits:

FCC	IC		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator shall be at least 20 dB below			

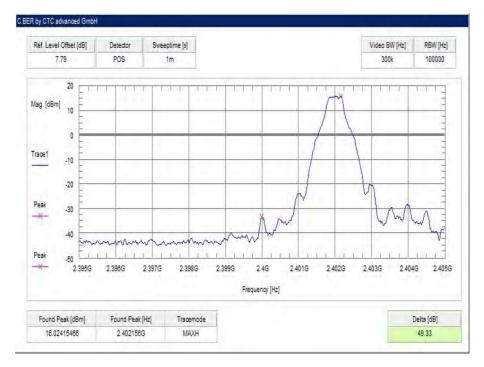

radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Results:

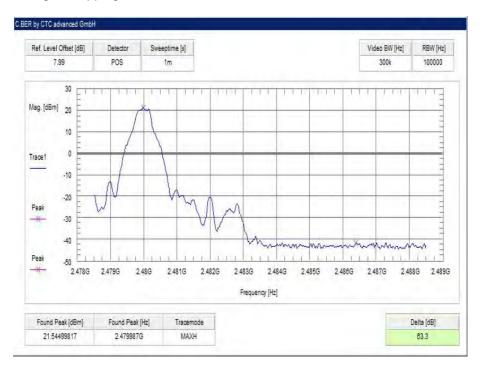
Scenario	Spurious band edge conducted [dB]		ted [dB]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

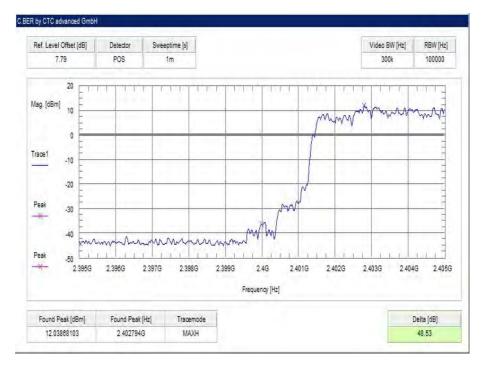


Plots:



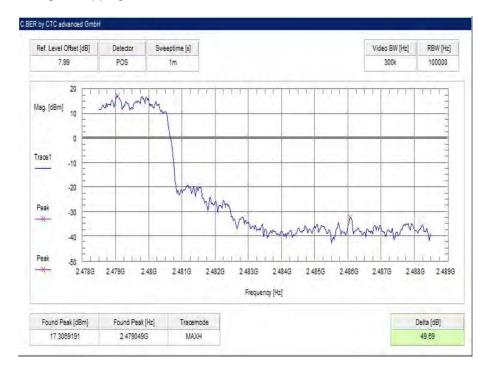
Plot 2: Upper band edge - hopping on, GFSK modulation

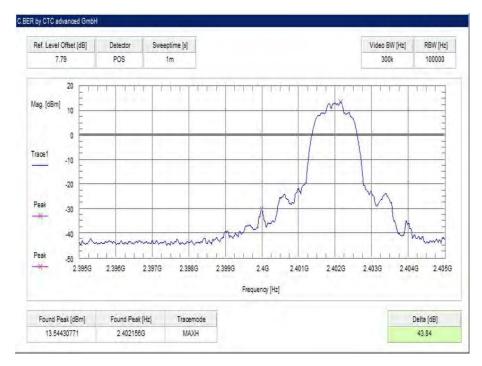




Plot 3: Lower band edge – hopping off, GFSK modulation

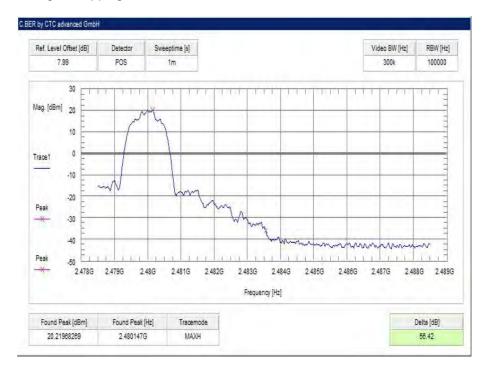
Plot 4: Upper band edge - hopping off, GFSK modulation

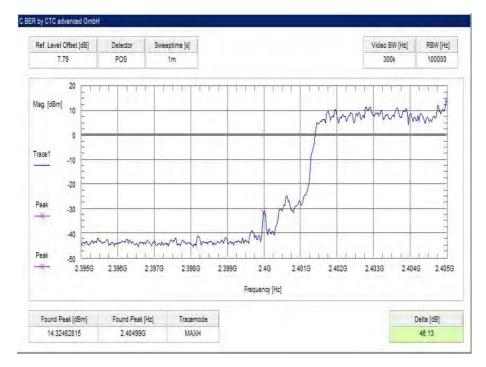




Plot 5: Lower band edge - hopping on, Pi/4 DQPSK modulation

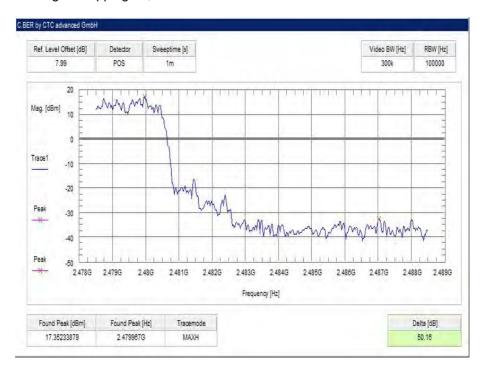
Plot 6: Upper band edge – hopping on, Pi/4 DQPSK modulation

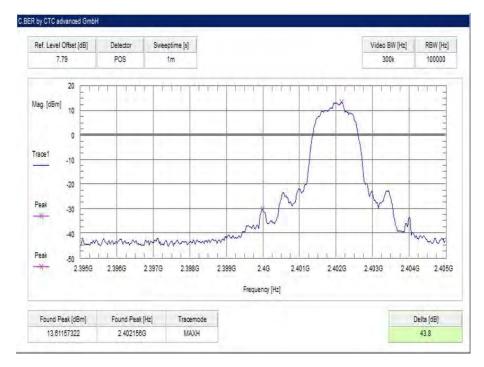




Plot 7: Lower band edge - hopping off, Pi/4 DQPSK modulation

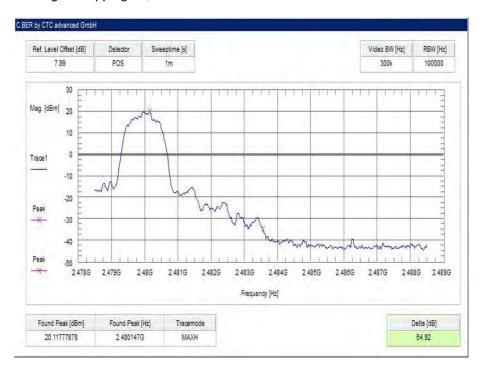
Plot 8: Upper band edge – hopping off, Pi/4 DQPSK modulation





Plot 9: Lower band edge – hopping on, 8DPSK modulation

Plot 10: Upper band edge – hopping on, 8DPSK modulation



Plot 11: Lower band edge – hopping off, 8DPSK modulation

Plot 12: Upper band edge - hopping off, 8DPSK modulation

11.8 Band edge compliance radiated

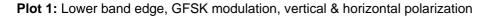
Description:

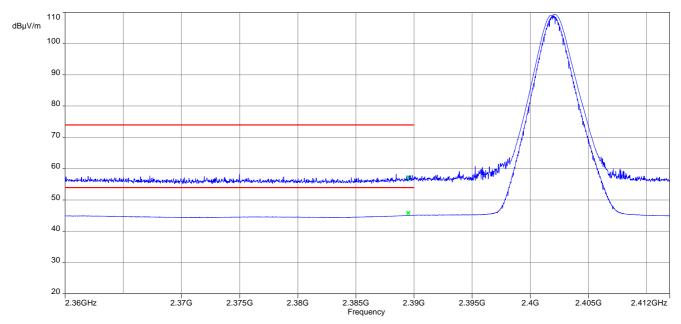
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement parameters			
Detector Peak / RMS			
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B		
Measurement uncertainty	See sub clause 8		

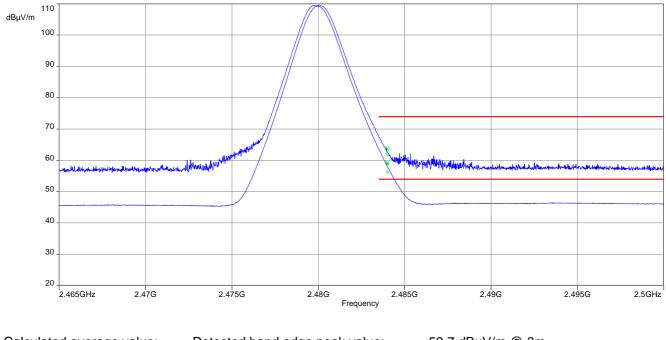
Limits:

FCC	IC		
Band edge com	pliance radiated		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).			
54 dBµV/m AVG			


74 dBµV/m Peak

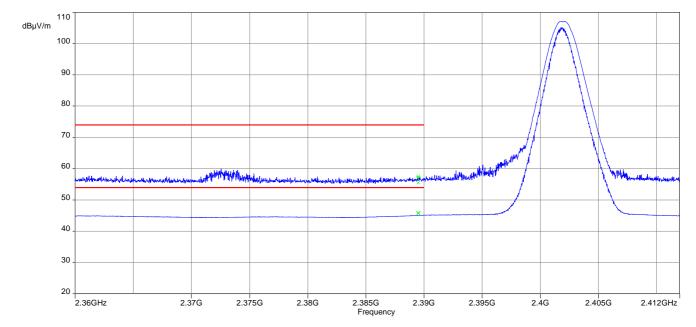

Results:

Scenario	Band edge compliance radiated [dBµV/m]		l [dBµV/m]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP



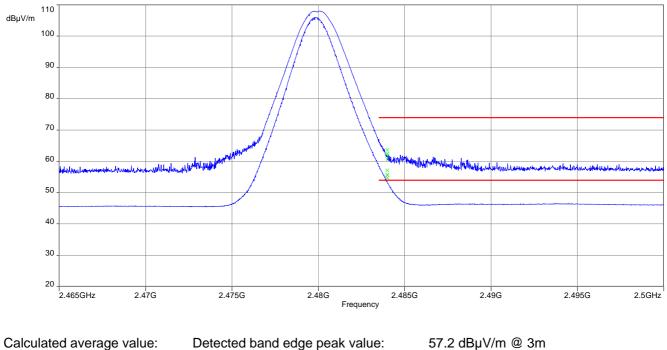
Plots:

Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization



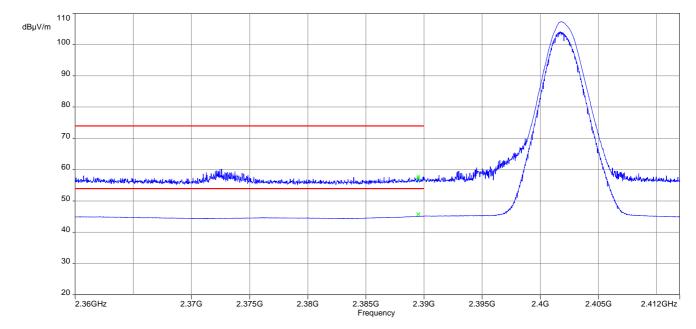
Calculated average value:

Detected band edge peak value: Duty cycle correction factor: Calculated band edge average value: 29.6 dBµV/m @ 3m


59.7 dBµV/m @ 3m -30.1 dB (See chapter 11.12)

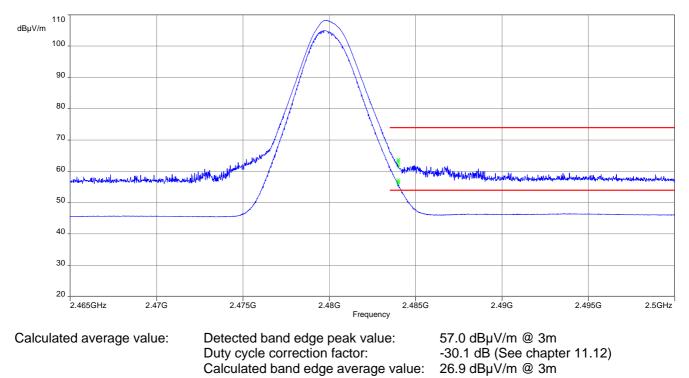
Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization

Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization



Calculated average value:

Duty cycle correction factor: Calculated band edge average value: 27.1 dBµV/m @ 3m


57.2 dBµV/m @ 3m -30.1 dB (See chapter 11.12)

Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

11.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	9 kHz to 25 GHz		
Trace mode	Max hold		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
TX spurious emissions conducted		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF		

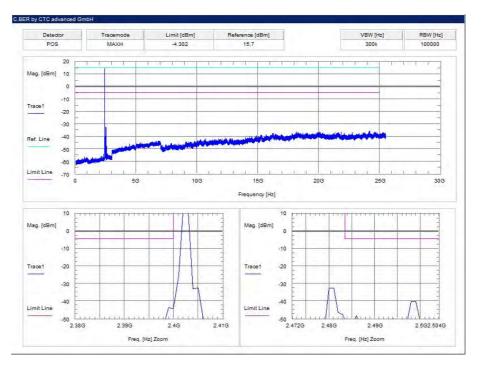
conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

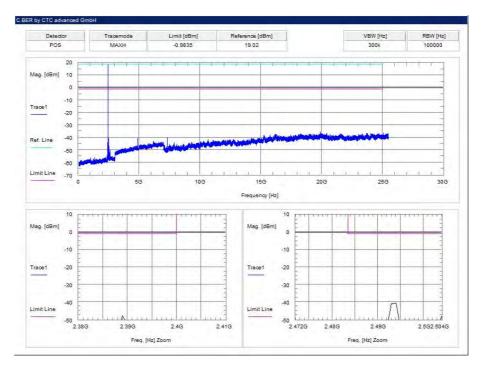
	TX spurious emissions conducted				
	GFSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		15.7	30 dBm		Operating frequency
	l emissions are be Please take a loo		-20 dBc		compliant
			-20 000		
2441		19.0	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		00 IB		compliant
			-20 dBc		
2480		21.1	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
			-20 UDC		

Results:

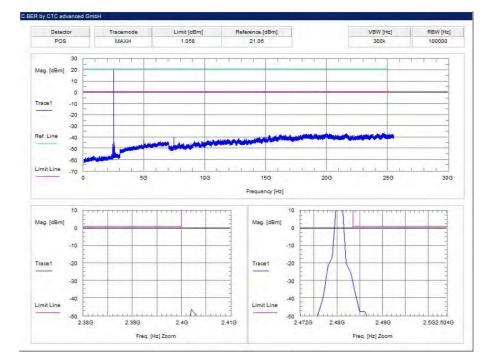
	TX spurious emissions conducted				
			Pi/4-DQPSK - mode		
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		13.2	30 dBm		Operating frequency
	l emissions are be Please take a loo		-20 dBc		compliant
			-20 060		
2441		17.5	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		00 15		compliant
			-20 dBc		
2480		20.0	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
			-20 UBC		


Results:

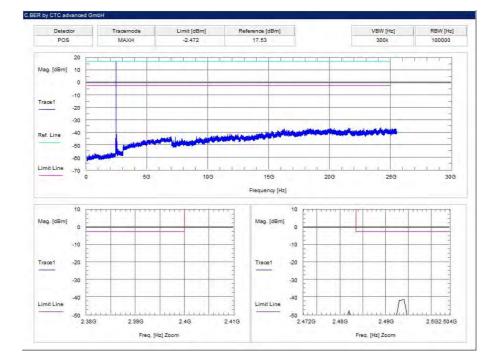
	TX spurious emissions conducted				
	8DPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		13.3	30 dBm		Operating frequency
	l emissions are be Please take a loo		-20 dBc		compliant
			-20 000		
2441		17.5	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		20 dDa		compliant
			-20 dBc		
2480		20.0	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
			-20 UBC		



Plots:

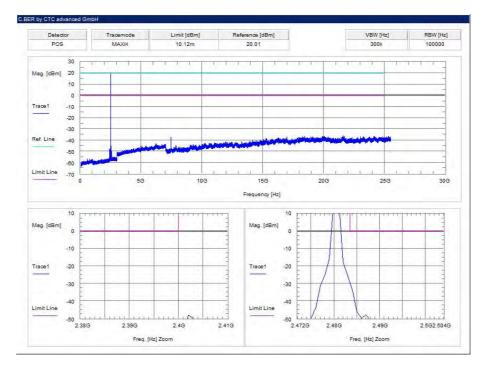


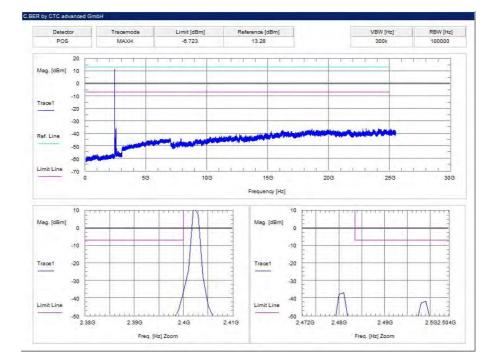
Plot 2: middle channel - 2441 MHz, GFSK modulation



Plot 3: highest channel – 2480 MHz, GFSK modulation

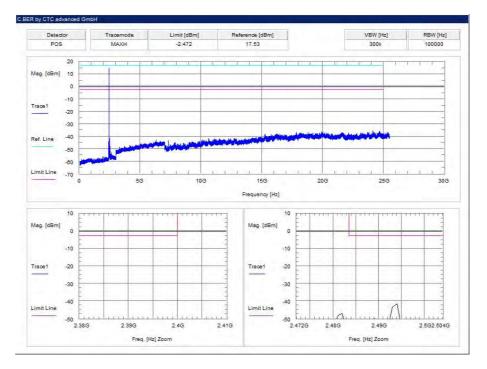
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

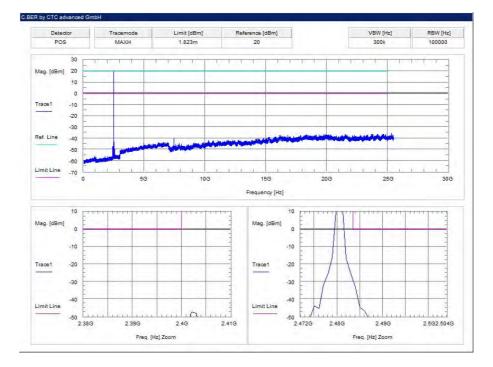




Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

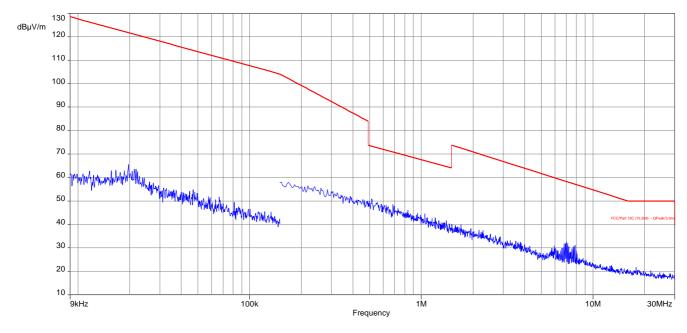
11.10 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

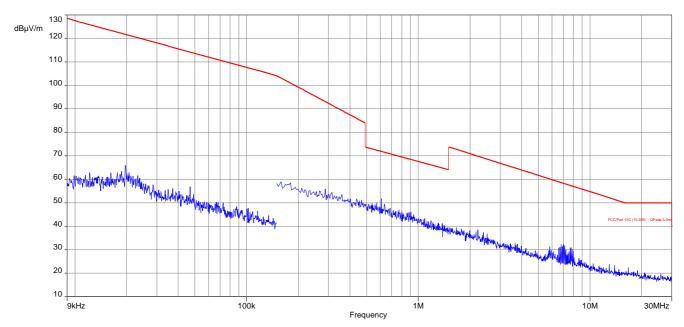
Measurement parameters				
Detector	Peak / Quasi peak			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 C			
Measurement uncertainty	See sub clause 8			

Limits:

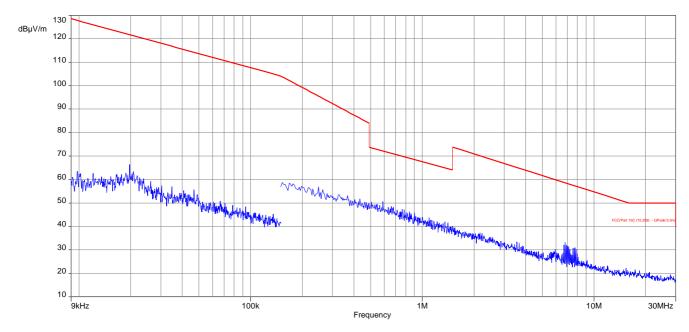

FCC			IC		
TX spurious emissions radiated below 30 MHz					
Frequency (MHz)	Field strengt	th (dBµV/m)	Measureme	nt distance	
0.009 – 0.490	2400/F	F(kHz)	30	0	
0.490 – 1.705	24000/F(kHz)		30	0	
1.705 – 30.0	3	0	30	0	

Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected emissions are more than 20 dB below the limit.								
Measurement uncertainty ± 3 dB								



Plots:



Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode

Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

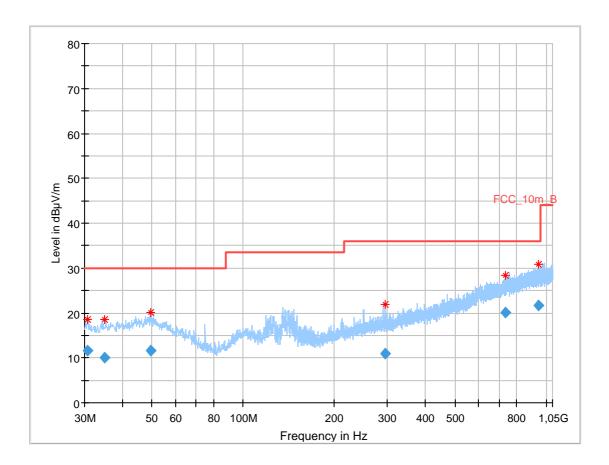
11.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

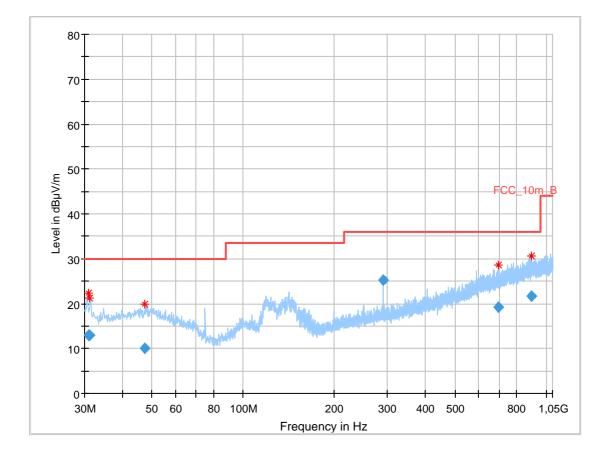
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters								
Detector	Peak / Quasi Peak							
Sweep time	Auto							
Resolution bandwidth	120 kHz							
Video bandwidth	3 x RBW							
Span	30 MHz to 1 GHz							
Trace mode	Max hold							
Measured modulation	🖾 GFSK 🛛 Pi/4 DQPSK 🗌 8DPSK							
Test setup	See sub clause 6.1 A							
Measurement uncertainty	See sub clause 8							

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

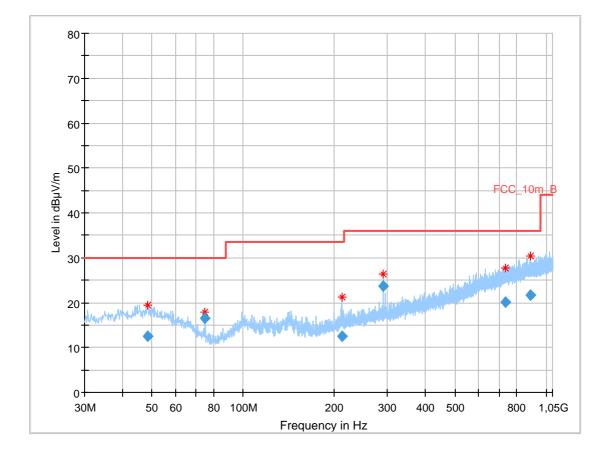

Limits:

FCC			IC						
	TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15.209								
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
30 - 88	30	0.0	10						
88 – 216	33	3.5	10						
216 - 960	36	10							
Above 960	54	l.0	3						


Plots: Transmit mode

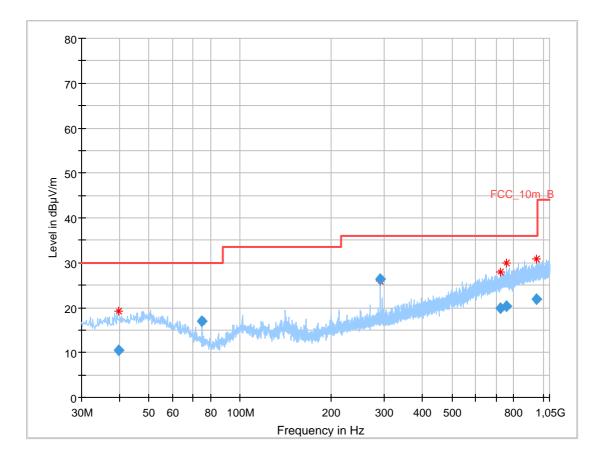
Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.620550	11.71	30.00	18.29	1000.0	120.000	101.0	V	129.0	11.9
34.845600	10.04	30.00	19.96	1000.0	120.000	185.0	V	25.0	12.6
49.749150	11.63	30.00	18.37	1000.0	120.000	101.0	V	142.0	13.7
293.448450	11.03	36.00	24.97	1000.0	120.000	98.0	V	242.0	14.3
732.265650	20.02	36.00	15.98	1000.0	120.000	185.0	Н	68.0	22.3
940.618800	21.76	36.00	14.24	1000.0	120.000	101.0	Н	161.0	24.3



Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.026900	12.87	30.00	17.13	1000.0	120.000	104.0	V	205.0	12.0
31.137300	12.86	30.00	17.14	1000.0	120.000	101.0	V	184.0	12.0
47.340450	10.13	30.00	19.87	1000.0	120.000	185.0	Н	90.0	13.7
290.283750	25.31	36.00	10.69	1000.0	120.000	98.0	V	21.0	14.2
695.791650	19.29	36.00	16.71	1000.0	120.000	185.0	Н	69.0	21.5
894.112950	21.62	36.00	14.38	1000.0	120.000	178.0	V	159.0	24.1


Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
48.317550	12.57	30.00	17.43	1000.0	120.000	98.0	V	311.0	13.7
75.010200	16.44	30.00	13.56	1000.0	120.000	101.0	V	14.0	8.9
211.545900	12.58	33.50	20.92	1000.0	120.000	98.0	V	27.0	12.3
290.305350	23.62	36.00	12.38	1000.0	120.000	98.0	V	27.0	14.2
734.804550	20.07	36.00	15.93	1000.0	120.000	185.0	Н	259.0	22.4
890.227500	21.70	36.00	14.30	1000.0	120.000	185.0	V	3.0	24.1

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.813750	10.59	30.00	19.41	1000.0	120.000	179.0	V	3.0	13.2
75.006600	16.91	30.00	13.09	1000.0	120.000	101.0	V	3.0	8.9
290.271300	26.39	36.00	9.61	1000.0	120.000	98.0	V	3.0	14.2
725.690250	19.86	36.00	16.14	1000.0	120.000	98.0	V	154.0	22.2
758.195700	20.42	36.00	15.58	1000.0	120.000	98.0	V	120.0	22.7
950.279250	21.85	36.00	14.15	1000.0	120.000	98.0	V	3.0	24.3

11.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth 1 MHz							
Video bandwidth 3 x RBW							
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Measured modulation	🖾 GFSK 🛛 Pi/4 DQPSK 🗌 8DPSK						
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)						
Measurement uncertainty See sub clause 8							

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC						
	TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15	.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
Above 960	54	l.0	3						

Results: Transmitter mode

	TX spurious emissions radiated [dBµV/m]									
	2402 MHz			2441 MHz		2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
4804	Peak	61.0	4882	Peak	69.9	4000	Peak	73.7		
4604	AVG	30.9	4002	AVG	39.8	4960	AVG	43.6		
7206	Peak	Not rated*	7323	Peak	63.9	7440	Peak	64.2		
7200	AVG	NUL TALEU	1323	AVG	33.8		AVG	34.1		
12010	Peak	64.3	10005	Peak	69.5	12400	Peak	70.5		
12010	AVG	34.2	12205	AVG	39.4	12400	AVG	40.4		
	Peak									
	AVG									

*Not rated because the emission frequency is not part of a restricted band

Duty cycle calculation according to Part 15.35:

F = 20 * log (dwell time / 100 ms)

The dwell time of the longest possible Bluetooth transmission (DH5-packet) is 3.125 ms.

In a period of 100 ms, we have a maximum of 1 transmission and that implies a correction factor for spurious measurement emissions:

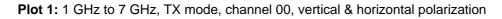
1600 hops / second for DH1 = 320 hops / second for DH5

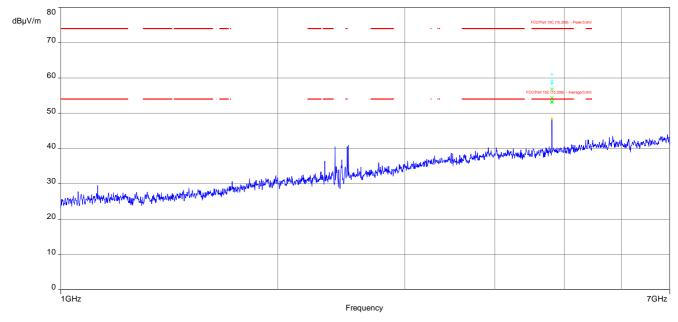
160 hops / second for TX / RX separation (loopback mode)

160 hops / 20 channel (minimum for BT) = 8 hops / second for each channel

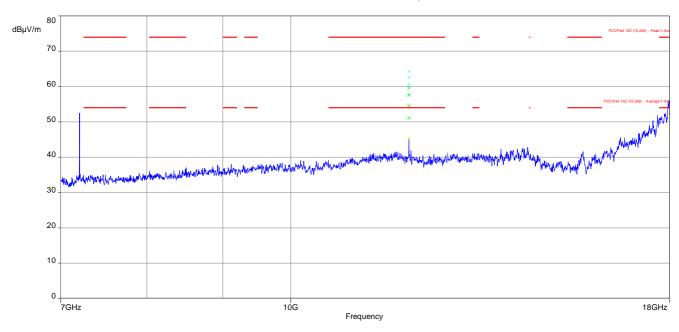
8 hops / second = 0.8 hops / 100 ms => 1 hops (5 * 625µs / 100ms)

F = 20 * log (1 * 3.125 ms / 100ms) = -30.1 dB

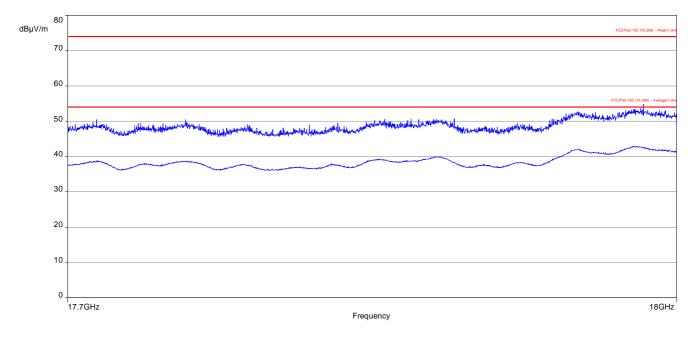

Results: Receiver mode


RX spurious emissions radiated [dBµV/m]								
F [MHz]	Level [dBµV/m]							
All detect	ed emissions are more than 20 dB below	the limit.						
-/-	Peak	-/-						
	AVG	-/-						

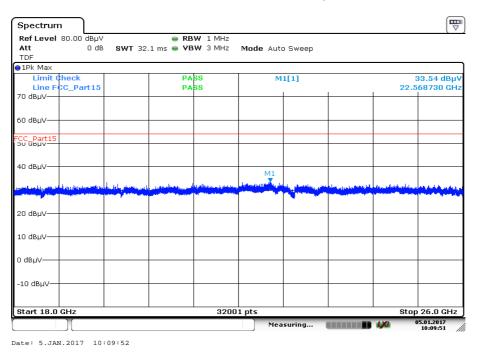
Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

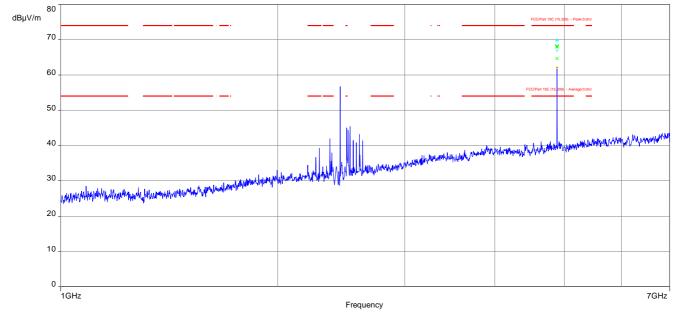


Plots: Transmitter mode

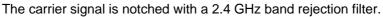


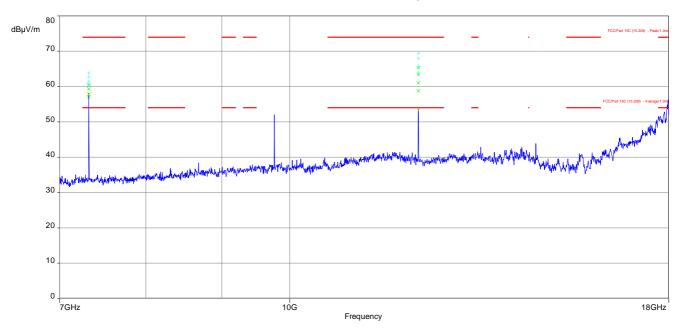
The carrier signal is notched with a 2.4 GHz band rejection filter.

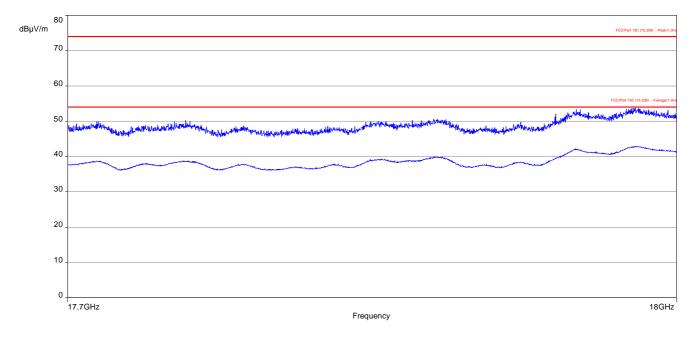

Plot 2: 7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

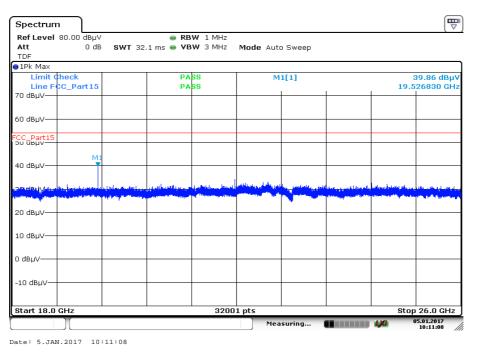


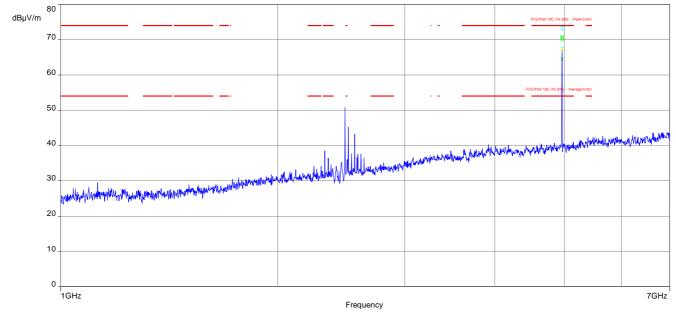
Plot 3: 17.7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

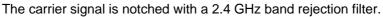


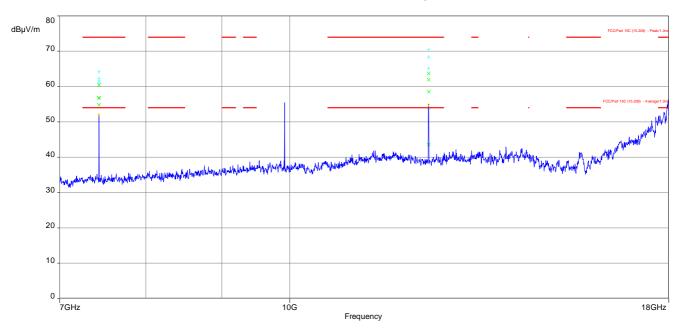

Plot 5: 1 GHz to 7 GHz, TX mode, channel 39, vertical & horizontal polarization


Plot 6: 7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

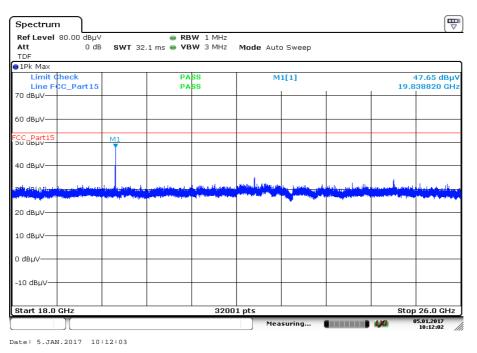


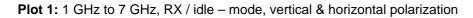
Plot 7: 17.7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

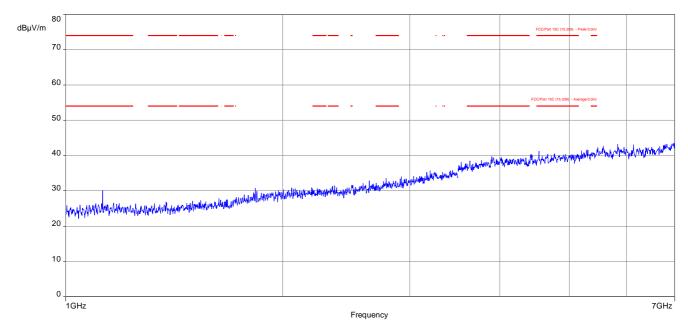

Plot 8: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

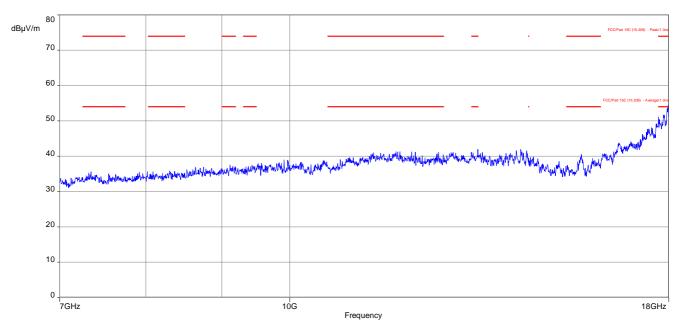


Plot 9: 1 GHz to 7 GHz, TX mode, channel 78, vertical & horizontal polarization

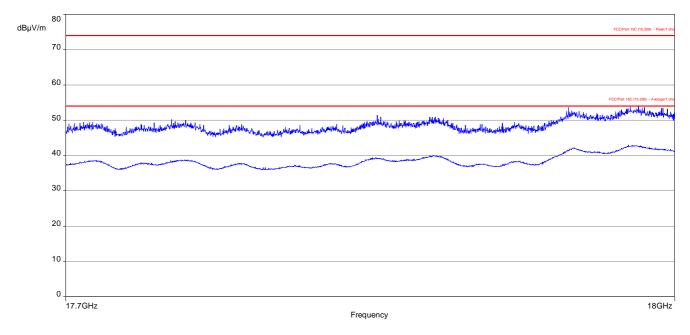

Plot 10: 7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization


Plot 11: 17.7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

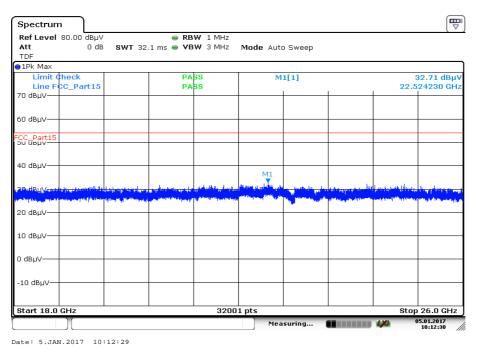

Plot 12: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization



Plots: Receiver mode



Plot 2: 7 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization



Plot 3: 17.7 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

11.13 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

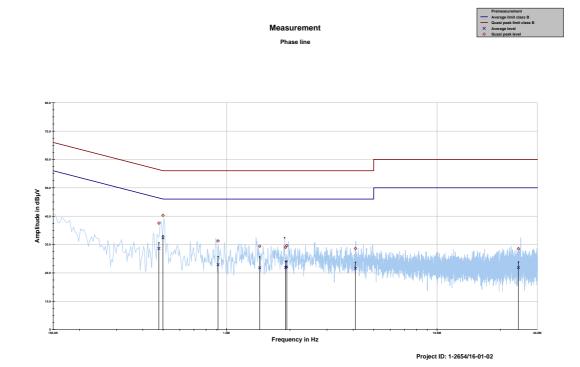
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters				
Detector	Peak - Quasi peak / average			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.5. A			
Measurement uncertainty	See sub clause 8			

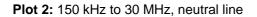
Limits:

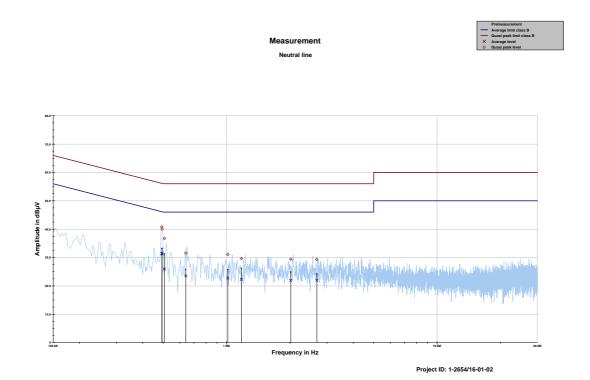
FCC	IC			
TX spurious emissions conducted < 30 MHz				
Frequency (MHz)	Quasi-peak (dBµV/m)		Average (dBµV/m)	
0.15 – 0.5	66 to 56*		56 to 46*	
0.5 – 5	56		46	
5 – 30.0	60		50	

*Decreases with the logarithm of the frequency


Results:

Spurious emissions conducted < 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
No emissions detected					


Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.476820	37.54	18.85	56.394	28.60	18.06	46.662
0.498805	40.30	15.72	56.020	32.36	13.67	46.034
0.911433	31.25	24.75	56.000	22.87	23.13	46.000
1.436871	29.42	26.58	56.000	21.78	24.22	46.000
1.905502	29.03	26.97	56.000	21.91	24.09	46.000
1.932913	29.64	26.36	56.000	22.10	23.90	46.000

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.492808	40.76	15.36	56.120	31.48	14.73	46.205
0.493912	40.04	16.06	56.102	31.22	14.96	46.174
0.506088	36.73	19.27	56.000	25.93	20.07	46.000
0.640278	31.59	24.41	56.000	23.50	22.50	46.000
1.013593	31.09	24.91	56.000	22.74	23.26	46.000
1.176964	29.64	26.36	56.000	22.30	23.70	46.000
2.018576	29.43	26.57	56.000	21.92	24.08	46.000
2.685502	29.37	26.63	56.000	21.96	24.04	46.000

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-03-06

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number
OBW		Occupied Bandwidth
OC		Operating Channel
OCW		Operating Channel Bandwidth
OOB		Out Of Band

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG I.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung	Deutsche Akkreditierungsstelle GmbH Standort Berlin Standorf Frankfurt am Main Standort Braunschweig Sottelmarkt 10 Europa-Aller 52 Bundesäßer 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüffaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN (SO/IEC 17025-2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Nach Mobilium (GSM / DCS) + 07A Bietromagnetischer Verträglichkeit (EMV) Produktischerheit SAX / SMB Smart Card Technology Sauromotive WH Gerricki Kanaditche Anforderengen Lokative Mertified Communication (HITC) Die Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung mit dem Bescheid vom 25.11.2006 mit der Akkreditierungsaurtande gilt nut in Verbindung Akkreditierungsaurtande gilt nut in Verbindung Akkredi	Die auszugsweise Veröffentlichung der Aktreditierungsunkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Aktreditierungsstelle Grehr (DAKS), Ausgenomminen davon ist die reparate Weiterwertnetung des Deutscheide durch die umseige gewannte Kalenomministiebeertnamgsstelle in unwerknichterter Form. Er darf nicht der Auschelin erweckt werden, dass sich die Aktreditierung such auf Bereiche enstreckt, die über den durch die DAkS bestätigten Aktreditierungsberlich binausgeben. Die Aktreditierung erfolgte gemäß des Gesetzes über die Aktreditierungsstelle in 3.1. Juli 2009 (BOBI, 15. 2. 2013) nowie der Verordnung (EG) kr. 760/2008 des Europäischen Parlaments und des Tates von 5. Juli 2008 kreite die Verordnung (EG) kr. 760/2008 des Europäischen Parlaments Die DAks zu kreiterzichnen in der Neutraktung von Tredukten (das 1. 2.18 vom 9. Juli 2008, S. 201 Die DAks zu kreiterzichnen der Abulitatareit der Aktreditierung auf hart die Aktreditierung der European congertation for Actreditation (JA), den International Actreditienschen draves Aukannen erkennen ihre Aktreditierungen zugenstellt an.
reamber, 25.11.2006 in Advance of an Australia	

Note:

The current certificate including annex can be received on request.