

TEST REPORT

Test report no.: 1-6927/18-01-10

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com/

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12076-01-04 and D-PL-12076-01-05

Applicant

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Phone: -/-

Contact: Nicolas Jacquemont

e-mail: <u>nicolas.jacquemont@ingenico.com</u>

Phone: +33 4 75 84 21 23

Manufacturer

Ingenico Group

9 Avenue de la Gare Rovaltain 26958 Valence Cedex 9 / FRANCE

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 5 Spectrum Management and Telecommunications Radio Standards Specification

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Payment terminal

Model name: AXIUM D7 CL/WIFI/BT

FCC ID: XKB-AXICLWBT

IC: 2586D-AXICLWBT

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: WLAN

Radio Communications & EMC

Antenna: Integrated antenna

Power supply: 3.7 V DC by Li-polymer battery 115 V AC by mains adapter

Temperature range: 0°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Radio Communications & EMC

Test report authorized:	Test performed:
Andreas Luckenbill Lab Manager	Marco Bertolino Lab Manager

Table of contents

1	Table o	of contents	
2		al information	
_		Notes and disclaimer	
		Application details	
		Test laboratories sub-contracted	
2			
3		andard/s and references	
4	Test er	nvironment	
5	Test ite	em	
	5.1	General description	
	5.2	Additional information	
6	Descri	otion of the test setup	6
	6.1	Shielded semi anechoic chamber	-
		Shielded fully anechoic chamber	
		Radiated measurements > 18 GHz	
		AC conducted	
	6.5	Conducted measurements with peak power meter & spectrum analyzer	11
7	Sequer	nce of testing	12
•			
		Sequence of testing radiated spurious 9 kHz to 30 MHz	
		Sequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious 1 GHz to 18 GHzSequence of testing radiated spurious above 18 GHz	
		·	
8		rement uncertainty	
9	Summa	ary of measurement results	17
10	Addi	tional comments	18
11	Addi	tional EUT parameter	19
12	Meas	surement results	20
	12.1	Antenna gain	20
	12.2	Identify worst case data rate	
	12.3	Maximum output power	
	12.4	Duty cycle	
	12.5	Peak power spectral density	
	12.6	6 dB DTS bandwidth	
	12.7	Occupied bandwidth – 99% emission bandwidth	
	12.8	Occupied bandwidth – 20 dB bandwidth	
	12.9	Band edge compliance conducted	
	12.10	Spurious emissions conducted	
	12.11	Spurious emissions radiated below 30 MHz	
	12.12 12.13	Spurious emissions radiated 30 MHz to 1 GHzSpurious emissions radiated above 1 GHz	
	12.13	Spurious emissions radiated above 1 GHz	
40			
13		ervations	
	ex A	Glossary	
Ann	ex B	Document history	126
	ex C	Accreditation Certificate - D-PL-12076-01-04	126

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2018-09-21
Date of receipt of test item: 2018-09-21
Start of test: 2018-10-29
End of test: 2019-02-26

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 127

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05r01	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 127

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content			42 %
Barometric pressure			1026 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.7 V DC by Li-polymer battery 115 V AC by mains adapter No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

5 Test item

5.1 General description

Kind of test item	:	Payment terminal
Type identification	:	AXIUM D7 CL/WIFI/BT
HMN	:	-/-
PMN	:	Axium D7
HVIN	:	AXIUM D7 CL/WIFI/BT
FVIN	:	4.19.1
S/N serial number	:	Radiated unit: 182667314091119803183628 Conducted unit: 182677314091119803190341
Hardware status	:	296230079
Software status	:	4.19.1
Firmware status	:	-/-
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission Use of frequency spectrum		DSSS, OFDM
Type of modulation	:	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels	:	11 with 20 MHz channel bandwidth 9 with 40 MHz channel bandwidth
Antenna		Integrated antenna
Power supply	:	3.7 V DC by Li-polymer battery
Temperature range	:	0°C to +50°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6927/18-01-23_AnnexA

1-6927/18-01-23_AnnexB 1-6927/18-01-23_AnnexD

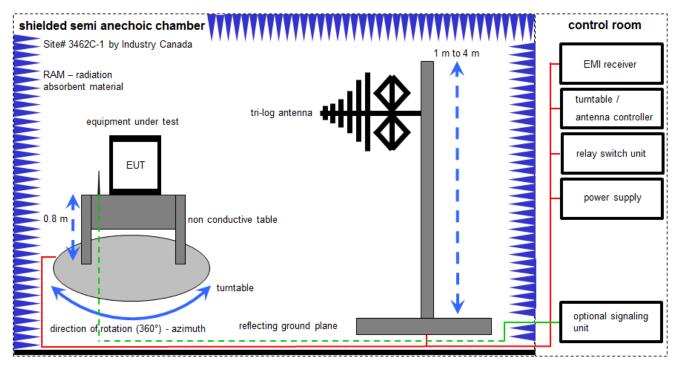
© CTC advanced GmbH Page 5 of 127

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve vlkl!	long-term stability recognized Attention: extended calibration interval	g	blocked for accredited testing
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 127

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

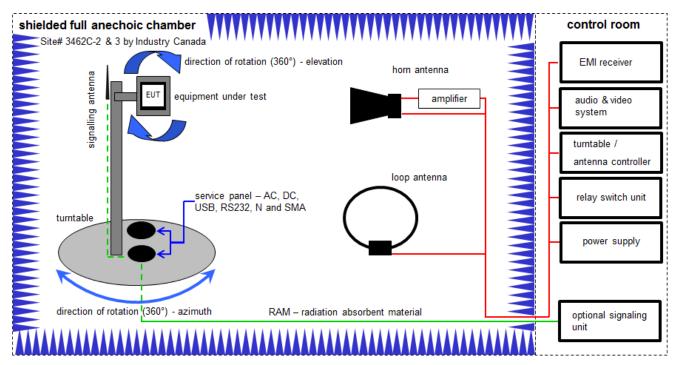
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 7 of 127

6.2 Shielded fully anechoic chamber

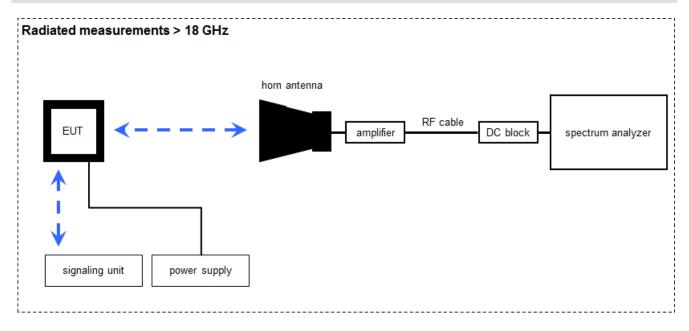
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	07.07.2017	06.07.2019
2	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019
3	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A, B, C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
9	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
10	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
11	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	14.12.2017	13.12.2018
12	А	RF Amplifier	AFS4-00100800-28- 20P-4-R	MITEQ	2008992	300005204	ne	-/-	-/-
13	Α	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

© CTC advanced GmbH Page 8 of 127

6.3 Radiated measurements > 18 GHz

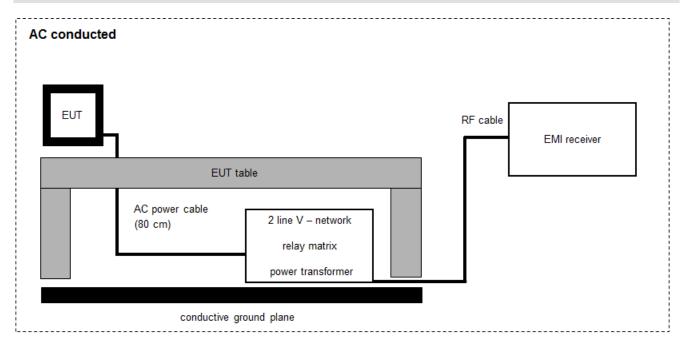
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \ \mu\text{V/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	vlKI!	13.12.2017	12.12.2019
3	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018 17.12.2018	15.01.2019 16.12.2019
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 127

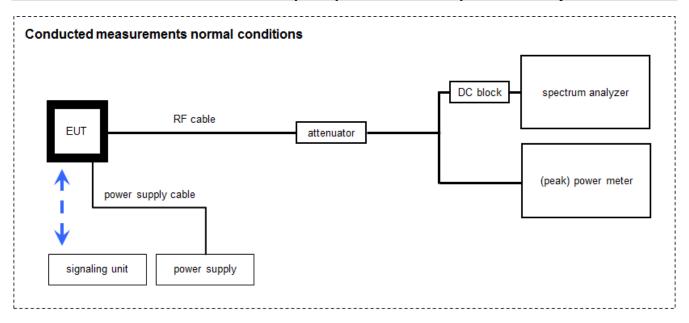
6.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 37.62 \text{ [dB}\mu\text{V/m]} + 9.90 \text{ [dB]} + 0.23 \text{ [dB]} = 47.75 \text{ [dB}\mu\text{V/m]} (244.06 \mu\text{V/m})$


Equipment table:

No.	Lab /	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of	Last	Next
	Item		,.				Calibration	Calibration	Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vlKI!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	18.12.2017	17.12.2018
5	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	NK!	-/-	-/-

© CTC advanced GmbH Page 10 of 127

6.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
2	A, B	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	11.05.2018	10.05.2020
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019
4	A, B	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	A, B	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
6	В	Power Sensor	NRP-Z81	R&S	100010	300003780	vlKI!	26.01.2017	25.01.2019
7	A, B	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
8	A, B	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
9	A, B	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
10	А	DC-Blocker	WA7046	Weinschel Associates	-/-	400001310	ev	-/-	-/-
11	A, B	DC Power Supply	HMP2020	Rohde & Schwarz	102850	300005517	vlKI!	14.12.2017	13.12.2019

© CTC advanced GmbH Page 11 of 127

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 12 of 127

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 127

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 127

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 127

8 Measurement uncertainty

Measurement uncertainty								
Test case	Unce	Uncertainty						
Antenna gain	± 3	dB						
Power spectral density	± 1.1	15 dB						
DTS bandwidth	± 100 kHz (depend	s on the used RBW)						
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)						
Maximum output power conducted	± 1.1	± 1.15 dB						
Detailed spurious emissions @ the band edge - conducted	± 1.15 dB							
Band edge compliance radiated	± 3 dB							
	> 3.6 GHz	± 1.15 dB						
Spurious emissions conducted	> 7 GHz	± 1.15 dB						
Opunous emissions conducted	> 18 GHz	± 1.89 dB						
	≥ 40 GHz	± 3.12 dB						
Spurious emissions radiated below 30 MHz	± 3	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB							
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB							
Spurious emissions radiated above 12.75 GHz	± 4.5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB							

© CTC advanced GmbH Page 16 of 127

9 Summary of measurement results

⊠	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2019-03-08	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	DSSS		-/	/_		-/-
§15.35	Duty cycle	-/-	Nominal	Nominal	DSSS OFDM		-/	/_		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.2	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 8.3.1.3	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 8.7.3	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 8.5	Nominal	Nominal	DSSS OFDM	X				-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	RX / idle	×				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	×				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

© CTC advanced GmbH Page 17 of 127

10 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

Provided channels:

Channels with 20 MHz channel bandwidth:

channel number & center frequency													
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

channel number & center frequency													
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
f _c / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

© CTC advanced GmbH Page 18 of 127

11 Additional EUT	paramete	er
Test mode:		No test mode available Iperf was used to ping another device with the largest support packet size
	\boxtimes	Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:	×	Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 19 of 127

12 Measurement results

12.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power (@ 3 MHz) in EIRP and the conducted power (@ 3 MHz) of the module.

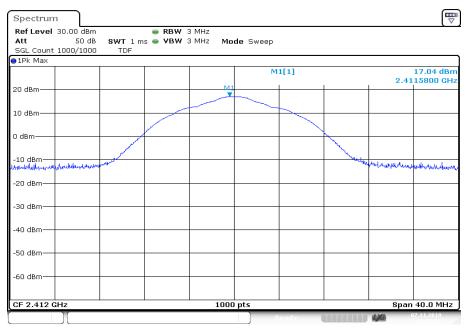
Measurement:

Measurement parameter						
Detector	Peak					
Sweep time	Auto					
Resolution bandwidth	3 MHz					
Video bandwidth	3 MHz / 10 MHz					
Trace mode	Max hold					
Test setup	See chapter 6.5 – A (conducted) See chapter 6.2 – A (radiated)					
Measurement uncertainty	See chapter 8					

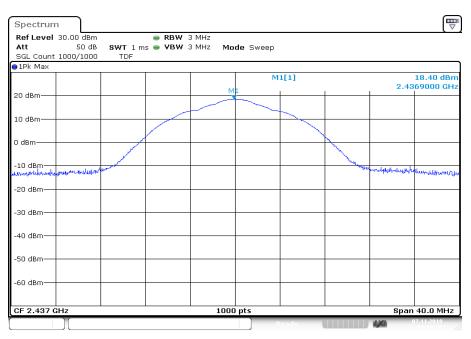
Limits:

FCC	IC				
6 dBi / > 6 dBi output power and power density reduction required					

Results:


	lowest channel	middle channel	highest channel
Conducted power / dBm Measured with DSSS modulation	17.0	18.4	18.1
Radiated power / dBm Measured with DSSS modulation	15.0	15.6	15.3
Gain [dBi] / Calculated	-2.0	-2.8	-3.2

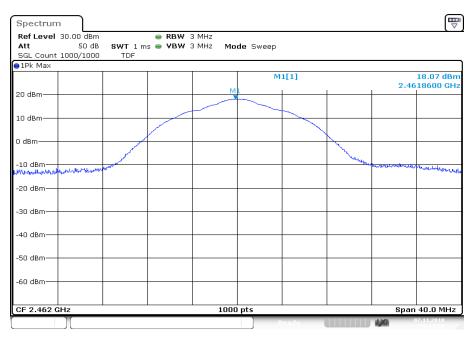
© CTC advanced GmbH Page 20 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:26:25

Plot 2: Middle channel



Date: 7.NOV.2018 07:56:29

© CTC advanced GmbH Page 21 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 08:04:51

© CTC advanced GmbH Page 22 of 127

12.2 Identify worst case data rate

Description:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Measurement:

Measurement parameter							
Detector	Peak						
Sweep time	Auto						
Resolution bandwidth	3 MHz						
Video bandwidth	3 MHz						
Trace mode	Max hold						
Test setup	See chapter 6.5 – A						
Measurement uncertainty	-/-						

Results:

Modulation scheme / bandwidth		
DSSS / b - mode	1 Mbit/s	
OFDM / g – mode	6 Mbit/s	
OFDM / n HT20 – mode	MCS0	
OFDM / n HT40 – mode	MCS0	

© CTC advanced GmbH Page 23 of 127

12.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter			
According to DTS clause: 8.3.1.3			
Peak power meter			
Test setup See chapter 6.5 – B			
Measurement uncertainty See chapter 8			

Limits:

FCC	IC
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi	

Results:

	maximum output power / dBm		
	lowest channel	middle channel	highest channel
Output power conducted DSSS / b – mode	20.0	21.5	21.1
Output power conducted OFDM / g – mode	19.3	20.1	20.9
Output power conducted OFDM / n HT20 – mode	19.2	20.6	20.7
Output power conducted OFDM / n HT40 – mode	19.0	18.7	18.8

© CTC advanced GmbH Page 24 of 127

12.4 Duty cycle

Description:

Measurement of the timing behavior.

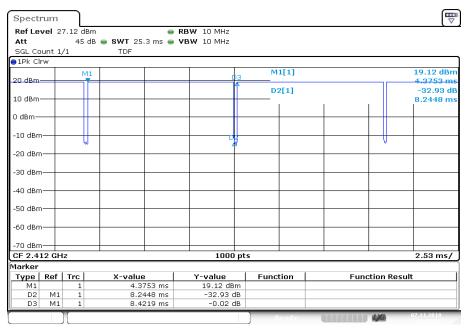
Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Depends on the signal see plot	
Resolution bandwidth	10 MHz	
Video bandwidth	10 MHz	
Trace mode	Max hold	
Test setup	See chapter 6.5 – A	
Measurement uncertainty	See chapter 8	

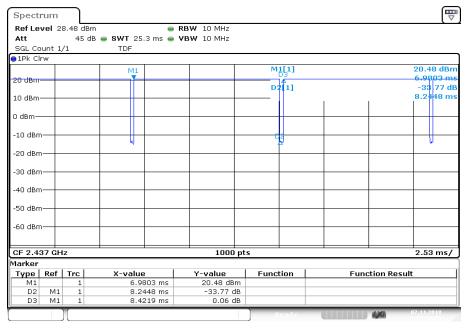
Limits:

FCC	IC	
No limitation!		

Results:


T_nom	V_{nom}	lowest channel	middle channel	highest channel
DSSS/I	o – mode	97.9 % / 0.09 dB	97.9 % / 0.09 dB	97.9 % / 0.09 dB
OFDM /	g – mode	87.7 % / 0.57 dB	87.7 % / 0.57 dB	87.4 % / 0.58 dB
OFDM / n H	IT20 – mode	86.8 % / 0.61 dB	86.8 % / 0.61 dB	86.8 % / 0.61 dB
OFDM / n H	T40 – mode	76.5 % / 1.16 dB	76.6 % / 1.16 dB	76.5 % / 1.16 dB

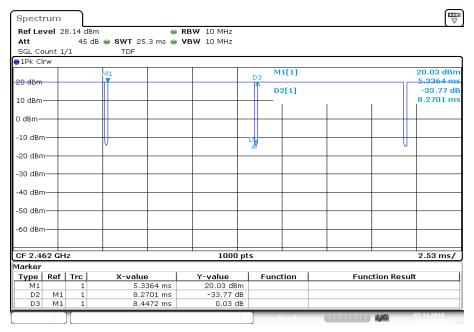
© CTC advanced GmbH Page 25 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:26:31

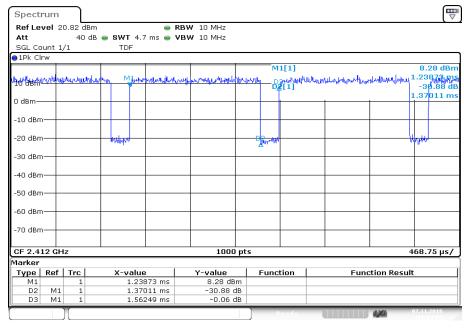
Plot 2: Middle channel



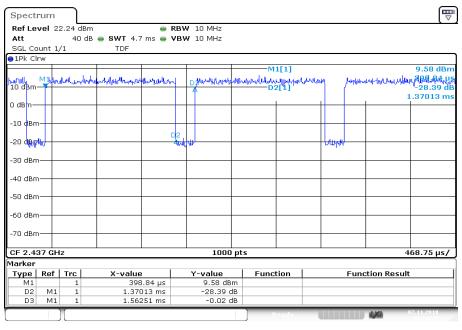
Date: 7.NOV.2018 07:56:36

© CTC advanced GmbH Page 26 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:04:57

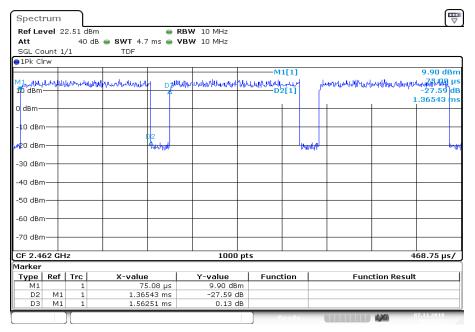
© CTC advanced GmbH Page 27 of 127


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:14:19

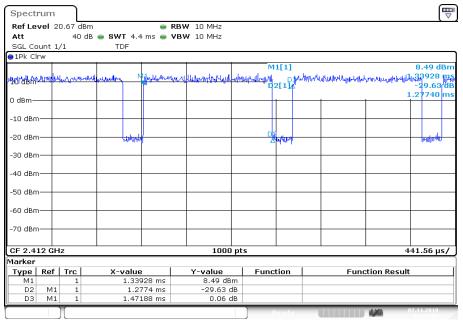
Plot 2: Middle channel



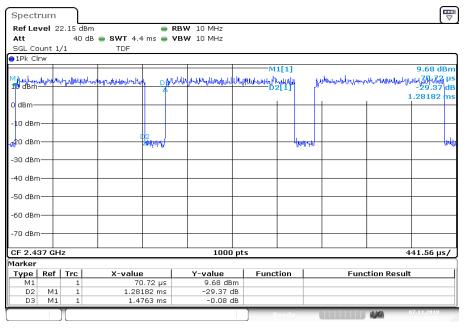
Date: 7.NOV.2018 08:24:17

© CTC advanced GmbH Page 28 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:33:55

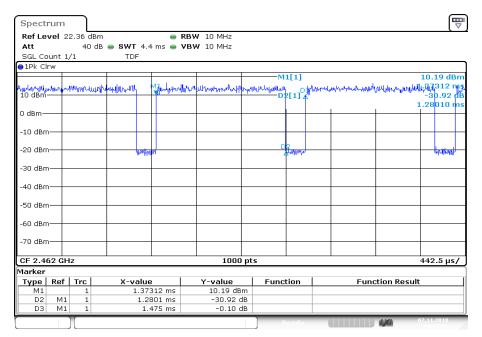
© CTC advanced GmbH Page 29 of 127


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:43:06

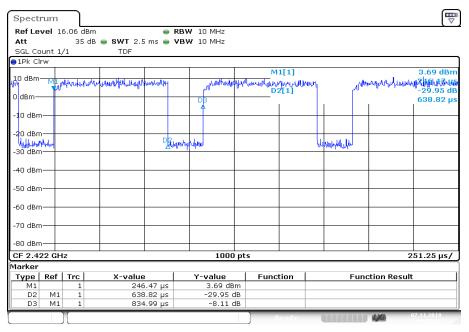
Plot 2: Middle channel



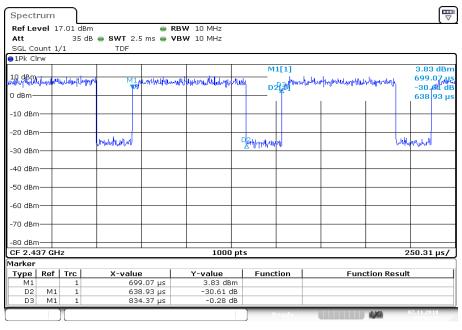
Date: 7.NOV.2018 08:51:52

© CTC advanced GmbH Page 30 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 09:00:46

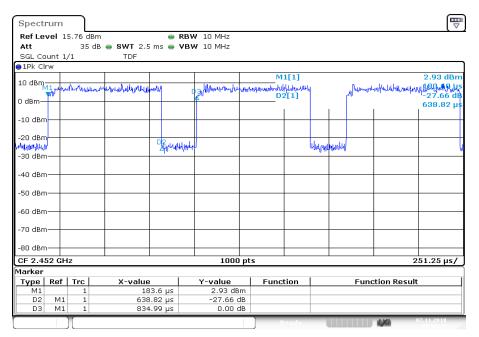
© CTC advanced GmbH Page 31 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 09:20:42

Plot 2: Middle channel



Date: 7.NOV.2018 09:41:17

© CTC advanced GmbH Page 32 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 09:52:43

© CTC advanced GmbH Page 33 of 127

12.5 Peak power spectral density

Description:

Measurement of the peak power spectral density of a digital modulated system. The PSD shows the strength of the variations as a function of the frequency. The measurement is repeated for both modulations at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
According to DTS clause: 8.4			
Detector Positive Peak			
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	30 MHz		
Trace mode	Max. hold (allow trace to fully stabilize)		
Test setup	See chapter 6.5 – A		
Measurement uncertainty	See chapter 8		

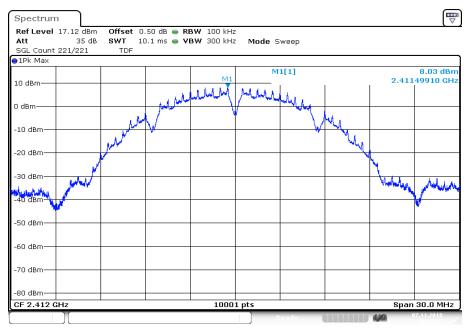
Limits:

FCC	IC	
8 dBm / 3 kHz (conducted)		

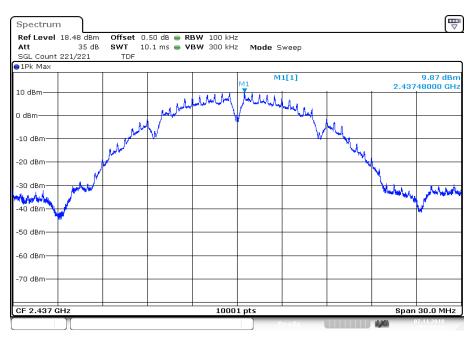
Results:

measured	peak power spectral density / dBm @ 100 kHz		
	Lowest channel Middle channel Highest channel		
DSSS / b - mode	8.03	9.87	9.62
OFDM / g – mode	-3.55	-2.30	-1.77
OFDM / n HT20 – mode	-3.42	-2.19	-1.67
OFDM / n HT40 – mode	-6.63	-7.06	-7.39

Formula for PKPSD calculation: PKPSD_{calculated}=PKPSD_{measured}+10*log(3kHz/RBW_{measured}[kHz])


calculated	peak power	r spectral density / dE	3 kHz
	Lowest channel	Middle channel	Highest channel
DSSS / b - mode	-7.20	-5.36	-5.61
OFDM / g – mode	-18.78	-17.53	-17.00
OFDM / n HT20 – mode	-18.65	-17.42	-16.90
OFDM / n HT40 – mode	-21.86	-22.29	-22.62

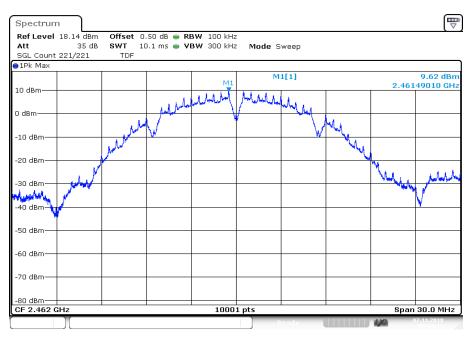
© CTC advanced GmbH Page 34 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:27:47

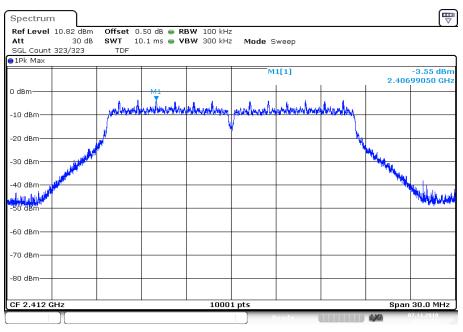
Plot 2: Middle channel



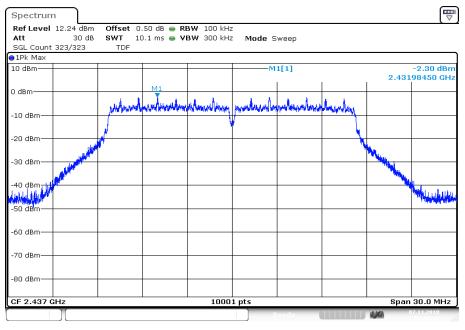
Date: 7.NOV.2018 07:57:55

© CTC advanced GmbH Page 35 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:06:19

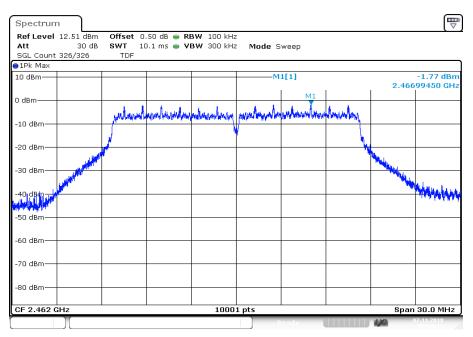
© CTC advanced GmbH Page 36 of 127


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:16:20

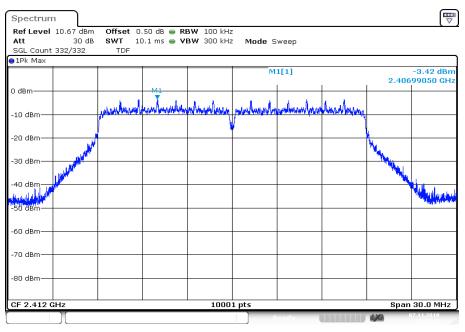
Plot 2: Middle channel



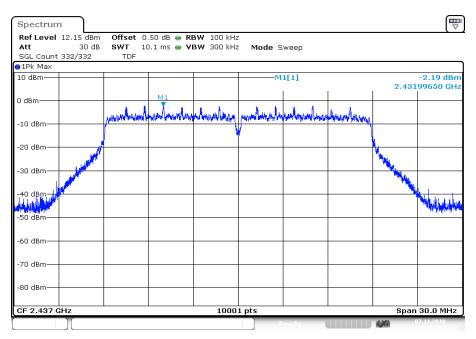
Date: 7.NOV.2018 08:26:23

© CTC advanced GmbH Page 37 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:36:13

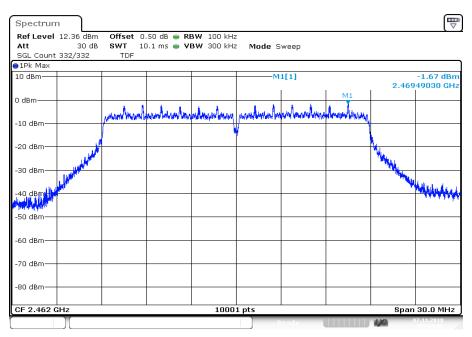
© CTC advanced GmbH Page 38 of 127


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:45:13

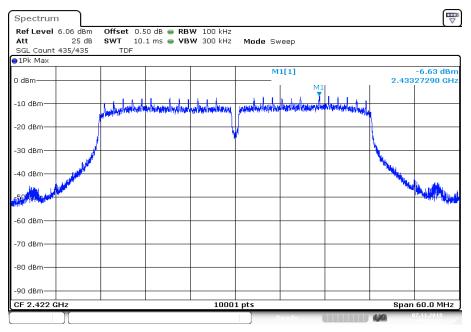
Plot 2: Middle channel



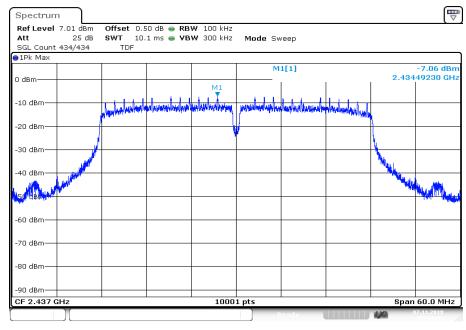
Date: 7.NOV.2018 08:54:04

© CTC advanced GmbH Page 39 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 09:03:08

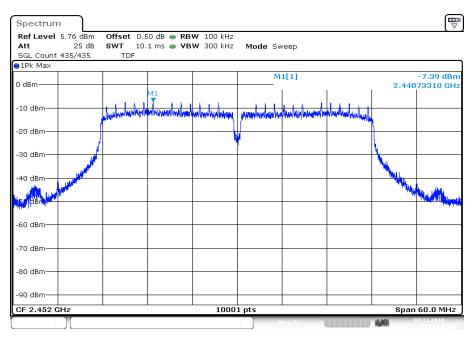
© CTC advanced GmbH Page 40 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 09:23:07

Plot 2: Middle channel



Date: 7.NOV.2018 09:43:43

© CTC advanced GmbH Page 41 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 09:55:09

© CTC advanced GmbH Page 42 of 127

12.6 6 dB DTS bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

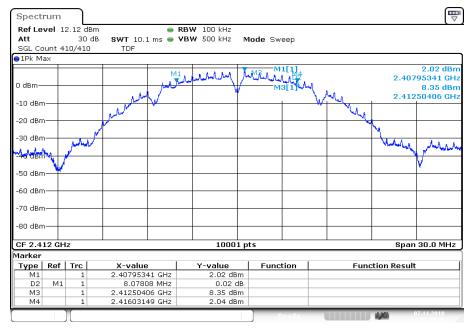
Measurement:

Measurement parameter			
Ac	According to DTS clause: 8.2		
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	500 kHz		
Span	30 MHz / 50 MHz		
Trace mode	Single count with 200 counts		
Test setup	See chapter 6.5 – A		
Measurement uncertainty	See chapter 8		

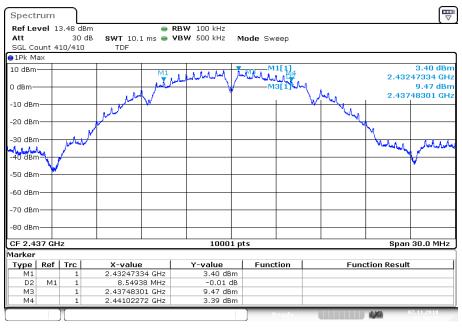
Limits:

FCC	IC		
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.			

Results:


	6 dB DTS bandwidth / kHz					
	lowest channel middle channel highest channel					
DSSS / b - mode	8078.1	8549.4	8555.0			
OFDM / g – mode	16351.5	16345.3	16348.4			
OFDM / n HT20 – mode	17575.4	17581.1	17578.2			
OFDM / n HT40 – mode	35144.5	35138.3	35462.7			

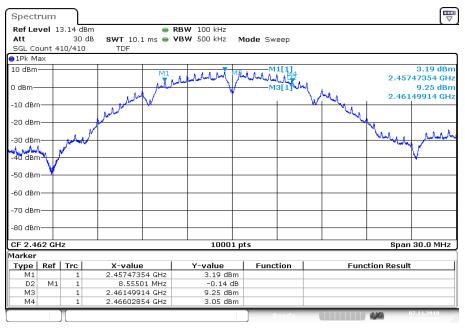
© CTC advanced GmbH Page 43 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:26:44

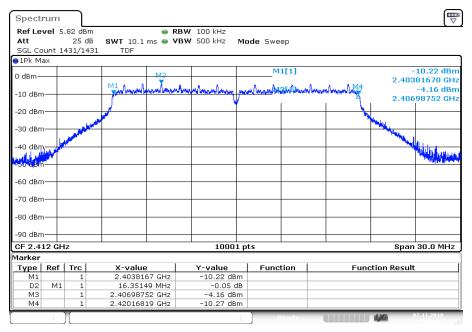
Plot 2: Middle channel



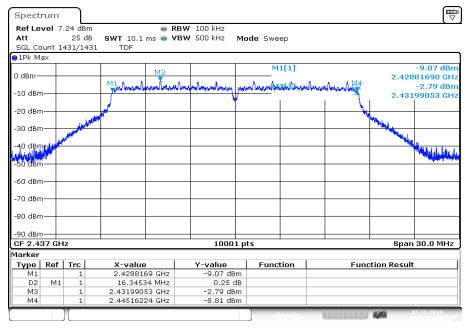
Date: 7.NOV.2018 07:56:49

© CTC advanced GmbH Page 44 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:05:12

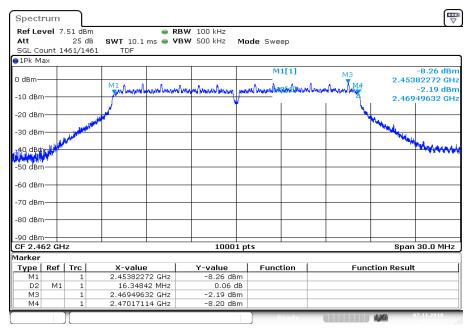
© CTC advanced GmbH Page 45 of 127


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:14:54

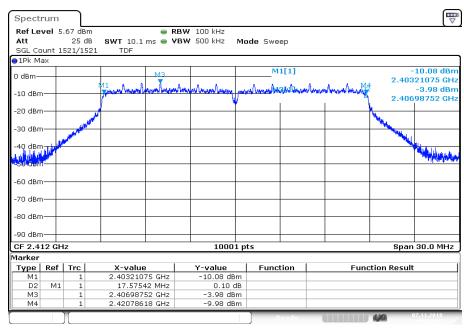
Plot 2: Middle channel



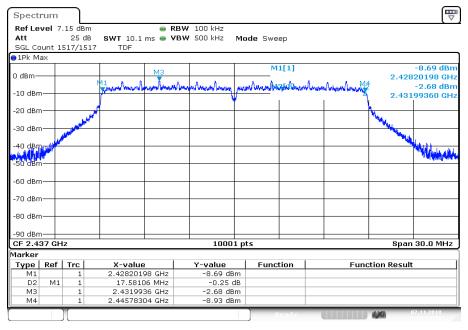
Date: 7.NOV.2018 08:24:54

© CTC advanced GmbH Page 46 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:34:37

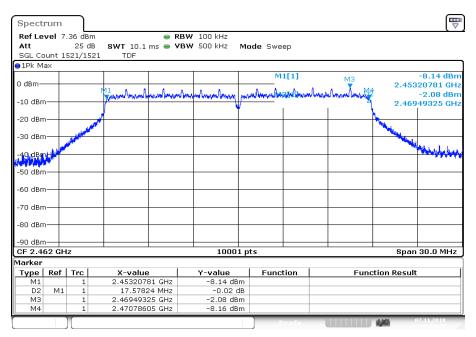
© CTC advanced GmbH Page 47 of 127


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:43:43

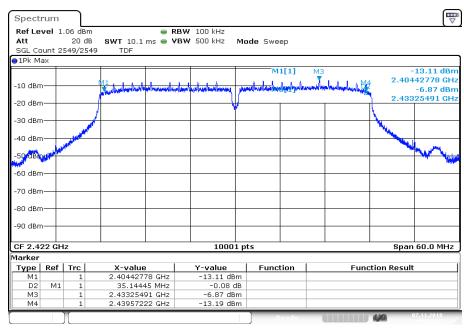
Plot 2: Middle channel



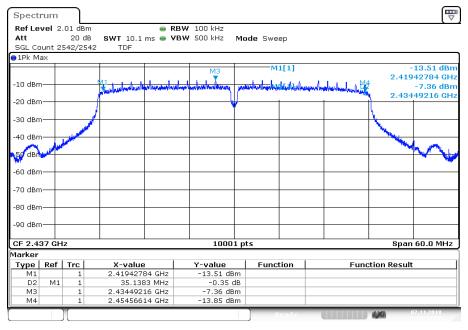
Date: 7.NOV.2018 08:52:32

© CTC advanced GmbH Page 48 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 09:01:31

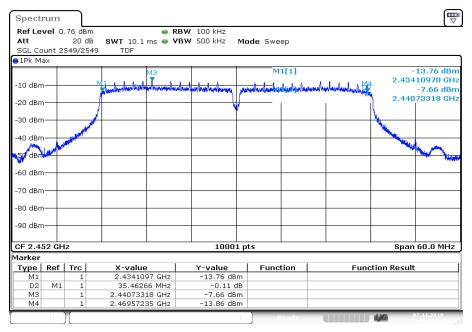
© CTC advanced GmbH Page 49 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 09:21:22

Plot 2: Middle channel



Date: 7.NOV.2018 09:41:57

© CTC advanced GmbH Page 50 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 09:53:24

© CTC advanced GmbH Page 51 of 127

12.7 Occupied bandwidth - 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

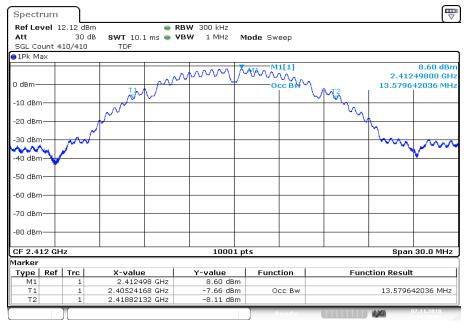
Measurement:

Measurement parameter			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	300 kHz		
Video bandwidth	1 MHz		
Span	30 MHz / 50 MHz		
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer		
Trace mode	Single count with 200 counts		
Test setup	See chapter 6.5 – A		
Measurement uncertainty	See chapter 8		

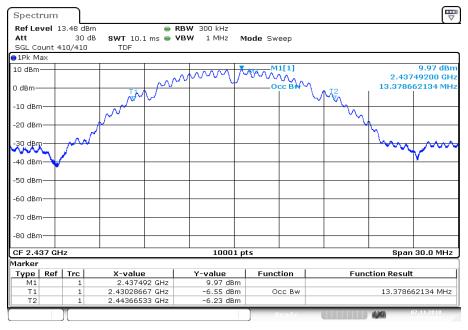
<u>Usage:</u>

-/-	IC
OBW is necessary for	r Emission Designator

Results:


	99% emission bandwidth / kHz					
	lowest channel middle channel highest channel					
DSSS / b - mode	13579.6	13378.7	13735.6			
OFDM / g – mode	17110.3	17062.3	17143.3			
OFDM / n HT20 – mode	18088.2	18052.2	18121.2			
OFDM / n HT40 – mode	36872.3	36758.3	37034.3			

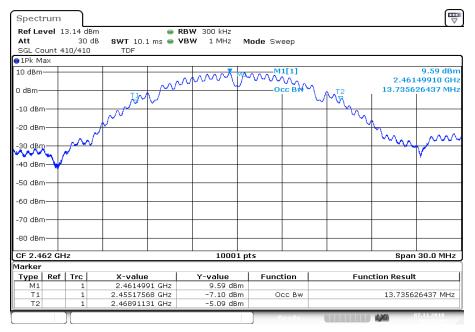
© CTC advanced GmbH Page 52 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:27:08

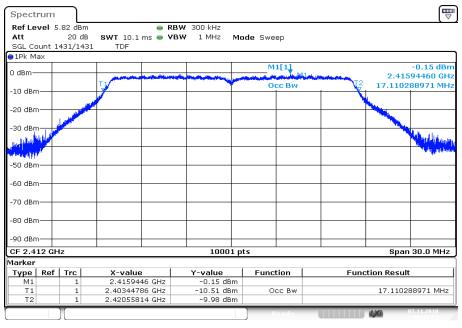
Plot 2: Middle channel



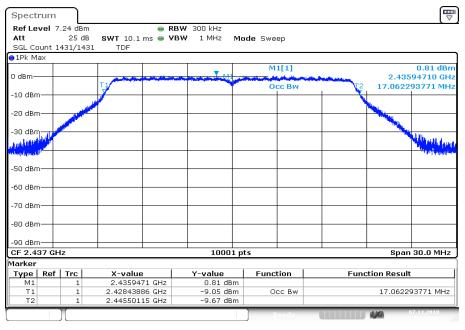
Date: 7.NOV.2018 07:57:15

© CTC advanced GmbH Page 53 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:05:39

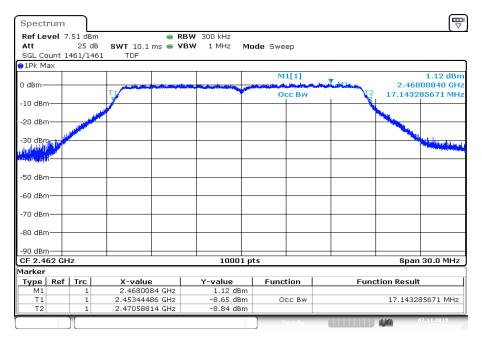
© CTC advanced GmbH Page 54 of 127


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:15:57

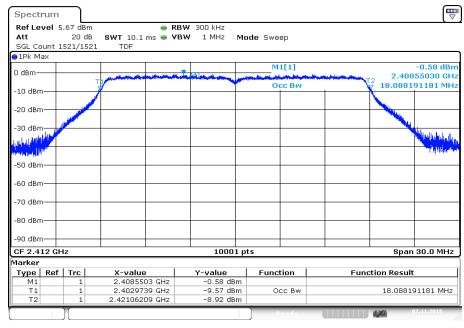
Plot 2: Middle channel



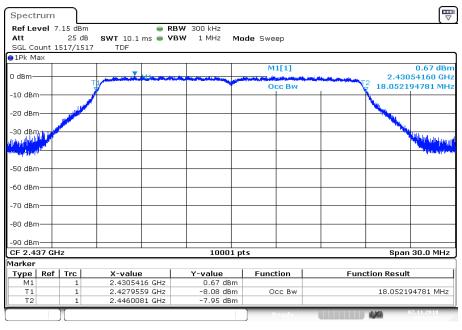
Date: 7.NOV.2018 08:26:00

© CTC advanced GmbH Page 55 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:35:49

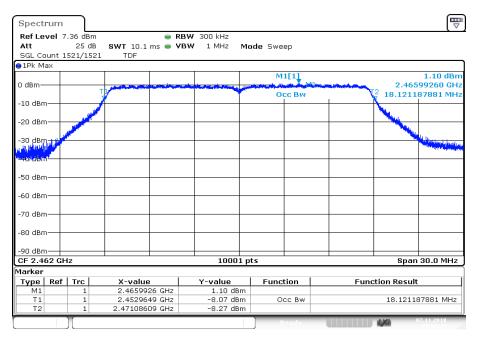
© CTC advanced GmbH Page 56 of 127


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:44:50

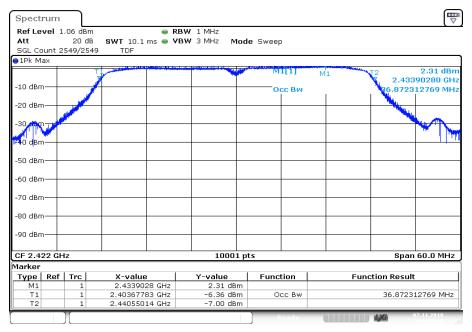
Plot 2: Middle channel



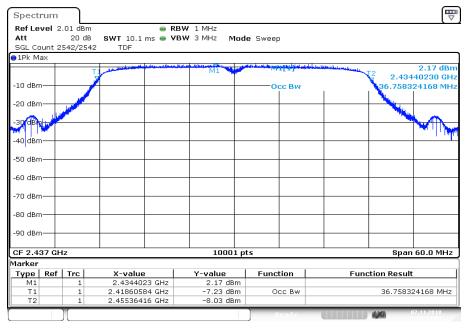
Date: 7.NOV.2018 08:53:41

© CTC advanced GmbH Page 57 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 09:02:44

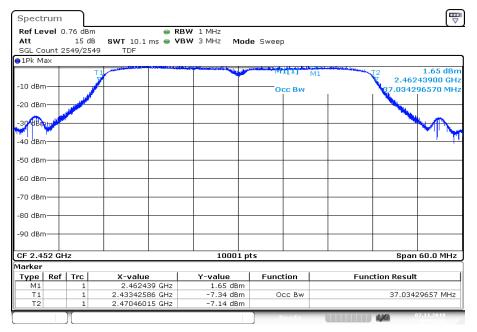
© CTC advanced GmbH Page 58 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 09:22:49

Plot 2: Middle channel



Date: 7.NOV.2018 09:43:24

© CTC advanced GmbH Page 59 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 09:54:51

© CTC advanced GmbH Page 60 of 127

12.8 Occupied bandwidth - 20 dB bandwidth

Description:

Measurement of the 20 dB bandwidth of the modulated carrier.

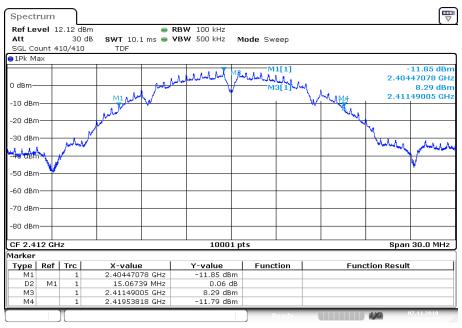
Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	500 kHz	
Span	30 MHz / 50 MHz	
Trace mode	Single count with min. 200 counts	
Test setup	See chapter 6.5 – A	
Measurement uncertainty	See chapter 8	

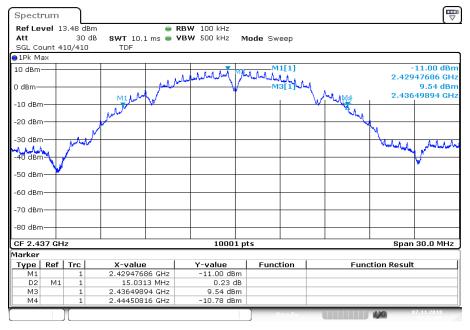
Usage:

-/-	IC	
Within the used band!		

Results:


	20 dB bandwidth / MHz					
	lowest channel middle channel highest channel					
DSSS / b - mode	15.07	15.03	15.08			
OFDM / g – mode	18.53	18.66	18.52			
OFDM / n HT20 – mode	19.31	19.23	19.31			
OFDM / n HT40 – mode	37.33	37.47	37.56			

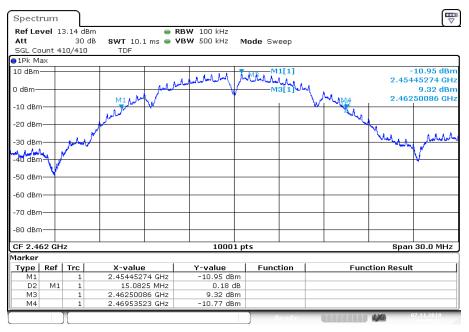
© CTC advanced GmbH Page 61 of 127


Plots: DSSS / b - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 10:26:56

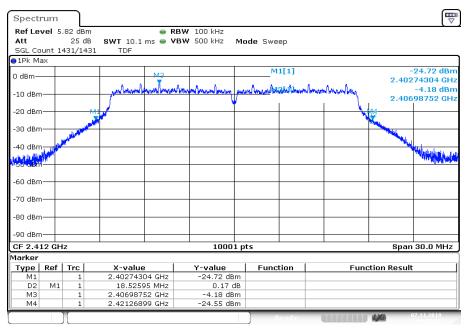
Plot 2: Middle channel



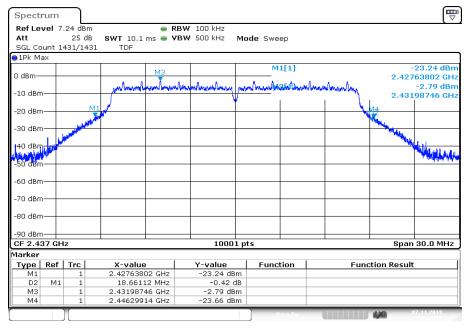
Date: 7.NOV.2018 07:57:03

© CTC advanced GmbH Page 62 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:05:27

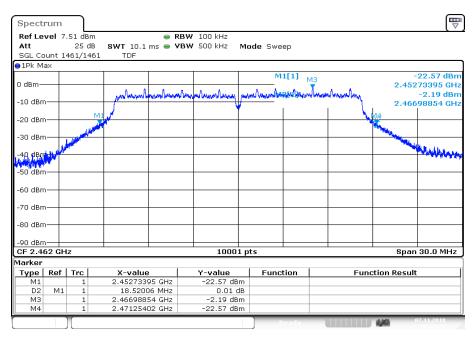
© CTC advanced GmbH Page 63 of 127


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:15:29

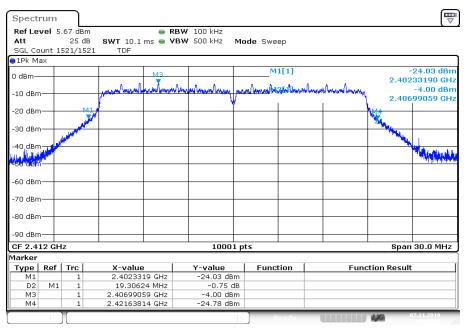
Plot 2: Middle channel



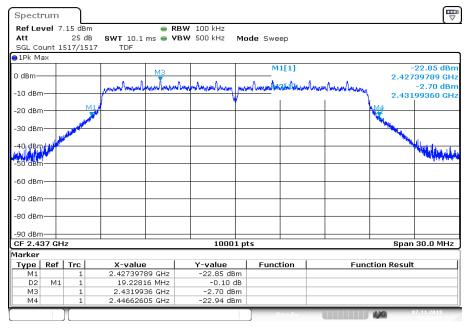
Date: 7.NOV.2018 08:25:31

© CTC advanced GmbH Page 64 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 08:35:20

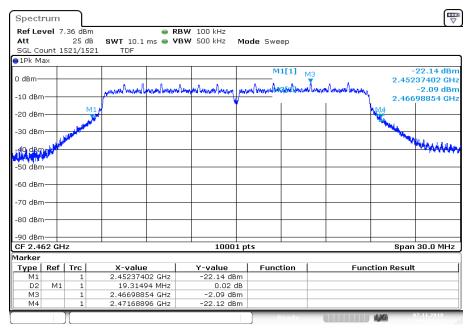
© CTC advanced GmbH Page 65 of 127


Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 08:44:20

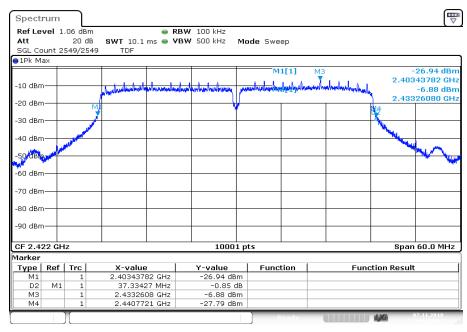
Plot 2: Middle channel



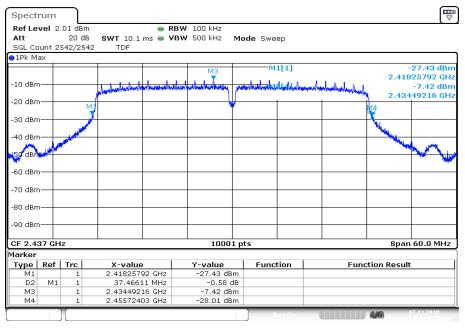
Date: 7.NOV.2018 08:53:11

© CTC advanced GmbH Page 66 of 127

Plot 3: Highest channel


Date: 7.NOV.2018 09:02:14

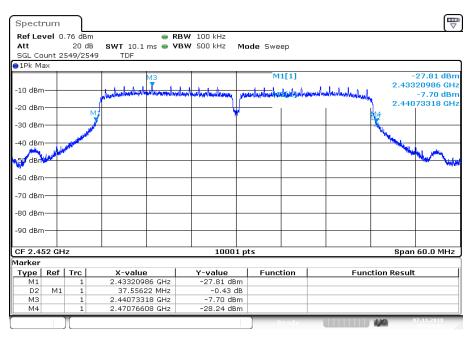
© CTC advanced GmbH Page 67 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel

Date: 7.NOV.2018 09:22:02

Plot 2: Middle channel



Date: 7.NOV.2018 09:42:37

© CTC advanced GmbH Page 68 of 127

Plot 3: Highest channel

Date: 7.NOV.2018 09:54:04

© CTC advanced GmbH Page 69 of 127

12.9 Band edge compliance conducted

Description:

Measurement of the radiated band edge compliance with a conducted test setup.

Measurement:

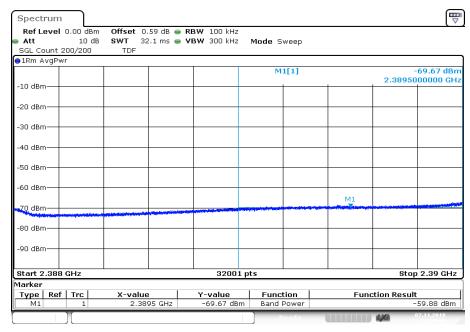
Measurement parameter for measurements				
According to DTS clause: 8.7.3 and clause 12.2.2				
Detector	RMS			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz			
	2 MHz			
Span	lower band edge	2388 MHz	to	2390 MHz
	upper band edge	2483.5 MHz	to	2485.5 MHz
Trace mode	Trace average with 200 counts			
Test setup	See chapter 6.5 – A			
Measurement uncertainty	See chapter 8			

Limits:

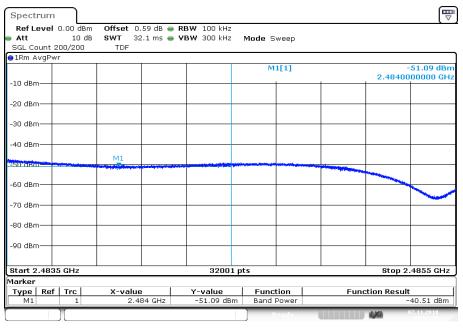
FCC	IC
-41.26	6 dBm

© CTC advanced GmbH Page 70 of 127

Results:


	band edge compliance / dBm (gain calculation)			
Modulation:	DSSS / b – mode	OFDM / g – mode	OFDM / n HT20 – mode	OFDM / n HT40 – mode
Max. lower band edge power conducted	-59.88	-63.49	-63.25	-62.04
Antenna gain / dBi	-2.0			
Max. lower band edge power radiated	-61.88	-65.49	-65.25	-64.04
Max. upper band edge power conducted	-40.51	-48.65	-46.42	-52.22
Antenna gain / dBi	-3.2			
Max. upper band edge power radiated	-43.71	-51.85	-49.62	-55.42

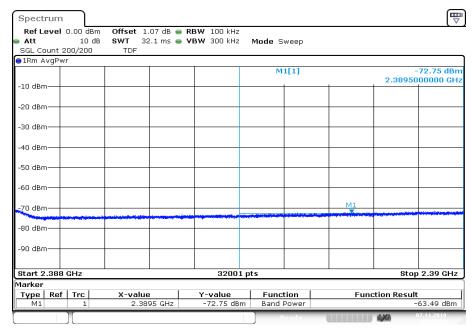
© CTC advanced GmbH Page 71 of 127


Plots: DSSS / b - mode

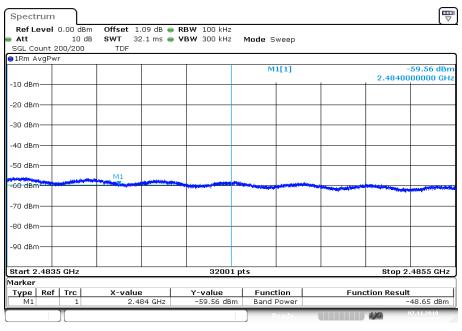
Plot 1: Lower band edge

Date: 7.NOV.2018 10:29:09

Plot 2: Upper band edge


Date: 7.NOV.2018 08:07:58

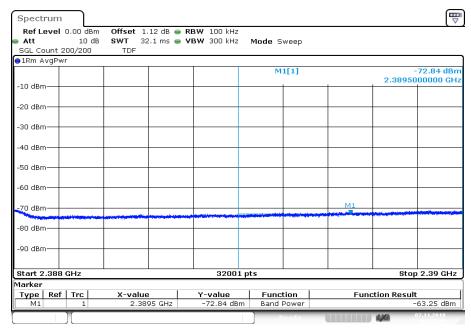
© CTC advanced GmbH Page 72 of 127


Plots: OFDM / g - mode

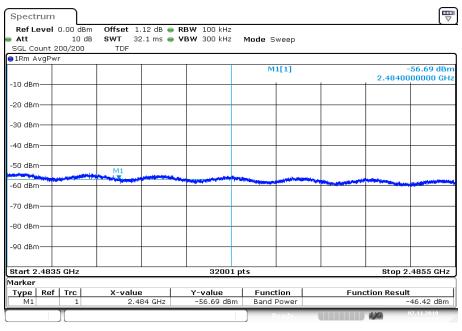
Plot 1: Lower band edge

Date: 7.NOV.2018 08:16:51

Plot 2: Upper band edge


Date: 7.NOV.2018 08:37:00

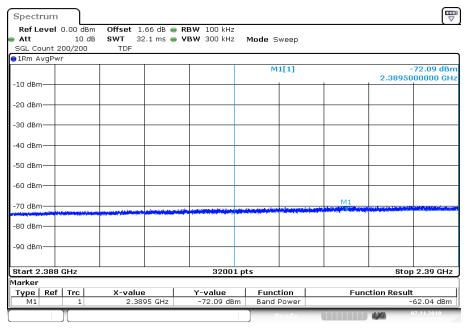
© CTC advanced GmbH Page 73 of 127


Plots: OFDM / n HT20 - mode

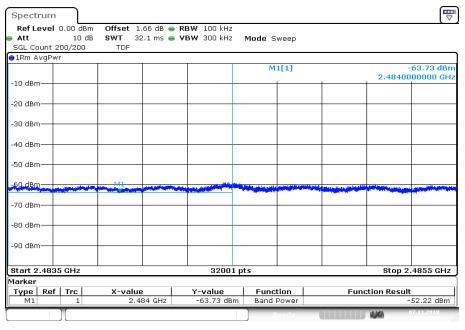
Plot 1: Lower band edge

Date: 7.NOV.2018 08:45:45

Plot 2: Upper band edge


Date: 7.NOV.2018 09:03:54

© CTC advanced GmbH Page 74 of 127


Plots: OFDM / n HT40 - mode

Plot 1: Lower band edge

Date: 7.NOV.2018 09:23:42

Plot 2: Upper band edge

Date: 7.NOV.2018 09:55:59

© CTC advanced GmbH Page 75 of 127

12.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at the lowest; the middle and the highest channel. The measurement is repeated for all modulations.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	500 kHz	
Span	9 kHz to 25 GHz	
Trace mode	Max Hold	
Test setup	See chapter 6.5 – A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

© CTC advanced GmbH Page 76 of 127

Results: DSSS / b - mode

	TX spurious emissions conducted				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		8.4	30 dBm		Operating frequency
	No peaks detected.		-20 dBc (peak)	complian	compliant
			-30 dBc (average)		
Middle channel		9.4	30 dBm		Operating frequency
	No peaks detect	ted.	-20 dBc (peak)		compliant
			-30 dBc (average)		
Highest channel		9.3	30 dBm		Operating frequency
No peaks detected.		-20 dBc (peak)		compliant	
			-30 dBc (average)		

 $\underline{\textbf{Results:}} \ \mathsf{OFDM} \ / \ \mathsf{g-mode}$

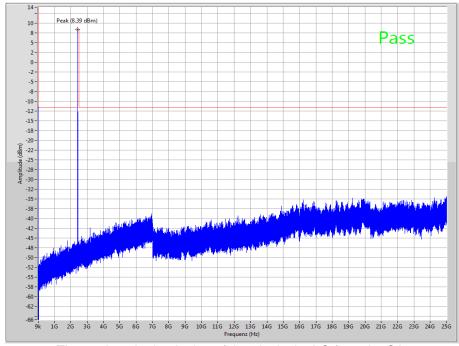
	TX spurious emissions conducted				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		-3.7	30 dBm		Operating frequency
	No peaks detected.		-20 dBc (peak)		compliant
			-30 dBc (average)		
Middle channel		-2.2	30 dBm		Operating frequency
	No peaks detect	ted.	-20 dBc (peak)		compliant
			-30 dBc (average)		
Highest channel		-1.5	30 dBm		Operating frequency
No peaks detected.		-20 dBc (peak)		compliant	
			-30 dBc (average)		

© CTC advanced GmbH Page 77 of 127

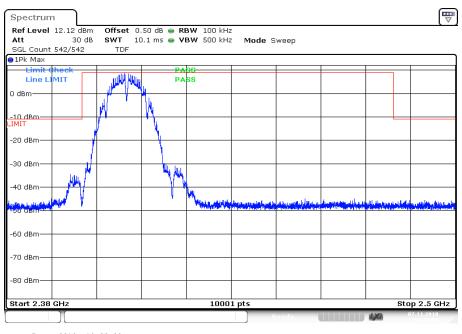
Results: OFDM / n HT20 - mode

	TX spurious emissions conducted				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		-3.5	30 dBm		Operating frequency
	No peaks detected.		-20 dBc (peak)		compliant
			-30 dBc (average)		
Middle channel		-2.8	30 dBm		Operating frequency
	No peaks detec	ted.	-20 dBc (peak)		compliant
			-30 dBc (average)		
Highest channel		-2.0	30 dBm		Operating frequency
	No peaks detec	ted.	-20 dBc (peak) -30 dBc (average)		compliant

Results: OFDM / n HT40 - mode


	TX spurious emissions conducted				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
Lowest channel		-6.9	30 dBm		Operating frequency
	No peaks detected.		-20 dBc (peak)		compliant
			-30 dBc (average)		
Middle channel		-7.5	30 dBm		Operating frequency
	No peaks detect	ted.	-20 dBc (peak)	compliant	
			-30 dBc (average)		
Highest channel		-7.0	30 dBm		Operating frequency
No peaks detected.		-20 dBc (peak)		compliant	
			-30 dBc (average)		

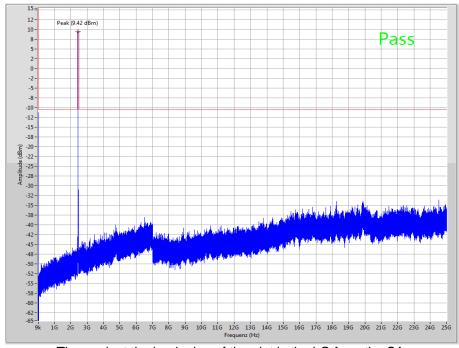
© CTC advanced GmbH Page 78 of 127


Plots: DSSS / b - mode

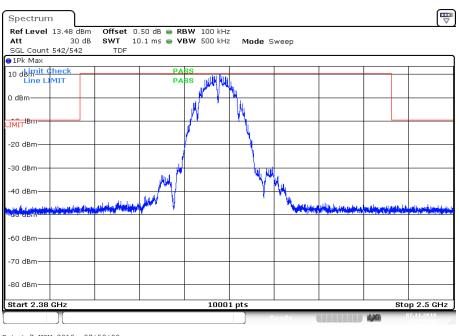
Plot 1: Lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 2: Lowest channel, zoomed carrier

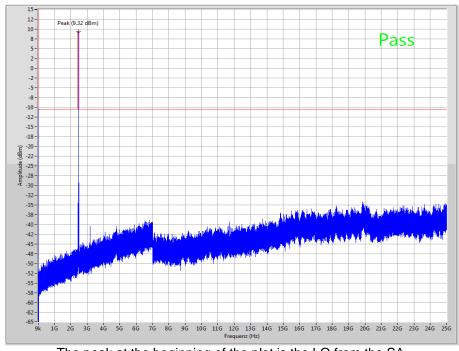


Date: 7.NOV.2018 10:28:00

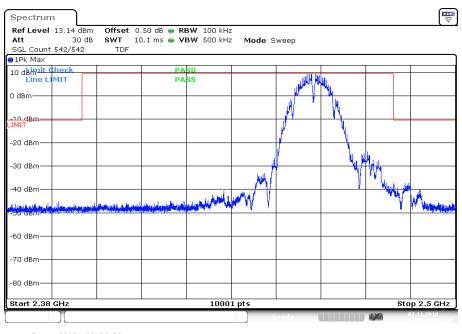

© CTC advanced GmbH Page 79 of 127

Plot 3: Middle channel, up to 25 GHz

Plot 4: Middle channel, zoomed carrier

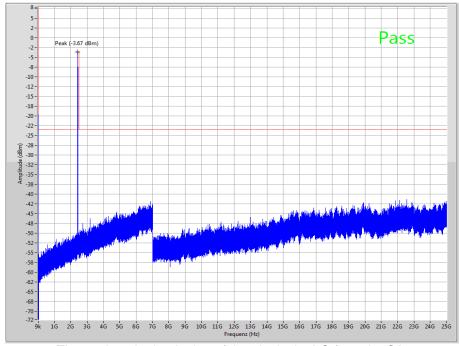


Date: 7.NOV.2018 07:58:08

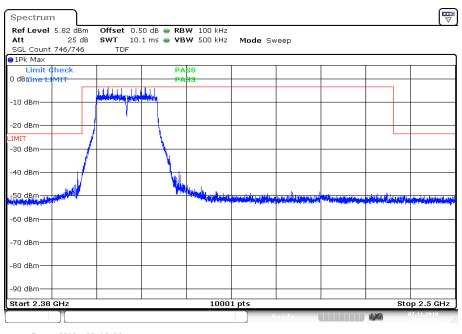

© CTC advanced GmbH Page 80 of 127

Plot 5: Highest channel, up to 25 GHz

Plot 6: Highest channel, zoomed carrier


Date: 7.NOV.2018 08:06:32

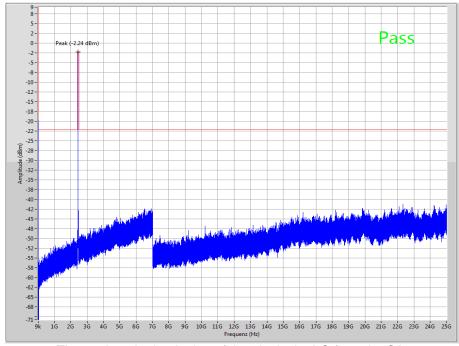
© CTC advanced GmbH Page 81 of 127


Plots: OFDM / g - mode

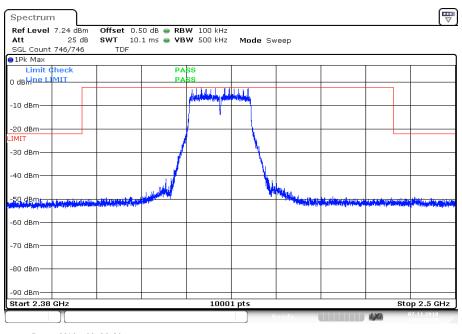
Plot 1: Lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 2: Lowest channel, zoomed carrier

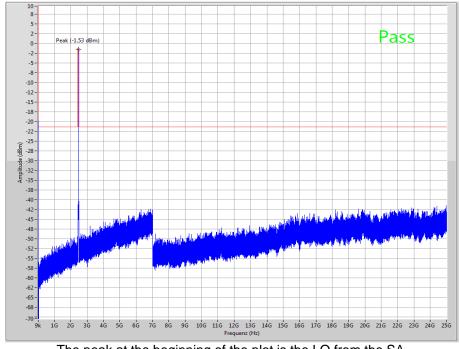


Date: 7.NOV.2018 08:16:36

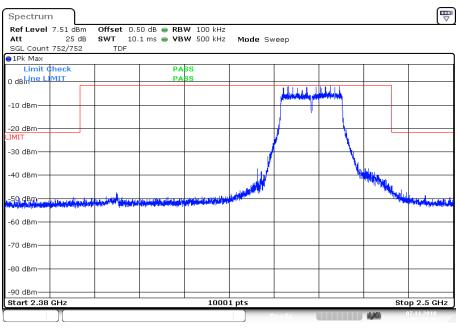

© CTC advanced GmbH Page 82 of 127

Plot 3: Middle channel, up to 25 GHz

Plot 4: Middle channel, zoomed carrier

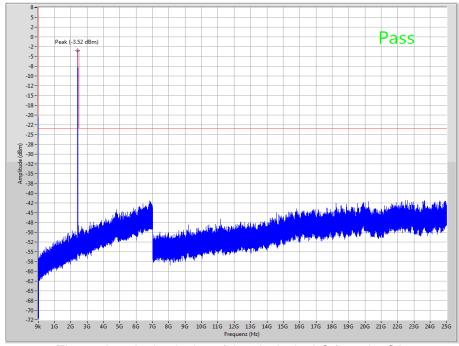


Date: 7.NOV.2018 08:26:39

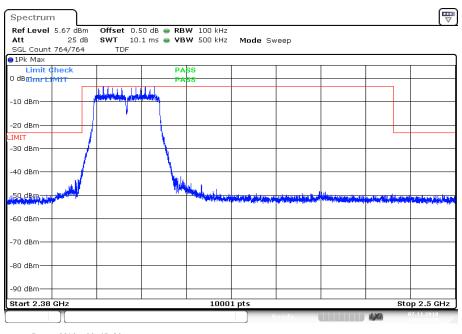

© CTC advanced GmbH Page 83 of 127

Plot 5: Highest channel, up to 25 GHz

Plot 6: Highest channel, zoomed carrier


Date: 7.NOV.2018 08:36:30

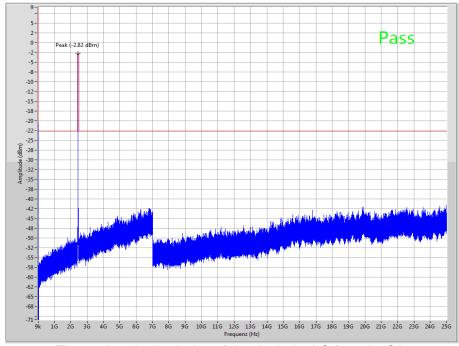
© CTC advanced GmbH Page 84 of 127


Plots: OFDM / n HT 20 - mode

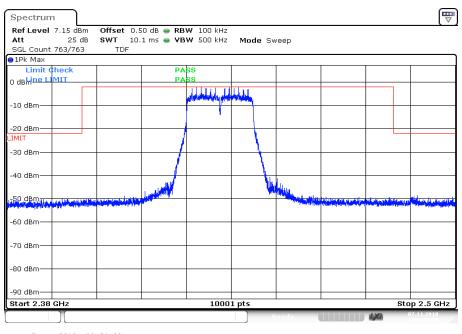
Plot 1: Lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 2: Lowest channel, zoomed carrier

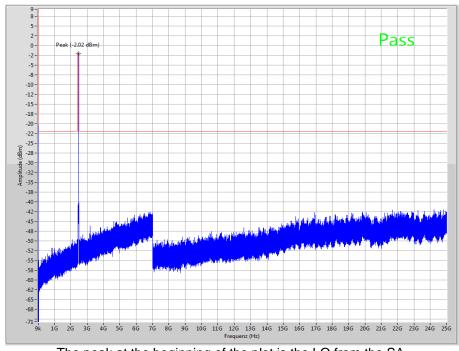


Date: 7.NOV.2018 08:45:30

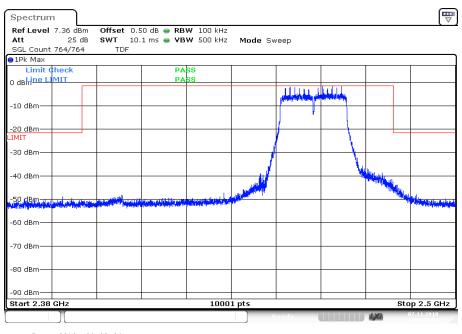

© CTC advanced GmbH Page 85 of 127

Plot 3: Middle channel, up to 25 GHz

Plot 4: Middle channel, zoomed carrier

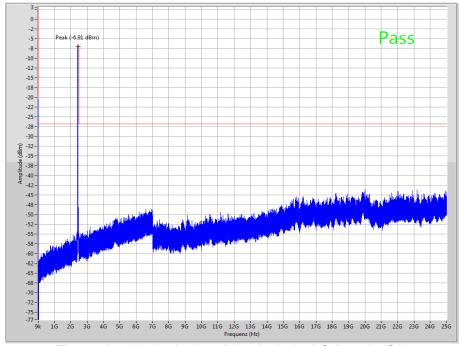


Date: 7.NOV.2018 08:54:20

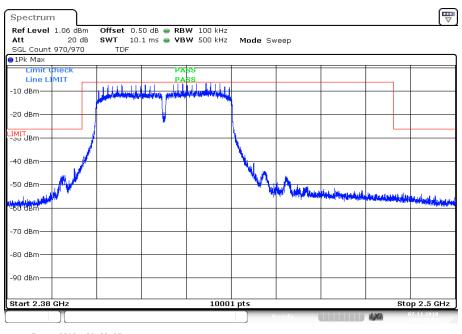

© CTC advanced GmbH Page 86 of 127

Plot 5: Highest channel, up to 25 GHz

Plot 6: Highest channel, zoomed carrier


Date: 7.NOV.2018 09:03:24

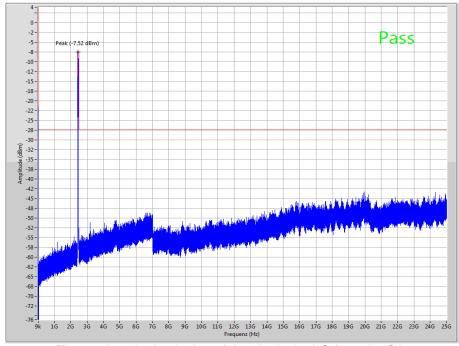
© CTC advanced GmbH Page 87 of 127


Plots: OFDM / n HT 40 - mode

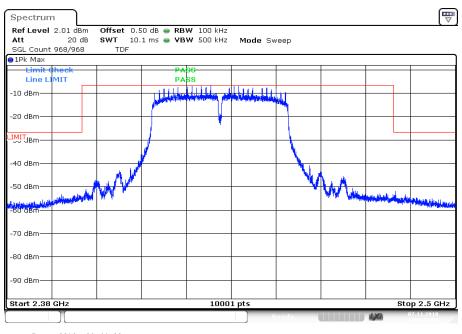
Plot 1: Lowest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

Plot 2: Lowest channel, zoomed carrier

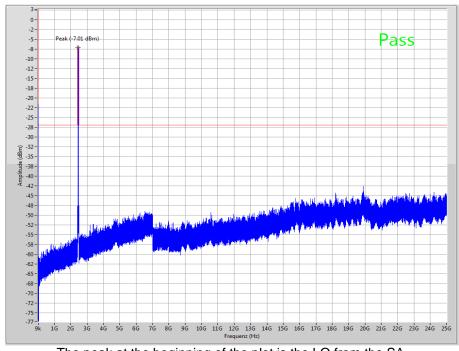


Date: 7.NOV.2018 09:23:27

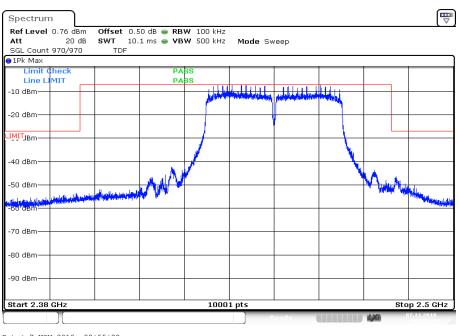

© CTC advanced GmbH Page 88 of 127

Plot 3: Middle channel, up to 25 GHz

Plot 4: Middle channel, zoomed carrier



Date: 7.NOV.2018 09:44:02


© CTC advanced GmbH Page 89 of 127

Plot 5: Highest channel, up to 25 GHz

Plot 6: Highest channel, zoomed carrier

Date: 7.NOV.2018 09:55:29

© CTC advanced GmbH Page 90 of 127

12.11 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

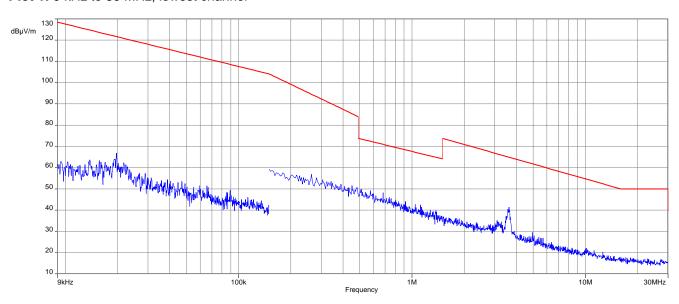
Measurement:

Measurement parameter			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max Hold		
Measured modulation	 ✓ DSSS b – mode ✓ OFDM g – mode ✓ OFDM n HT20 – mode ✓ OFDM n HT40 – mode 		
Test setup	See chapter 6.2 – C		
Measurement uncertainty	See chapter 8		

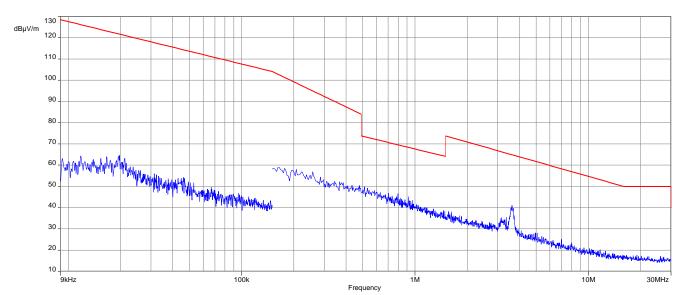
Limits:

FCC			IC
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m
0.009 - 0.490	2400/I	F(kHz)	300
0.490 - 1.705	24000/F(kHz)		30
1.705 – 30.0	30		30

Results:

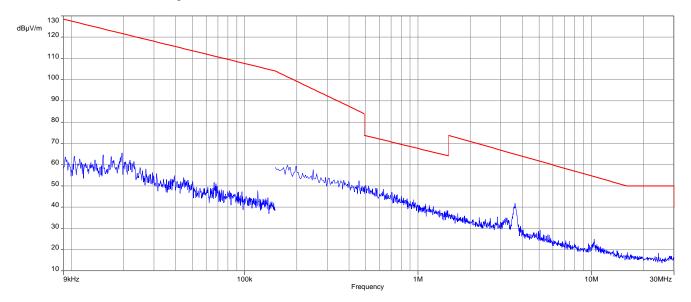

TX spurious emissions radiated < 30 MHz / (dBμV / m) @ 3 m				
Frequency / MHz Detector Level / (dBµV / m)				
All detected peaks are more than 20 dB below the limit.				

© CTC advanced GmbH Page 91 of 127



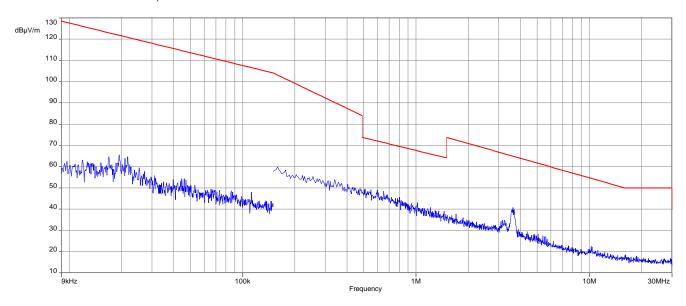
Plots: DSSS

Plot 1: 9 kHz to 30 MHz, lowest channel

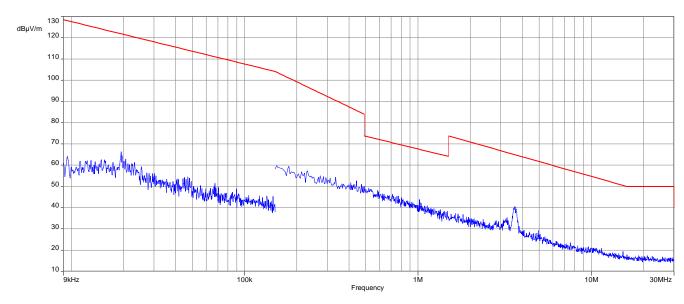

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 92 of 127

Plot 3: 9 kHz to 30 MHz, highest channel

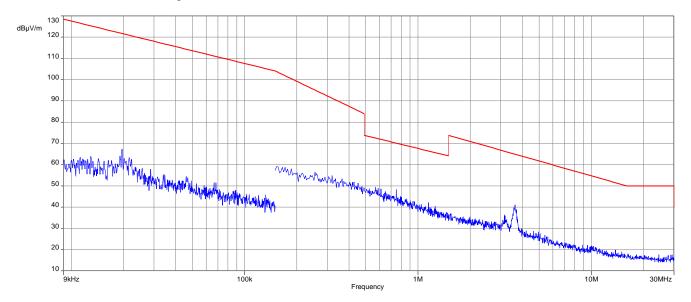


© CTC advanced GmbH Page 93 of 127



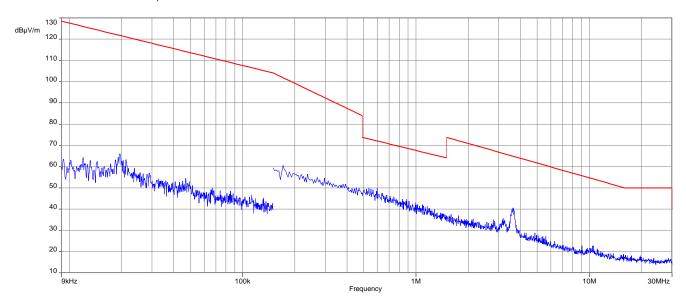
Plots: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

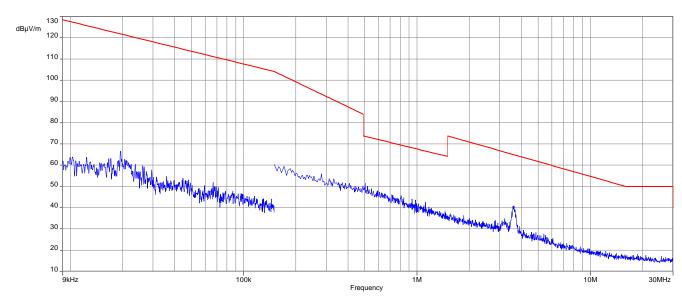

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 94 of 127

Plot 3: 9 kHz to 30 MHz, highest channel

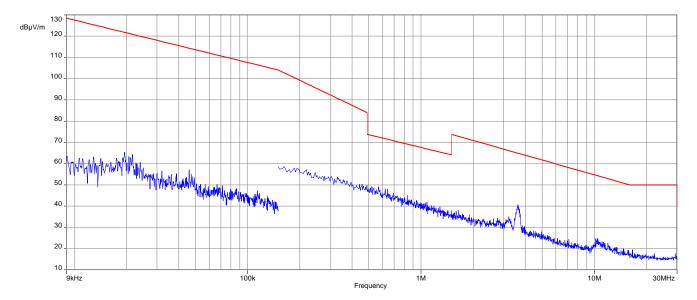


© CTC advanced GmbH Page 95 of 127



Plots: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel


Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 96 of 127

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 97 of 127

12.12 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

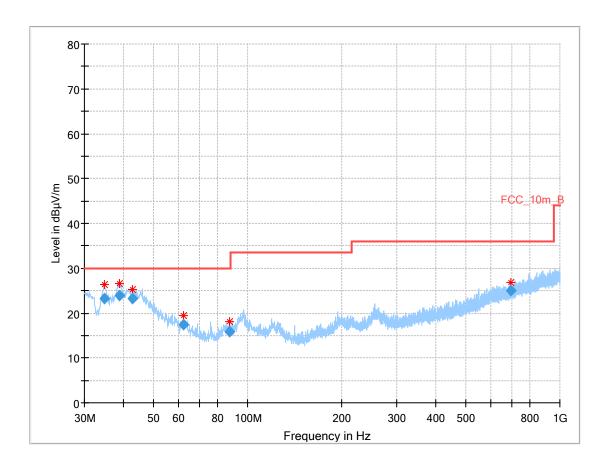
Measurement:

Measurement parameter		
Detector	Peak / Quasi Peak	
Sweep time	Auto	
Resolution bandwidth	120 kHz	
Video bandwidth	3 x RBW	
Span	30 MHz to 1 GHz	
Trace mode	Max Hold	
Measured modulation	 ☑ DSSS b – mode ☑ OFDM g – mode ☑ OFDM n HT20 – mode ☑ OFDM n HT40 – mode ☑ RX / Idle – mode 	
Test setup	See chapter 6.1 – A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC

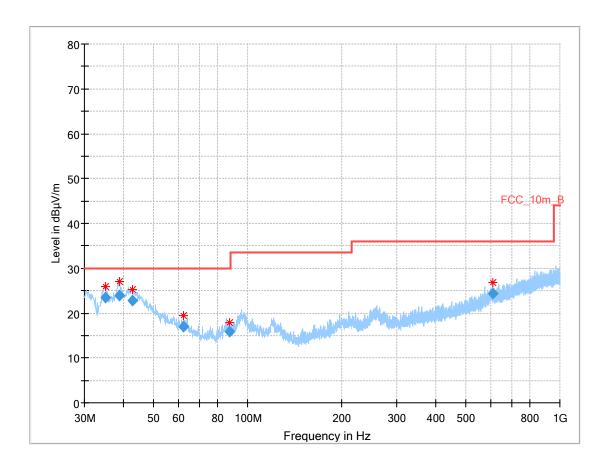
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
30 – 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

© CTC advanced GmbH Page 98 of 127

Plot: DSSS

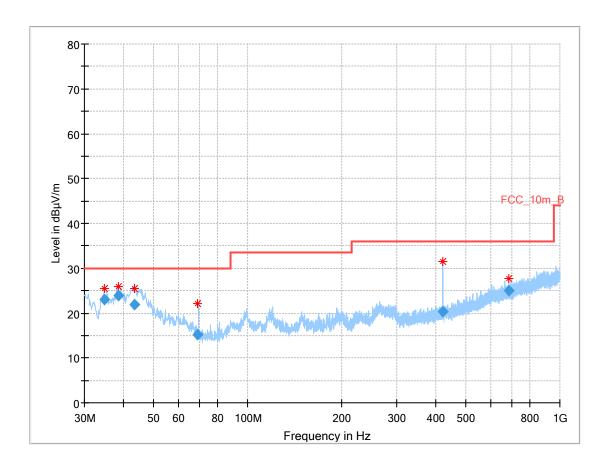
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.785	23.29	30.0	6.71	1000	120	98.0	٧	300.0	13.8
38.748	23.94	30.0	6.06	1000	120	98.0	٧	220.0	14.2
42.601	23.23	30.0	6.77	1000	120	98.0	٧	228.0	14.6
62.433	17.46	30.0	12.54	1000	120	170.0	٧	267.0	12.4
87.482	15.86	30.0	14.14	1000	120	170.0	٧	190.0	11.4
695.322	25.07	36.0	10.93	1000	120	170.0	Н	16.0	21.1

© CTC advanced GmbH Page 99 of 127

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

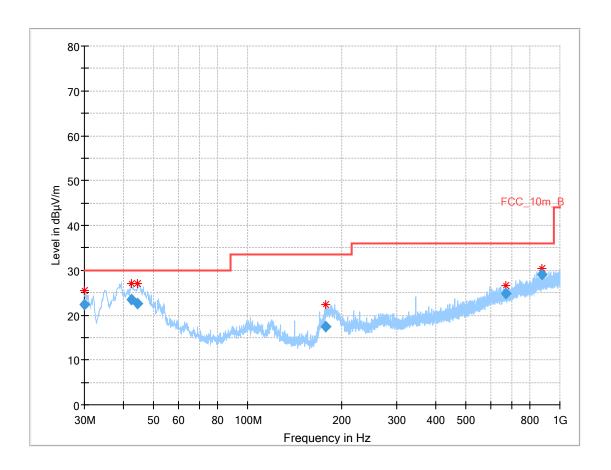

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.091	23.36	30.0	6.64	1000	120	98.0	٧	223.0	13.8
38.741	23.81	30.0	6.19	1000	120	98.0	٧	284.0	14.2
42.757	22.84	30.0	7.16	1000	120	98.0	٧	281.0	14.6
62.212	17.07	30.0	12.93	1000	120	101.0	٧	322.0	12.5
87.288	15.82	30.0	14.18	1000	120	170.0	٧	83.0	11.3
610.773	24.35	36.0	11.65	1000	120	170.0	Н	347.0	20.5

© CTC advanced GmbH Page 100 of 127

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

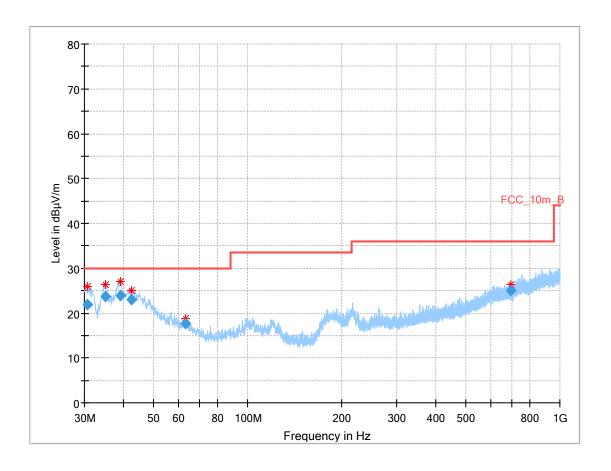
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.733	23.02	30.0	6.98	1000	120	170.0	٧	113.0	13.8
38.678	23.80	30.0	6.20	1000	120	102.0	٧	330.0	14.2
43.236	21.95	30.0	8.05	1000	120	98.0	٧	199.0	14.6
69.012	15.19	30.0	14.81	1000	120	101.0	Н	313.0	11.0
422.232	20.40	36.0	15.60	1000	120	170.0	Н	81.0	17.0
686.001	25.02	36.0	10.98	1000	120	170.0	٧	350.0	21.0

© CTC advanced GmbH Page 101 of 127

Plot: OFDM (20 MHz nominal channel bandwidth)

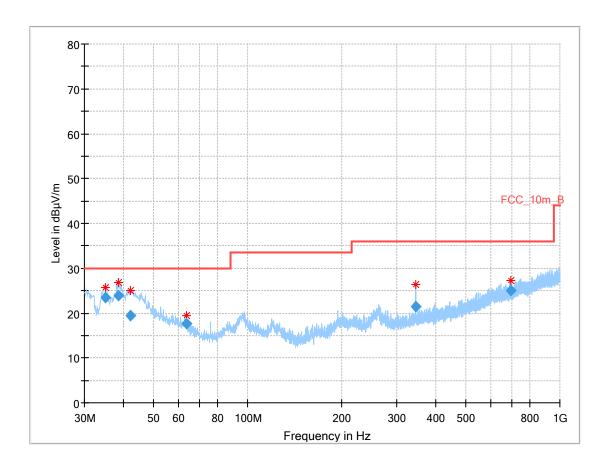
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.082	22.40	30.0	7.60	1000	120	101.0	٧	214.0	13.0
42.564	23.50	30.0	6.50	1000	120	98.0	٧	210.0	14.6
44.498	22.49	30.0	7.51	1000	120	98.0	٧	304.0	14.7
177.827	17.50	33.5	16.00	1000	120	98.0	٧	166.0	11.4
670.602	24.90	36.0	11.10	1000	120	101.0	٧	85.0	20.9
877.362	28.96	36.0	7.04	1000	120	98.0	٧	184.0	23.6

© CTC advanced GmbH Page 102 of 127

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

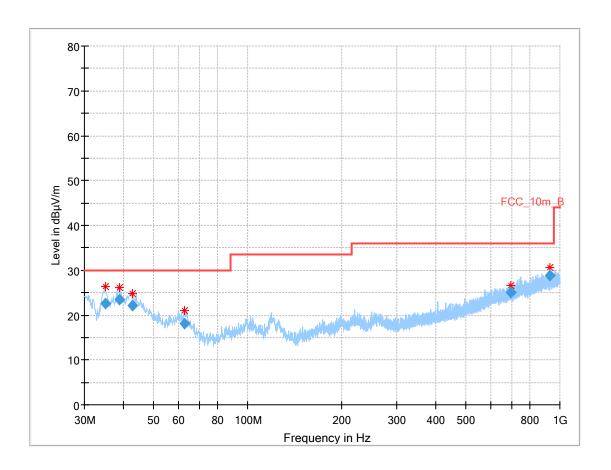

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.762	21.93	30.0	8.07	1000	120	170.0	٧	245.0	13.1
35.039	23.67	30.0	6.33	1000	120	98.0	٧	329.0	13.8
39.051	23.88	30.0	6.12	1000	120	98.0	٧	341.0	14.3
42.506	22.95	30.0	7.05	1000	120	98.0	٧	286.0	14.6
63.093	17.72	30.0	12.28	1000	120	170.0	٧	313.0	12.3
696.993	25.10	36.0	10.90	1000	120	170.0	٧	16.0	21.1

© CTC advanced GmbH Page 103 of 127

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

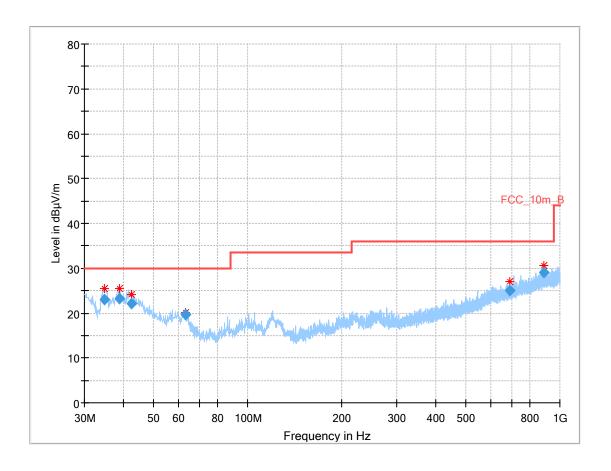
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.089	23.50	30.0	6.50	1000	120	98.0	٧	290.0	13.8
38.555	23.96	30.0	6.04	1000	120	98.0	٧	302.0	14.2
42.023	19.55	30.0	10.45	1000	120	170.0	٧	126.0	14.5
63.517	17.58	30.0	12.42	1000	120	170.0	٧	220.0	12.2
345.557	21.43	36.0	14.57	1000	120	170.0	Н	211.0	15.8
697.898	25.09	36.0	10.91	1000	120	170.0	Н	131.0	21.1

© CTC advanced GmbH Page 104 of 127

Plot: OFDM (40 MHz nominal channel bandwidth)

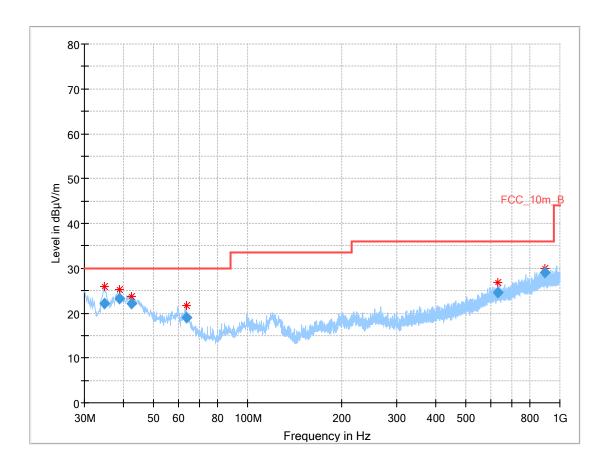
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.946	22.66	30.0	12.34	1000	120	101.0	Н	86.0	13.2
38.739	23.39	30.0	6.61	1000	120	98.0	٧	179.0	14.2
42.630	22.19	30.0	7.81	1000	120	98.0	٧	192.0	14.6
62.644	18.14	30.0	11.86	1000	120	170.0	٧	349.0	12.4
698.652	25.13	36.0	10.87	1000	120	170.0	٧	35.0	21.1
928.147	28.88	36.0	7.12	1000	120	170.0	٧	0.0	24.0

© CTC advanced GmbH Page 105 of 127

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

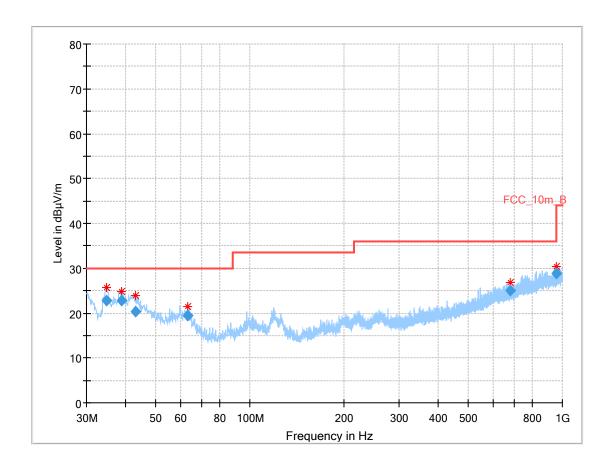

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.848	23.04	30.0	6.96	1000	120	98.0	٧	98.0	13.8
38.776	23.23	30.0	6.77	1000	120	98.0	٧	316.0	14.2
42.368	22.18	30.0	7.82	1000	120	98.0	٧	258.0	14.6
63.325	19.59	30.0	10.41	1000	120	170.0	٧	278.0	12.2
690.774	25.05	36.0	10.95	1000	120	170.0	Н	133.0	21.1
891.041	29.03	36.0	6.97	1000	120	170.0	Н	124.0	23.8

© CTC advanced GmbH Page 106 of 127

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.682	22.19	30.0	7.81	1000	120	170.0	٧	192.0	13.7
38.706	23.13	30.0	6.87	1000	120	98.0	٧	216.0	14.2
42.349	22.13	30.0	7.87	1000	120	98.0	٧	284.0	14.6
63.766	18.94	30.0	11.06	1000	120	101.0	٧	290.0	12.1
631.505	24.53	36.0	11.47	1000	120	170.0	Н	141.0	20.6
896.335	29.08	36.0	6.92	1000	120	98.0	٧	58.0	23.8

© CTC advanced GmbH Page 107 of 127

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.864	22.69	30.0	7.31	1000	120	101.0	V	252.0	13.8
38.709	22.76	30.0	7.24	1000	120	98.0	٧	220.0	14.2
43.188	20.39	30.0	9.61	1000	120	104.0	٧	67.0	14.6
63.335	19.35	30.0	10.65	1000	120	170.0	٧	327.0	12.2
681.420	24.98	36.0	11.02	1000	120	101.0	٧	218.0	21.0
954.007	28.81	36.0	7.19	1000	120	98.0	Н	-1.0	24.1

© CTC advanced GmbH Page 108 of 127

12.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max Hold			
Measured modulation	 ☑ DSSS b – mode ☑ OFDM g – mode ☑ OFDM n HT20 – mode ☑ OFDM n HT40 – mode ☑ RX / Idle – mode 			
Test setup	See chapter 6.5 – A			
Measurement uncertainty	See chapter 8			

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
Above 960	54.0 (AVG)	2
Above 960	74.0 (peak)	3

© CTC advanced GmbH Page 109 of 127

Results: DSSS

TX spurious emissions radiated / dBμV/m @ 3 m								
lowest channel			m	niddle chann	el	highest channel		
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m
4824	Peak	53.07	4874	Peak	54.60	4924	Peak	54.0
4024	AVG	47.39	40/4	AVG	49.51	4924	AVG	48.5
-/-	Peak	-/-	-/-	Peak	-/-	1	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

Results: OFDM (20 MHz nominal channel bandwidth)

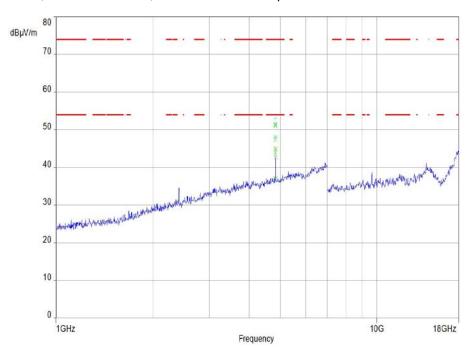
TX spurious emissions radiated / dBμV/m @ 3 m								
lo	owest chann	el	m	niddle channe	el	hi	ighest chann	nel
f / MHz	Detector	Level / dBµV/m	f / MHz	f / MHz Detector Level / dBμV/m		f / MHz	Detector	Level / dBµV/m
	All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.		
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

Results: OFDM (40 MHz nominal channel bandwidth)

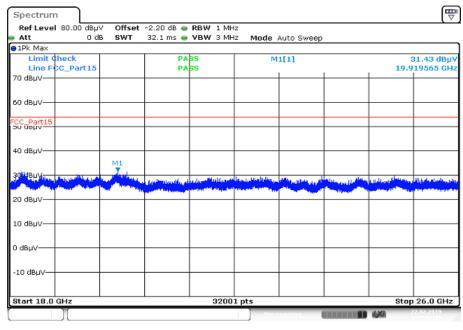
TX spurious emissions radiated / dBμV/m @ 3 m								
lo	owest chann	el	m	niddle channe	el	hi	ighest chann	iel
f / MHz	Detector	Level / dBµV/m	f / MHz	f / MHz Detector Level / dBμV/m			Detector	Level / dBµV/m
All detected emissions are more than 20 dB below the limit.		All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.			
-/-	Peak	-/-	-/-	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
-/-	Peak	-/-	1	Peak	-/-	-/-	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

© CTC advanced GmbH Page 110 of 127

Results: RX / idle - mode


TX spurious emissions radiated / dBμV/m @ 3 m				
f / MHz	Detector	Level / dBµV/m		
All detected emissions are more than 20 dB below the limit.				
/	Peak	-/-		
-/-	AVG	-/-		
-/-	Peak	-/-		
	AVG	-/-		

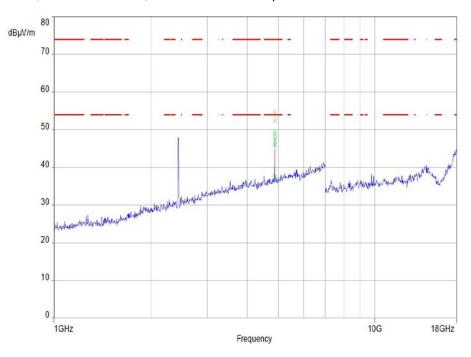
© CTC advanced GmbH Page 111 of 127


Plots: DSSS

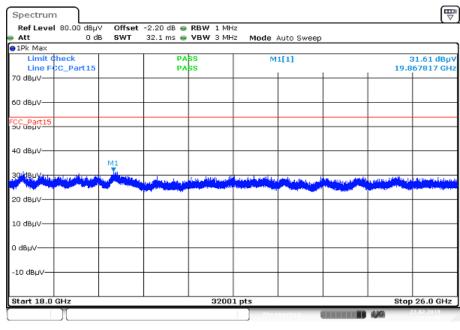
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

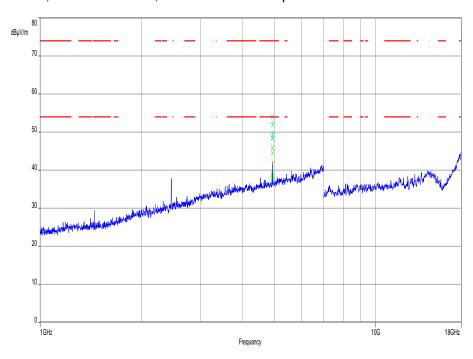


Date: 22.FEB.2019 13:16:13

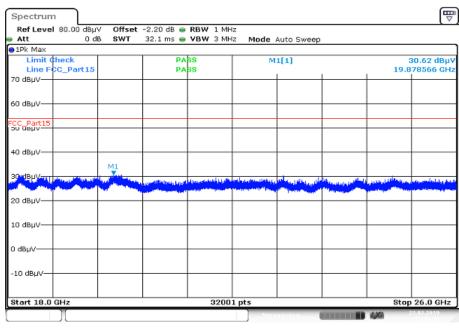

© CTC advanced GmbH Page 112 of 127

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

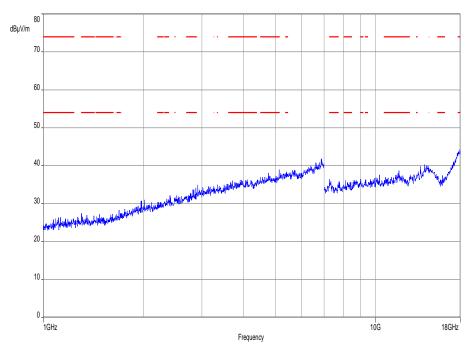


Date: 22.FEB.2019 13:18:46

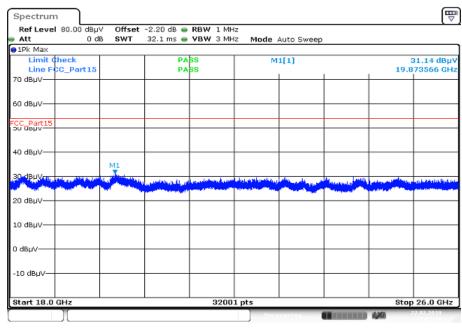

© CTC advanced GmbH Page 113 of 127

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 22.FEB.2019 13:20:17

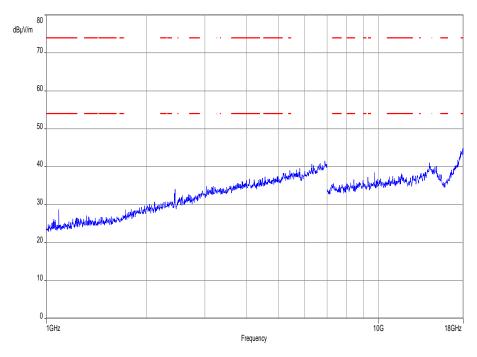
© CTC advanced GmbH Page 114 of 127


Plots: OFDM (20 MHz bandwidth)

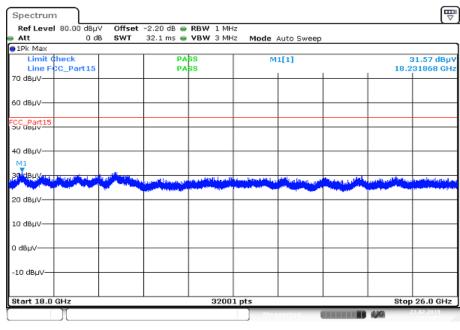
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

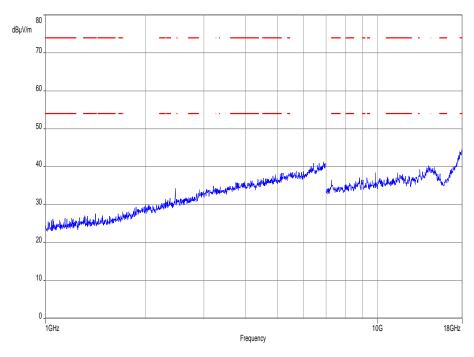


Date: 22.FEB.2019 13:22:32

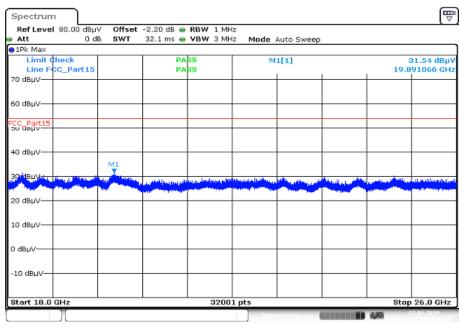

© CTC advanced GmbH Page 115 of 127

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

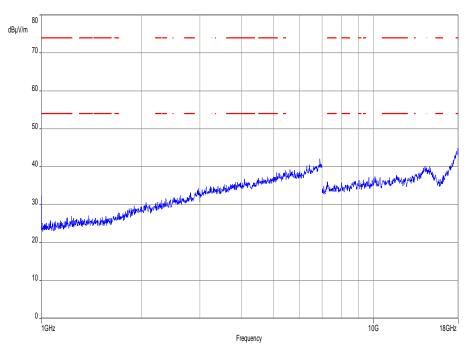


Date: 22.FEB.2019 13:24:07

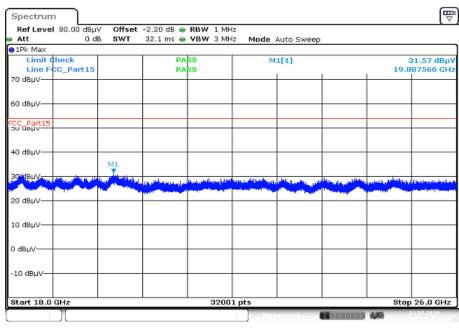

© CTC advanced GmbH Page 116 of 127

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 22.FEB.2019 13:25:39

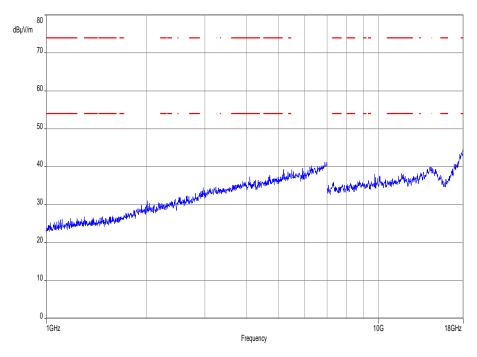
© CTC advanced GmbH Page 117 of 127


Plots: OFDM (40 MHz bandwidth)

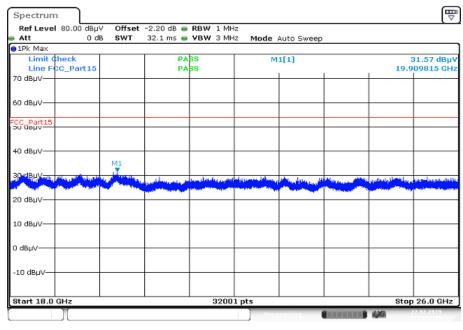
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

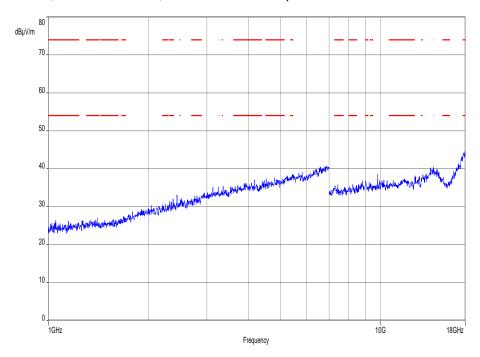


Date: 22.FEB.2019 13:31:55

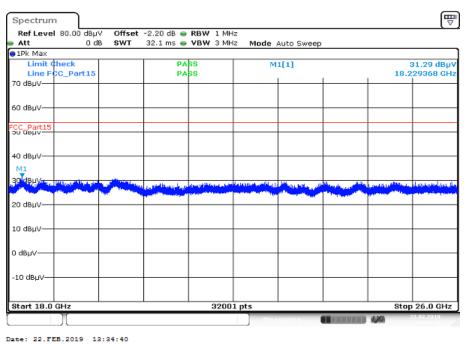

© CTC advanced GmbH Page 118 of 127

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

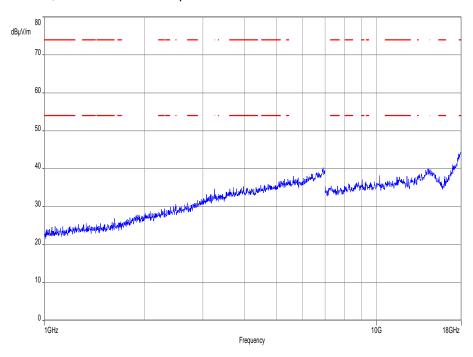


Date: 22.FEB.2019 13:33:09

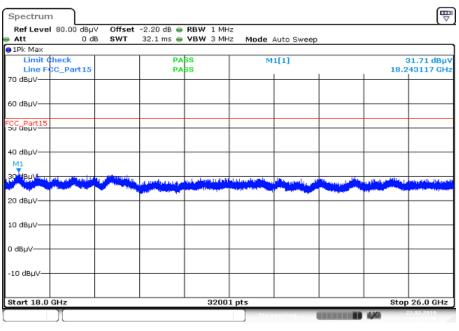

© CTC advanced GmbH Page 119 of 127

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 22.FEB.2019 13:34:40

© CTC advanced GmbH Page 120 of 127



Plots: RX / idle mode

Plot 1: 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 22.FEB.2019 13:35:46

© CTC advanced GmbH Page 121 of 127

12.14 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

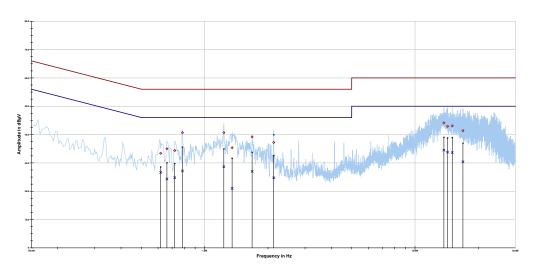
Measurement:

Measurement parameter				
Detector Peak - Quasi Peak / Average				
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max. hold			
Test setup	See chapter 6.4 – A			
Measurement uncertainty	See chapter 8			

Limits:

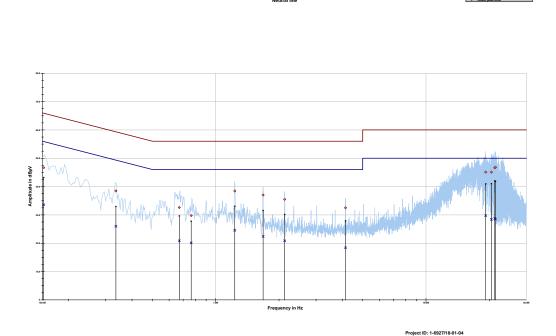
FCC		IC			
Frequency / MHz)	Quasi-Peak / (dBµV / m)		Quasi-Peak / (dBµV / m)		Average / (dBµV / m)
0.15 – 0.5	66 to 56*		56 to 46*		
0.5 – 5	56		46		
5 – 30.0	60		50		

^{*}Decreases with the logarithm of the frequency


© CTC advanced GmbH Page 122 of 127

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Project ID: 1-6927/18-01-04

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.617398	33.39	22.61	56.000	26.64	19.36	46.000
0.661040	34.99	21.01	56.000	24.31	21.69	46.000
0.720033	34.35	21.65	56.000	24.79	21.21	46.000
0.783528	40.69	15.31	56.000	27.17	18.83	46.000
1.232918	40.67	15.33	56.000	28.65	17.35	46.000
1.349883	35.34	20.66	56.000	20.97	25.03	46.000
1.679865	39.16	16.84	56.000	27.01	18.99	46.000
2.128990	37.23	18.77	56.000	24.74	21.26	46.000
13.720467	44.10	15.90	60.000	34.51	15.49	50.000
14.279560	42.92	17.08	60.000	33.80	16.20	50.000
15.031560	43.07	16.93	60.000	33.65	16.35	50.000
16.903465	41.36	18.64	60.000	30.39	19.61	50.000

© CTC advanced GmbH Page 123 of 127

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.151943	46.65	19.24	65.893	33.57	22.38	55.944
0.335167	38.45	20.87	59.322	25.98	24.73	50.710
0.671392	32.62	23.38	56.000	20.85	25.15	46.000
0.764228	29.76	26.24	56.000	20.12	25.88	46.000
1.232072	38.42	17.58	56.000	24.54	21.46	46.000
1.680178	37.01	18.99	56.000	22.37	23.63	46.000
2.127410	35.51	20.49	56.000	20.85	25.15	46.000
4.142305	32.48	23.52	56.000	18.39	27.61	46.000
19.226972	45.10	14.90	60.000	29.75	20.25	50.000
20.460861	45.10	14.90	60.000	28.40	21.60	50.000
21.227486	46.64	13.36	60.000	28.74	21.26	50.000
21.382981	46.82	13.18	60.000	28.49	21.51	50.000

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 124 of 127

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 125 of 127

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-03-08

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 30117 Berlin Office Frankfurt am Main Europs-Allee 52 60327 Frankfurt am Main Sittle Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Statie Braunschweig No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by Dakks. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 [referral Law Gazette [or 2,525]) and the Regulation (EC) No 765/2008 of the European Parlament and of the Market Company of the Company
Frankfurt am Main, 11.01.2019 Opt. Boil Live Zimmermann Head of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 126 of 127

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 68327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkSstelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2625) and the Regulation (EC) No 765/2008 of the European Parliaments and of the Council of 9 July 2008 sering out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). DAKS is a signatory to the Multilateral Agreements for Muttal Recognition of the European Co-poration for Accreditation (EA). International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditations.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Planta an Main, 1.1.01.2019 Planta Chief and Philippe Comprised the property of the prop	The up-to-date state of membership can be retrieved from the following websites: EA: www.ucropean-accreditation.org ILAC: www.isl.corg IAF: www.isl.fnu
the enter involut.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 127 of 127