

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

NetComm Wireless Pty Ltd Level 5, 18-20 Orion Road Lane Cove NSW 2066, Australia Date of Testing: 10/19/2020 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M2009150144-02.XIA

FCC ID:

XIA-CFW2172

APPLICANT:

NETCOMM WIRELESS PTY LTD

DUT Type: Application Type: FCC Rule Part(s): Model: Sample S/N:

Handheld LTE Router Certification CFR §2.1093 CFW-2172 Pre-production [Sparrow 002]

Equipment Class	Band & Mode	Tx Frequency	SAR
			10g Extremity (W/kg)
CBE	LTE Band 48	3552.5 - 3697.5 MHz	0.026

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.5 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: XIA-CFW2172	PCTEST: Proud to be part of Selement	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 26		
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Tage TO 20		
© 202	2020 PCTEST						

REV 21.4 09/11/2019

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	. 3				
2	LTE INFO	DRMATION	. 5				
3	INTROD	JCTION	. 6				
4	DOSIME	DOSIMETRIC ASSESSMENT					
5	TEST CONFIGURATION POSITIONS						
6	RF EXPO	DSURE LIMITS	. 9				
7	FCC ME	ASUREMENT PROCEDURES	10				
8	RF CON	DUCTED POWERS	12				
9	SYSTEM	VERIFICATION	17				
10	SAR DATA SUMMARY						
11	SAR MEASUREMENT VARIABILITY						
12	EQUIPM	ENT LIST	22				
13	MEASUF	REMENT UNCERTAINTIES	23				
14	CONCLU	ISION	24				
15	REFERE	NCES	25				
APPEN APPEN APPEN	IDIX A: IDIX B: IDIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS					
APPEN	IDIX D:	SAR SYSTEM VALIDATION					
APPEN	IDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS					
APPEN	IDIX F:	DOWNLINK LTE CA RF CONDUCTED POWERS					
APPEN	IDIX G:	PROBE AND DIPOLE CALIBRATION CERTIFICATES					

	FCC ID: XIA-CFW2172	PCTEST Proud to be part of the element	SAR EVALUATION REPORT	() NetComm	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 2 of 26	
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 2 01 20	
© 202	2 2020 PCTEST					

1 **DEVICE UNDER TEST**

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
LTE Band 48	Data	3552.5 - 3697.5 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 **Maximum Output Power**

Mode / Band	Modulated Average Output Power (in dBm)		
LTE TDD Band 48	Max allowed power	10.0	
Non-ULCA	Nominal	8.0	
LTE TOD Band 48 LUCA	Max allowed power	7.5	
LTE TOD Ballu 48 OLCA	Nominal	5.5	

Note: Per manufacturer's instructions, it is expected that the MPR will deviate from the 3GPP standards to comply with FCC Part 96 EIRP requirement.

1.4 Miscellaneous SAR Test Considerations

(A) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT	() NetComm	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 2 of 20	
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 3 of 26	
© 202	0 PCTEST				REV 21.4 M	

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

This device supports LTE Carrier Aggregation (CA) for LTE Band 48 with two component carriers in the uplink. SAR measurements and conducted powers were evaluated per 2017 Fall TCB Workshop Notes.

1.5 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (4G)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.6 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.

	FCC ID: XIA-CFW2172	Poud to be part of the element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager	
	Document S/N:	Test Dates:	es: DUT Type:		Dage 4 of 26	
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 4 01 20	
'n	D PCTEST				REV 21.4 M	

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

2 LTE INFORMATION

LTE Information						
Form Factor		Handheld LTE Router				
		LTE Ba	and 48 (3552.5 - 3697.	5 MHz)		
		LTE Band 48	3: 5 MHz, 10 MHz, 15 N	/Hz, 20 MHz	-	
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High	
LTE Band 48: 5 MHz	3552.5 (55265)	3600.8 (55748)	N/A	3649.2 (56232)	3697.5 (56715)	
LTE Band 48: 10 MHz	3555 (55290)	3601.7 (55757)	N/A	3648.3 (56223)	3695 (56690)	
LTE Band 48: 15 MHz	3557.5 (55315)	3602.5 (55765)	N/A	3647.5 (56215)	3692.5 (56665)	
LTE Band 48: 20 MHz	3560 (55340)	3603.3 (55773)	N/A	3646.7 (56207)	3690 (56640)	
UE Category		DL	UE Cat 15, UL UE Cat	: 13		
Modulations Supported in UL			QPSK, 16QAM, 64QAN	1		
LTE MPR Permanently implemented per 3GPP TS						
36.101 section 6.2.3~6.2.5? (manufacturer attestation			YES			
to be provided)						
A-MPR (Additional MPR) disabled for SAR Testing?			YES			
LTE Carrier Aggregation Possible Combinations	The teo	chnical description inclu	ides all the possible car	rier aggregation combi	nations	
LTE Additional Information	This device does not support full CA features on 3GPP Release 11. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. The following LTE Release 11 Features are not supported: Relay, HetNet, Enhanced MIMO, eICIC, WIFI Offloading, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.					

	FCC ID: XIA-CFW2172	PCTEST: Proud to be part of Selement	SAR EVALUATION REPORT	() NetComm	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Daga 5 of 26		
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 5 of 26		
© 202	2020 PCTEST						

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$S \Lambda P =$	d	$\int dU$	d	$\int dU$	
SAK =	dt	$\left(\frac{dm}{dm}\right)$	$-\overline{dt}$	$\left(\overline{\rho dv} \right)$	

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

- σ = conductivity of the tissue-simulating material (S/m)
- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dago 6 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 6 01 26
202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 4-1 Sample SAR Area Scan

09/11/2019

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) (x,y,z)
Frequency (Δx _{area} , Δy _{area})		$(\Delta x_{200m}, \Delta y_{200m})$	Uniform Grid	Graded Grid		
		, , , , , , , , , , , , , , , , , , , ,	∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤ 8	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤ 5	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤ 5	≤4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≤ 2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT) NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga Z of 26
	1M2009150144-02.XIA	4-02.XIA 10/19/2020 Handheld LTE Router			Page 7 of 26
202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

5 TEST CONFIGURATION POSITIONS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

5.2 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

	FCC ID: XIA-CFW2172	PCTEST: Proud to be part of Selement	SAR EVALUATION REPORT) NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 8 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Fage o of 20
© 202	20 PCTEST				REV 21.4 M

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

 Table 6-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT				
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR Head	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ viennent	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates: DUT Type:		Daga 0 of 26	
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 9 01 20
020 DOTEST				DEV/ 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.2.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.2.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.2.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.2.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.

09/11/2019

b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.

	FCC ID: XIA-CFW2172	Proud to be part of the element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 40 af 00	
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router	Page 1		
202	DO DOTEST				PEV 21.4 M	

© 2020 PCTEST

- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

7.2.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

7.2.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 44 of 90
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 11 of 26
© 202	20 PCTEST				REV 21.4 M

8 **RF CONDUCTED POWERS**

8.1 **LTE Conducted Powers**

LTE Band 48 8.1.1

LTE Band 48 Maximum Conducted Powers – 20 MHz Bandwidth									
LTE Band 48									
	20 MHz Bandwidth								
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	55340 (3560.0 MHz)	55773 (3603.3 MHz)	56207 (3646.7 MHz)	56640 (3690.0 MHz)	Designed MPR [dB]		
				Conducted	Power [dBm]				
	1	0	5.74	5.81	5.75	5.50			
	1	50	5.49	5.50	5.46	5.12			
	1	99	5.62	5.58	5.47	5.10	25		
QPSK	50	0	5.65	5.68	5.66	5.40	2.0		
	50	25	5.60	5.60	5.59	5.29			
	50	50	5.60	5.61	5.52	5.21			
	100	0	8.14	8.18	8.12	7.84	0		
	1	0	5.85	5.75	5.81	5.48			
	1	50	5.54	5.48	5.47	5.12			
	1	99	5.75	5.61	5.48	5.11	25		
16QAM	50	0	5.69	5.66	5.69	5.43	2.0		
	50	25	5.62	5.59	5.60	5.30			
	50	50	5.61	5.60	5.53	5.25			
	100	0	8.16	8.15	8.12	7.86	0		
	1	0	5.66	5.85	5.94	5.58			
	1	50	5.43	5.60	5.57	5.25			
	1	99	5.57	5.66	5.56	5.24	25		
64QAM	50	0	5.69	5.69	5.70	5.45	2.5		
	50	25	5.64	5.62	5.62	5.33			
	50	50	5.63	5.62	5.54	5.26			
	100	0	8.14	8.15	8.17	7.84	0		

Table 8-1 LTE Band 48 Maximum Conducted Powers – 20 MHz Bandwidth									
	LTE Band 48								
20 MHz Bandwidth									
		Low Channel	Low-Mid Channel	Mid-High Channel	High Ch				

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 12 of 26
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 12 of 26
20 PCTEST				REV 21.4 M

© 2020 PCTEST

LTE Band 48 15 MHz Bandwidth							
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel	
Modulation	RB Size	RB Offset	55315 (3557.5 MHz)	55765 (3602.5 MHz)	56215 (3647.5 MHz)	56665 (3692.5 MHz)	Designed MPR [dB]
				Conducted	Power [dBm]		
	1	0	5.79	5.61	5.73	5.45	
	1	36	5.59	5.37	5.55	5.27	
	1	74	5.62	5.43	5.58	5.28	25
QPSK	36	0	5.75	5.55	5.71	5.40	2.5
	36	18	5.70	5.49	5.65	5.35	
	36	37	5.67	5.47	5.60	5.30	
	75	0	6.72	6.50	6.66	6.36	1.5
	1	0	5.77	5.58	5.80	5.48	
	1	36	5.57	5.38	5.53	5.26	
	1	74	5.64	5.43	5.56	5.25	25
16QAM	36	0	5.78	5.55	5.72	5.42	2.5
	36	18	5.73	5.50	5.67	5.36	
	36	37	5.68	5.45	5.62	5.31	
	75	0	6.72	6.51	6.67	6.39	1.5
	1	0	5.90	5.70	5.86	5.58	
64QAM	1	36	5.71	5.48	5.65	5.33	
	1	74	5.77	5.55	5.70	5.40	25
	36	0	5.77	5.57	5.74	5.44	2.5
	36	18	5.73	5.53	5.69	5.39	
	36	37	5.68	5.48	5.64	5.33	
	75	0	6.73	6.53	6.69	6.38	1.5

Table 8-2 I TE Band 48 Maximum Co <u>ما .</u> . cted Powers – 15 MHz Bandwidth

FCC ID: XIA-CFW2172	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 of 00
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 13 of 26
20 DOTEST				DEV/ 21.4 M

			1	LTE Band 48 0 MHz Bandwidth			
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel	
Modulation	RB Size	RB Offset	55290 (3555.0 MHz)	55757 (3601.7 MHz)	56223 (3648.3 MHz)	56690 (3695.0 MHz)	Designed MPR [dB]
				Conducted	Power [dBm]		-
	1	0	5.74	5.49	5.71	5.42	
	1	25	5.59	5.35	5.51	5.23	
	1	49	5.63	5.37	5.55	5.24	
QPSK	25	0	5.70	5.46	5.65	5.36	
	25	12	5.67	5.44	5.61	5.32	
	25	25	5.64	5.41	5.57	5.28	
	50	0	5.67	5.44	5.62	5.32	
	1	0	5.67	5.48	5.66	5.39	
	1	25	5.60	5.31	5.55	5.24	
	1	49	5.57	5.42	5.54	5.28	
16QAM	25	0	5.72	5.49	5.67	5.38	2.5
	25	12	5.70	5.45	5.63	5.34	
	25	25	5.67	5.41	5.59	5.33	
	50	0	5.71	5.46	5.63	5.35	
	1	0	5.83	5.63	5.79	5.47	
	1	25	5.66	5.46	5.58	5.30	
	1	49	5.70	5.50	5.61	5.38	
64QAM	25	0	5.74	5.50	5.71	5.40	
	25	12	5.72	5.47	5.63	5.36]
	25	25	5.68	5.42	5.60	5.33]
	50	0	5.72	5.48	5.66	5.37	

Table 8-3 I TE Band 48 Maximum Co cted Powers – 10 MHz Bandwidth al . .

	FCC ID: XIA-CFW2172	Poud to be part of the element	SAR EVALUATION REPORT	etComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 14 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 14 of 26
'n	DODOTEST				DEV/ 21/4 M

				LTE Band 48		lawiatii	
	-		-	5 MHz Bandwidth			•
			Low Channel	Low-Mid Channel	Mid-High Channel	High Channel	
Modulation	RB Size	RB Offset	55265 (3552.5 MHz)	55748 (3600.8 MHz)	56232 (3649.2 MHz)	56715 (3697.5 MHz)	Designed MPR [dB]
				Conducted	Power [dBm]		
	1	0	5.60	5.40	5.58	5.31	
	1	12	5.53	5.31	5.55	5.22	
	1	24	5.55	5.32	5.55	5.23	
QPSK	12	0	5.64	5.41	5.59	5.30	
	12	6	5.65	5.42	5.58	5.31	
	12	13	5.62	5.39	5.56	5.28	
	25	0	5.63	5.40	5.58	5.30	
	1	0	5.66	5.42	5.59	5.29	
	1	12	5.56	5.31	5.49	5.24	
	1	24	5.59	5.36	5.54	5.25	
16QAM	12	0	5.66	5.43	5.61	5.34	2.5
	12	6	5.65	5.42	5.59	5.32	
	12	13	5.66	5.40	5.56	5.29	
	25	0	5.66	5.41	5.59	5.31	
	1	0	5.70	5.54	5.67	5.47	
	1	12	5.68	5.46	5.60	5.36	
	1	24	5.66	5.50	5.62	5.34	
64QAM	12	0	5.68	5.45	5.61	5.36	
	12	6	5.68	5.45	5.63	5.33	
	12	13	5.65	5.41	5.59	5.31	
	25	0	5.66	5.44	5.61	5.34	

Table 8-4 I TE Band 48 Maximum C ducted Powers – 5 MHz Bandwidth

	FCC ID: XIA-CFW2172	PCTEST* Proud to be part of & element	SAR EVALUATION REPORT) NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 15 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 15 01 20
n	DO DOTEST				DEV/ 21.4 M

8.1.2 LTE Uplink Carrier Aggregation Conducted Powers

	PCC							SCC						Power		
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency [MHz]	Modulatio n	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_48C	LTE B48	20	55773	3603.3	QPSK	100	0	LTE B48	20	55575	3583.5	QPSK	100	0	5.70	8.18

Table 8-5 ogation Conducted Dowers I TE Unlink Corrier

Notes:

- This device supports uplink carrier aggregation for LTE CA 48C with a maximum of two 20 MHz 1. component carriers. For intraband contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. 3GPP 36.101 6.2.3A allows for several dB of MPR to be applied when non-contiguous RB allocation is implemented. The conducted powers and MPR settings in this device are permanently implemented per the above 3GPP requirements.
- 2. Per FCC Guidance, the output power with uplink CA active was measured for the configuration with the highest reported SAR with single carrier for each exposure condition. The power was measured with wideband signal integration over both component carriers.

Figure 8-1 **Power Measurement Setup**

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT	(Comm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 16 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 10 01 20
02	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.1 Tissue Verification

			Measur	ed Tissue F	Properties						
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε		
			3500	3.390	49.582	3.314	51.321	2.29%	-3.39%		
	3600 Body	22	3550	3.446	49.508	3.372	51.254	2.19%	-3.41%		
			3560	3.454	49.508	3.384	51.240	2.07%	-3.38%		
10/19/2020			22	3600	3.495	49.442	3.431	51.186	1.87%	-3.41%	
						3650	3.547	49.353	3.489	51.118	1.66%
			3690	3.586	49.295	3.536	51.063	1.41%	-3.46%		
			3700	3.601	49.269	3.548	51.050	1.49%	-3.49%		

Table 9-1Measured Tissue Properties

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: XIA-CFW2172	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 17 of 26
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 17 01 20
20 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Test System Verification 9.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

	System Verification TARGET & MEASURED											
SAR System #Tissue Frequency (MHz)Tissue 				Source SN	Probe SN	Measured SAR¹ºց (W/kg)	1 W Target SAR¹⁰ց (W/kg)	1 W Normalized SAR ¹⁰ 9 (W/kg)	Deviation _{10g} (%)			
D	3500	BODY	10/19/2020	22.9	22.0	0.100	1059	7488	2.470	24.200	24.700	2.07%
D	3700	BODY	10/19/2020	22.9	22.0	0.100	1018	7488	2.300	23.100	23.000	-0.43%

Table 9-2 System Verification Results - 10g

Figure 9-1 System Verification Setup Diagram

Figure 9-2 System Verification Setup Photo

09/11/2019

	FCC ID: XIA-CFW2172		SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 19 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page to 0120
202	20 PCTEST				REV 21 4 M

© 2

10.1 Standalone Extremity SAR Data

	MEASUREMENT RESULTS																			
1 CC Uplink C	Component	ent FREQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #	
2 CC Uplink	Carrier	MHz	C	h.		[MHZ]	Power [dBm]	3m] Power [uBili]	ar [abin] Driit [ab]								(W/kg)	Factor	(W/kg)	
1 CC Uplink	N/A	3603.30	55773	Low-Mid	LTE Band 48	20	7.5	5.81	0.18	2.5	QPSK	1	0	0 mm	back	1:1.58	0.014	1.476	0.021	
1 CC Uplink	N/A	3603.30	55773	Low-Mid	LTE Band 48	20	7.5	5.68	0.12	2.5	QPSK	50	0	0 mm	back	1:1.58	0.013	1.521	0.020	
1 CC Uplink	N/A	3603.30	55773	Low-Mid	LTE Band 48	20	10.0	8.18	0.18	0	QPSK	100	0	0 mm	back	1:1.58	0.017	1.521	0.026	A1
2 CC Uplink	PCC	3603.30	55773	Low Mid	u Mid L TE David 49		7.5	5 70	0.21	0	OBSK	100	0	0 88	book	1-1 50	0.015	1 5 1 4	0.022	
2 CC Opillik	SCC	3583.50	55575	LOW-IVIU	LTE Danu 40	20	7.5	5.70	0.21	0	QFSK	100	0	Unin	Dack	1.1.30	0.015	1.514	0.023	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT															Extre	emity				
	Spatial Peak										4.0 W/kg (mW/g)									
Uncontrolled Exposure/General Population														ave	raged ov	er 10 gram	IS			

	Т	abl	e 10-1	
LTE	Band	48	Extremity	SAR

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 5. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg.
- 7. This device is a handheld LTE router with antenna located at the back side of the device. The back side was selected to evaluate SAR compliance because it was more conservative due to the antenna being closer to the back side than the handle side.

LTE Notes:

- 1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.2.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: XIA-CFW2172	Pctest*	SAR EVALUATION REPORT	() NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 10 of 26
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Fage 19 01 20
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopyir microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of co ical, including photocopying and thereof, please contact INFO@PCTEST.COM.

- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 48 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g or > 1.5 W/kg for 10g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 7. For LTE Band 48, per FCC guidance, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each exposure condition, the uplink CA scenario with two component carriers was additionally tested for the configuration with the highest SAR when carrier aggregation was not active. The SCC was configured with the closest available contiguous channel. The two component carriers were configured so the resource blocks are physically allocated side by side to achieve the maximum output power.

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dama 00 of 00	
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 20 of 26	
20 PCTEST				REV 21 4 M	

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

11 SAR MEASUREMENT VARIABILITY

11.1 **Measurement Variability**

Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg.

Measurement Uncertainty 11.2

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: XIA-CFW2172	PCTEST: Proud to be part of Selement	SAR EVALUATION REPORT	() NetComm	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 01 of 06		
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 21 of 26		
© 202	2020 PCTEST						

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents

thereof, please contact INFO@PCTEST.COM.

^{09/11/2019}

12 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85033E	3.5mm Standard Calibration Kit	6/6/2020	Annual	6/6/2021	MY53402352
Agilent 8594A		(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent 8753ES		Network Analyzer	3/5/2020	Annual	3/5/2021	MY40001472
Agilent	8753ES	S-Parameter Network Analyzer	12/31/2019	Annual	12/31/2020	US39170122
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	N5182A	MXG Vector Signal Generator	5/13/2020	Annual	5/13/2021	MY47420603
Amplifier Research	15S1G6	Amplifier	СВТ	N/A	CBT	353468
Amplifier Research	15S1G6	Amplifier	СВТ	N/A	CBT	353469
Anritsu	MA24106A	USB Power Sensor	12/9/2019	Annual	12/9/2020	1349503
Anritsu	MA24106A	USB Power Sensor	12/9/2019	Annual	12/9/2020	1344554
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	1126066
Anritsu	MA2411B	Pulse Power Sensor	1/21/2020	Annual	1/21/2021	1207470
Anritsu	ML2495A	Power Meter	11/15/2019	Annual	11/15/2020	1039008
Anritsu ML2495A Power I		Power Meter	12/17/2019	Annual	12/17/2020	941001
Control Company	Control Company 4040 Therm./Clock/Humidity Monitor		6/29/2019	Biennial	6/29/2021	192291470
Control Company 4352 Long Stem Thermometer		6/26/2019	Biennial	6/26/2021	192282744	
Keysight	772D	Dual Directional Coupler	СВТ	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	9/1/2020	Annual	9/1/2021	MY53401181
Keysight Technologies	AT/N6705B	DC Power Supply	N/A	N/A	N/A	MY53001315
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	1445
Pasternack	PE2208-6	Bidirectional Coupler	СВТ	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	СВТ	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	4/23/2020	Annual	4/23/2021	167283
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	9/29/2020	Annual	9/29/2021	101307
SPEAG	SPEAG D3500V2 3500 MHz SAR Dipole		1/11/2018	Triennial	1/11/2021	1059
SPEAG	SPEAG D3700V2 3700 MHz SAR Dipole		1/11/2018	Triennial	1/11/2021	1018
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	7488
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1530
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2020	Annual	5/12/2021	1070

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 22 of 26
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 22 01 20
20 PCTEST				REV 21.4 M

© 2020 PCTEST

13 **MEASUREMENT UNCERTAINTIES**

		1						
a	с	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	- xo
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	x
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	x
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	- xo
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	- xo
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	- xo
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	x
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	×
Phantom & Tissue Parameters			-		-		-	
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	x
Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: XIA-CFW2172	PCTEST*	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 23 of 26
201	DODOTECT				

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 24 of 26	
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 24 of 26	
120 PCTEST				REV 21.4 M	

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

15 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 25 of 26
020 PCTEST		•		REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: XIA-CFW2172	Proud to be part of the element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Do at 00 at 00
	1M2009150144-02.XIA	10/19/2020	Handheld LTE Router		Page 26 of 26
20	20 PCTEST				REV 21.4 M

© 2

APPENDIX A: SAR TEST DATA

DUT: XIA-CFW2172; Type: Handheld LTE Router; Serial: SPARROW 002

 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 48; Frequency: 3603.3 MHz; Duty Cycle: 1:1.58 \\ \mbox{Medium: 3600 Body; Medium parameters used (interpolated):} \\ f = 3603.3 \mbox{ MHz; } \sigma = 3.498 \mbox{ S/m; } \epsilon_r = 49.436; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 0 cm} \end{array}$

Test Date: 10/19/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3603.3 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 48, Extremity SAR, Back side, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 100 RB, 0 RB Offset

Area Scan (17x21x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 2.789 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0520 W/kg SAR(10 g) = 0.017 W/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: f = 3500 MHz; $\sigma = 3.39$ S/m; $\epsilon_r = 49.582$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10/19/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg SAR(10 g) = 2.47 W/kg Deviation(10 g) = 2.07%

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018

Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: f = 3700 MHz; $\sigma = 3.601$ S/m; $\epsilon_r = 49.269$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10/19/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.1 W/kg SAR(10 g) = 2.3 W/kg Deviation(10 g) = -0.43%

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ɛ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{0}^{a} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to

source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with s Declarable, or hazardous compone	surfactants and inhibitors	
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Additional information:		

For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID: XIA-CFW2172	Poud to be part of & element	SAR EVALUATION REPORT	NetComm	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	10/19/2020	Handheld LTE Router			Page 1 of 2
© 202	0 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Body Tissue Simulating Liquid (MBBL600-6000V6)					
SL AAM U16 BC (Batch: 200803-1)					
SPEAG					

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the KDB 865664 compliance standard.

Test Condition Ambient Conditio	n 22°C : 30% humidity		
TSL Temperature	22°C	X C	
Test Date	6-Aug-20		
Operator	CL		
Additional Inform	mation		
TSL Density			
TSL Heat-capacit	tv.		

Results

2.00	Measu	ired	1441344	Targe	t	Diff.to Targ	jet [%]	15.0	100000					inst en	100
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0		TAL ST	12 03	AN THE	154		
600	56.3	26.8	0.89	56.1	0.95	0.3	-6.3	> 5.0	1000						
750	55.8	22.6	0.94	55.5	0.96	0.5	-2.1	tivit 0.0	_		104	1.618			
800	55.7	21.6	0.96	55.3	0.97	0.7	-1.0	emie co	1-1.0				· · ·	2313	-
825	55.7	21.1	0.97	55.2	0.98	0.8	-1.0	2 -5.0							
835	55.7	20.9	0.98	55.1	0.99	1.0	-0.5	₿ -10.0	1 COR			NEETHIN	CRIP!	23.51	
850	55.6	20.7	0.98	55.2	0.99	0.8	-1.0	-15.0	500	1500	2500	3500	4500	550	0
900	55.5	19.9	1.00	55.0	1.05	0.9	-4.8			1500	Frequ	ency MHz	4000	000	<u> </u>
1400	54.7	15.9	1.24	54.1	1.28	1.1	-3.1	15.0	Income		in Devidence		10-10 De 10-10	0.0121	_
1450	54.6	15.8	1.27	54.0	1.30	1.1	-2.3	10.0		in fail		Contraction (1995)	1900		
1600	54.4	15.3	1.36	53.8	1.39	1.1	-2.2	\$ 50	-		N				-
1625	54.4	15.3	1.38	53.8	1.41	1.2	-2.1	TAX 0.0	1	1	1			/	
1640	54.4	15.2	1.39	53.7	1.42	1.3	-2.1	upupu	Λ.	~	1		/		
1650	54.3	15.2	1.39	53.7	1.43	1.1	-2.8	0 5.0	1-			-			
1700	54.2	15.1	1.43	53.6	1.46	1.2	-2.1	2-10.0	1.00	and the second	12.		Reading.		
1750	54.2	15.0	1.46	53.4	1.49	1.4	-2.0	-15.0	500	1500	2500	3500	4500	550	0
1800	54.1	14.9	1.50	53.3	1.52	1.5	-1.3				Freque	incy MHz			-
1810	54.1	14.9	1.51	53.3	1.52	1.5	-0.7	3500	51.4	16.0	3.11	51.3	3.31	0.2	-6.
1825	54.1	14.9	1.52	53.3	1.52	1.5	0.0	3700	51.1	16.2	3.34	51.1	3.55	0.1	-5.
1850	54.0	14.9	1.53	53.3	1.52	1.3	0.7	5200	48.3	18.7	5.42	49.0	5.30	-1.5	2.3
1900	54.0	14.8	1.57	53.3	1.52	1.3	3.3	5250	48.2	18.8	5.50	49.0	5.36	-1.6	2.
1950	53.9	14.8	1.60	53.3	1.52	1.1	5.3	5300	48.1	18.9	5.57	48.9	5.42	-1.7	2.8
2000	53.8	14.8	1.64	53.3	1.52	0.9	7.9	5500	47.7	19.2	5.86	48.6	5.65	-2.0	3.8
2050	53.8	14.7	1.68	53.2	1.57	1.1	7.0	5600	47.5	19.3	6.01	48.5	5.77	-2.1	4.2
2100	53.7	14.7	1.72	53.2	1.62	1.0	6.2	5700	47.3	19.4	6.16	48.3	5.88	-2.3	4.8
2150	53.7	14.7	1.76	53.1	1.66	1.1	6.0	5800	47.0	19.6	6.32	48.2	6.00	-2.4	5.3
2200	53.6	14.7	1.80	53.0	1.71	1.1	5.3	6000	46.6	19.8	6.62	47.9	6.23	-2.7	6.3
2250	53.5	14.8	1.85	53.0	1.76	1.0	5.1	6500	R. Ha						
2300	53.5	14.8	1.89	52.9	1.81	1.1	4.4	7000	A.S.						
2350	53.4	14.8	1.94	52.8	1.85	1.1	4.9	7500			1				
2400	53.3	14.8	1.98	52.8	1.90	1.0	4.2	8000			120.54				
2450	53.3	14.9	2.03	52.7	1.95	1.1	4.1	8500							
2500	53.2	14.9	2.07	52.6	2.02	1.1	2.5	9000	1						
2550	53.1	15.0	2.12	52.6	2.09	1.0	1.4	9500			213				
2600	53.0	15.0	2.17	52.5	2.16	0.9	0.5	10000			EN L'ENTE				

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: XIA-CFW2172	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT) NetComm	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	10/19/2020	Handheld LTE Router			Page 2 of 2
© 202	20 PCTEST				REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1 SAR System Validation Summary – 10g

SVD							COND. PERM.			CW VALIDATION			MOD. VALIDATION		
SAR SVOTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE C.	AL. POINT	(7)	(ar)		PROBE	PROBE	MOD.		DAD		
STSTEIVI#							(13)	SENSITIVIT	LINEARITY	ISOTROPY	TYPE	DUTTFACTOR	PAR		
D	3500	2/12/2020	7488	3500	Body	3.373	50.003	PASS	PASS	PASS	TDD	PASS	N/A		
D	3700	2/12/2020	7488	3700	Body	3.585	49.719	PASS	PASS	PASS	TDD	PASS	N/A		

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: XIA-CFW2172	PCTEST Proud to be part of Selement	SAR EVALUATION REPORT) NetComm	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	10/19/2020	Handheld LTE Router			Page 1 of 1
202	0 PCTEST				REV 21.4 M 09/11/2019

©

APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

C

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA 2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components • carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 – Example of Exclusion Table for SISO Configurations

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

	FCC ID: XIA-CFW2172	PCTEST Proud to be part of @element	SAR EVALUATION REPORT	ا الله المعام المعام	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	10/19/2020	Handheld LTE Router			Page 1 of 3
202	D PCTEST				REV 21.3 M

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1 **DL CA Power Measurement Setup**

	FCC ID: XIA-CFW2172	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	NetComm	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	10/19/2020	Handheld LTE Router			Page 2 of 3
202	0 PCTEST				REV 21.3 M
1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 48 as PCC

C

										I abi	eı												
							I	Max	imur	n Ou	tput	Pov	vers	i									
				P	cc						SCC	1			SCC	2			SCC	3		Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_48A-48A	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	56640	3690	-		-		-	-	-	-	8.16	8.18
CA_48C	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	-		-		-	-	-	-	8.17	8.18
CA_48A-48C	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	56640	3690	LTE B48	20	56442	3670.2	-		-	-	8.16	8.18
CA_48C-48A	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	LTE B48	20	56640	3690	-	-	-	-	8.17	8.18
CA_48D	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	LTE B48	20	56169	3642.9	-			-	8.15	8.18
CA_48C-48C	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	LTE B48	20	56640	3690	LTE B48	20	56442	3670.2	8.17	8.18
CA 48E	LTE B48	20	55773	3603.3	OPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	LTE B48	20	56169	3642.9	LTE B48	20	56367	3662.7	8.17	8.18

Table 4

1.4 Downlink Carrier Aggregation with CA_48C Uplink Carrier Aggregation enabled

This device supports uplink carrier aggregation (ULCA) with additional Carrier Aggregation configurations active in the downlink. Power measurements were performed with ULCA active and additional CA configurations active in the downlink for the configuration per Fall 2017 TCB Workshop Notes.

Per FCC Guidance, additional SAR measurements for these configurations were not required since their maximum output power was not more than 0.25 dB higher than the maximum output power for with only ULCA active.

1.4.1 DL Carrier Aggregation RF Conducted Powers

								I	Max	imun	Tał n O	ole 2 utp	2 ut F	ow	ers												
				F	202								SCC	1					SCC	2			SCC	3		Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (UL) Channel	SCC (UL) Freq. [MHz]	Modulati on	SCC UL# RB	SCC UL RB Offset	SCC (DL) Channel	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	ULCA Tx.Power with addT CA config. active (dBm)	ULCA Tx Power (dBm)
CA_48D	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	QPSK	100	0	55971	LTE B48	20	56169	3642.9				-	5.66	5.70
CA_48E	LTE B48	20	55773	3603.3	QPSK	100	0	55773	3603.3	LTE B48	20	55971	3623.1	QPSK	100	0	55971	LTE B48	20	56169	3642.9	LTE B48	20	56367	3662.7	5.65	5.70

	FCC ID: XIA-CFW2172	PCTEST Proud to be part of @element	SAR EVALUATION REPORT	NetComm	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	10/19/2020	Handheld LTE Router			Page 3 of 3
202	0 PCTEST				REV 21.3 M 02/15/2019

APPENDIX G: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

BN 4130/2020

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-7488_Jan20/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-7488_Jan20)

Object

EX3DV4 - SN:7488

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes

Calibration date:

January 21, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Alen
Approved by:	Katja Pokovic	Technical Manager	JUL
			Issued: March 31, 2020
This calibration certificate	e shall not be reproduced except in fu	Il without written approval of the lab	oratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
~ · · ·	the standard by DAOM of the Provide standard Mile Report of the standard from the

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, v.z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide). NORMx, v,z are only intermediate values, i.e., the uncertainties of NORMx, v,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal . characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.45	0.49	0.50	± 10.1 %
DCP (mV) ^B	102.4	100.1	101.2	

Calibration Results for Modulation Response

UID	Communication System Name		Α	B	С	D	VR	Max	Max
	_		dB	dBõV		dB	mV	dev.	Unc ⁼
									(k=2)
0	CW	X	0.00	0.00	1.00	0.00	153.9	± 3.5 %	± 4.7 %
		Y	0.00	0.00	1.00		139.0		
		Z	0.00	0.00	1.00		140.1		
10352-	Pulse Waveform (200Hz, 10%)	X	5.63	74.36	13.77	10.00	60.0	± 2.9 %	± 9.6 %
AAA		Y	6.82	76.29	14.74		60.0		
		Z	20.00	92.27	21.12		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	87.02	16.42	6.99	80.0	± 2.0 %	±9.6 %
AAA		Y	20.00	87.56	16.78		80.0		
		Z	20.00	95.62	21.61		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	89.58	16.27	3.98	95.0	± 1.2 %	±9.6 %
AAA		Y	20.00	87.55	15.19		95.0		1
		Z	20.00	108.80	26.40		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	92.96	16.63	2.22	120.0	± 1.1 %	±9.6 %
AAA		Y	19.99	82.40	11.72		120.0		
		Z	20.00	123.05	31.18		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.48	60.00	6.54	0.00	150.0	± 3.1 %	± 9.6 %
AAA		Y	0.48	60.00	5.89		150.0		
		Z	0.55	60.27	7.65		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.20	68.91	16.27	0.00	150.0	± 1.3 %	±9.6 %
AAA		Y	1.83	65.66	14.39		150.0		
		Z	2.17	68.21	15.92		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.80	71.23	19.16	3.01	150.0	±1.1 %	±9.6 %
AAA		Y	2.20	65.98	16.61		150.0		
		Ζ	3.19	72.58	19.71		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.49	67.60	16.06	0.00	150.0	±2.3 %	±9.6 %
AAA		Y	3.23	66.02	15.12		150.0		
		Z	3.46	67.18	15.85		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.60	65.44	15.45	0.00	150.0	±4.1%	±9.6 %
AAA		Υ	4.56	65.09	15.20		150.0		
		Z	4.76	65.68	15,57		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

C1 C2 T1 T2 **T**3 **T4 T5 T6** α V-1 fF fF ms.V⁻² ms.V⁻¹ V-5 V⁻¹ ms Х 33.8 249.38 34.84 6.94 0.00 5.03 1.45 0.10 1.01 Y 252.45 5.07 33.3 36.43 0.13 5.05 0.00 0.35 1.01 1.01 Ζ 38.7 286.52 35.12 0.09 5.09 1.93 0.13 10.09

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	46.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.64	10.64	10.64	0.57	0.80	± 12.0 %
835	41.5	0.90	10.21	10.21	10.21	0.43	0.94	± 12.0 %
1750	40.1	1.37	8.71	8.71	8.71	0.35	0.86	± 12.0 %
1900	40.0	1.40	8.28	8.28	8.28	0.35	0.86	± 12.0 %
2300	39.5	1.67	8.26	8.26	8.26	0.31	0.90	± 12.0 %
2450	39.2	1.80	7.93	7.93	7.93	0.38	0.90	± 12.0 %
2600	39.0	1.96	7.65	7.65	7.65	0.39	0.90	± 12.0 %
3500	37.9	2.91	7.30	7.30	7.30	0.30	1.30	± 13.1 %
3700	37.7	3.12	7.20	7.20	7.20	0.30	1.30	± 13.1 %
5250	35.9	4.71	5.39	5.39	5.39	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.67	4.67	4.67	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.99	4.99	4.99	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	11.35	11.35	11.35	0.47	0.80	± 12.0 %
835	55.2	0.97	11.04	11.04	11.04	0.40	0.87	± 12.0 %
1750	53.4	1.49	8.77	8.77	8.77	0.39	0.86	± 12.0 %
1900	53.3	1.52	8.33	8.33	8.33	0.41	0.86	± 12.0 %
2300	52.9	1.81	8.11	8.11	8.11	0.40	0.90	± 12.0 %
2450	52.7	1.95	8.02	8.02	8.02	0.37	0.90	± 12.0 %
2600	52.5	2.16	7.69	7.69	7.69	0.27	0.98	± 12.0 %
3500	51.3	3.31	7.00	7.00	7.00	0.40	1.35	± 13.1 %
3700	51.0	3.55	6.85	6.85	6.85	0.40	1.35	± 13.1 %
5250	48.9	5.36	4.90	4.90	4.90	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.37	4.37	4.37	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

The ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	
0		CW	CW		+47%
10010	CAA	SAR Validation (Square 100ms 10ms)	Test	10.00	+96%
10010	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS. 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031		IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032		IEEE 802.15.1 Bluetooth (BFSK, DH5)	Bluetooth	7.74	±9.0 %
10033		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	1.74	+96%
10034		1555 802 15 1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	+96%
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK_DH1)	Bluetooth	8.01	$\pm 9.6\%$
10037	CAA	IEEE 802 15 1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	$\pm 9.6\%$
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	$\pm 9.6\%$
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6%
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6%
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6%
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6 %
10059	CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6 %
10060	CAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2,83	±9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6%
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	$\pm 9.6\%$
10064	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps)	VVLAN	9.09	±9.6%
10065	CAC	IEEE 802.11a/n WIFI 5 GHZ (OFDM, 18 Mbps)		9.00	±9.0%
10066	CAC	IEEE 802.11a/n WIFI 5 GHz (OFDM, 24 Mbps)		9.30	±9.0 %
10067		IEEE 802.11a/h WIFI 5 GHz (OFDM, 30 Mbps)	WLAN	10.12	+96%
10000		IEEE 802.11a/h WiFi 5 GHz (OFDM, 40 Mbps)	WLAN	10.24	+96%
10071	CAB	IEEE 802 11g WIFI 2 4 GHz (DSSS/OEDM 9 Mbps)	WLAN	9.83	$\pm 9.6\%$
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)		3.98	± 9.6 %
10099		EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100		LIE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)		5.67	19.0%
10101		LIE-FUD (SC-FUMA, 100% KB, 20 MHZ, 16-QAM)		6.42	<u>19.0%</u>
10102		LIE-FUD (SU-FUMA, 100% KB, 20 MHZ, 64-QAM)		0.00	± 9.0 %
10103		LIE-100 (30-FUNA, 100% RD, 20 MHZ, QFSK)		9.29	496%
10104		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-0AM)		10.01	+96%
10108	CAG	LTE-EDD (SC-EDMA, 100% RB, 10 MHz, OPSK)	LTE-FDD	5.80	±9.6%
10100	1 0/10		<u> </u>		

10100	040		ITE COD	640	+0¢W
10109	CAG	LTE-FUD (SC-FUNIA, 100% KB, TU MIRZ, 10-QAM)		0.43	<u>± 9.0 %</u>
10110	CAG	LTE-FUD (SC-FUMA, 100% RB, 5 MHz, QPSK)		5./5	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAC	IEEE 802 11n (HT Mixed 81 Mbps 16-OAM)	WIAN	8 59	+96%
10119	CAC	IEEE 802 11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8 13	+96%
10140	CAE	LTE-EDD (SC-EDMA_100% BB_15 MHz_16-OAM)		6.49	+96%
10140		LTE-EDD (SC-EDMA 100% RB 15 MHz, 64-0AM)		6.53	+96%
10142	CAE	LTE-EDD (SC-EDMA, 100% RB, 3 MHz, OPSK)		5.73	+96%
10142	CAE	LTE-EDD (SC-EDMA 100% RB 3 MHz, GOAM)		6 35	+96%
10140	CAE	LTE-EDD (SC-EDMA 100% RB 3 MHz 64-04M)		6.65	+ 9.6 %
10145	CAE	LTE EDD (SC EDMA, 100% RB, 1 4 MHz, OBSK)		0.00 E 70	10.0 %
10145		LTE FDD (SC-FDMA, 100% RD, 1.4 MHz, QFSK)		0.70	±9.0%
10140		LTE-FDD (SC-FDMA, 100% KB, 1.4 MHz, 10-QAM)		0.41	±9.0 %
10147	CAP	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHZ, 64-QAM)		0.7Z	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHZ, 16-QAM)		6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LIE-FUD	6.60	±9.6%
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LIE-IDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LIE-IDD	9.92	±9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	+9.6%
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	679	+9.6%
10169	CAF	LTE-EDD (SC-EDMA 1 RB 20 MHz OPSK)		5 73	+96%
10170	CAE	LTE-EDD (SC-EDMA 1 RB 20 MHz, 16-0AM)		6.52	+96%
10171		$ TE_{FDD}(SC_{FDMA},TRB,20 MHz,64_{OAM}) $		6.10	+96%
10171				0.49	± 9.0 %
10172	CAG	LTE-TOD (SC-FDIVIA, TRB, 20 MHz, QFSR)		9.21	±9.0 %
10173				9.48	±9.0%
10174	CAG	LTE-TOD (SC-FDWA, 1 RB, 20 MHZ, 64-QAM)		10.25	±9.0%
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)		5.72	±9.6%
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)		6.52	±9.6%
101/7		LIE-FUD (SC-FUMA, 1 KB, 5 MHZ, QPSK)		5.73	± 9.6 %
10178		LIE-FDD (SG-FDMA, 1 RB, 5 MHz, 16-QAM)	LIE-FUU	6.52	± 9.6 %
10179	CAG	LIE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10181		LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6%
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6%
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6%
10196	CAC	IEEE 802.11n (HT Mixed. 6.5 Mbps. BPSK)	WLAN	8.10	±96%
10197	CAC	IEEE 802,11n (HT Mixed, 39 Mbos, 16-OAM)	WLAN	8.13	+96%
10198	CAC	IEEE 802,11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8 27	$\pm 9.6\%$
10210	CAC	IEEE 802 11n (HT Mixed 7 2 Mbns BPSK)	WI AN	8.03	+96%
	, 0, 10		1	0.00	1 - 0.0 /0

10000					
10220	CAC	TEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAC	IEEE 802 11n (HT Mixed 90 Mbps 16-OAM)	WIAN	8/8	+96%
10220	0/10	JEEE 002.11m (ITT Mixed, 450 Mbps, 10-00 MM)		0.40	+ 0.0 %
10224	CAC		WLAN	8.08	± 9.0 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAB	TE-TDD (SC-EDMA 1 BB 14 MHz OPSK)	LTE-TDD	9.22	+96%
10220		TE TOD (CO EDMA 4 DD 2 MU- 46 OAM)		0.40	20.0 /0
10229		LTE-TDD (SC-FDWA, TRB, 3 WHZ, TO-QAW)		9.48	± 9.6 %
10230		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-EDMA 1 BB 5 MHz 64-OAM)	LTE-TDD	10.25	+96%
10224	CAG			0.20	10.0 %
10234	CAG	LTE-TOD (SC-FDMA, TRB, 5 MHZ, QPSK)		9.21	±9.0 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TOD	9.48	±9.6%
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	+9.6 %
10238	CAE	I TE-TOD (SC-EDMA 1 BB 15 MHz 16-OAM)		0.48	+96%
10200		TE TOD (CO FDMA, 4 DD, 45 MHz, 10 QAMA)		3.40	10.0%
10239	CAF	LTE-TDD (SC-FDMA, TRB, 15 MHz, 64-QAM)		10.25	±9.6%
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9,82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6 %
102/3	CAR	[TE-TDD (SC-EDMA 50% RB 14 MHz OPSK)		0.00	+06%
10245		1 TE TOD (30-1 DMA, 30% RD, 1.4 MHZ, QF3R)		9.40	19.070
10244	CAD	LTE-TUD (SC-FDMA, 50% RB, 3 MHZ, 16-QAM)	LIE-IDD	10.06	±9.6%
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	+96%
10248	CAG	LTE-TOD (SC-EDMA 50% PB 5 MHz 64-DAM)		10.00	+06%
10240		LTE TOD (00 FDMA, 50% PD, 5 MUZ, 04-QAW)		10.09	±9.0 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LIE-IDD	9.29	±9.6%
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, OPSK)	LTE-TDD	9 24	+96%
10253	CAE	TE-TOD (SC-EDMA 50% PB 45 MHz 46 OAM)		0.00	40.6%
10200		LTE TOD (00-FDMA, 50% DD 45 MUZ, 10-QAM)		9.90	19.0 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHZ, 64-QAW)	LIE-IDD	10.14	±9.6%
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6%
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	+96%
10258	CAB	LTE-TDD (SC-EDMA 100% RB 1.4 MHz OPSK)		0.3/	+96%
10200		LTE TDD (00 FDMA, 100% DD 0 MUE, 40 0AM)		3.34	1 9.0 %
10259		LIE-IDD (SC-FDMA, 100% KB, 3 MHZ, 10-QAM)	LIE-IDD	9.98	±9.6%
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB. 5 MHz. 16-OAM)	LTE-TDD	9.83	±9.6%
10263	CAG	LTE-TOD (SC-EDMA 100% RB 5 MHz 64-OAM)		10.16	+06%
10200		1 TE TOD (80 EDMA 100% DB E MUL OD0//		0.00	100%
10204				9.23	±9.0%
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10268	CAF	LTE-TDD (SC-EDMA, 100% RB, 15 MHz, 16-OAM)		10.06	+96%
10260	CAE	LTE TOD (SC EDMA 100% DD 45 MIL 64 04M)		40.40	<u></u>
10209		1 TE TOD (00 FDWA, 100% ND, 13 WITZ, 04-QAW)		10.13	19.0%
10270	UAF	LTE-TUD (SC-FUMA, 100% RB, 15 MHz, QPSK)		9.58	±9.6%
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3,96	±9,6%
10277	CAA	PHS (OPSK)	PHS	11.91	+96%
10279	CAA	PHS (OPSK BW/ 88/MHz Polloff 0.5)		41.04	TOC0/0
10210				11.01	I 9.0 %
10279		PHS (QPSK, BW 884MHz, Rollott 0.38)	PHS	12.18	±9.6%
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6 %
10292	AAR	CDMA2000 RC3 SO32 Full Rate	CDMA2000	2 20	+98%
10202			001112000	0.00	+0.0 /0
10293				3.50	19.0%
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6%
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-OAM)	LTE-FDD	6.39	+96%

EX3DV4-- SN:7488

10000					
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	±9.6 %
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.6 %
10304	AAA	LEEE 802 16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10305	AAA	IEEE 802 16e WIMAX (31:15, 10ms, 10MHz, 64OAM, PUSC)	WIMAX	15.24	+96%
10306	ΔΔΔ	IEEE 802 160 WIMAX (20:18, 10ms, 10MHz, 640AM, PUSC)	ΜΙΜΔΧ	14 67	+96%
10300		IEEE 002.10e WIMAX (20.10, 10m3, 10M12, 040AW, 1000)		14.01	100%
10307	AAA	TEEE 802.166 WIMAX (29:18, 10ms, 10WH2, QPSK, PUSC)	VVIIVIAA	14.49	±9.0 %
10308	AAA	TEEE 802.166 WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6 %
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	± 9.6 %
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	±9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAR	IEEE 802 11g WiEi 2 4 GHz (ERP-OEDM 6 Mbps 96pc dc)	WIAN	8 36	+96%
10317		IEEE 802 11a WIEI 5 CHz (OEDM 6 Mbng, 960c do)	WLAN	8.36	+ 9.6 %
10317		Dulas Mausfarm (2001 a. 40%)	Conorio	0.00	19.0%
10352	AAA		Generic	10.00	± 9.0 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5,10	±9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	+9.6%
10396	ΔΔΔ	64-OAM Waveform 100 kHz	Generic	6.27	+96%
10000		64 OAM Waveform 40 MHz	Gonorio	6.27	+0.6%
10399		UTER 000 44 co MIRI (2004) be CA OAMA 00 co do)		0.27	10.0%
10400	AAD			8.37	I9.0%
10401	AAD	TEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc oc)	VVLAN	8.60	±9.6 %
10402	AAD	IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	±9.6%
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6 %
10414	AAA	WLAN CCDF. 64-QAM. 40MHz	Generic	8.54	±9.6%
10415	AAA	IEEE 802 11b WIEi 2.4 GHz (DSSS 1 Mbps 99pc dc)	WLAN	1.54	+96%
10416		IEEE 802 11g WiFi 2.4 GHz (ERP-OEDM 6 Mbps 99pc dc)	WI AN	8.23	+96%
10417		IEEE 802.11g/Wi12.4 CH2 (CEN 401 DM, 0 Mbps, 00pc do)		0.20	+0.0%
10417		I TEEE OUZ I DANI VVIETS VIEV I VEVIVE O IVIDOS SISUIS DIST			± 9.0 %
1 40440		IEEE doel 11a Mile 0 one (of Bin, of hispo, dopo do)		0.20	
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6%
10418 10419	AAB AAA AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN WLAN	8.14 8.19	± 9.6 % ± 9.6 %
10418 10419 10422	AAA AAA AAA AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN WLAN WLAN	8.14 8.19 8.32	± 9.6 % ± 9.6 % ± 9.6 %
10418 10419 10422 10423	AAB AAA AAA AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10418 10419 10422 10423 10424	AAB AAA AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425	AAB AAA AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10425	AAB AAA AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10425 10426 10427	AAB AAA AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 15 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 16-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10425 10426 10427 10430	AAB AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 15 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10425 10426 10427 10430 10431	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.38	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.38 8.34	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 70D (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.38 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10433	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 700 (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.34 8.34 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 700 (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 700 (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD WCDMA LTE-TDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.60 7.82	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10434	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 70D (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.34 8.38 8.34 8.34 8.34 8.60 7.82 7.56	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104435 10444	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 70D (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) W-CDMA (BS Test Model 1, 64 DPCH) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 8.60 7.82 7.56 7.53	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104435 104448	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 70D (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1) UTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clippin 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD UTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104435 104448 104450	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) UTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 17 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.38 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.48	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104435 104435 104435 10447 104450 10450	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF DD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 175 MHz, E-TM 3.1) LTE-FDD (SC-FDMA, 175 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.34 8.34 8.34 8.34 8.34 8.34 8.34 8.34	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104435 104435 104435 104450 10450 10451	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF DD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN UTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD LTE-FDD	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.51 7.59 10,00	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 104436 104437 104435 104450 10450 10451 10453 10453	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 17 MHz, E-TM 3.1) LTE-FDD (SC-FDMA, 17 MB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 16 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.53 7.51 7.48 7.59 10.000 8.63	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10433 10434 10435 10436 10447 10448 10449 10450 10453 10453	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 164 DPCH) LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) LIMES FDD (OC-HSDRA)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.48 7.59 10.00 8.63 6.62	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10436 10437 10438 10449 10450 10451 10453 10456 10457	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD (OFDMA, 164 DPCH) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.48 7.59 10.00 8.63 6.62 6.55	$\begin{array}{r} \pm 9.6 \% \\ \end{array}$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10436 10447 10435 10447 10450 10451 10453 10456 10457 10458	AAB AAA AAA AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF DD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) UTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 1 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.51 7.48 7.59 10.00 8.63 6.62 6.55	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10448 10449 10450 10451 10453 10456 10457 10458 10459	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1) UTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WIFI (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	8.14 8.19 8.32 8.47 8.40 8.41 8.45 8.41 8.45 8.41 8.28 8.34 8.34 8.34 8.34 8.34 8.34 7.56 7.53 7.51 7.51 7.48 7.59 10.00 8.63 6.62 6.55 8.25	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10448 10449 10450 10451 10453 10456 10457 10458 10459	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF DD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1) LTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 1 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) UMTS-FDD (WCDMA, AMR)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	$\begin{array}{c} 8.14\\ 8.19\\ 8.32\\ 8.47\\ 8.40\\ 8.41\\ 8.45\\ 8.41\\ 8.45\\ 8.41\\ 8.28\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.60\\ 7.82\\ 7.56\\ 7.53\\ 7.51\\ 7.48\\ 7.59\\ 10.00\\ 8.63\\ 6.62\\ 6.55\\ 8.25\\ 2.39\end{array}$	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$
10418 10419 10422 10423 10424 10425 10426 10427 10430 10431 10432 10433 10434 10435 10443 10435 10448 10449 10450 10451 10453 10456 10457 10458 10459 10460	AAB AAA AAB AAB AAB AAB AAB AAB AAB AAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 7.2 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 15 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) IEEF-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) UTE-FDD (OFDMA, 1 RB, 20 MHz, QPSK, UL Sub) LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) UTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) UMTS-FDD (WCDMA, AMR) LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN	$\begin{array}{c} 8.14\\ 8.19\\ 8.32\\ 8.47\\ 8.40\\ 8.41\\ 8.45\\ 8.41\\ 8.45\\ 8.41\\ 8.28\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.34\\ 8.60\\ 7.82\\ 7.56\\ 7.53\\ 7.51\\ 7.48\\ 7.59\\ 10.00\\ 8.63\\ 6.62\\ 6.55\\ 8.25\\ 2.39\\ 7.82\\ \end{array}$	$\begin{array}{r} \pm 9.6 \% \\ \pm 9.6 \% \\$

EX3DV4- SN:7488

40400		LTE TOD (OO FOMA & DD & ANUL: OA OAM UK O.A.)		0.50	1004
10463	AAB	LTE-TDD (SC-FDMA, T RB, T.4 MHZ, 64-QAM, UL SUD)	LIE-IDD	8.56	±9.6%
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-EDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	I TE-TDD	8.32	+96%
10466	AAC	TE TOD (SC FDMA 4 DD 2 MU: 64 OAM UL Out)		0.02	
10400	AAC	LTE-TDD (SC-FDWA, TRB, 3 WHZ, 64-QAW, UL SUD)		8.57	± 9,0 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10469	AAF	LTE-TOD (SC-EDMA 1 BB 5 MHz 64-OAM LIL SUB)		9.56	+06%
40470				0.00	19.0 %
10470	AAF	LTE-TOD (SC-FDMA, 1 RB, 10 MHZ, QPSK, UL SUD)	LIE-IDD		± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10472	AAF	TE-TOD (SC-EDMA, 1 RB, 10 MHz, 64-QAM, UL, Sub)	I TE-TOD	8 57	+96%
10472				7.00	10.0%
10473	AAC	LTE-TDD (SC-FDIVIA, TRB, 15 WINZ, QPSK, OL SUD)		1.82	±9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	±9.6 %
10477	ΔΔΕ	TETDD (SC-EDMA 1 RB 20 MHz 16-0AM LIL Sub)		832	+96%
40470	/ V 1			0.52	10.0 %
10478	AAF	LTE-TDD (SC-FDMA, 1 KB, 20 MHZ, 64-QAM, UL SUD)	LIE-IDD	8.57	± 9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10480	AAB	LTE-TDD (SC-EDMA, 50% RB, 1.4 MHz, 16-QAM, UI, Sub)	TE-TDD	8 18	+96%
10401		TE TDD (SC EDMA EOW DD 4 AMU - 64 OAM UL Cub)		0.10	10.0 %
10401	1 AMD	LTE-TDD (30-FDIVIA, 30% RD, 1.4 WITZ, 04-QAW, 0L 300)	LIE-IDD	0.40	I 9.0 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	±9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	±9.6 %
10484	AAC	TTE-TOD (SC-EDMA 50% RB 3 MHz 64-0AM LU Sub)		9 47	+06%
10404	70.00			0.47	1 9.0 %
10485	AAF	LTE-TUD (SC-FUMA, 50% RB, 5 MHZ, QPSK, UL Sub)		7.59	± 9.6 %
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL, Sub)	LTE-TDD	8 60	+96%
10100		1 = TDD (SC = DMA = 50% PD = 10 MHm = ODSK HIL Sub)		7 70	10.0%
10400				1.70	±9.0 %
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6 %
10491		LITE-TOD (SC-EDMA 50% RB 15 MHz OPSK UL Sub)		7 74	+96%
10401		LTE TOD (00 FDMA, 50% TD, 45 M(2, 60 OAA LU, 0.5)		1.14	1 9.0 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHZ, 16-QAM, UL SUD)	LIE-IDD	8.41	±9.6%
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7 74	+96%
10405	ANE	ITE TOD (SC EDMA 50% PR 20 MHz 16 OAM LIL Sub)		0.07	106%
10400		1 ETE-TOD (00-1 DWA, 30% TCD, 20 WI12, 10-QAW, 0E 000)		0.37	± 9.0 %
10496		LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	<u>±9.6 %</u>
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6%
10498	AAB	TE-TDD (SC-EDMA 100% BB 14 MHz 16-OAM UL Sub)		8.40	+96%
10100		1 TE TDD (CC EDMA 100% PD 1 A MHz CA OAM 111 Cub)		0.40	10.0 %
10499	AAD	LTE-IDD (30-FDIMA, 100% RD, 1.4 MINZ, 04-QAM, UL 300)		8.68	±9.0 %
10500		LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	±9.6%
10502	AAC	I TE-TOD (SC-EDMA 100% RB 3 MHz 64-OAM UL SUD)		8.52	+96%
10502	AAE			0.52	1 3.0 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHZ, QPSK, UL SUD)		1.12	±9.6%
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-EDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	I TE-TDD	8 54	+96%
10506		$\frac{1}{1} = \frac{1}{100} \left(\frac{1}{1000} = \frac{1}{1000} + \frac{1}{1$		774	10.6 %
10000				1.14	<u>±9.0 %</u>
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LIE-IDD	8.36	±9.6%
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, OPSK, UL, Sub)	LTE-TDD	7 99	+96%
10540	A A F	TE TOD (00 FDMA 1000/ DD 15 MU- 10 OAA 10 0.4)		0.40	+0.6 %
10510		LIE-TOD (SC-PDIVIA, 100% KB, 13 IVITZ, 10-QAIVI, UL SUD)		0.49	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
10511		LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	<u>8.5</u> 1	<u>±9.6 %</u>
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	TETDD (SC-EDMA 100% RR 20 MHz 16 OAM LU Sub)		8 4 2	40.604
40544		1 TE TOD (00 FOMA 4000 DD 20 MHZ, 10 0AN HIL 2 1)		0.42	- 3.0 %
10514	AAF	LTE-TOD (SC-FDIVIA, 100% KB, 20 MHZ, 64-QAM, UL SUD)		8.45	±9.6%
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	±9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	+9.6%
10517		IEEE 802 11h M/IEI 2 / CH7 /DSSS 11 Mbos 0000 do)		1 50	+060/
	1~~~			1.00	19.0%
10518	AAB	LEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	±9.6%
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAR	IEEE 802,11a/h WIEL5 GHz (OEDM, 18 Mbns, 99nc dc)	WIAN	8 12	+96%
10504				7.07	10.0 %
10521	AAB		VVLAIN	1.91	190%
10522	AAB	LEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	<u>8.4</u> 5	<u>±9.6</u> %
10523	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	±9.6 %
10524	AAR	IEEE 802 11a/b WIEI 5 GHz (OEDM 54 Mbrs 99nc dc)	WIAN	8 27	+96%
40505					+ 0.0 %
10525	1 AAB		VYLAN	8.36	±9.0%
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802,11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	+96%

EX3DV4-SN:7488

10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	±9.6 %
10529	AAB	IEEE 802,11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802 11ac WiEI (20MHz MCS6, 99oc dc)	WLAN	8 4 3	+9.6%
10532	AAR	IEEE 802 11ac WiEi (20MHz, MCS7, 99pc dc)	WIAN	8 29	+96%
10502		IEEE 802 1100 WIEL (20MHz, MCS8, 90pc do)		838	+96%
10555		EEE 802 11ac WIEI (200012, MCS0, 35pc dc)		0.00	+06%
10534	AAD			0.40	<u>± 9.0 %</u>
10535	AAB		VVLAN	8.45	± 9.0 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	±9.6 %
10538	AAB	IEEE 802.11ac WIFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99nc dc)	WLAN	8.65	+9.6%
10544	AAR	IEEE 802 11ac WiFi (80MHz, MCS0, 99pc dc)	WIAN	8 47	+96%
10545		IEEE 802 11ac WiFi (80MHz, MCS1, 99pc dc)		8 55	+96%
10545		FEE 002, 11ac Will (00MHz, MCC1, 9500 dc)		0.00	+06%
10546				0.35	± 9.0 %
10547	AAB	TEEE 802.11ac WIFI (80MHz, MCS3, 99pc dc)	WLAN	8.49	±9.6%
10548	AAB	IEEE 802.11ac WIFI (80MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	±9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	±9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	±9.6 %
10553	AAB	IEEE 802,11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802,11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	+9.6%
10555	AAC	JEEE 802 11ac WiFi (160MHz MCS1 99pc dc)	WIAN	8 47	+96%
10556		1222 002.1100 Militi (160MHz, MCS2, 90pc dc)		8.50	+96%
10550		IEEE 002.11ac WIT (100WHz, WOS2, 00pc dc)		0.50	+0.6 %
10557	AAC			0.32	<u>±9.0 %</u>
10558	AAC		VVLAN	8.61	± 9.0 %
10560	AAC	IEEE 802.11ac WIFI (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	±9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WIFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	±9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WIEI 2.4 GHz (DSSS-OEDM, 24 Mbps, 99pc dc)	WLAN	8.00	+9.6%
10568	ΔΔΔ	IEEE 802 11g WIEL2 4 GHz (DSSS-OEDM 36 Mbps 99pc dc)	WLAN	8.37	+96%
10569		IEEE 802 11a WiEi 2.4 GHz (DSSS-OEDM, 48 Mbps, 99pc dc)		8 10	+96%
10505		IEEE 802.11g Will 2.4 CHz (DSSS OEDM, 54 Mbps, 30pc dc)		0.10	+0.6%
10570				4.00	<u>±9.0 %</u>
10571				1.99	± 9.0 %
10572	AAA	IEEE 802.11b WIFI 2.4 GHZ (DSSS, 2 Mbps, 90pc dc)	VVLAN	1.99	±9.6%
10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574		IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6%
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6%
10579	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM. 36 Mbps. 90pc dc)	WLAN	8,76	± 9.6 %
10581	AAA	IEEE 802.11g WIEI 2.4 GHz (DSSS-OEDM 48 Mbps, 90pc dc)	WLAN	8.35	+9.6%
10582		[EEE 802 11g Will 2 4 GHz (DSSS-OFDM, 40 Mbpd, 00pc do)	WIAN	8.67	+96%
10592		IEEE 802 11a/h WEE 5 CHz (DEDM & Mbra 90ng do)		9 50	+0.6 %
10503		IEEE 202 11 a/h WIEE 5 CHz (OFDM 0 Mbps, 3000 do)		0.09	+0.6 %
40505				0.00	100%
10585	AAB			0.70	<u> </u>
10586		EEE 802.11a/n WIFI 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587		IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	±9.6%
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90oc dc)	WLAN	8.74	±9.6%
10595	AAR	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90nc dc)	WLAN	8.74	+9.6%
			· · · · · · · · · · · · · · · · · · ·		1 /0

EX3DV4-SN:7488

				~~~~~	
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	±9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802 11n (HT Mixed 40MHz MCS0 90nc dc)	WIAN	879	+96%
10600		IEEE 802 11n (HT Mixed 10MHz MCS1 90nc dc)		8.88	+96%
10000		IEEE 002.11m (IT Mixed, 40MHz, MCS1, 50pc dc)		0.00	10.6%
10001				0.02	19.0 %
10602	AAB	TEEE 802.11n (HT MIXed, 40MHz, MCS3, 90pc dc)		8.94	± 9.0 %
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802,11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802,11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802 11ac WiEi (20MHz, MCS3, 90pc dc)	WIAN	8.78	+96%
10611		IEEE 802 11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8 70	+96%
10612		1EEE 802.11ac WilFi (20MHz, MCS5, 90pc dc)		9.77	+96%
10012	AAB			0.11	<u>±9.0 %</u>
10613	AAB		WLAN	8.94	± 9.0 %
10614	AAB	IEEE 802.11ac WIFI (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	±9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAB	JEEE 802 11ac WIEI (40MHz, MCS4, 90pc dc)	WLAN	8 87	+9.6%
10621	AAB	IEEE 802 11ac WIEI (40MHz, MCS5, 90pc dc)	WI AN	8 77	+96%
10622		IEEE 802 11 ac WiFi (40MHz, MCS6, 90pc dc)		8.68	+96%
10022	AAD			0.00	1069/
10023	AAB			0.02	±9.0 %
10624	AAB		VVLAN	8.96	±9.6 %
10625	AAB	IEEE 802.11ac WIFI (40MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6%
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	<u>±9.6 %</u>
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6 %
10628	AAB	IEEE 802.11ac WIFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6%
10629	AAB	IEEE 802.11ac WIFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6%
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802,11ac WiEi (80MHz, MCS5, 90pc dc)	WLAN	8.81	±9.6 %
10632		IEEE 802 11ac WiEi (80MHz, MCS6, 90pc dc)	WLAN	8 74	+96%
10633		IEEE 802.11ac WiEi (80MHz, MCS7, 90pc dc)		8.83	+96%
10033		IEEE 802.11ac Will (80MHz, MCS9, 80pc dc)		0.00	10.0%
10034				0.00	±9.0 %
10635				0.01	±9.0 %
10636	AAC	IEEE 802.11ac WIFI (160MHz, MCSU, 90pc dc)	WLAN	8.83	±9.6%
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	±9.6%
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6%
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6%
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	±9.6%
10642	AAC	IEEE 802.11ac WIFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	±9.6%
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	±9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	±9,6%
10645	AAC	IEEE 802.11ac WiFi (160MHz MCS9, 90nc dc)	WLAN	9.11	+96%
106/6		LTE_TOD (SC_EDMA 1 PR 5 MHz OPSK UL Sub=27)		11.06	+0.6%
10040				14.00	+060/
10047		$ = \sum_{i=1}^{n} D_{i} \left\{ O_{i} - D_{i} \right\} $		0.45	± 0.0 %
10048				3.45	±9.0%
10652		LIE-IDD (OFDMA, 5 MHz, E-IM 3.1, Clipping 44%)		6.91	± 9.6 %
10653		LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TOD	7.42	±9.6%
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6%
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 %
10661		Pulse Waveform (200Hz 60%)	Test	2.00	+96%
10662		Pulse Waveform (200Hz, 80%)	Test	0.07	+96%
10670		Bluetooth Low Energy	Rustooth	2 10	+0.6 %
10070				2.19	10.0%
1/10/1	I MMA	ן ובבב סטב. דומג (בטואודיב, ואטסט, שטףט מט)	I VVL/MN	1 9.09	1 3 0 %

#### EX3DV4- SN:7488

10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAA	IEEE 802,11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675		IEEE 802 11ax (20MHz MCS4 90pc dc)	WIAN	8 90	+96%
40676	A A A	IEEE 002.110x (2011) 2, 10004, 00p0 (0)		0.00	+06%
10070	AAA		VVLAN	0.11	<u>19.0%</u>
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	ΑΑΑ	IEEE 802 11ax (20MHz_MCS9_90pc dc)	WIAN	8 80	+96%
10691	<u> </u>	IEEE 802 11ax (20MHz MCS10, 90pc dc)	WLAN	8.62	+96%
10001		1EEE 002.11ax (2014) / MOO10, 00pc dc)		0.02	100%
10062	AAA		VVLAIN	0.03	± 9.0 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	±9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAA	IEEE 802,11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	+9.6%
10687	ΔΔΔ	IEEE 802 11ax (20MHz, MCS4, 99pc dc)		8.45	+96%
10007	<u> </u>			0.40	10.0%
10688	AAA	TEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	±9.6%
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	±9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	±9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	±9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8 29	+96%
10602		IEEE 902 11 ax (20MHz, MCS10, 00po do)	MI AN	9.26	+06%
10093		1222 802.11ax (20MHz, MOS10, 99pc 0c)		0.23	19.0%
10694	AAA	TEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	±9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	±9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	±9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	±9.6 %
10698	ΔΔΔ	IEEE 802 11ax (40MHz, MCS3, 90pc dc)	WLAN	8 89	+96%
10000		EEE  002.11  ax (400 MHz, MCS4, 00  po do)	WI AN	0.00	10.0 %
10099	AMA			0.02	19.0 %
10700	AAA	TEEE 802.11ax (40MHz, MICS5, 90pc dc)	WLAN	8.73	±9.0%
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802,11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6 %
10704	AAA	IEEE 802 11ax (40MHz, MCS9, 90nc dc)	WLAN	8.56	+96%
10705	ΛΛΛ	IEEE 002.110x (40MHz, MCC0, 00po do)		9.60	+0.6%
10705	MAA AAA			0.09	1 9.0 %
10706	AAA	[ IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	±9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	±9.6%
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	±9.6%
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAA	IFEE 802 11ax (40MHz_MCS3, 99pc dc)	WIAN	8 29	+96%
10711		IEEE 902 11ax (40MHz MCS4, 99pc dc)		9.20	106%
10711				0.39	19.0 %
10712	AAA		VVLAIN	0.07	<u>±9.0 %</u>
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	±9.6 %
10716	AAA	IEEE 802,11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6%
10717		IEEE 802 11ax (40MHz_MCS10_99pc dc)	WIAN	8 4 8	+96%
10719		IEEE 802 11ax (40MHz MCS11 00pc dc)	WIAN	B 24	+06%
10/10		IEEE 002.110x (401412, 140011, 300000)		0.24	<u></u>
10/19	AAA		VVLAIN	8.81	±9.0%
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	±9.6%
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	±9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90nc dc)	WLAN	8 70	±9.6%
10724		IEEE 002.11ax (00MHz, MCS5, 00pc do)		9.00	+0.6%
40707		IEEE 002 11 ax (0014112, 14000, 3000 00)		0.30	
10/25	AAA			8.74	±90%
10726		IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	<u>±9.</u> 6%
10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAA	IEEE 802,11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	+9.6%
10730		IFEE 802 11av (80MHz MCS14 90pc do)	WLAN	8 67	+0.6 %
10704		EEE 002.1 (ax (00MHz, MOOT, 3000 00)		0.07	+0.0 /0
10731	AAA			0.42	± 9.0 %
10732		IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	±9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802,11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	±9.6 %
	<u> </u>		1	L	

#### EX3DV4-SN:7488

40700	0.00		16/1 / 4 8 1	0.07	
10736	AAA	TEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	±9.6%
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	±9.6 %
10739	AAA	IEEE 802,11ax (80MHz, MCS8, 99pc dc)	WIAN	8 29	+96%
10740	<u>^</u> ^^	EEE 802 11ax (80MHz MCS9, 80pc do)		0.20	+06%
10740			VY LAIN	0.40	± 9.0 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAA	IEEE 802,11ax (160MHz_MCS1_90nc.dc)	WIAN	9.16	+96%
10745		IEEE 802 11ax (160MHz, MCS2, 90pc dc)		9.10	+060/
10740			WLAN	0.93	<u>± 9.0 %</u>
10746	AAA	TEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	±9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90nc dc)	WIAN	8 90	+96%
10750	ΔΔΔ	1555 802 11ax (160MHz, MCS7, 00pc dc)		0.00	+060/
10750				0.79	<u> 19.0 %</u>
10751	AAA	TEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6%
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	±9.6 %
10754	AAA	IEEE 802,11ax (160MHz, MCS11, 90pc dc)	WIAN	8 94	+96%
10755		IEEE 802 11ax (160MHz, MCS0, 90pc do)		9.64	+0.6 %
10755	~~~			0.04	<u>±9.0 %</u>
10755		IEEE 802.11ax (160MHZ, MCS1, 99pc dc)	WLAN	8.77	±9.6 %
10757	AAA	[ IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	±9.6 %
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	±9.6 %
10759	AAA	IEEE 802,11ax (160MHz, MCS4, 99pc dc)	WLAN	8 58	+96%
10760		IEEE 802 11av (160MHz MCS5 99nc dc)		9.40	+0.6%
10761		IEEE 802.11ax (160MHz, MC66, 00pc dc)		0.49	190%
10761			WLAN	8.58	±9.6%
10762		IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	±9.6 %
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	±9.6 %
10765	ΔΔΔ	JEEE 802 11ax (160MHz_MCS10_99pc dc)		8.5/	+96%
10766		IEEE 002.110x (100MHz, MCS11, 00pc do)		0.54	10.0 %
10700	AAA			8.51	±9.0 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6 %
10770	AAC	5G NR (CP-OEDM 1 RB 20 MHz OPSK 15 kHz)	5G NR FR1 TDD	8.02	+96%
10771		50 NR (OF OF DM, 1 RB, 25 MHz, QPSK 45 KHz)		0.02	10.0 %
10771	AAC		JONKFRITUU	0.02	± 9.0 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 IDD	8.23	±9.6%
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6%
10775	AAB	5G NR (CP-OEDM 50% RB 5 MHz OPSK 15 kHz)	5G NR FR1 TDD	8.31	+96%
10776		50 NP (CP OEDM 50% PR 10 MHz OPSK 15 kHz)		0.01	+0.6%
10770		SO NR (OP OF DM, SOV DD, 45 MHz, QPOK, 15 MHz)	SO NO ED4 TOD	0.30	19.0 %
10/77		00 NK (UP-UFUN, 50% KB, 15 MHZ, QPSK, 15 KHZ)	DG NK FRI IDD	8.30	±9.6%
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	<u>±9.6 %</u>
10779	AAB	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6%
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6 %
10781	AAC	5G NR (CP-OEDM 50% RB 40 MHz OPSK 15 kHz)	5G NR FR1 TDD	8 38	+96%
10792		50 NR (CD.OEDM 50% RB 50 MHz ODEK 15 KHz)	50 NP EP4 TOD	0.00	10.0 %
10702				0.45	<u> </u>
10783	AAC	DG NK (CP-OFDM, 100% KB, 5 MHz, QPSK, 15 KHz)	DG NK FR1 IDD	8.31	±9.6%
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	<u>±9.6 %</u>
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 15 kHz)	5G NR FR1 TDD	8 35	+96%
10787	AAC	5G NR (CP-OEDM 100% RR 25 MHz OPSK 15 4Hz)	5G NR FR1 TDD	Q // A	+0.6 %
10707		EO NE (OF OF DW, 100/0 ND, 20 WELZ, QFON, 10 NEZ)		0.44	± 9.0 %
10788	AAC	00 NR (UP-UPDIN, 100% KB, 30 IVIMZ, QPSK, 15 KHZ)	DG NK FKT TUU	8.39	±9.6%
10789		5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6%
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OEDM, 1 RB, 10 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	7 92	+96%
10702		50 ND (CD.OFDM 1 DP 45 MU- ODEK 20 LU-)	50 ND ED1 TOD	7.05	10.0 %
10193	1 100	- 00 MA (0F-0EDW, FAD, 10 MHZ, QEON, 30 MAZ)	SO NR FRI TOD	1.90	<u> </u>
10794	AAC	jog NK (CP-OFDM, T KB, 20 MHz, QPSK, 30 KHz)	DG NR FR1 TDD	/.82	±9.6%
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.01	+96%
10799		5G NR (CP-OEDM 1 RB 50 MHz OPSK 30 kHz)		7 00	+0.6 %
40700	1000			7.00	
10799	AAC	I DG INK (CP-OFDM, TKB, 60 MHZ, QPSK, 30 KHZ)	J DG NK FR1 IDD	1 7.93	± 9.6 %

#### EX3DV4-SN:7488

10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6%
10803	AAC	56 NR (CP-OEDM 1 RB 100 MHz OPSK 30 kHz)		7 03	+96%
10005	1440	50 NR (OP-OF DM, FRD, 100 MHZ, QF OR, 50 KHZ)		1.95	19.0 %
10805	AAC	DG NR (CP-OFDM, 50% RB, 10 MHZ, QPSK, 30 KHZ)	DG NK FKT TDD	8.34	±9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10812	AAC	5G NR (CP-OEDM 50% RB 60 MHz OPSK 30 kHz)	5G NR FR1 TDD	8 35	+96%
10012		50 NP (CD OEDM 100% PD 5 MHz ODSK 20 KHz)		0.00	+069/
10017	AAC	50 NR (CP-OFDM, 100% RB, 5 MHZ, QPSK, 30 KHZ)	DG NK FKT TDD	0.35	±9.0%
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHZ, QPSK, 30 KHZ)	5G NR FR1 IDD	8.34	±9.6%
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.41	+9.6%
10822	AAC	50 NR (CP-OEDM 100% RB 30 MHz OPSK 30 kHz)	5G NR FR1 TDD	8/1	+96%
10022		50 NR (OP OF DM, 100% DD, 40 MHz, QPOK, 30 KHz)		0.41	10.0%
10823	AAC	56 NR (CP-OFDM, 100% RB, 40 MHZ, QPSK, 30 KHZ)	DGNRFRIDD	8.30	± 9.6 %
10824	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 IDD	8.39	±9.6 %
10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6 %
10828	AAC	5G NR (CP-OEDM 100% RB 90 MHz OPSK 30 kHz)	5G NR FR1 TDD	843	+96%
10820	ΔΔΟ	5G NR (CP-OFDM 100% PR 100 MHz OPSK 20 HHz)		0.40 Q 40	+0.6%
10029	1 ~~~~			0.40	19.0%
10830	AAC			7.63	±9.6%
10831	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,70	±9.6 %
10834	AAC	5G NR (CP-OEDM, 1 RB 30 MHz, OPSK, 60 kHz)	5G NR FR1 TDD	7 75	+96%
10004			5C NR ER1 TOD	7.70	10.0%
10035				7.70	± 9.0 %
10836		5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz)	5G NR FR1 IDD	7.66	± 9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6%
10841	AAC	56 NR (CP-OEDM 1 RB 100 MHz OPSK 60 kHz)	5G NR FR1 TDD	7.71	+96%
10041		EC NR (CD OFDM, FNS, 100 MIN2, QI OK, 00 KH2)		0.40	1000
10643	AAC	56 NR (CF-OFDIVI, 50% RB, 15 WITZ, QFSK, 60 KTZ)	JOINK FRI TDD	8.49	± 9.0 %
10844	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAC	5G NR (CP-OEDM 100% RB 15 MHz OPSK 60 kHz)	5G NR FR1 TDD	8.36	+96%
10856		50 NR (CD-OEDM, 100% PR 20 MHz ODSK 60 KHz)		0.00	10.0%
10050	1 110	50 NR (0P 0F DM, 100 % NB, 20 MHz, QP0K, 00 KHz)		0.37	<u>± 9.0 %</u>
10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHZ, QPSK, 60 KHZ)	5G NR FR1 TDD	8.35	±9.6%
10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6%
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10861	AAC	5G NR (CP-OEDM 100% RB 60 MHz OPSK 60 kHz)	5G NR FR1 TDD	8.40	+96%
10001		50 ND (CD OEDM 100% OD 20 MU- ODCK 60 KU-)		0.40	10.0 /0
10003		00 NR (0F-0FDW, 100% RD, 00 WITZ, QMOR, 00 KTZ)		0.41	<u> </u>
10864	AAC	5G NK (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	<u>± 9.6 %</u>
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	<u>± 9.6 %</u>
10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,89	±9.6 %
10869	AAD	5G NR (DET-s-OEDM, 1 RB, 100 MHz, OPSK, 120 kHz)	5G NR FR2 TDD	5 75	+96%
10070		50 NP (DET & OEDM 100% DB 100 MHz ODEK 120 HL-)		5.00	<u>+060/</u>
10070	LAND	TO NO. (DET - OEDM 4 DD 400 MUL 400 MUL 400 MUL)		0.00	19.0%
108/1	AAD	DG INK (DFT-S-OFDIM, 1 RB, 100 MHz, 16QAM, 120 KHz)	1 DG NK FK2 TDD	5.75	<u>±96%</u>
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6 %
10875	AAD	5G NR (CP-OEDM, 1 RB, 100 MHz, OPSK, 120 kHz)	5G NR FR2 TDD	7 78	+96%
10876		50 NR (00 OFDM 100% RB 100 MHz ODEK 100 HHz)	50 NR EPTTOD	0.10	+0.6 %
10070		50 NR (0F 0F 0F 0K) 100% RD, 100 WITZ, QF3R, 120 KTZ)		0.38	1 2 3.0 %
10877	AAD	36 NR (CP-OFDIM, 1 RB, 100 MHZ, 16QAM, 120 KHZ)	DG NK FRZ IDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881		5G NR (DET-s-OEDM 1 RB 50 MHz OPSK 120 kHz)	5G NR FR2 TDD	5 75	+96%
10001		50 ND (DET & OEDM 100% DD 50 MHz ODOK 100 KHz)		5.75	
10002		50 NR (DET-S-OEDIN, 100% RD, 30 MHZ, QESN, 120 KHZ)		0.90	<u><u> </u></u>
10883	AAD	DG NR (DFT-S-OFDM, 1 RB, 50 MHz, 16QAM, 120 KHz)	DG NK FK2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	<u>±9.6 %</u>
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %

#### EX3DV4- SN:7488

10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OEDM 100% RB 50 MHz, OPSK 120 kHz)	5G NR FR2 TDD	8 35	+96%
10880		50 NP (CP OEDM 1 PR 50 MHz 160AM 120 kHz)	5C NP EP2 TDD	8.00	+06%
10003		50 NR (OF OF DM, 1 RD, 30 MHZ, 100AM, 120 KHZ)	SO NO EDO TOD	0.02	10.0%
10890	AAU	DG NR (CP-OPDM, 100% RB, DU MITZ, 10QAM, 120 KITZ)	JG NK FK2 TDD	0.40	<u>±9.0 %</u>
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	<u>±9.6 %</u>
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAA	5G NR (DET-s-OEDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	+9.6%
10800		50 NR (DET-0-OEDM 1 RB 15 MHz ODSK 30 kHz)	5C NR FR1 TOD	5.67	+06%
10033		50 NR (DET - OEDM 4 DB - 20 Mile - OBOK - 30 kile)		5.07	1 9.0 %
10900	AAA		JOINK FRI IDD	0.00	±9.0 %
10901	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 IDD	5.68	± 9.6 %
10902	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
10905	ΔΔΔ	5G NR (DET-s-OEDM 1 RB 60 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.68	+96%
10000		50 NR (DET & OEDM, 1 PR, 90 MHz, QPOK, 90 KHz)		5.00	+06%
10908	AAA		DG NK FRI TDD	5.08	± 9.0 %
10907	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 IDD	5.78	±9.6%
10908	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10909	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6 %
10910	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911	ΔΔΔ	5G NR (DET-s-OEDM 50% RB 25 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.93	+96%
10017		50 NR (DET a OEDM 50% DB 20 MHz, QPCK 20 KHz)		5,50	+069/
10912	AAA			5.64	± 9.0 %
10913	AAA	DG NR (DFT-S-OFDM, 50% RB, 40 MHZ, QPSK, 30 KHZ)	5G NR FRI TDD	5.84	±9.6 %
10914	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6 %
10915	AAA	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6 %
10916	AAA	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6 %
10917	AAA	5G NR (DET-s-OEDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	+9.6%
10018		5G NR (DET-8-OEDM 100% RB 5 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.86	+96%
10010		50 NR (DET - OEDM, 100% RD, 0 MHz, 0 K, 50 KHZ)		5.00	+069/
10919	AAA	DG NR (DFT-S-OFDM, 100% RB, 10 MHZ, QPSK, 30 KHZ)	DG NR FRI TDD	5.80	±9.6 %
10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NK FR1 TDD	5.87	±9.6%
10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6 %
10922	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6%
10924	AAA	5G NR (DET-s-OEDM, 100% RB, 40 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	5.84	+96%
10021		50 NP (DET & OEDM, 100% PB 50 MHz, OPSK 30 kHz)		5 05	+06%
10920		50 NR (DT 1-5-01 DW, 100% RD, 00 MHz, QF5K, 30 MHz)		0.90	1 9.0 %
10926	AAA	5G NR (DFT-S-OFDM, 100% RB, 60 MHZ, QPSK, 30 KHZ)	5G NR FRI TDD	5.84	±9.6 %
10927	AAA	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6 %
10928	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10929	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10930	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6%
10031		5G NR (DET-S-OEDM 1 RB 20 MHz OPSK 15 kHz)	5G NR FR1 FDD	5.51	+96%
10001		50 NR (DET & OEDM, 1 RR, 25 MHz, ORSK, 15 KHz)	50 NRTRITED	5.01	10.6 %
10932	1000	50 NR (DFT-S-OFDM, 1 RB, 20 Mile, 000K, 15 Mile)		0.01	<u>±9.0 %</u>
10933	AAA	00 NK (UF I-S-UFUM, I KB, 30 MHZ, QFSK, 15 KHZ)		0.51	±9.0%
10934		5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6%
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	<u>±9.6 %</u>
10936	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6%
10937	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	ΑΑΑ	5G NR (DET-s-OEDM 50% RB, 15 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.90	+9.6%
10020	ΔΔΛ	50 NR (DET_R_OEDM 50% DR 20 MHz OBCK 15 104 /		<u> </u>	+0.6.0/
40040		EO ND (DET & OEDM EON DD OF MUL ODOK AS LU-)		5.02	+0.0 %
10940	AAA	00 NK (UFI-S-UFUM, 50% KB, 25 MHZ, QPSK, 15 KHZ)		5.89	±9.0%
10941	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6%
10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6%
10944	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6 %
10945	AAA	5G NR (DET-s-OEDM 100% RB 10 MHz OPSK 15 kHz)	5G NR FR1 FDD	5.85	+9.6%
10046		5G NR (DET_s_OEDM 100% RB 15 MHz OPCK 15 kHz)	5G NR FR1 FDD	5.00	-0.0.0 
10040		EO ND (DET & OEDM 4000/ DD 20 MUH ODOV 45 HIL)		5.03	
1094/	AAAA	00 NR (UFT-S-UFDW, 100% RB, 20 MHZ, QPSK, 10 KHZ)		0.01	
10948	AAA	5G NR (DF I-S-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5,94	±9.6%
10949	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAA	5G NR (DFT-s-OFDM, 100% RB. 50 MHz. QPSK. 15 kHz)	5G NR FR1 FDD	5.92	± 9,6 %
10952	AAA	5G NR DL (CP-OEDM, TM 3.1, 5 MHz, 64-0AM, 15 kHz)	5G NR FR1 FDD	8 25	+96%
10952	ΔΔΑ	56 NR DI (CP_OEDM_TM 3.1 40 MHz 64 OAM 45 PHz)		Q 15	+060%
10000	1 ~~~			1 0.10	1 - 0.0 /0

#### EX3DV4-SN:7488

#### January 21, 2020

10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6 %
10960	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6 %
10963	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6 %
10964	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6 %
10968	AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

.

. •

PC Test Client

Certificate No: D3500V2-1059_Jan18

## CALIBRATION CERTIFICATE

). Dbject	-D3500V2 - SN:10	059	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 11, 2018	3	PN/ N - 26-2018
This calibration certificate docum	ents the traceability to nati	ional standards, which realize the physical ur	nils of measurements (SI),
The measurements and the diffe	maannes with connotatice p	roozonny are given on the rohowing pages ar	no are part of the certificate.
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature ( $22 \pm 3$ )°	C and humidity < 70%. $0206201$
Calibration Equipment used (M&	TE critical for calibration)		Par -
Primary Standards	tin #	Cal Data (Catificate No.)	Sabadi lad Calibratian 01/12/90
Power meter NBP	SN: 104778	84-475-17 (No. 217-02521/02520)	Apr 18
Power sensor NHP-791	SN: 103244	$(4-\Delta p_{1}-17)$ (No. 217-02521)02522)	Apr-18
Power sensor NAP-291	SN: 103245	04-April (No. 217-02521)	Apr-10
Reference 20 dB Atlenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02522)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-10 Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX9-3503 Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
³ ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Techniclan	Million -
	• • · · ·	·	rian e
Approved by:	Kalja Pokovic	Technical Manager	Colly 1
			issued: January 16, 2018

Certificate No: D3500V2-1059_Jan18

Page 1 of 8

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4  mm, dz = 1.4  mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

## Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	2.91 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

### SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	64.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

## **Body TSL parameters**

The following parameters and calculations were applied.

	Temperatur <del>e</del>	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C51.3		3.31 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.0 ± 6 %	3.32 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

## SAR result with Body TSL

SAR averaged over 1 $cm^3$ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	65.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω - 7.1 jΩ
Return Loss	- 22.4 dB

### Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.4 Ω - 4.5 jΩ		
Return Loss	- 25.3 dB		

### **General Antenna Parameters and Design**

Electrical Delay (one direction)	1.136 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 20, 2017

## **DASY5 Validation Report for Head TSL**

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz;  $\sigma = 2.91$  S/m;  $\varepsilon_r = 38.5$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.8, 7.8, 7.8); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.59 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 12.5 W/kg



0 dB = 12.5 W/kg = 10.97 dBW/kg



## **DASY5 Validation Report for Body TSL**

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz;  $\sigma = 3.32$  S/m;  $\varepsilon_r = 50$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.43, 7.43, 7.43); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

**Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm** (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.18 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.55 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 12.6 W/kg



0 dB = 12.6 W/kg = 11.00 dBW/kg





PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com



# **Certification of Calibration**

Object

D3500V2 - SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

### Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	2/14/2018	Annual	2/14/2019	3914
SPEAG	EX3DV4	SAR Probe	8/24/2018	Annual	8/24/2019	3949

Measurement Uncertainty =  $\pm 23\%$  (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 5	
D3500V2 – SN: 1059	01/11/2019	Fage 1015	

## **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/16/2019	1.136	6.46	6.23	-3.56%	2.44	2.34	-4.10%	53.2	52.9	0.3	-7.1	-5.9	1.2	-22.4	-24	-7.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/16/2019	1.136	6.51	6	-7.83%	2.42	2.26	-6.61%	53.4	49.8	3.6	-4.5	-5	0.5	-25.3	-25.9	-2.40%	PASS

Object:	Date Issued:	Page 2 of 5	
D3500V2 – SN: 1059	01/11/2019	raye 2 01 5	



#### Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 5	
D3500V2 – SN: 1059	01/11/2019	Fage 5 01 5	



Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Daga 4 of 5	
D3500V2 – SN: 1059	01/11/2019	Fage 4 01 5	




# **Certification of Calibration**

Object

D3500V2 - SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

#### Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Daga 1 of 4
D3500V2 – SN: 1059	01/11/2020	Fage 1014

# **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.46	6.73	4.18%	2.44	2.56	4.92%	53.2	53.7	0.5	-7.1	-5.6	1.5	-22.4	-23.8	-6.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.51	6.53	0.31%	2.42	2.4	-0.83%	53.4	54.2	0.8	-4.5	-3.3	1.2	-25.3	-25.8	-1.90%	PASS

Object:	Date Issued:	Page 2 of 4
D3500V2 – SN: 1059	01/11/2020	Fage 2 01 4



#### Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dago 2 of 4
D3500V2 – SN: 1059	01/11/2020	Fage 5 01 4



#### Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dago 4 of 4
D3500V2 – SN: 1059	01/11/2020	Fage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

C

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

bject D370 allbration procedure(s) QA C Calit calibration procedure(s) QA C Calit calibration procedure(s) QA C Calit calibration date: Janu This calibration date: Janu This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in the Calibration Equipment used (M&TE critica Primary Standards ID # Power meter NRP Power sensor NRP-Z91 SN: Power sensor NRP-Z91 SN: Power sensor NRP-Z91 SN: Reference 20 dB Attenuator SN: Type-N mismatch combination SN: Reference Probe EX3DV4 SN: DAE4 SN: Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN	00V2 - SN:1018 CAL-22.v2 Pration procedure f lary 11, 2018 traceability to national st with confidence probabil as for calibration) Cal 104778 04- 103244 04- 103245 04- 5058 (20k) 07-	for dipole validation kits f andards, which realize the physica ity are given on the following page ity: environment temperature (22 = <u>Date (Certificate No.)</u> Apr-17 (No. 217-02521) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	al units of mea as and are part ± 3)°C and hur Si A	6 GHz surements (S t of the certific nidity < 70%. <u>cheduled Cali</u> pr-18	N 1-26-2218 31)- BNV 02/06/ BNV 01/12 10ration
allbration procedure(s)   QA C     calibration procedure(s)   Calibration     calibration date:   January     This calibration certificate documents the measurements and the uncertainties     All calibrations have been conducted in the Calibration Equipment used (M&TE orbits)     Primary Standards   ID #     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Reference 20 dB Attenuator   SN:     Type-N mismatch combination   SN:     PALE4   SN:     Secondary Standards   ID #     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN	CAL-22.v2 Pration procedure 1 Jary 11, 2018 traceability to national st with confidence probabil the closed laboratory facility at for calibration) Cal 104778 04- 103244 04- 103245 04- 5058 (20k) 07-	for dipole validation kits f andards, which realize the physica ity are given on the following page ity: environment temperature (22 = <u>Date (Certificate No.)</u> Apr-17 (No. 217-02521)(02522) Apr-17 (No. 217-02522)	al units of mea es and are part ± 3)°C and hur Si A	6 GHz surements (S t of the certific nicity < 70%.	N N-26-20-8 N-26-20-8 N Oz / 06/ BRV 01 112 Ibration
Calibration date:   January     This calibration certificate documents the the measurements and the uncertainties     All calibrations have been conducted in the calibration Equipment used (M&TE critical Primary Standards   ID #     Calibration Equipment used (M&TE critical Primary Standards   ID #     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Reference 20 dB Attenuator   SN:     Type-N mismatch combination   SN:     DAE4   SN:     Power meter EPM-442A   SN:     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN	Iary 11, 2018 traceability to national st with confidence probabil the closed (aboratory facility) a) for calibration) <u>Cal</u> 104778 04- 103244 04- 103245 04- 5058 (20k) 07-	andards, which realize the physica ity are given on the following page ity: environment temperature (22 = Date (Certificate No.) Apr-17 (No. 217-02521/02522) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	al units of mea es and are part ± 3)°C and hur Si A	0 asurements (S t of the certific nicity < 70%. <u>cheduled Cali</u> pr-18	1726 2018 1726 2018 11. BNV 02/06/ BNV 01/12 Ibration
This calibration certificate documents the     The measurements and the uncertainties     All calibrations have been conducted in th     Calibration Equipment used (M&TE critical     Primary Standards   ID #     Power meter NRP   SN:     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Power sensor NRP-Z91   SN:     Reference 20 dB Attenuator   SN:     Reference Probe EX3DV4   SN:     DAE4   SN:     Power meter EPM-442A   SN     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN     Power sensor HP 8481A   SN	traceability to national st with contidence probabil le closed laboratory facili al for calibration) <u>Cal</u> 104778 04- 103244 04- 103245 04- 5058 (20k) 07-	andards, which realize the physica ity are given on the following page ity: environment temperature (22 = Date (Certificate No.) Apr-17 (No. 217-02521/02522) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	al units of mea es and are part ± 3)°C and hur Si A	surements (S t of the certific nidity < 70%. <u>cheduled Cali</u> pr-18	51)- BN 02/06/ BN 01/12
Calibration Equipment used (M&TE critical   Primary Standards ID #   Power meter NRP SN:   Power sensor NRP-Z91 SN:   Power mismatch combination SN:   DAE4 SN:   Secondary Standards ID:   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	al for calibration) Cal 104778 04 103244 04 103245 04 5058 (20k) 07 5058 (20k) 07	Date (Certificate No.) Apr-17 (No. 217-02521/02522) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	Si A	cheduled Cali pr-18	01 112
Primary Standards ID #   Power meter NRP SN:   Power sensor NRP-Z91 SN:   Power sensor Pobe EX3DV4 SN:   DAE4 SN:   Secondary Standards ID :   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	Cal 104778 04- 103244 04- 103245 04- 5058 (20k) 07-	Date (Certificate No.) Apr-17 (No. 217-02521/02522) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	A	cheduled Cali pr-18	ibration
Annaly Outer NRP SM:   Power sensor NRP-Z91 SN:   Power sensor NRP-Z91 SN:   Power sensor NRP-Z91 SN:   Reference 20 dB Attenuator SN:   Type-N mismatch combination SN:   Reference Probe EX3DV4 SN:   DAE4 SN:   Secondary Standards ID :   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	104778     04       103244     04       103245     04       5058 (20k)     07	Apr-17 (No. 217-02521/02522) Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	A	pr-18	
Power sensor NRP-Z91 SN:   Power sensor NRP-Z91 SN:   Power sensor NRP-Z91 SN:   Reference 20 dB Attenuator SN:   Type-N mismatch combination SN:   Reference Probe EX3DV4 SN:   DAE4 SN:   Secondary Standards ID   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	103244     04-7       103245     04-7       5058 (20k)     07-7	Apr-17 (No. 217-02521) Apr-17 (No. 217-02522)	٨		
Power sensor NRP-Z91 SN: Reference 20 dB Attenuator SN: Type-N mismatch combination SN: Reference Probe EX3DV4 SN: DAE4 SN: Secondary Standards ID Power meter EPM-442A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN	103245 04- 5058 (20k) 07-	Apr-17 (No. 217-02522)	~	pr-18	•
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A SN	5058 (20k) 07-		A	pr-18	
Type-N mismatch combination SN:   Reference Probe EX3DV4 SN:   DAE4 SN:   Secondary Standards ID   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	FR (T 0 / 00007 077	Apr-17 (No. 217-02528)	А	pr-18	
Reference Probe EX3DV4 SN:   DAE4 SN:   Secondary Standards ID   Power meter EPM-442A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN   Power sensor HP 8481A SN	5047,2706327 07-	Apr-17 (No. 217-02529)	A	pr-18	
DAE4 SN: Secondary Standards ID : Power meter EPM-442A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN	3503 30-	Dec-17 (No. EX3-3503_Dec17)	D	)ec-18	
Secondary Standards ID : Power meter EPM-442A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN	601 26-	Oct-17 (No. DAE4-601_Oct17)	c	0ct-18	
Secondary Standards     ID       Power meter EPM-442A     SN       Power sensor HP 8481A     SN       Power sensor HP 8481A     SN       Power sensor HP 8481A     SN	и — — — — — — — — — — — — — — — — — — —	ook Date (in house)	5	Scheduled Cha	eck
Power meter EPM-442A SN Power sensor HP 8481A SN Power sensor HP 8481A SN Power sensor HP 8481A SN		Oct-15 (in house check Oct-16)		n house check	k: Oct-18
Power sensor HP 8481A SN Power sensor HP 8481A SN PC concentor 8&S SMT-06 SN	- 11007000799 07	Oct-15 (in house check Oct-16)	l	n house chec	ic Oct-18
Power sensor HP 6481A 34	- MV/1092317 07	-Oct-15 (in house check Oct-16)	ł	n house chec	k: Oct-18
	-1002011 07 -100072 15	-Jun-15 (in house check Oct-16)	1	n house chec	k: Oct-18
Notwork Applyzer HP 8753E	US37390585 18	-Oct-01 (in house check Oct-17)	l	n house chec	k, Oct-18
INSTMOLY MIRLYLOI IT DIOOL 101					
Na Calibrated by:	me Shael Weber	Function Laboratory Techniclan		Signature	ſ
Approved by:	tja Pokovic	Technical Manager		Ø	EF.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1018_Jan18

Page 1 of 8

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
  - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

### **Head TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	3.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

## SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.8 W/kg ± 19.9 % (k=2)
2		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ⁻ (10 g) of Head ISL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

#### **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.0	3.55 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.7 ± 6 %	3.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

#### SAR result with Body TSL

SAR averaged over 1 $cm^3$ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	64.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 $\text{cm}^3$ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

Impedance, transformed to feed point	53.0 Ω - 8.3 jΩ
Return Loss	- 21.4 dB

#### Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.5 Ω - 6.3 jΩ
Return Loss	- 23.9 dB

#### **General Antenna Parameters and Design**

Electrical Delay (one direction) 1.144 ns	
-------------------------------------------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 18, 2015

## **DASY5 Validation Report for Head TSL**

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1018

Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz;  $\sigma = 3.07$  S/m;  $\epsilon_r = 38.3$ ;  $\rho = 1000$  kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.5, 7.5, 7.5); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

**Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm** (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.54 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 12.6 W/kg





## **DASY5 Validation Report for Body TSL**

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1018

Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz;  $\sigma$  = 3.53 S/m;  $\epsilon_r$  = 49.7;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.28, 7.28, 7.28); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.16 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 6.46 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 12.6 W/kg







PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

-1.410.290.6652 / Fax +1.410.290. http://www.pctest.com



# **Certification of Calibration**

Object

D3700V2 - SN: 1018

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

#### Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	2/14/2018	Annual	2/14/2019	3914
SPEAG	EX3DV4	SAR Probe	8/24/2018	Annual	8/24/2019	3949

Measurement Uncertainty =  $\pm 23\%$  (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Dogo 1 of 4
D3700V2 – SN: 1018	01/11/2019	Fage 1014

# **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2019	1.144	6.58	6.22	-5.47%	2.42	2.27	-6.20%	53	51.1	1.9	-8.3	-5.5	2.8	-21.4	-25.1	-17.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2019	1.144	6.43	6.08	-5.44%	2.31	2.21	-4.33%	51.5	54.2	2.7	-6.3	-2.3	4	-23.9	-26.9	-12.40%	PASS

Object:	Date Issued:	Page 2 of 4
D3700V2 – SN: 1018	01/11/2019	Fage 2 01 4



#### Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D3700V2 – SN: 1018	01/11/2019	Fage 5 01 4	



Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D3700V2 – SN: 1018	01/11/2019	Fage 4 01 4	





# **Certification of Calibration**

Object

D3700V2 - SN: 1018

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 3700 MHz.

#### Calibration Equipment used:

Manufacturer	Model	Description	Cal Due	Serial Number		
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter 12		Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter CB7		N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe 2/19/2019 Annual 2/19/2		2/19/2020	3914	
SPEAG	DAE4	Dasy Data Acquisition Electronics 2/14/2019 Annual 2/14/2020			1272	

Measurement Uncertainty =  $\pm 23\%$  (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D3700V2 – SN: 1018	01/11/2020	Fage 1014

# **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.144	6.58	7.08	7.60%	2.42	2.6	7.44%	53	50.5	2.5	-8.3	-7.7	0.6	-21.4	-22.3	-4.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.144	6.43	6.6	2.64%	2.31	2.36	2.16%	51.5	50	1.5	-6.3	-4.6	1.7	-23.9	-26.8	-12.20%	PASS

Object:	Date Issued:	Page 2 of 4
D3700V2 – SN: 1018	01/11/2020	Fage 2 01 4



#### Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dage 3 of 4	
D3700V2 – SN: 1018	01/11/2020	Fage 5 01 4	



#### Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D3700V2 – SN: 1018	01/11/2020	Fage 4 01 4	