

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

FCC SAR EVALUATION REPORT

Product Name :	6CH SYST	2.4GHZ EM	FHSS	RADIO	CONTROL
Trademark :	MERI	TRC			
Model Name :	MT-60	02			
Serial Model :	N/A				
Report No. :	NTEK	-2015NT1	0192876	6HF	
FCC ID :	XJ6M	T-602			

Prepared for

Shanghai Merit Technology Corporation

1058 Taogan road, Sheshan, Songjiang District, Shanghai, China.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name...... Shanghai Merit Technology Corporation Address 1058 Taogan road, Sheshan, Songjiang District, Shanghai, China. Manufacture's Name Shanghai Merit Technology Corporation Address 1058 Taogan road, Sheshan, Songjiang District, Shanghai, China. **Product description** Product name...... 6CH 2.4GHZ FHSS RADIO CONTROL SYSTEM Trademark MERITRC Model and/or type reference MT-602 Serial Model N/A FCC 47 CFR Part 2(2.1093) Standards.....ANSI/IEEE C95.1-1992 IEEE Std 1528-2013 Published RF exposure KDB procedures This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK.

this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Nov 10, 2015 ~ Nov 10, 2015

Date of Issue Nov 13, 2015

Test Result Pass

Testing Engineer : Cheny Jiawen (Cheng Jiawen)

Technical Manager : Brown Ln (Brown Lu) Authorized Signatory : Sam . Chew

(Sam Chen)

% % Revision History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Nov 13, 2015	Cheng Jiawen

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	8
	1.4. Test specification(s)	9
	1.5. Ambient Condition	9
2.	SAR Measurement System	10
	2.1. SATIMO SAR Measurement Set-up Diagram	10
	2.2. Robot	11
	2.3. E-Field Probe	12
	2.3.1. E-Field Probe Calibration	12
	2.4. SAM phantoms	13
	2.4.1. Technical Data	13
	2.5. Device Holder	15
	2.6. Test Equipment List	
3.	SAR Measurement Procedures	
	3.1. Power Reference	
	3.2. Area scan & Zoom scan	
	3.3. Description of interpolation/extrapolation scheme	20
	3.4. Volumetric Scan	20
	3.5. Power Drift	
4.		
	4.1. Tissue Verification	21
	4.1.1. Tissue Dielectric Parameter Check Results	21
	4.2. System Verification Procedure	
	4.2.1. System Verification Results	23
5.	SAR Measurement variability and uncertainty	24
	5.1. SAR measurement variability	
	5.2. SAR measurement uncertainty	
6.	RF Exposure Conditions	25
	6.1. Extremity exposure conditions	25
7.	RF Output Power	26
	7.1. Maximum Tune-up Limit	
	7.2. RF Output Power	26
8.	Antenna Location	
9.	SAR Measurement Results	
	9.1. SAR measurement results	
	9.1.1. SAR measurement Result	
10.	Appendix A. Photo documentation	30

11.	Appendix B. System Check Plots	35
12.	Appendix C. SAR Measurement Plots	37
13.	Appendix D. Calibration Certificate	39

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE HANDS, WRISTS, FEET AND ANKLES 4.0 W/kg APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for MT-602 are as follows.

Band	Max Reported SAR(W/kg)			
	10-g Extremity(0mm)			
2.4GHz	0.050			

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	6CH 2.4GHZ FHSS RADI	6CH 2.4GHZ FHSS RADIO CONTROL SYSTEM				
Trade Name	MERITRC					
Model Name	MT-602					
Serial Model	N/A					
FCC ID	XJ6MT-602	XJ6MT-602				
Device Phase	Identical Prototype	Identical Prototype				
Exposure Category	General population / Unco	General population / Uncontrolled environment				
Device Operating Configurations						
Supporting Mode(s)	2.4GHz					
Test Modulation	FHSS(GFSK)					
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)			
	2.4GHz 2405-2455					
Battery	DC 1.5V*4 cell "AA" alkali	DC 1.5V*4 cell "AA" alkaline battery				
Test Channels (low-mid-high)	1-26-51					

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

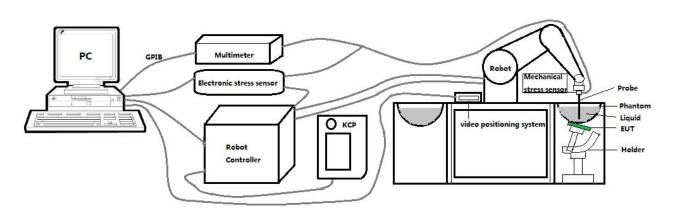
IEEE Std 1528-2013

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r01

KDB 447498 D01 General RF Exposure Guidance v05r02

KDB 248227 D01 802.11 Wi-Fi SAR v02r01


1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

NTEK

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 34/15 EPGO 267 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than ±1 mm).
- Probe linearity: ±0.06 dB
- Axial isotropy: <0.25 dB
- Hemispherical Isotropy: <0.50 dB
- Calibration range: 450MHz to 6000MHz for head & body simulating liquid.
- Lower detection limit: 9mW/kg

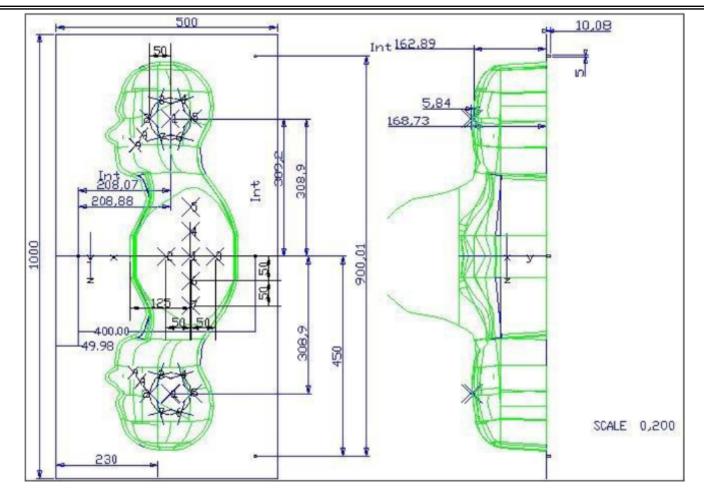
Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

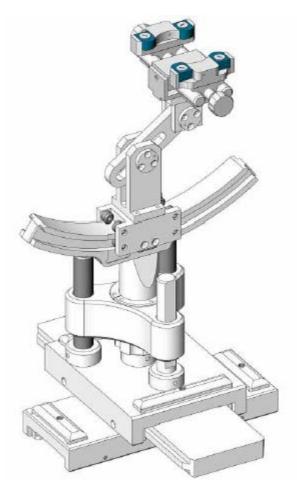
Photo of SAM phantom SN 16/15 SAM119



The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	L	eft Head	R	ight Head	F	lat Part
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
SN 16/15 SAM119	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 $\mu m.$

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

	Ianufacturer SATIMO SATIMO SATIMO SATIMO	Equipment E FIELD PROBE 450 MHz Dipole 750 MHz Dipole	Type/Model SSE2 SID450 SID750	Serial Number SN 34/15 EPGO267 SN 03/15 DIP 0G450-345	Last Cal. Aug 24, 2015 Apr 06, 2015	Due Date Aug 23, 2016 Apr 05,
	SATIMO SATIMO	450 MHz Dipole	SID450	SN 03/15 DIP	2015 Apr 06,	2016 Apr 05,
	SATIMO SATIMO	450 MHz Dipole	SID450	SN 03/15 DIP	Apr 06,	Apr 05,
	SATIMO				•	•
	SATIMO			0G450-345	2015	
		750 MHz Dipole	SID750		2010	2016
				SN 03/15 DIP	Apr 06,	Apr 05,
	SATIMO		012700	0G750-355	2015	2016
	0, (11110	835 MHz Dipole	SID835	SN 03/15 DIP	Apr 06,	Apr 05,
			012000	0G835-347	2015	2016
	SATIMO	900 MHz Dipole	SID900	SN 03/15 DIP	Apr 06,	Apr 05,
	0/111100		012000	0G900-348	2015	2016
	SATIMO	1750 MHz Dipole	SID1750	SN 03/15 DIP	Apr 06,	Apr 05,
	0/111100			1G750-357	2015	2016
	SATIMO	1800 MHz Dipole	SID1800	SN 03/15 DIP	Apr 06,	Apr 05,
	OATIMO		0101000	1G800-349	2015	2016
	SATIMO	1900 MHz Dipole	SID1900	SN 03/15 DIP	Apr 06,	Apr 05,
	0/111100			1G900-350	2015	2016
	SATIMO	2000 MHz Dipole	SID2000	SN 03/15 DIP	Apr 06,	Apr 05,
	0/111100		0102000	2G000-351	2015	2016
\boxtimes	SATIMO	2450 MHz Dipole	SID2450	SN 03/15 DIP	Apr 06,	Apr 05,
	OATIMO		0102400	2G450-352	2015	2016
	SATIMO	2600 MHz Dipole	SID2600	SN 03/15 DIP	Apr 06,	Apr 05,
	0/111100		0102000	2G600-356	2015	2016
	SATIMO	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Apr 06,	Apr 05,
	OATIMO		01100000		2015	2016
\boxtimes	SATIMO	Liquid	SCLMP		May 08,	May 07,
	GATIMO	measurement Kit	OCLIVII	SN 21/15 OCPG 72	2015	2016
\square	SATIMO	Power Amplifier	N.A	AMPLISAR_28/14_003	N.A	N.A
×	KEITHLEY	Millivoltmeter	0000	4070700	Jan 05,	Jan 04,
			2000	4072790	2015	2016
		Universal radio			Aug 08,	Aug 07,
	R&S			117858	2015	2016
		tester			2010	2010
	R&S	Wideband radio	CNAUGOO	440500	Jun 28,	Jun 27,
	1.00	communication	CMW500	148500	2015	2016

Page 17 of 61

Report No.: NTEK-2015NT10192876HF

		tester				
\boxtimes	Agilent		07505	0440104400	Aug 08,	Aug 07,
	Aglient	Network Analyzer	8753D	3410J01136	2015	2016
\boxtimes	Agilent	PSG Analog			Aug 08,	Aug 07,
	Aglient	Signal Generator	E8257D	MY51110112	2015	2016
\boxtimes	Agilent			N/45400500	Jul 31,	Jul 30,
	Aglient	Power meter	E4419B	MY45102538	2015	2016
\bowtie	Agilent	Deverse	E0004 A		Jul 31,	Jul 30,
	Aglient	Power sensor	E9301A	MY41495644	2015	2016
\bowtie	Agilent	Device concer	E0204 A	11020242440	Jul 31,	Jul 30,
	Aglient	Power sensor	E9301A	US39212148	2015	2016
\boxtimes	MCLI/USA	Directional	0044.00		Aug 13,	Aug 12,
	MOEI/OOA	Coupler	CB11-20	0D2L51502	2015	2016

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Output power measurement>

(a) For WiFi/BT power measurement, use engineering software to configure EUT WiFi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(b) Connect EUT RF port through RF cable to the power meter, and measure WiFi/BT output power.

<SAR measurement>

(a) Use engineering software to configure EUT WiFi/BT continuously transmission, at maximum RF power, in the highest power channel.

- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle surface normal at the n			$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan sp	atial resolu	ition: Δx _{Area} , Δy _{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	n scan x, y, z		\geq 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

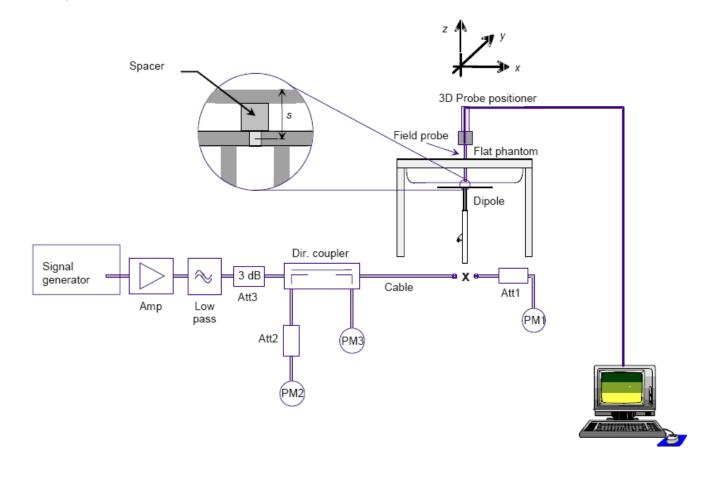
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)				Head	Tissue			
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00
Ingredients (% of weight)				Body	Tissue			
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

T :	Measured	Target T	issue Measured Tissu		d Tissue		
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Liquid Temp.	Test Date
Body	2450	52.70	1.95	51.38	1.91	21.5 °C	Nov 10, 2015
2450	2400	(50.07~55.33)	(1.85~2.04)	51.50	1.91	21.5 C	100 10, 2015


NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Target SAR (1W)			Measured SAR					
System	(±10%)		(Normalized to 1W)		Liquid			
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date		
2450MHz Body	49.32 (44.39~54.25)	22.89 (20.60~25.17)	50.61	23.30	21.5 °C	Nov 10, 2015		

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. **RF Exposure Conditions**

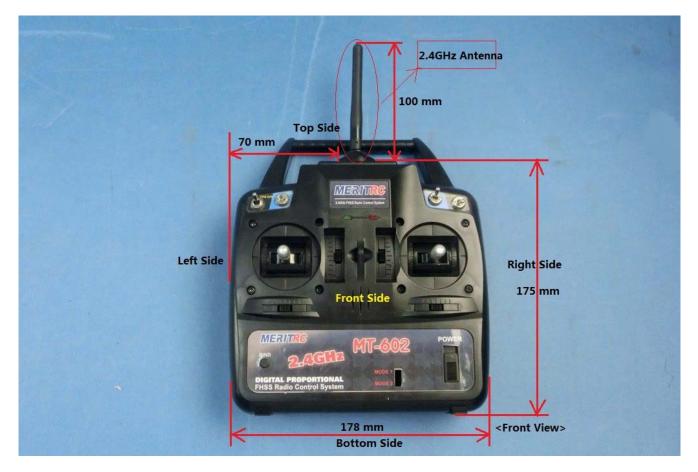
6.1. Extremity exposure conditions

Per KDB447498 D01, Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation.21 When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Test Exclusion Thresholds in section 4.3 should be applied to determine SAR test requirements. When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions.

7. RF Output Power

7.1. Maximum Tune-up Limit

		The Tune-up Maximum		Measured
Band	Mode	Power (Customer	Range	Maximum Output
		Declared)(dBm)		Power(dBm)
2.4GHz	FHSS	16±1	15~17	16.12


7.2. RF Output Power

The output power as following:

		Average Output Power (dBm)			
	Channel	Tune-up	Measured		
2.4GHz FHSS	1	17.00	16.04		
	26	17.00	16.12		
	51	17.00	15.97		

NTEK

8. Antenna Location

9. SAR Measurement Results

9.1. SAR measurement results

General Notes:

1) Per KDB447498 D01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.

2) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8W/Kg$; if the deviation among the repeated measurement is $\leq 20\%$, and the measured SAR <1.45W/Kg, only one repeated measurement is required.

4) Per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix C for details).

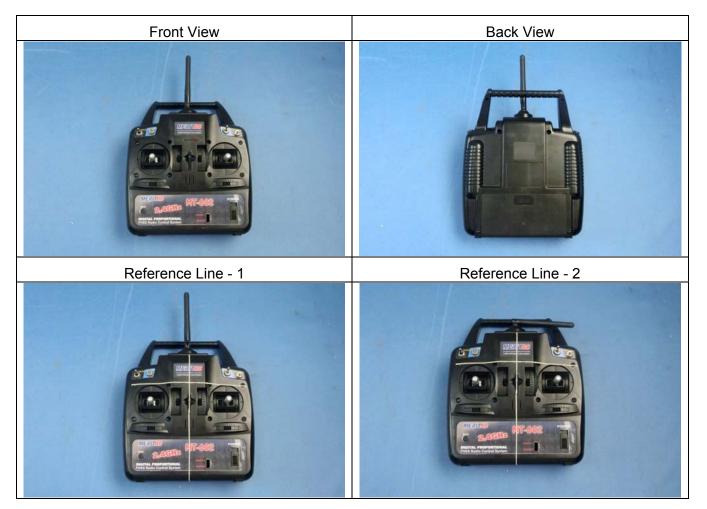
9.1.1. SAR measurement Result

Test Position of Extremity with 0mm	Test channel /Freq.	Test Mode	SAR (W/		Power Drift (±5%)	Conducted power (dBm)	Tune-up power (dBm)	Scaled SAR 10g (W/Kg)
Back Side	26/2430	2.4GHz FHSS	0.048	0.041	2.79	16.12	17.00	0.050
Left Side	26/2430	2.4GHz FHSS	0.038	0.036	1.16	16.12	17.00	0.044
Right Side	26/2430	2.4GHz FHSS	0.038	0.036	-2.30	16.12	17.00	0.044

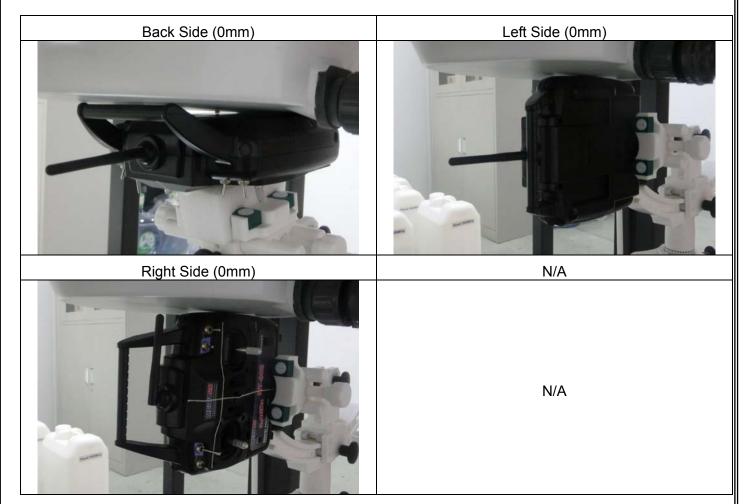
NOTE: Extremity SAR test results

10. Appendix A. Photo documentation

	Table of contents	
Test Facility		
Product Photo		
Test Positions		
Liquid depth		


Test Facility

Measurement System SATIMO



Product Photo

Test Positions

Liquid depth

Body 2450MHz depth (15.2cm)	N/A	
	N/A	

11. Appendix B. System Check Plots

Table of contents

System Performance Check - SID2450 - Body

System Performance Check - SID2450-Body

Date of measurement:	Nov 10, 2015
Signal:	Communication System: CW; Frequency: 2450.00MHz; Duty Cycle: 1:1.00
ConvF:	2.17
Liquid Parameters:	Relative permittivity (real part): 51.38; Conductivity (S/m): 1.91;
Device Position:	Dipole
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

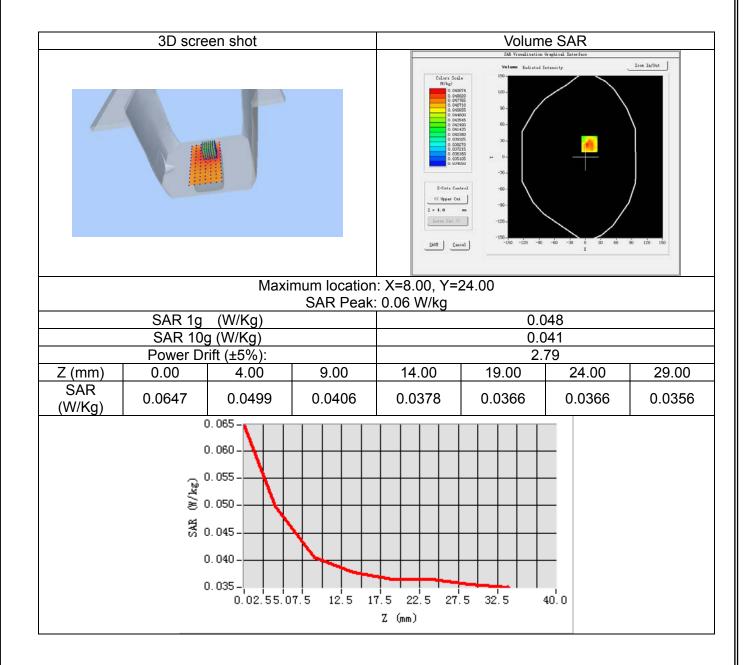

12. Appendix C. SAR Measurement Plots

Table of contents

2.4GHz FHSS_Ch26_Back Side_0mm

2.4GHz FHSS_Ch26_Back Side_0mm

Date of measurement:	Nov 10, 2015
Signal:	Communication System: 2.4GHz FHSS; Frequency: 2430.00MHz; Duty Cycle: 1:1.00
ConvF:	2.17
Liquid Parameters:	Relative permittivity (real part): 51.44; Conductivity (S/m): 1.94;
Device Position:	Body
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

13. Appendix D. Calibration Certificate

Table of contents

E Field Probe - SN 34/15 EPGO267

2450 MHz Dipole - SN 03/15 DIP 2G450-352

COMOSAR E-Field Probe Calibration Report

Ref : ACR.261.1.15.SATU.A

NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 34/15 EPGO267

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 08/24/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.261.1.15.SATU.A

X	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/18/2015	JES
Checked by :	Jérôme LUC	Product Manager	9/18/2015	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	9/18/2015	him puthowski

	Customer Name
Distribution :	NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Date	Modifications
А	9/18/2015	Initial release
(g))		
i r		

Page: 2/10

mvg

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.1.15.SATU.A

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Proc	luct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4		8
6	List	of Equipment	

Page: 3/10

mvg

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.1.15.SATU.A

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 34/15 EPGO267		
Product Condition (new / used)	New		
Frequency Range of Probe	0.45 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.234 MΩ		
	Dipole 2: R2=0.236 MΩ		
	Dipole 3: R3=0.233 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.261.1.15.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular		1	1.732%
Liquid conductivity	5.00%	Rectangular		1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

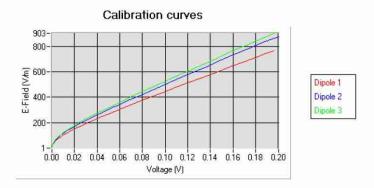
Page: 5/10

Ref: ACR.261.1.15.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

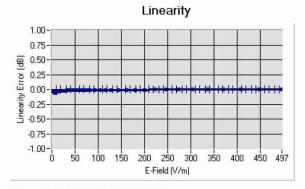

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.80	0.84	0.81

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
91	93	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.1.15.SATU.A

5.2 LINEARITY

Linearity: 1+/-1.31% (+/-0.06dB)

5.3 SENSITIVITY IN LIQUID

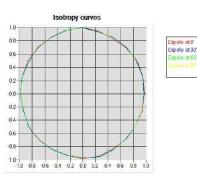
Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.68	0.87	1.87
BL450	450	58.34	0.99	1.92
HL750	750	41.82	0.90	1.69
BL750	750	56.28	0.98	1.75
HL850	835	42.59	0.90	1.89
BL850	835	53.19	0.97	1.94
HL900	900	42.05	0.98	1.74
BL900	900	56.41	1.08	1.81
HL1800	1800	41.82	1.38	1.91
BL1800	1800	53.00	1.52	1.95
HL1900	1900	40.38	1.41	2.16
BL1900	1900	53.93	1.55	2.24
HL2000	2000	40.12	1.43	2.02
BL2000	2000	53.65	1.54	2.09
HL2450	2450	38.34	1.80	2.11
BL2450	2450	52.70	1.94	2.17
HL2600	2600	38.16	1.93	2.16
BL2600	2600	51.55	2.21	2.21
HL5200	5200	36.44	4.79	1.97
BL5200	5200	50.70	5.11	2.03
HL5400	5400	35.99	4.91	2.20
BL5400	5400	50.01	5.64	2.29
HL5600	5600	35.22	5.18	2.24
BL5600	5600	49.34	5.85	2.29
HL5800	5800	34.95	5.42	2.02
BL5800	5800	48.54	6.22	2.09

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

Ref: ACR.261.1.15.SATU.A COMOSAR E-FIELD PROBE CALIBRATION REPORT mvg 5.4 ISOTROPY HL900 MHz - Axial isotropy: 0.04 dB 0.05 dB - Hemispherical isotropy: Isotropy curves 10-08 Dipole at 0' Dipole at 30' Dipole at 60'

0.4 0.2 -0.0-0.2 -0.4 0.6 -0.8 10 08 06 04 02 00 02 04 06


0.06 dB 0.07 dB

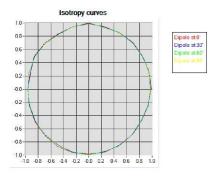
0.6

HL1800 MHz

A 1/10	100trons.
- AMai	isotropy:
	ry.

- Hemisn	herica	1sofrony.
- Hennsp	nenca	isotropy:

Page: 8/10


Ref: ACR.261.1.15.SATU.A

HL5600 MHz

- Axial isotropy:

- Hemispherical isotropy:

0.06	dB
0.08	dB

Page: 9/10

Ref: ACR.261.1.15.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Reference Probe	MVG	EP 94 SN 37/08	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/201 <mark>6</mark>
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 10/10

SAR Reference Dipole Calibration Report

Ref: ACR.139.9.15.SATU.A

NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP 2G450-352

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.139.9.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/19/2015	Jez
Checked by :	Jérôme LUC	Product Manager	5/19/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	5/19/2015	Him Richaushi

	Customer Name
Distribution :	NTEK TESTING
	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
A	5/19/2015	Initial release

Page: 2/11

Ucrosese Valen Braz

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

TABLE OF CONTENTS

1	Intr	oduction	
2	Dev	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	_4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	t of Equipment	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 03/15 DIP 2G450-352	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.139.9.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

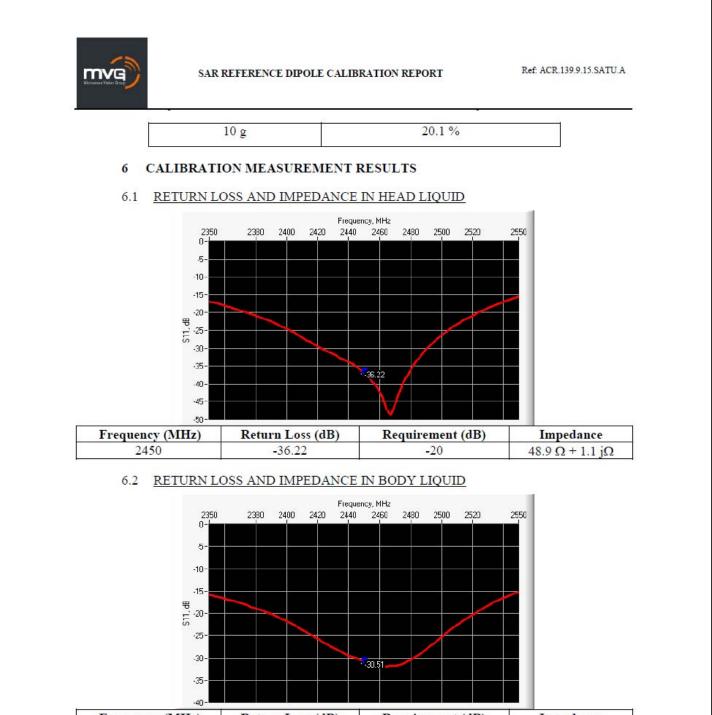
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Expanded Uncertainty
20.3 %

Page: 5/11

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-30.51	-20	52.2 Ω + 2.0 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	Lmm hmm		d r	nm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.139.9.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 <mark>±1 %</mark> .	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PAS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative per	mittivity (ε _r ')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

Ref: ACR.139.9.15.SATU.A

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8±5%		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

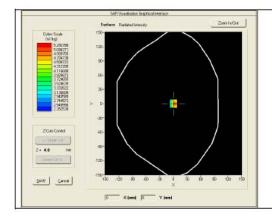
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

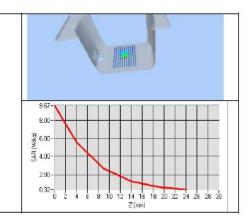
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 38.3 sigma : 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
and a	required	measured	required	measured
300	2.85		1.94	
450	<mark>4.58</mark>		3.06	
750	8.49	·	5.55	
835	9.56	i	6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11




mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

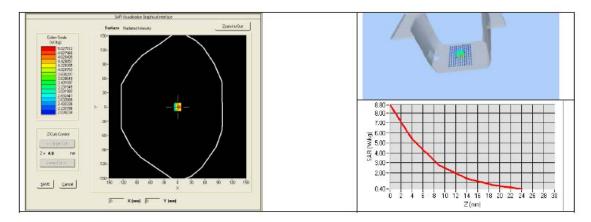
Ref: ACR.139.9.15.SATU.A

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.28 (5.23)	24	23.80 (2.38)
2600	55.3		24.6	
3000	63.8		25.7	(
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ɛ,')		it <mark>y (</mark> σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %	-	1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS

Page: 9/11


Ref: ACR.139.9.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps' : 52.7 sigma : 1.94	
Distance between dipole center and liquid	10.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	49.32 (4.93)	22.89 (2.29)	

Page: 10/11

Ref: ACR.139.9.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

END