

**FCC OET BULLETIN 65 SUPPLEMENT C
IC RSS-102 ISSUE 4**

SAR EVALUATION REPORT

For
AN ELECTRONIC READING DEVICE

MODEL: BNRV200

**FCC ID: XHHBNRV200-A
IC: 8961A-BNRV200A**

REPORT NUMBER: 10U13404-3, Revision B

ISSUE DATE: October 28, 2010

Prepared for
**BARNES&NOBLE.COM
76 NINTH AVE., 9TH FLOOR
NEW YORK, NY 10011**

Prepared by
**COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888**

NVLAP[®]
NVLAP LAB CODE 200065-0

Revision History

<u>Rev.</u>	<u>Issue Date</u>	<u>Revisions</u>	<u>Revised By</u>
--	October 25, 2010	Initial Issue	--
A	October 26, 2010	Changed FCC ID "XHHBNRV200A" to "XHHBNRV200-A"	Sunny Shih
B	October 28, 2010	Changed client company name and address	A. Zaffar

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION.....	5
4. CALIBRATION AND UNCERTAINTY.....	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	<i>5</i>
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>6</i>
5. EQUIPMENT UNDER TEST	7
6. SYSTEM SPECIFICATIONS	8
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	9
8. TISSUE DIELECTRIC PARAMETERS CHECK	10
8.1. <i>TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ</i>	<i>11</i>
9. SYSTEM VERIFICATION.....	12
9.1. <i>SYSTEM CHECK RESULTS FOR D2450V2.....</i>	<i>12</i>
10. RF OUTPUT POWER VERIFICATION.....	15
11. SUMMARY OF SAR TEST RESULTS	16
12. SAR TEST PLOTS.....	17
13. ATTACHMENTS.....	22
14. ATENNA LOCATION & SEPARATION DISTANCES.....	23
15. TEST SETUP PHOTOS	24
16. HOST DEVICE PHOTOS.....	27

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	BARNES&NOBLE.COM 76 NINTH AVE., 9TH FLOOR NEW YORK, NY 10011		
EUT DESCRIPTION:	AN ELECTRONIC READING DEVICE		
MODEL NUMBER:	BNRV200		
DEVICE CATEGORY:	Portable		
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure		
DATE TESTED:	October 11, 2010		

FCC / IC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR mW/g	Limit (mW/g)
15.247 / RSS-102	2412 - 2462	0.783 (Secondary Landscape)	1.6

Applicable Standards	Test Results
FCC OET Bulletin 65 Supplement C 01-01 IC RSS 102 Issue 4	Pass

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.


Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

SUNNY SHIH
ENGINEERING TEAM LEADER
Compliance Certification Services (UL CCS)

Tested By:

DEVIN CHANG
EMC ENGINEER
Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE Std 1528-2003, and Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 D01 Mobile Portable RF Exposure v04, supplemental to KDB 616217 D03 and IC RSS 102 Issue 4.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date		
				MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Dielectric Probe Kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011
System Validation Dipole	SPEAG	D2450V2*	706	4	19	2013
Thermometer	ERTCO	639-1S	1718	7	19	2011
Power Meter	Giga-tronics	8651A	8651404	5	13	2012
Power Sensor	Giga-tronics	80701A	1834588	5	13	2010
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Simulating Liquid	SPAEG	M2450	N/A	Within 24 hrs of first test		

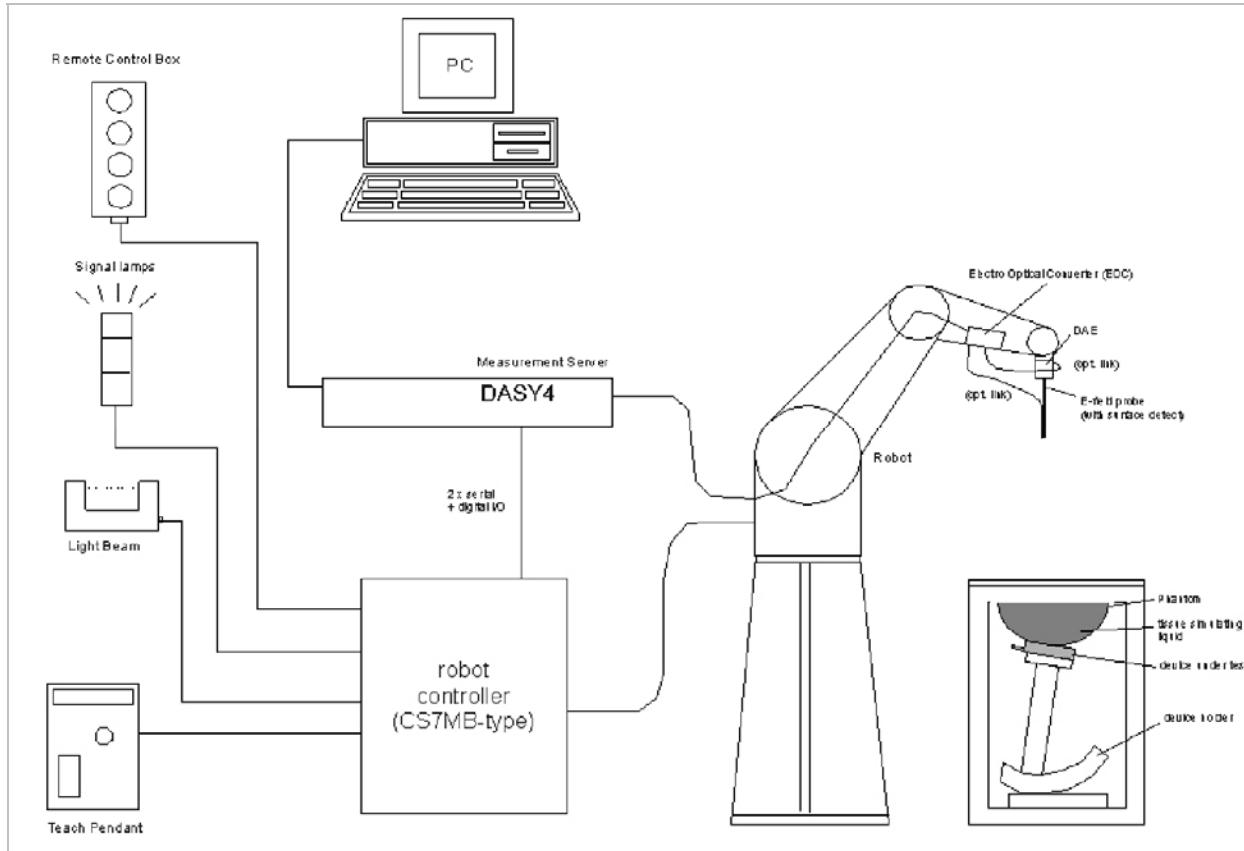
Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole
2. System validation with specific dipole is within 10% of calibrated value.
3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	1.90	Normal	1	0.64	1.22
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	-2.80	Normal	1	0.6	-1.68
Combined Standard Uncertainty Uc(y) =					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 19.33 %					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.54 dB					


Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24
Liquid Conductivity - measurement	1.90	Normal	1	0.43	0.82
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41
Liquid Permittivity - measurement uncertainty	-2.80	Normal	1	0.49	-1.37
Combined Standard Uncertainty Uc(y), % =					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 18.85 %					
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.50 dB					

5. EQUIPMENT UNDER TEST

AN ELECTRONIC READING DEVICE					
Normal operation:	<ul style="list-style-type: none">- Tablet bottom face, and- Tablet edges: Multiple display orientations supporting both portrait and landscape configurations				
Antenna tested:	<table><tr><td><u>Manufactured</u></td><td><u>Part number</u></td></tr><tr><td>Pulse</td><td>W3300</td></tr></table>	<u>Manufactured</u>	<u>Part number</u>	Pulse	W3300
<u>Manufactured</u>	<u>Part number</u>				
Pulse	W3300				
Antenna-to-user separation distances:	Refer to section 14 for details				

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. TISSUE DIELECTRIC PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)	
	ϵ_r	σ (S/m)
300	58.20	0.92
450	56.70	0.94
835	55.20	0.97
900	55.00	1.05
915	55.00	1.06
1450	54.00	1.30
1610	53.80	1.40
1800 – 2000	53.30	1.52
2450	52.70	1.95
3000	52.00	2.73
5800	48.20	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

8.1. TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Body 2450 MHz

Measured by: Devin Chang

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2450	e'	51.17	Relative Permittivity (ϵ_r):	51.170	52.7	-2.90	± 5
	e"	14.64	Conductivity (σ):	1.996	1.95	2.35	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

October 11, 2010 08:53 AM

Frequency	e'	e"
2400000000.	51.3390	14.4236
2405000000.	51.3213	14.4470
2410000000.	51.3076	14.4717
2415000000.	51.2924	14.4910
2420000000.	51.2731	14.5135
2425000000.	51.2559	14.5352
2430000000.	51.2404	14.5579
2435000000.	51.2223	14.5790
2440000000.	51.2060	14.6007
2445000000.	51.1885	14.6194
2450000000.	51.1703	14.6431
2455000000.	51.1508	14.6631
2460000000.	51.1342	14.6823
2465000000.	51.1126	14.7062
2470000000.	51.0948	14.7255
2475000000.	51.0720	14.7472
2480000000.	51.0559	14.7696
2485000000.	51.0352	14.7876
2490000000.	51.0155	14.8115
2495000000.	50.9999	14.8318
2500000000.	50.9787	14.8524

The conductivity (σ) can be given as:

$$\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$$

where $f = \text{target } f * 10^6$

$$\epsilon_0 = 8.854 * 10^{-12}$$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System validation dipole	Cal. certificate #	Cal. date	SAR Avg (mW/g)		
			Tissue:	Head	Body
D2450V2	D2450V2-706_Apr10	04/19/10	SAR _{1g} :	51.6	52.4
			SAR _{10g} :	24.4	24.5

9.1 SYSTEM CHECK RESULTS FOR D2450V2

Ambient Temperature = 24°C; Relative humidity = 38%

Measured by: Devin Chang

System validation dipole	Date Tested	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
		Tissue:	Body			
D2450V2	10/11/10	SAR _{1g} :	54.2	52.4	3.44	± 10
		SAR _{10g} :	25.5	24.5	4.08	

SYSTEM CHECK PLOT

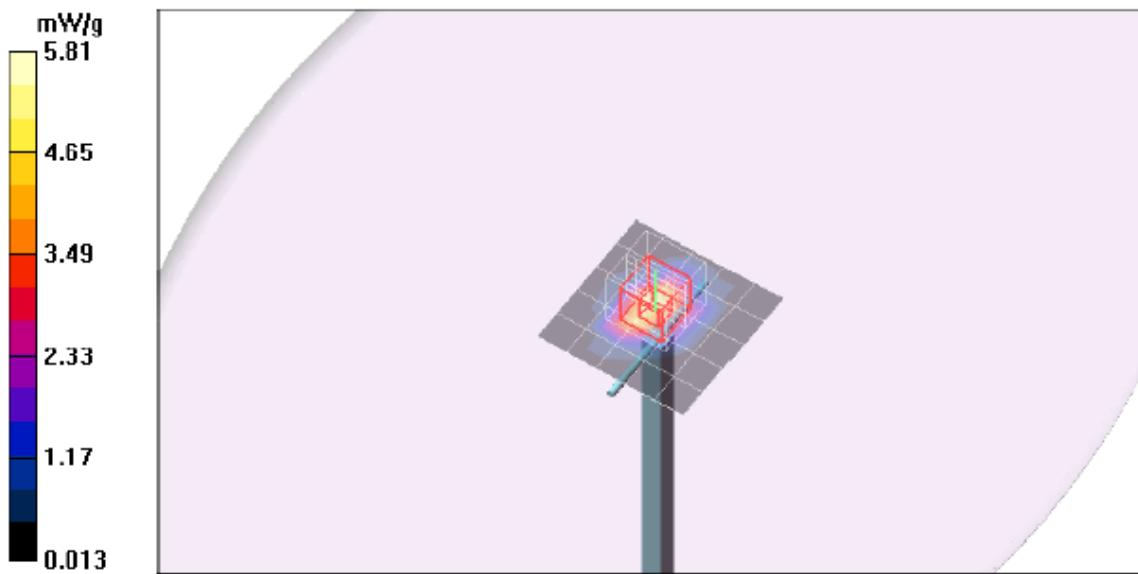
Date/Time: 10/11/2010 9:23:45 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: D2450V2; Type: D2450V2; Serial: 706

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³
Phantom section: Flat Section


Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

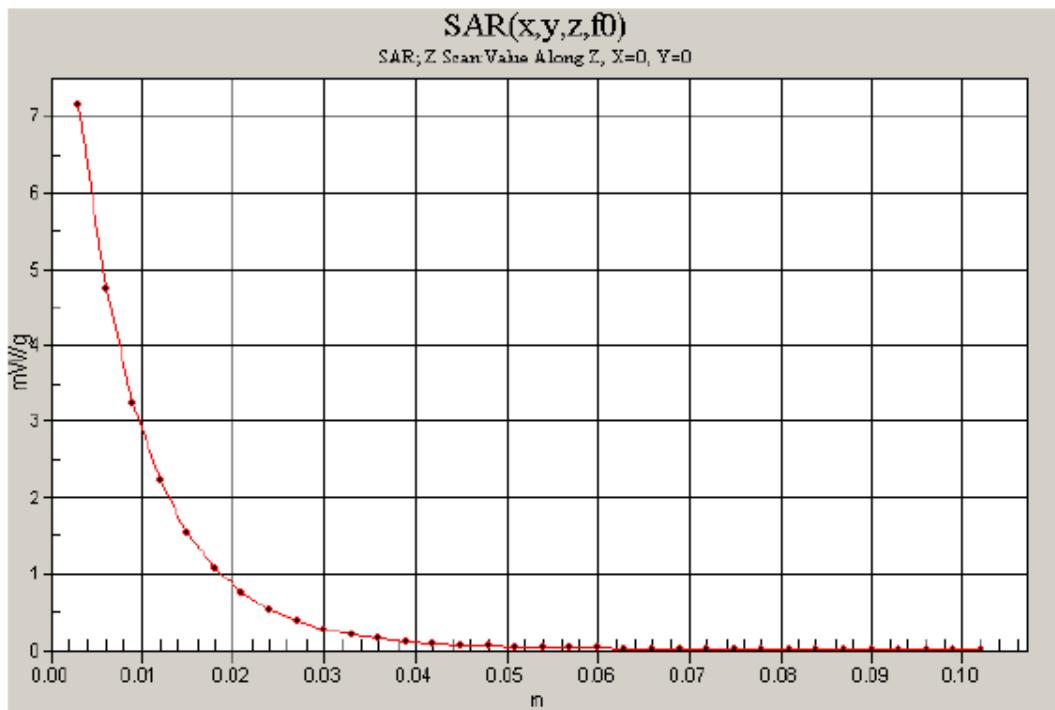
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 5.81 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 59.9 V/m; Power Drift = -0.050 dB
Peak SAR (extrapolated) = 10.9 W/kg
SAR(1 g) = 5.42 mW/g; SAR(10 g) = 2.55 mW/g
Maximum value of SAR (measured) = 7.11 mW/g

SYSTEM CHECK – Z Plot

Date/Time: 10/11/2010 9:39:38 AM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: D2450V2; Type: D2450V2; Serial: 706

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm
Maximum value of SAR (measured) = 7.14 mW/g

10. RF OUTPUT POWER VERIFICATION

Results

802.11b					
Channel #	Freq. (MHz)	Conducted Avg Power		Duty Cycle (%)	Crest Factor
		(dBm)	(mW)		
1	2412	16.20	41.7	89.0	1.12
6	2437	16.30	42.7		
11	2462	16.20	41.7		
802.11g					
1	2412	16.17	41.4	59.0	1.69
6	2437	16.22	41.9		
11	2462	16.18	41.5		
802.11n HT20					
1	2412	16.13	41.0	58.0	1.72
6	2437	16.18	41.5		
11	2462	16.19	41.6		

Note: KDB 248227 - SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11. SUMMARY OF SAR TEST RESULTS

1. Tablet – Bottom face

Separation distance: 5.95 mm from Tx antenna-to-phantom

Mode	Channel	f (MHz)	Results (mW/g)	
			1g-SAR	10g-SAR
802.11b	1	2412		
	6	2437	0.666	0.294
	11	2462		

2. Edge - Primary Landscape

Separation distance: 118 mm from Tx antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2) - SAR is required only for the edge with the most conservative exposure conditions.

3. Edge - Secondary Landscape (Worst-case)

Separation distance: 4.5 mm from Tx antenna-to-phantom

Mode	Channel	f (MHz)	Results (mW/g)	
			1g-SAR	10g-SAR
802.11b	1	2412		
	6	2437	0.783	0.315
	11	2462		
w/headset	6	2437	0.774	0.312

4. Edge - Primary Portrait

Separation distance: 127 mm from Tx antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2) - SAR is required only for the edge with the most conservative exposure conditions.

5. Edge - Secondary Portrait

Separation distance: 67 mm from Tx antenna-to-phantom

Mode	Channel	f (MHz)	Results (mW/g)	
			1g-SAR	10g-SAR
802.11b	1	2412		
	6	2437	0.055	0.029
	11	2462		

12. SAR TEST PLOTS

SAR Plot for Tablet – Bottom face

Date/Time: 10/11/2010 5:11:59 PM

Test Laboratory: Compliance Certification Services

Tablet - Bottom face

DUT: Barnes & Noble; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1.12

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

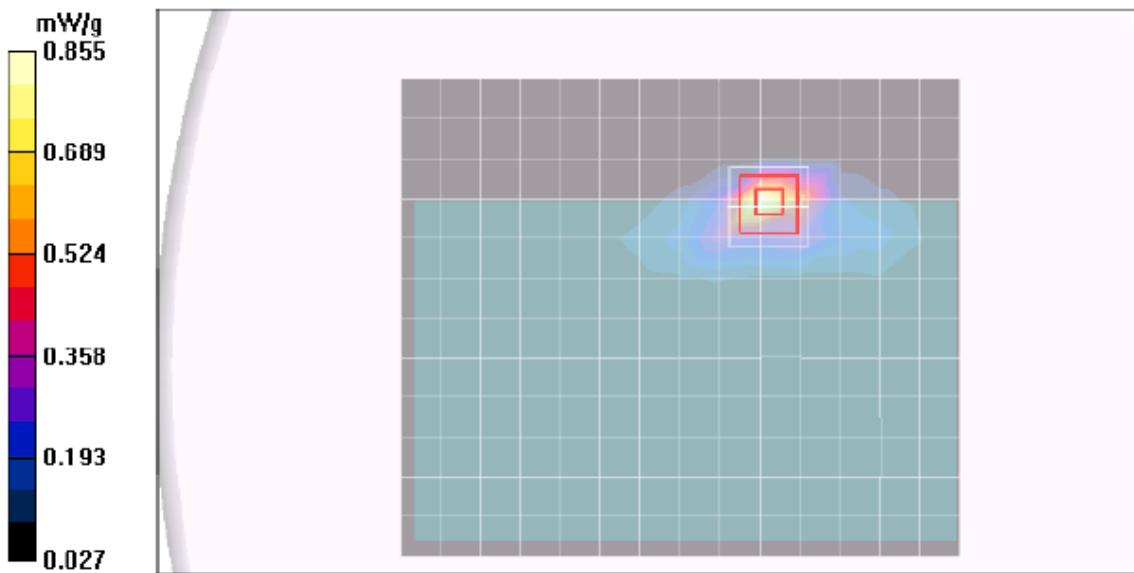
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (15x13x1): Measurement grid: dx=15mm, dy=15mm

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.855 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 20.8 V/m; Power Drift = -0.162 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.666 mW/g; SAR(10 g) = 0.294 mW/g

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.920 mW/g

SAR Plot for Edge - Secondary Landscape (Worst-case)

Date/Time: 10/11/2010 4:42:48 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: Barnes & Noble; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1.12

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

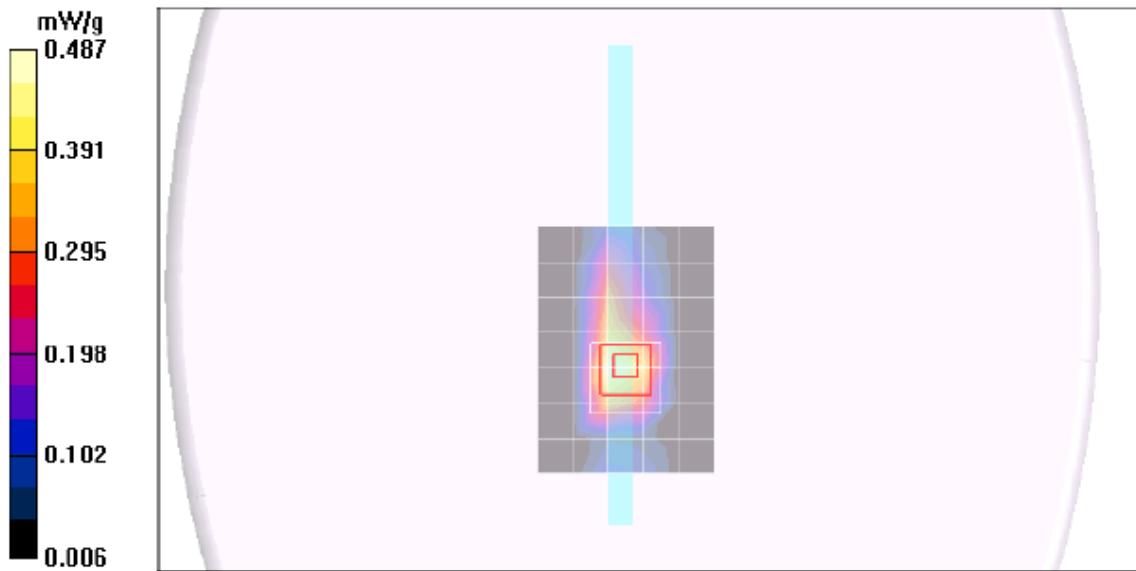
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom EL14.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.487 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 15.8 V/m; Power Drift = -0.152 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.783 mW/g; SAR(10 g) = 0.315 mW/g

[Info: Interpolated medium parameters used for SAR evaluation.](#)

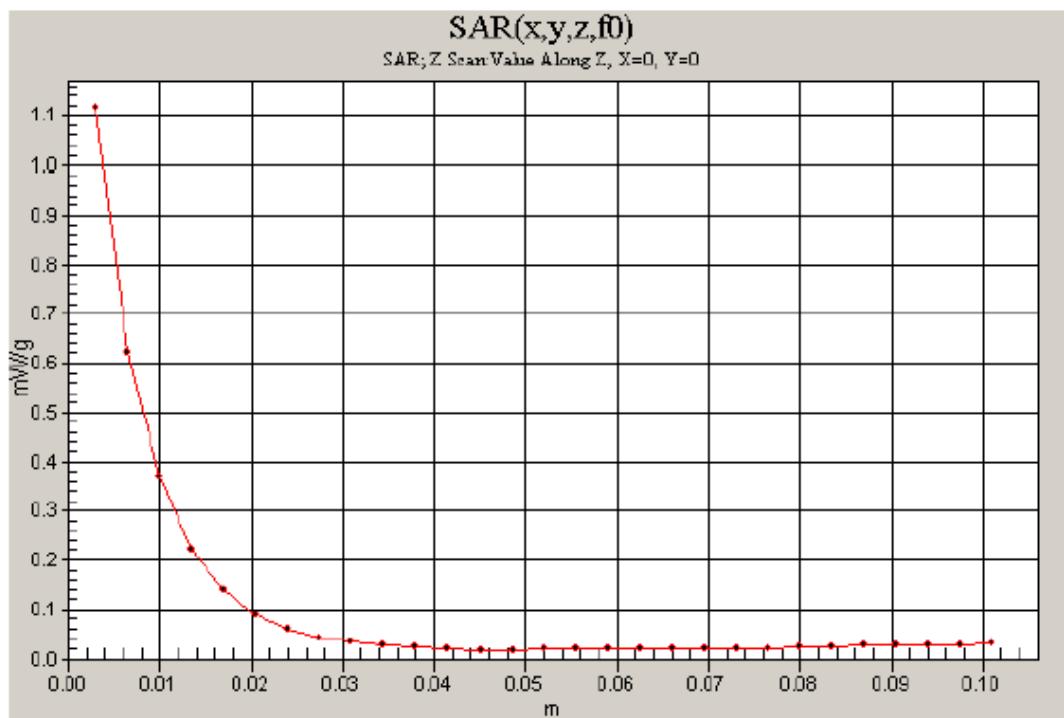
Maximum value of SAR (measured) = 1.12 mW/g

SAR Plot for Edge - Secondary Landscape – Z plot

Date/Time: 10/11/2010 5:03:11 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape


DUT: Barnes & Noble; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1.12

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.12 mW/g

SAR Plot for Edge - Secondary Landscape – with Headset

Date/Time: 10/11/2010 4:18:36 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: Barnes & Noble; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1.12

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

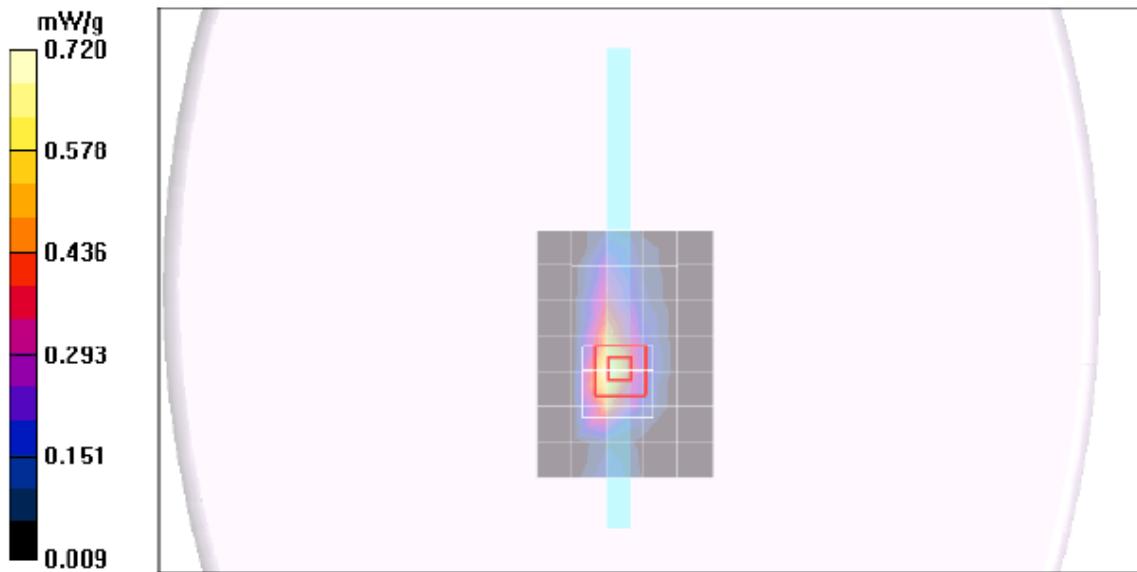
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant w/headset/Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.720 mW/g

802.11b M-ch Mian Ant w/headset/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 19.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 2.08 W/kg

SAR(1 g) = 0.774 mW/g; SAR(10 g) = 0.312 mW/g

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 1.10 mW/g

SAR Plot for Edge - Secondary Portrait

Date/Time: 10/11/2010 1:39:49 PM

Test Laboratory: Compliance Certification Services

Secondary Portrait

DUT: Barnes & Noble; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1.12

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

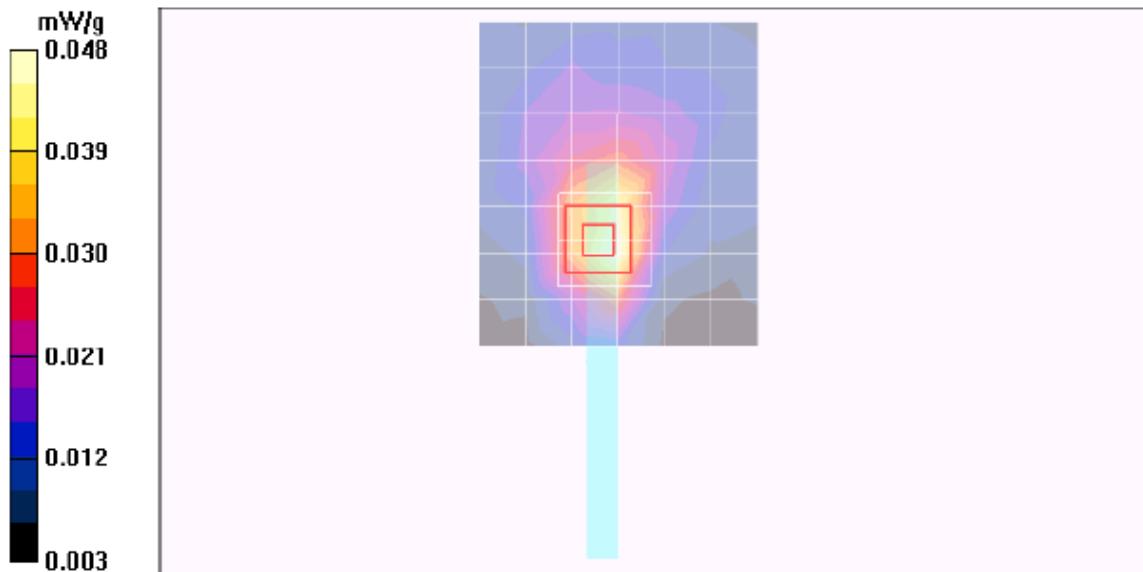
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.048 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 5.03 V/m; Power Drift = 0.218 dB

Peak SAR (extrapolated) = 0.122 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.029 mW/g

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.070 mW/g

13. ATTACHMENTS

<u>No.</u>	<u>Contents</u>	<u>No. of page (s)</u>
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9