

SAR TEST REPORT

HCT CO., LTD

EUT Type:	USB Dongle						
FCC ID:	XHG-U601						
Model:	U601	U601 Trade Name Franklin					
Date of Issue:	June 14, 2010						
Test report No.:	HCTA1106FS04						
Test Laboratory:	HCT CO., LTD. 105-1, Jangam-ri, Majang-my TEL: +82 31 645 6485 FA	HCT CO., LTD. 105-1, Jangam-ri, Majang-myeon, Icheon-si,Gyeonggi-do,Korea 467-811 TEL: +82 31 645 6485 FAX: +82 31 645 6401					
Applicant :	Franklin Technology Inc. 906 JEI Platz, 459-11, Gasan-Dong, Gumcheon-Gu, Seoul,Korea 153-803						
Testing has been carried out in accordance with:	47CFR §2.1093 FCC OET Bulletin 65(Edition 97-01), Supplement C (Edition 01-01) ANSI/ IEEE C95.1 – 1992 IEEE 1528-2003						
Test result:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.						
Signature	Report prepared by : Sun-Hee Kim Test Engineer of SAR Pa	Approv : Jae-S rt Manag	Ved by Sang So er of SAR Part				

Table of Contents

1. INTRODUCTION
2. DESCRIPTION OF DEVICE
3. DESCRIPTION OF TEST EQUIPMENT
3.1 SAR MEASUREMENT SETUP
3.2 DASY E-FIELD PROBE SYSTEM
3.3 PROBE CALIBRATION PROCESS
<u>3.4 SAM Phantom</u>
3.5 Device Holder for Transmitters
3.6 Brain & Muscle Sindlaung Mixture Characterization
4. SAR MEASUREMENT PROCEDURE
5. DESCRIPTION OF TEST POSITION
5.1 HEAD POSITION
5.2 Body Holster/Belt Clip Configurations 1 5
5.3 Test Configurations
6. MEASUREMENT UNCERTAINTY 1 7
7. ANSI/ IEEE C95.1 – 1992 RF EXPOSURE LIMITS
8. SYSTEM VERIFICATION
8.1 Tissue Verification
8.2 System Validation
9. 3G MEASUREMENT PROCEDURES
9.1 Procedures Used To Establish Test Signal
9.2 SAR Measurement Conditions for 1x Ev-Do Devices
10. SAR TEST DATA SUMMARY
10.1 Measurement Results (CDMA835 Body SAR)
10.2 Measurement Results (PCS1900 Body SAR)
<u>11. CONCLUSION</u>
<u>12. REFERENCES</u>
Attachment 1. – SAR Test Plots
Attachment 2. – Dipole Validation Plots
Attachment 3. – Probe Calibration Data
Attachment 4. – Dipole Calibration Data 152

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

Figure 2. SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg).

where:	SAR	=	$\sigma E^2 / ho$
	σ	=	conductivity of the tissue-simulant material (S/m)
	ρ	=	mass density of the tissue-simulant material (kg/m ³)
	E	=	Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

2. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	USB Dongle
FCC ID	XHG-U601
Model(s)	U601
Trade Name	Franklin
Serial Number(s)	#1
Application Type	Certification
Modulation(s)	CDMA835/PCS1900
Tx Frequency	824.70 – 848.31 MHz (CDMA) 1 851.25 – 1 908.75 MHz (PCS CDMA)
Rx Frequency	869.70 – 893.31 MHz (CDMA) 1 931.25 – 1 988.75 MHz (PCS CDMA)
FCC Classification	PCS Licensed Transmitter (PCB)
Production Unit or Identical Prototype	Prototype
Max. SAR	1.06 W/kg CDMA835 Body SAR 1.13 W/kg PCS1900 Body SAR
Date(s) of Tests	May 25, 2011
Antenna Type	Intenna

Modes of operation Tested

	1xRTT	1xEVDO
824-849 MH Cellular Band	Not tested	Tested
1850-1910 PCS Band	Not Tested	Tested
2498-2688 MHz Wimax	Refer to Separate Wimax SAR Report	Refer to Separate Wimax SAR Report
2501-2685 MHz Wimax	Refer to Separate Wimax SAR Report	Refer to Separate Wimax SAR Report

Simultaneous Operation

 Simultaneous operation is not possible. Only 1 transmitter in each band is operated at a time. Voice transmission is not supported. (Data only)

	824-849 MH	1850-1910 PCS 2498-2688 MHz		2501-2685 MHz	
	Cellular Band	Band	Wimax	Wimax	
	1xEVDO	1xEVDO	5MHz Bandwidth	10MHz Bandwidth	
824-849 MH Cellular Band 1xEVDO	X	NA	NA	NA	
1850-1910 PCS Band 1xEVDO	NA	Х	NA	NA	
2498-2688 MHz Wimax	NA	NA	Х	NA	
2501-2685 MHz Wimax	NA	NA	NA	X	

NOTE :

1. This is a data modem. Therefore, there is no voice transmission.

The device was tested only EVDO Rev.0 mode, because 1xRTT and EVDO Rev.A output power is not greater than 0.25 dB of EVDO Rev.0.

2. There is no simultaneous transmission between CDMA and Wimax.

3. Wimax Tx antenna have a just one path. Therefore, Tx1 & Tx2 cannot transmit simultaneously. Only it can be operated

by a switched internally.

HCTCO,LTD

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.3.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 3.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

3.2 DASY E-FIELD PROBE SYSTEM

3.1 ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core Interleaved set	ensors
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvent	s, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL 1810	
	Additional CF for other liquids and frequencies upon r	equest
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GH	Hz)
Directivity	± 0.2 dB in HSL (rotation around probe axis)	
	\pm 0.3 dB in tissue material (rotation normal to probe a	xis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 3.9 mm (Body: 12 mm)	
	Distance from probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz	-
	Dosimetry in strong gradient fields	
	Compliance tests of mobile phones	Figure 3.1 Pho

June 14, 2010

Figure 3.1 Photograph of the probe and the Phantom

Figure 3.2 ES3DV3 E-field Probe

The SAR measurements were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software

approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

June 14, 2010

3.3 PROBE CALIBRATION PROCESS

3.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR =
$$C \frac{\Delta T}{\Delta t}$$

where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

where:

 σ = simulated tissue conductivity,

= Tissue density $(1.25 \text{ g/cm}^3 \text{ for brain tissue})$

8 of 82

3.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
 with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter)
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:	with	V,	= compensated signal of channel i (i = x,y,z)
		Normi	= sensor sensitivity of channel I $(I = x, y, z)$
			μ V/(V/m) ² for E-field probes
$E_i = \sqrt{\frac{1}{N_{opp}} - C_{opp}E}$		ConvF	= sensitivity of enhancement in solution
Worm i Convr		Ei	= electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

 $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$

The primary field data are used to calculate the derived field units.

$SAR = E_{tot}^2 \cdot \frac{\sigma}{\alpha \cdot 1000}$	with	SAR E _{tot}	 = local specific absorption rate in W/g = total field strength in V/m
<i>p</i> 1000		σ	= conductivity in [mho/m] or [Siemens/m]
		ρ	= equivalent tissue density in g/cm ³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^{2}}{3770}$$
 with
$$P_{pwe} = equivalent power density of a plane wave in W/cm2 = total electric field strength in V/m$$

3.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Figure 3.6 SAM Phantom

Shell Thickness Filling Volume Dimensions 2.0 mm about 25 L 1 000 mm x 500 mm (L x W)

3.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power),

the hand is omitted during the tests.

Figure 3.7 Device Holder

3.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	83	35	91	15	19	00	2 4	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose			
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose			
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]					
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether					

Table 3.1 Composition of the Tissue Equivalent Matter

3.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE3	446	Sep. 21, 2010	Annual	Sep. 21, 2011
SPEAG	E-Field Probe ES3DV3	3161	Mar. 17, 2011	Annual	Mar. 17, 2012
SPEAG	Validation Dipole D835V2	481	April 15, 2011	Annual	April 15, 2012
SPEAG	Validation Dipole D1900V2	5d032	July 16, 2010	Annual	July 16, 2011
SPEAG	Validation Dipole D2450V2	743	Aug. 25, 2010	Annual	Aug. 25, 2011
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 05, 2010	Annual	Nov. 05, 2011
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 05, 2010	Annual	Nov. 05, 2011
HP	Dielectric Probe Kit 85070C	00721521	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	Nov. 05, 2010	Annual	Nov. 05, 2011
R&S	Base Station CMU200	110740	July 26, 2010	Annual	July 26, 2011
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2011	Annual	Feb. 10, 2012
HP	Signal Generator E4438C	MY42082646	Nov. 11, 2010	Annual	Nov. 11, 2011
HP	Network Analyzer 8753ES	JP39240221	Mar. 30, 2011	Annual	Mar. 30, 2012

NOTE:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test. The brain simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

Figure 4.1 SAR Measurement Point in Area Scan

5. DESCRIPTION OF TEST POSITION

5.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

Figure 5.2 Handset vertical and horizontal reference lines

5.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 5 mm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

Report No.:

5.3 Test Configurations

According to KDB 447498, the device that can be connected to a host through a cable must be tested with the device positioned in all applicable orientations against the flat phantom. And a separation distance \leq 0.5 cm is required for USB-dongle transmitters.

Figure 5.3 USB Connector Orientations Implemented on Laptop Computers

Therefore, the EUT was tested in following orientations;

1) Configuration 1: Front side of the EUT was tested with the direct-connection to the host device with Horizontal-Up (A), and separation distance between EUT and Phantom is 5 mm.

2) Configuration 2: Back side of the EUT was connected to the host device with Horizontal-Down (B) using a USB cable, and separation distance between EUT and Phantom is 5 mm.

3) Configuration 3: Right side of the EUT was connected to the host device with Vertical-Front (C)using a USB cable, and separation distance between EUT and Phantom is 5 mm.

4) Configuration **4:** Left side of the EUT was tested with the direct-connection to the host device with Vertical-Back (D), and separation distance between EUT and Phantom is 5 mm.

5) Configuration **5:** Top side of the EUT was tested with the direct-connection to the host device, and separation distance between EUT and Phantom is 5 mm.

Note;

This USB cable was used to operate this unit in the highest RF performance capability for SAR testing.

June 14, 2010

6. MEASUREMENT UNCERTAINTY

Error	Tol	Prob.			Standard	
Description		dist.	Div.	Ci	Uncertainty	V _{eff}
	(± %)				(± %)	
1. Measurement System	•					
Probe Calibration	6.00	N	1	1	6.00	œ
Axial Isotropy	4.70	R	1.73	0.7	1.90	œ
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	œ
Boundary Effects	1.00	R	1.73	1	0.58	œ
Linearity	4.70	R	1.73	1	2.71	œ
System Detection Limits	1.00	R	1.73	1	0.58	œ
Readout Electronics	0.30	N	1.00	1	0.30	œ
Response Time	0.8	R	1.73	1	0.46	ω
Integration Time	2.6	R	1.73	1	1.50	œ
RF Ambient Conditions	3.00	R	1.73	1	1.73	ω
Probe Positioner	0.40	R	1.73	1	0.23	ω
Probe Positioning	2.90	R	1.73	1	1.67	ω
Max SAR Eval	1.00	R	1.73	1	0.58	ω
2.Test Sample Related						
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	ω
3.Phantom and Setup		_			_	
Phantom Uncertainty	4.00	R	1.73	1	2.31	œ
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	œ
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	œ
Liquid Permitivity(meas.)	Liquid Permitivity(meas.) 5.02 N 1				3.01	9
Combind Standard Uncerta	Combind Standard Uncertainty					
Coverage Factor for 95 %			<i>k</i> = 2			
Expanded STD Uncertainty			22.25			

Table 6.1 Uncertainty (800 MHz- 2450 MHz)

7. ANSI/ IEEE C95.1 – 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 7.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

8. SYSTEM VERIFICATION

8.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp.[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
025	May 05, 0044		Dodu 24.4		55.2	56.9	+ 3.08	± 5
835	May 25, 2011	БОЦУ	21.1	σ	0.97	0.98	+ 1.03	± 5
4 000 May 05 0044		Darka	04.4	۶ľ	53.3	53.1	- 0.38	± 5
1 900	May 25, 2011	воау	21.1	σ	1.52	1.57	+ 3.29	± 5

The dielectronic parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

8.2 System Validation

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz / 1 900 MHz by using the system validation kit. (Graphic Plots Attached)

*Input Power: 100 mW

June 14, 2010

Freq. [MHz]	Date	Liquid	Liquid Temp. [°C]	SAR Average	Target Value (SPEAG) (mW/g)	* Measured Value (mW/g)	Deviation [%]	Limit [%]
835	May 25, 2011	Body	21.1	1 g	9.84	0.989	+ 0.51	± 10
1 900	May 25, 2011	Body	21.1	1 g	41.5	4.14	- 0.24	± 10

8.3 System Validation Procedure

SAR measurement was Prior to assessment, the system is verified to the \pm 10 % of the specifications at 2 600 MHz by using the system validation kit. (Graphic Plots Attached)

- Cabling the system, using the validation kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.

- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.

9. 3G MEASUREMENT PROCEDURES

9.1 Procedures Used To Establish Test Signal

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more then 5% occurred, the tests were repeated.

9.2 SAR Measurement Conditions for 1x Ev-Do Devices

These procedures were followed according to FCC "SAR Measurement Procedures for 3G Devices",

9.2.1 1xEv-Do Data Devices

The following procedures apply to Access Terminals (AT) operating under CDMA 2000 High Rate packer Data, Rev.0 and Rev.A, 1x Ev-Do protocols.

SAR for body exposure conditions are typically required devices with Ev-Do Capabilities, including handsets and data modems.

operating in various electronic devices. When VOIP is available for Ev-Do devices

to operate in configurations next to the ear, head exposure conditions are applicable.

The default test configuration is to measure SAR with an established radio ling between the AT and a communication test set according to 3GPP2 Test Application Protocols(TAP), FTAT/RTAP for Rev.0 and FETAP/RETAP for Rev.A. The code channel power levels, RF channel output power (ALL Bits Up) and other operating parameters should be actively monitored and controlled by the communications test set during the SAR measurement. The use of FTM should be avoided.

Maximum output power is verified according to procedures defined in 3 GPP2 C.S0033 and TIA-866, and SAR must be measured according to these maximum output conditions.

9.2.2 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to procedures in section 3.1.2.3.4 of 3GPP2 C.S0033-0/TIA-866 for Rev.0 and section 4.3.4 of 3GPP2 C.S0033-A for Rev.A For Rev.A, maximum outpour for both Subtype 0/1 and subtype 2 Physical Layer configurations should be measured. The device operating configurations under TAP/ETAP should be documented in the test report; including power control, code channel and RF channel output power levels. The measurement results should be tabulated in the SAR report with any measurement difficulties and equipment limitations clearly identified.

HCTCO,LTD

Report No.: HCT1106FS04

9.2.3 SAR Measurements

SAR is measured using FTAP/RTAP and FETAP/RETAP respectively for Rev.0 and Rev.A device. The AT is Tested with a Reverse Data Channel rate of 153.6kbps in Subtype 0/1 and Subtype 2 Physical Layer configurations should be measured. The device operating configurations under TAP/ETAP should be documented in the test report; including power Control, code channel and RF channel output power levels, The measurement results should be tabulated in the SAR report with any measurement difficulties and equipment limitations clearly identified. output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. otherwise, SAR is measured on the maximum output channel for Rev.A using the exposure configuration that results in the highest SAR for that RF channels in Rev.0. Head SAR is required for Ev-Do devices that support operations next to the ear; for example, with VOIP, using Subtype 2 Physical Layer configurations according to the required handset test configurations.

9.2.4 1x RTT Support

For Ev-Do device that also support 1xRTT voice and/or data operations, SAR is not required for 1xRTT when the maximum average output of each channel is less than 1/4dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev.0

9.3 CDMA2000 1xRTT

Agilent 8960 base station was used for output power verification.

Following is the detail set-up configuration.

Protocol Rev.> 6

Radio Config (RC): Body SAR in RC1 is not required when the maximum average output of each channel is less than 1/4 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

FCH SO: Body-Worn SAR was tested under RC3/SO32 with FCH Only since FCH+SCH modes are not greater than 0.25 dB of the FCH only mode per KDB publication 941225.

Traffic Data Rate > Full

Power: All Up bits

9.4 CDMA2000 1xEv-Do

Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev.0. SAR for subtype 2 Physical layer configurations is not required for Rev.A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev.A using the exposure configuration that results in the highest SAR for that RF channels in Rev.0.

9.4.1 EVDO Release 0 (RTAP)

Application Config > Enhanced Test Application Protocol > RTAP RTAP Rate > 153.6 kbps Protocol Rev > 0 (1x EVDO) Power: All Up bits

9.4.2 EVDO Release 0 (FTAP)

Application Config > Enhanced Test Application Protocol > FTAP RTAP Rate > 307.2 kbps Protocol Rev > 0 (1x EVDO) Power: All Up bits

9.4.3 EVDO Release A (RETAP)

Protocol Rev > A (1x EVDO A) Application Config > Enhanced Test Application Protocol > RETAP R-Data Pkt Size > 4096 Power: All Up bits

9.4.4 EVDO Release A (FETAP)

Protocol Rev > A (1x EVDO A) Application Config > Enhanced Test Application Protocol > FETAP F-Traffic Format > 4 (1024, 2, 128) Canonical (307.2k, QPSK) Power: All Up bits

Maximum average conducted output power for FCC ID: XHG-U601

Dend	Band Channel	SO2	SO2	SO55	SO55	TDSO SO32	1xEvDO Rev.0	1xEvDO Rev.0	1xEvDO Rev.A	1xEvDO Rev.A
Band		RC1/1 (dBm)	RC3/3 (dBm)	RC1/1 (dBm)	RC3/3 (dBm)	RC3/3 (dBm)	(FTAP)	(RTAP)	(FETAP)	(RETAP)
	1013	23.74	23.82	23.74	23.51	23.80	23.74	24.02	23.42	23.44
CDMA	384	23.54	23.68	23.54	23.41	23.65	23.57	23.74	23.23	23.24
	777	23.68	23.86	23.79	23.46	23.77	23.72	24.03	23.26	23.29
	25	23.93	24.07	23.86	23.72	23.96	24.08	24.18	23.48	23.44
PCS	600	23.92	24.15	23.83	23.75	24.02	24.00	24.12	23.31	23.29
	1175	23.50	23.74	23.41	23.63	23.66	23.75	23.80	23.25	23.37

10. SAR TEST DATA SUMMARY

10.1 Measurement Results (CDMA835 Body SAR)

Fred	quency	Modulation	Conducte (dE	ed Power 8m)	Configuration	Separation	Antenna	SAR(mW/g)
MHz	Channel		Begin	End		Distance	Туре	, <i>o,</i>
824.70	1013 (Low)	EVDO	24.02	23.90	Horizontal up	5 mm	Intenna	1.06
836.52	384 (Mid)	EVDO	23.74	23.81	Horizontal up	5 mm	Intenna	0.932
848.31	777 (High)	EVDO	24.03	24.06	Horizontal up	5 mm	Intenna	0.721
836.52	384 (Mid)	EVDO	23.74	23.86	Horizontal down	5 mm	Intenna	0.735
836.52	384 (Mid)	EVDO	23.74	23.82	Vertical front	5 mm	Intenna	0.519
836.52	384 (Mid)	EVDO	23.74	23.78	Vertical back	5 mm	Intenna	0.488
836.52	384 (Mid)	EVDO	23.74	23.64	Тор	5 mm	Intenna	0.201
ANSI/ IEEE C95.1 1992– Safety Limit							Body	

Spatial Peak

Uncontrolled Exposure/ General Population

1.6 W/kg (mW/g)

Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is $15.0 \text{ cm} \pm 0.2 \text{ cm}$.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Power Supply Power supplied through host device (TOSHIBA)
- 6 Test Signal Call Mode □ Manual Test cord ⊠ Base Station Simulator
- 7 All side of the phone were tested and the worst-case side is reported.
- 9 Test Configuration
 □ With Holster
 ⊠ Without Holster
- The EUT was fixed by using a Styrofoam to avoid perturbation due to the device holder clamps.
- 10 EVDO Body SAR was tested under EVDO Rev.0 RTAP.
- 11 Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 12 Simultaneous CDMA+Wimax operation is not possible.
- 13 KDB447498 D02 V02 were applied for SAR evaluation of the device

10.2 Measurement Results (PCS1900 Body SAR)

Fred	quency	Modulation	Conducted Power (dBm) Configuration		Separation	Antenna	SAR(mW/g)	
MHz	Channel		Begin	End		Distance	Туре	
1 851.25	25 (Low)	EVDO	24.18	24.17	Horizontal up	5 mm	Intenna	1.01
1 880.00	600 (Mid)	EVDO	24.12	24.30	Horizontal up	5 mm	Intenna	1.06
1 908.75	1175 (High)	EVDO	23.80	23.70	Horizontal up	5 mm	Intenna	1.06
1 851.25	25 (Low)	EVDO	24.18	24.05	Horizontal down	5 mm	Intenna	1.12
1 880.00	600 (Mid)	EVDO	24.12	24.21	Horizontal down	5 mm	Intenna	1.11
1 908.75	1175 (High)	EVDO	23.80	23.93	Horizontal down	5 mm	Intenna	1.13
1 880.00	600 (Mid)	EVDO	24.12	24.14	Vertical front	5 mm	Intenna	0.59
1 880.00	600 (Mid)	EVDO	24.12	24.32	Vertical back	5 mm	Intenna	0.662
1 880.00	600 (Mid)	EVDO	24.12	23.96	Тор	5 mm	Intenna	0.22

ANSI/ IEEE C95.1 1992– Safety Limit Spatial Peak Uncontrolled Exposure/ General Population

Body 1.6 W/kg (mW/g)

Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is $15.0 \text{ cm} \pm 0.2 \text{ cm}$.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Power Supply Power supplied through host device (TOSHIBA)
- 6 Test Signal Call Mode □ Manual Test cord ⊠ Base Station Simulator
- 7 All side of the phone were tested and the worst-case side is reported.
- 9 Test Configuration

 With Holster

 Without Holster

The EUT was fixed by using a Styrofoam to avoid perturbation due to the device holder clamps.

- 10 EVDO Body SAR was tested under EVDO Rev.0 RTAP.
- 11 Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 12 Simultaneous CDMA+Wimax operation is not possible.
- 13 KDB447498 D02 V02 were applied for SAR evaluation of the device

11. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

June 14, 2010

12. REFERENCES

[1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.

[2] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.

[3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[4] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992

[5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9]K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.

[18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zorich, Dosimetric Evaluation of the Cellular Phone.

[21] Mobile and Portable Device RF Exposure Equipment Authorization Procedures #447498.

FCC ID: XHG-U601

Attachment 1. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.971 \text{ mho/m}$; $\epsilon_r = 56.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Horizontal UP 1013/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.023 mW/g

CDMA Horizontal UP 1013/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.5 V/m; Power Drift = -0.122 dB Peak SAR (extrapolated) = 1.56 W/kg SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.697 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

 $0 \, dB = 1.13 \, mW/g$

June 14, 2010

DUT: U601; Type: Bar; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.981 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Horizontal UP 384/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.07 mW/g

CDMA Horizontal UP 384/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 30.6 V/m; Power Drift = 0.069 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.932 mW/g; SAR(10 g) = 0.606 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.01 mW/g

 $0 \, dB = 1.01 \, mW/g$

Test Laboratory: HCT CO., LTD

June 14, 2010

DUT: U601; Type: Bar; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 848.31 MHz; σ = 0.99 mho/m; ϵ_r = 56.7; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Horizontal UP 777/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.798 mW/g

CDMA Horizontal UP 777/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.7 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.721 mW/g; SAR(10 g) = 0.467 mW/g

Maximum value of SAR (measured) = 0.778 mW/g

 $^{0 \,} dB = 0.778 \, mW/g$

Test Laboratory: HCT CO., LTD

EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.981 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Horizontal Down 384/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.776 mW/g

CDMA Horizontal Down 384/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.8 V/m; Power Drift = 0.120 dB Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.735 mW/g; SAR(10 g) = 0.488 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.797 mW/g

 $^{0 \,} dB = 0.797 \, mW/g$

June 14, 2010

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: side; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.981 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Vertical Front 384/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.565 mW/g

CDMA Vertical Front 384/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.0 V/m; Power Drift = 0.082 dB Peak SAR (extrapolated) = 0.786 W/kg SAR(1 g) = 0.519 mW/g; SAR(10 g) = 0.320 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.563 mW/g

 $0 \, dB = 0.563 mW/g$

Test Laboratory: HCT CO., LTD

EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: side; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.981 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Vertical Back 384/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.537 mW/g

CDMA Vertical Back 384/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.4 V/m; Power Drift = 0.039 dB Peak SAR (extrapolated) = 0.737 W/kg SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.310 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.533 mW/g

 $^{0 \,} dB = 0.533 mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle

Report No.:	HCT1106FS04	FCC ID:	XHG-U601	Date of Issue:

Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Top; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.981 mho/m; ϵ_r = 56.8; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Top 384/Area Scan (41x41x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.230 mW/g

CDMA Top 384/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.098 dB Peak SAR (extrapolated) = 0.523 W/kg SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.093 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.234 mW/g

 $0 \, dB = 0.234 mW/g$

June 14, 2010

June 14, 2010

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1851.25 MHz; σ = 1.51 mho/m; ϵ_r = 53.3; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Up 25/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.22 mW/g

PCS EVDO Horizontal Up 25/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.0 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.595 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.11 mW/g

 $0 \, dB = 1.11 \, mW/g$

Report No.:

HCT1106FS04

FCC ID: XHG-U601

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Up 600/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.15 mW/g

PCS EVDO Horizontal Up 600/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.5 V/m; Power Drift = 0.178 dB Peak SAR (extrapolated) = 1.69 W/kg SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.622 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

 $^{0 \,} dB = 1.18 \, mW/g$

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.58 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Up 1175/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.15 mW/g

PCS EVDO Horizontal Up 1175/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.5 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.611 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.18 mW/g

 $^{0 \,} dB = 1.18 \, mW/g$

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1851.25 MHz; σ = 1.51 mho/m; ϵ_r = 53.3; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Down 25/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.19 mW/g

PCS EVDO Horizontal Down 25/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = -0.137 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.637 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.26 mW/g

 $^{0 \,} dB = 1.26 \, mW/g$

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Down 600/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.22 mW/g

PCS EVDO Horizontal Down 600/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.5 V/m; Power Drift = 0.094 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.665 mW/g

Maximum value of SAR (measured) = 1.26 mW/g

 $0 \, dB = 1.26 \, mW/g$

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.58 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Down 1175/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.18 mW/g

PCS EVDO Horizontal Down 1175/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.643 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.25 mW/g

 $^{0 \,} dB = 1.25 \, mW/g$

DUT: U601; Type: side; Serial: #1

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS Body 600/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.666 mW/g

PCS Body 600/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.3 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.590 mW/g; SAR(10 g) = 0.328 mW/g Maximum value of SAR (measured) = 0.677 mW/g

 $0 \, dB = 0.677 \, mW/g$

DUT: U601; Type: side; Serial: #1

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS Body Vertical back 600/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.764 mW/g

PCS Body Vertical back 600/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.196 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.662 mW/g; SAR(10 g) = 0.354 mW/g

Maximum value of SAR (measured) = 0.733 mW/g

0 dB = 0.733 mW/g

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Top; Serial: #1

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS Body Top 600/Area Scan (41x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.258 mW/g

PCS Body Top 600/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = -0.162 dB Peak SAR (extrapolated) = 0.425 W/kg SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.116 mW/g Maximum value of SAR (measured) = 0.255 mW/g

0 dB = 0.255 mW/g

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: CDMA 835MHz FCC; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; σ = 0.971 mho/m; ϵ_r = 56.9; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21

- Phantom: SAM 835/900 MHz; Type: SAM

CDMA Horizontal UP 1013/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.023 mW/g

CDMA Horizontal UP 1013/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.5 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.697 mW/g Maximum value of SAR (measured) = 1.13 mW/g

Report No.:

FCC ID: XHG-U601

Test Laboratory:	HCT CO., LTD
EUT Type:	USB Dongle
Liquid Temperature:	21.1 °C
Ambient Temperature:	21.3 °C
Test Date:	May 25, 2011

DUT: U601; Type: Bar; Serial: #1

Communication System: PCS 1900; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.58 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

PCS EVDO Horizontal Down 1175/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.18 mW/g

PCS EVDO Horizontal Down 1175/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.643 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.25 mW/g

Attachment 2. – Dipole Validation Plots

Validation Data (835 MHz Body)

Test Laboratory:	HCT CO.,	LTD
------------------	----------	-----

Input Power 100 mW (20dBm)

Liquid Temp: 21.1 °C

Test Date: May 25, 2011

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:481

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ_r = 56.9; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(5.86, 5.86, 5.86); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: 835/900 Phamtom ; Type: SAM

Validation 835 MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.07 mW/g

Validation 835 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.5 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.989 mW/g; SAR(10 g) = 0.648 mW/g Maximum value of SAR (measured) = 1.07 mW/g

 $^{0 \,} dB = 1.07 \, mW/g$

Validation Data (1900 MHz Body)

Test Laboratory:	HCT CO.,	LTD

Liquid Temp: 21.1 °C

Test Date: May 25, 2011

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ES3DV3 SN3161; ConvF(4.49, 4.49, 4.49); Calibrated: 2011-03-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn446; Calibrated: 2010-09-21
- Phantom: SAM 1800/1900 MHz; Type: SAM

Dipole 1900MHz Validation/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.80 mW/g

Dipole 1900MHz Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 8.12 W/kg SAR(1 g) = 4.14 mW/g; SAR(10 g) = 2.05 mW/g Maximum value of SAR (measured) = 4.63 mW/g

 $^{0 \,} dB = 4.63 \, mW/g$

Date of Issue:

June 14, 2010

Dielectric Parameter (835 MHz Body)

Title	U601
SubTitle	CDMA835(Body)
Test Date	May 25, 2011

Frequency	e'	е''
80000000.0000	57.0203	21.2974
80500000.0000	56.9708	21.2869
81000000.0000	56.9903	21.2304
815000000.0000	56.9229	21.1566
82000000.0000	56.9139	21.1709
825000000.0000	56.8813	21.1478
83000000.0000	56.8667	21.1468
835000000.0000	56.8597	21.0916
84000000.0000	56.7516	21.0887
84500000.0000	56.7468	21.0015
85000000.0000	56.7171	20.9648
855000000.0000	56.6134	20.9614
86000000.0000	56.5249	20.8877
86500000.0000	56.4475	20.9243
87000000.0000	56.3838	20.8737
87500000.0000	56.3198	20.7974
88000000.0000	56.2475	20.7886
88500000.0000	56.1691	20.7444
89000000.0000	56.1400	20.7595
89500000.0000	56.0575	20.7409
90000000.0000	56.0584	20.7430

Date of Issue:

June 14, 2010

Dielectric Parameter (1900 MHz Body)

Title	U601
SubTitle	PCS1900(Body)
Test Date	May 25, 2011

Frequency	e'	e''
1850000000.0000	53.3014	14.6684
1855000000.0000	53.2760	14.6706
186000000.0000	53.2532	14.7020
1865000000.0000	53.2336	14.7128
1870000000.0000	53.2168	14.7362
1875000000.0000	53.2093	14.7543
1880000000.0000	53.1781	14.7835
1885000000.0000	53.1511	14.8068
189000000.0000	53.1431	14.8230
1895000000.0000	53.1252	14.8213
190000000.0000	53.1224	14.8510
1905000000.0000	53.1091	14.8596
191000000.0000	53.0975	14.8743
1915000000.0000	53.0882	14.8983
1920000000.0000	53.0743	14.9215
1925000000.0000	53.0531	14.9312
1930000000.0000	53.0347	14.9370
1935000000.0000	53.0118	14.9502
194000000.0000	52.9969	14.9682
1945000000.0000	52.9837	14.9923
1950000000.0000	52.9595	15.0088

Attachment 3. – Probe Calibration Data

HCT1106FS04

FCC ID: XHG-U601

Zeugnaussuasse 43, 0004 Zu	rich, Switzerland	RIBRATE S	Swiss Calibration Service
Accredited by the Swiss Accred The Swiss Accreditation Serv Multilateral Agreement for the	litation Service (SAS) rice is one of the signatori e recognition of calibration	Accreditation es to the EA n certificates	No.: SCS 108
Client HCT (Dymste	ic)	Certificate No	: ES3-3161_Mar11
CALIBRATION	CERTIFICAT	E	
Object	ES3DV3 - SN:37	161	
Calibration procedure(s)	QA CAL-01.v7, (Calibration proce	QA CAL-23.v4, QA CAL-25.v3 edure for dosimetric E-field probes	
Calibration date:	March 17, 2011		
The measurements and the unc All calibrations have been cond Calibration Equipment used (Ma	certainties with confidence p ucted in the closed laborato &TE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 \pm 3)°C :	are part of the certificate. and humidity < 70%.
The measurements and the unc All calibrations have been cond Calibration Equipment used (M& Primary Standards	certainties with confidence p ucted in the closed laborato &TE critical for calibration)	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the unc All calibrations have been cond Calibration Equipment used (M& Primary Standards Power meter E4419B	ertainties with confidence p ucted in the closed laborato &TE critical for calibration) ID GB41293874	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11
The measurements and the unc All calibrations have been cond Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence p ucted in the closed laborato BTE critical for calibration) ID GB41293874 MY41495277	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C - Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A	ertainties with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41498087	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C + Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11
The measurements and the uno All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborato 3TE critical for calibration) ID GB41293874 MY41495277 MY41495277 SN: SS054 (3c) Chi Cristical Confidence Control	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C · Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11
The measurements and the unc All calibrations have been condi Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5068 (20b)	coability are given on the following pages and ry facility: environment temperature (22 ± 3)°C · Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-14
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5058 (20b) SN: S5129 (30b) SN: S129 (30b) SN: S123	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 03-Mar-10 (No. 217-0116) 30-Mar-10 (No. 217-01161)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	Artainties with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	coabbility are given on the following pages and ry facility: environment temperature (22 ± 3)°C - 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 29-Dec-10 (No. DAE4-654 Apr10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4	with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	cal Date (Certificate No.) Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 03-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. ES3-3013_Dec10) 23-Apr-10 (No. DAE4-654_Apr10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Apr-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41495277 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 654 ID	robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C - Cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 10-Apr-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 29-Dec-10 (No. ES3-3013_Dec10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41495277 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 29-Dec-10 (No. ES3-3013_Dec10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID GB41293874 MY41495277 MY41495277 MY41495277 MY41495277 SN: S5054 (3c) SN: S5058 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 29-Dec-10 (No. DAE4-654_Apr10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Dec-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4419A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence p ucted in the closed laborato \$TE critical for calibration) GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 29-Dec-10 (No. DAE4-654_Apr10) 23-Apr-10 (No. DAE4-654_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Dec-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 90 d	ertainties with confidence p ucted in the closed laborato 3TE critical for calibration) ID GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5056 (20b) SN: S5129 (30b) SN: 654 ID US3642U01700 US37390585 Name Jeton Kastrati	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 22-Dec-10 (No. E33-3013_Dec10) 23-Apr-10 (No. DAE4-854_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature Signature
The measurements and the uno All calibrations have been condi Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 90 d	ertainties with confidence p ucted in the closed laborato STE critical for calibration) ID GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	cal Date (Certificate No.) 01-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 22-Dec-10 (No. E33-3013_Dec10) 23-Apr-10 (No. DAE4-854_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician Technical Manager	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 Signature Signature

Certificate No: ES3-3161_Mar11

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

9

S

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3161 Mar11

Page 2 of 11

FCC ID: XHG-U601

Date of Issue:

ES3DV3 - SN:3161

March 17, 2011

Probe ES3DV3

SN:3161

Manufactured: Calibrated: October 8, 2007 March 17, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3161_Mar11

Page 3 of 11

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3161

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.10	1.27	1.22	± 10.1 %
DCP (mV) ^B	100.2	98.1	99.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	102.7	±2.7 %
			Y	0.00	0.00	1.00	109.4	
			Ζ	0.00	0.00	1.00	109.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3161_Mar11

Page 4 of 11

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3161

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.10	6.10	6.10	1.00	1.00	± 12.0 %
835	41.5	0.90	5.84	5.84	5.84	1.00	1.10	± 12.0 %
900	41.5	0.97	5.78	5.78	5.78	1.00	1.10	± 12.0 %
1450	40.5	1.20	5.31	5.31	5.31	0.98	1.14	± 12.0 %
1750	40.1	1.37	5.05	5.05	5.05	0.88	1.17	± 12.0 %
1900	40.0	1.40	4.91	4.91	4.91	0.91	1.14	± 12.0 %
1950	40.0	1.40	4.73	4.73	4.73	0.99	1.08	± 12.0 %
2300	39.5	1.67	4.53	4.53	4.53	0.87	1.16	± 12.0 %
2450	39.2	1.80	4.26	4.26	4.26	0.74	1.29	± 12.0 %
2600	39.0	1.96	4.14	4.14	4.14	0.82	1.21	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3161_Mar11

Page 5 of 11

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

DASY/EASY - Parameters of Probe: ES3DV3- SN:3161

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	5.93	5.93	5.93	1.00	1.13	± 12.0 %
835	55.2	0.97	5.86	5.86	5.86	1.00	1.16	± 12.0 %
900	55.0	1.05	5.78	5.78	5.78	1.00	1.00	± 12.0 %
1750	53.4	1.49	4.79	4.79	4.79	0.79	1.33	± 12.0 %
1900	53.3	1.52	4.49	4.49	4.49	0.73	1.37	± 12.0 %
1950	53.3	1.52	4.52	4.52	4.52	0.83	1.27	± 12.0 %
2300	52.9	1.81	4.13	4.13	4.13	0.89	1.14	± 12.0 %
2450	52.7	1.95	4.03	4.03	4.03	1.00	1.00	± 12.0 %
2600	52.5	2.16	3.83	3.83	3.83	1.00	1.00	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3161_Mar11

Page 6 of 11

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3161_Mar11

Page 7 of 11

ES3DV3- SN:3161

March 17, 2011

Certificate No: ES3-3161_Mar11

Page 8 of 11

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

Certificate No: ES3-3161_Mar11

Page 9 of 11

61 of 82

FCC ID: XHG-U601

ES3DV3- SN:3161

March 17, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3161

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3161_Mar11

Page 11 of 11

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

June 14, 2010

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

G	ossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-481_Apr11

Page 2 of 9

Measurement Conditions

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 mW / g
SAR measured SAR normalized	250 mW input power normalized to 1W	1.55 mW / g 6.20 mW / g

Certificate No: D835V2-481_Apr11

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.51 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.84 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6 47 mW / a + 16 5 % (k-2)

Certificate No: D835V2-481_Apr11

Page 4 of 9

FCC ID: XHG-U601

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 4.9 jΩ	
Return Loss	- 26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 6.1 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns
crocincal belay (one direction)	1.395

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 23, 2003	

Certificate No: D835V2-481_Apr11

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2011 13:08:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:481

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Head/d=15mm, Pin=250 mW/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.532 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.564 W/kg SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.746 mW/g

Certificate No: D835V2-481_Apr11

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 15.04.2011 09:23:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:481

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Body/d=15mm, Pin=250 mW/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.946 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.714 W/kg SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.918 mW/g

Certificate No: D835V2-481_Apr11

Page 8 of 9

Impedance Measurement Plot for Body TSL

FCC ID: XHG-U601

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: D1900V2-5d032_Jul10

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HCT (Dymstec) Client

Dbject	D1900V2 - SN: 5	d032	
Calibration procedure(s)	QA CAL-05.v7 Calibration proces	dure for dipole validation kits	
alibration date:	July 16, 2010		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	ents the traceability to nati- rtainties with confidence pr cted in the closed laborator FE critical for calibration)	onal standards, which realize the physical uni robability are given on the following pages an y facility: environment temperature (22 ± 3)°C	its of measurements (SI). d are part of the certificate. C and humidity < 70%.
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
nimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
nimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
nimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
AE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
AE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
econdary Standards	ID #	Check Date (in house)	Scheduled Check
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
AE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
AE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
F generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
ower sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
eference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
eference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
AE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
F generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
letwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ypp-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E alibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev Katja Pokovic	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) B-Oct-01 (in house check Oct-09) Technical Manager	Scheduled Calibration Oct-10 Oct-10 Mar-11 Mar-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature W. W.W.

Certificate No: D1900V2-5d032_Jul10

Page 1 of 9

Report No.: HCT1106FS04

Calibration Laboratory of Schmid & Partner Engineering AG

Glossan

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-MRA

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Olossaly.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d032_Jul10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(22.6 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSI	condition	
CAD measured		5 00
SAR measured	250 mvv input power	5.26 mvv / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for paminal Haad TSL parameters	normalized to diat	00.0

Certificate No: D1900V2-5d032_Jul10

Page 3 of 9

HCT1106FS04 **Report No.:**

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.5 mW / g
SAR normalized	normalized to 1W	42.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.5 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.63 mW / g
SAR normalized	normalized to 1W	22.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_Jul10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω + 6.2 jΩ	
Return Loss	- 24.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.3 Ω + 7.0 jΩ	
Return Loss	- 23.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.177 ns
Electrical Belay (one direction)	1.177 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 17, 2003	

Certificate No: D1900V2-5d032_Jul10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 16.07.2010 12:15:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

```
grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 96.4 V/m; Power Drift = 0.039 dB
Peak SAR (extrapolated) = 18.3 W/kg
SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.26 mW/g
Maximum value of SAR (measured) = 12.3 mW/g
```


0 dB = 12.3 mW/g

Certificate No: D1900V2-5d032_Jul10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d032_Jul10

Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 13.07.2010 12:14:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

```
grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 97.1 V/m; Power Drift = 0.00127 \text{ dB}
Peak SAR (extrapolated) = 17.6 \text{ W/kg}
SAR(1 g) = 10.5 \text{ mW/g}; SAR(10 g) = 5.63 \text{ mW/g}
Maximum value of SAR (measured) = 13.2 \text{ mW/g}
```


0 dB = 13.2 mW/g

Certificate No: D1900V2-5d032_Jul10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d032_Jul10

Page 9 of 9