

TEST REPORT

FCC LTE B13 Test for T720C

Certification

APPLICANT

Franklin Technology Inc.

REPORT NO.

HCT-RF-2112-FC028

DATE OF ISSUE

December 16, 2021

Tested by Jae Mun Do

Technical ManagerJong Seok Lee

ZMET.

HCT CO., LTD. Bongsai Huh / CEO

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-2112-FC028

DATE OF ISSUE
December 16, 2021

Additional Model

standard.

-

Applicant	Franklin Technology Inc. 906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-Gu, Seoul 08502, South Korea
Eut Type Model Name	Home Phone Connect T720C
FCC ID	XHG-T720C
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 27, § 2
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the

F-TP22-03 (Rev. 04) Page 2 of 55

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	December 16, 2021	Initial Release

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

F-TP22-03 (Rev. 04) Page 3 of 55

CONTENTS

1.	GENERAL INFORMATION	5
	1.1. MAXIMUM OUTPUT POWER	6
2.	INTRODUCTION	7
	2.1. DESCRIPTION OF EUT	7
	2.2. MEASURING INSTRUMENT CALIBRATION	7
	2.3. TEST FACILITY	7
3.	DESCRIPTION OF TESTS	8
	3.1 TEST PROCEDURE	8
	3.2 CONDUCTED OUTPUT POWER	9
	3.3 RADIATED POWER	10
	3.4 RADIATED SPURIOUS EMISSIONS	11
	3.5 OCCUPIED BANDWIDTH.	12
	3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	13
	3.7 BAND EDGE	14
	3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	15
	3.9 WORST CASE(RADIATED TEST)	16
	3.10 WORST CASE(CONDUCTED TEST)	17
4.	LIST OF TEST EQUIPMENT	18
5.	MEASUREMENT UNCERTAINTY	19
6.	SUMMARY OF TEST RESULTS	20
7.	SAMPLE CALCULATION	21
8.	TEST DATA	23
	8.1 EFFECTIVE RADIATED POWER	23
	8.2 RADIATED SPURIOUS EMISSIONS	25
	8.3 OCCUPIED BANDWIDTH	28
	8.4 CONDUCTED SPURIOUS EMISSIONS	29
	8.5 BAND EDGE	29
	8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	30
9.	TEST PLOTS	34
10	. ANNEX A_ TEST SETUP PHOTO	55

F-TP22-03 (Rev. 04) Page 4 of 55

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	Franklin Technology Inc.
Address:	906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-Gu, Seoul 08502, South Korea
FCC ID:	XHG-T720C
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule(s):	§ 27, § 2
EUT Type:	Home Phone Connect
Model(s):	T720C
Additional Model:	-
Tx Frequency:	779.5 MHz –784.5 MHz (LTE – Band 13 (5 MHz)) 782 MHz (LTE – Band 13 (10 MHz))
Date(s) of Tests:	November 30, 2021 ~ December 13, 2021
Serial number:	Radiated: TTLC007266 Conducted: TTLC007267

F-TP22-03 (Rev. 04) Page 5 of 55

1.1. MAXIMUM OUTPUT POWER

Mode	Ту Гиолионом	Emission		ERP	
(MHz)	Tx Frequency (MHz)	Designator	Modulation	Max. Power (W)	Max. Power (dBm)
LTE D (12 (5)	770 5 704 5	4M51G7D	QPSK	0.360	25.56
LTE – Band13 (5)	779.5 –784.5	4M50W7D	16QAM	0.270	24.32
LTE Donad12 (10)	702.0	8M94G7D	QPSK	0.355	25.51
LTE – Band13 (10)	782.0	8M94W7D	16QAM	0.267	24.27

F-TP22-03 (Rev. 04) Page 6 of 55

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Home Phone Connect with CDMA(BC0, 1) and LTE.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

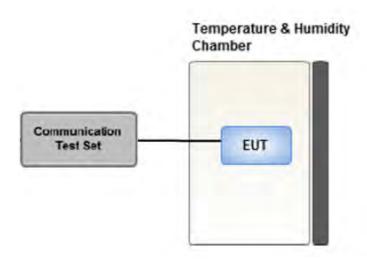
2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 04) Page 7 of 55

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE


Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 – Section 4.3 - ANSI C63.26-2015 – Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 – Section 5.2
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/ Effective Isotropic Radiated Power	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8 - ANSI/TIA-603-E-2016 – Section 2.2.17
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 – Section 6.2 - ANSI/TIA-603-E-2016 – Section 2.2.12

F-TP22-03 (Rev. 04) Page 8 of 55

비

3.2 CONDUCTED OUTPUT POWER

Test setup

Test Overview

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies.

Conducted Output Power was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v03r01, Section 5.2.

F-TP22-03 (Rev. 04) Page 9 of 55

3.3 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW, not to exceed 1 MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

$$P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 04) Page 10 of 55

3.4 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

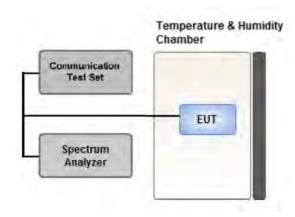
Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
 if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
 and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result $_{(dBm)}$ = Pg $_{(dBm)}$ - cable loss $_{(dB)}$ + antenna gain $_{(dBi)}$

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP
$$(dBm)$$
 = ERP (dBm) + 2.15

F-TP22-03 (Rev. 04) Page 11 of 55

3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

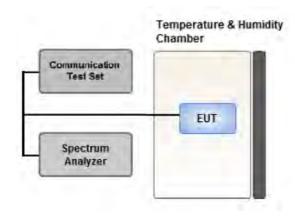
The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5 % of the 99 % occupied bandwidth observed in Step 7


F-TP22-03 (Rev. 04) Page 12 of 55

비

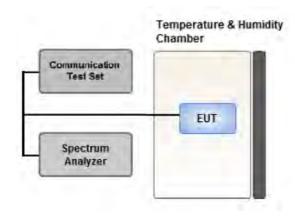
밀

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. VBW \geq 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep \geq 2 x Span / RBW

F-TP22-03 (Rev. 04) Page 13 of 55

3.7 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

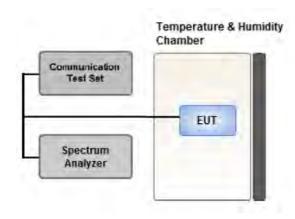
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

According to FCC 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

In the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)


The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

F-TP22-03 (Rev. 04) Page 14 of 55

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 04) Page 15 of 55

3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported. mode: A wall-hanging, Table top (Worst: Table top)
- The worst case is reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data.

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
Radiated Spurious and Harmonic Emissions	QPSK	1	0	Х

F-TP22-03 (Rev. 04) Page 16 of 55

3.10 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
	QPSK,				
Occupied Bandwidth	16QAM,	5, 10	Mid	Full RB	0
occupied ballawidth	64QAM,		ma	Tall ND	U
	256QAM				
	QPSK	5	Low	1	0
			High	1	24
Band Edge			Low	1	0
Dand Edge			High	1	49
		5, 10	Low,	Full RB	0
			High	rull KD	U
Spurious and Harmonic Emissions at Antenna Terminal			Low,		
	QPSK	5, 10	Mid,	1	0
			High		

Page 17 of 55 F-TP22-03 (Rev. 04)

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
H.P.F	FBSR-02B(WHK1.2/15 G- 10EF)	T&M SYSTEM	-	03/02/2022	Annual
H.P.F	FBSR-02B(WHK3.3/18 G- 10EF)	T&M SYSTEM	-	03/02/2022	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	11275	04/07/2022	Annual
DC Power Supply	E3632A	Agilent	MY40010147	06/28/2022	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	04/05/2023	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	04/05/2023	Biennial
Chamber	SU-642	ESPEC	93008124	03/15/2022	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/30/2022	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/15/2023	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	10/13/2022	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	02/11/2022	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	05/18/2022	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	06/01/2022	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	09/29/2022	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/18/2022	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/19/2022	Biennial
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/03/2023	Biennial
Hybrid Antenna	VULB9168	Schwarzbeck	760	02/22/2023	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262116770	07/12/2022	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	01/07/2022	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/05/2022	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	06/02/2022	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 04) Page 18 of 55

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty ($\pm dB$)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 04) Page 19 of 55

6. SUMMARY OF TEST RESULTS

6.1 Test Condition : Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(c)(2)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
On all frequencies between 763-775 MHz and 793-805 MHz.	§ 27.53(c)(4)	< 65 + 10log10 (P[Watts])	PASS (See Note1)
Conducted Output Power	§ 2.1046	N/A	PASS
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

Note:

1. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Effective Radiated Power	§ 27.50(b)(10)	< 3 Watts max. ERP	PASS
Radiated Spurious and Harmonic	§ 2.1053,	< 43 + 10log10 (P[Watts]) for	PASS
Emissions	§ 27.53(c)(2)	all out-of band emissions	PASS
Undesirable Emissions in	§ 2.1053,	< -70dBW/MHz EIRP (wideband)	PASS
the 1559 – 1610 MHz band	27.53(f)	< -80dBW EIRP (narrowband)	1 733

Page 20 of 55 F-TP22-03 (Rev. 04)

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	C.L	Dol	El	RP
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBd)	C.L	Pol.	W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	CI	Dol	EIRP	
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBi)	C.L	Pol.	W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 04) Page 21 of 55

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 04) Page 22 of 55

8. TEST DATA

8.1 EFFECTIVE RADIATED POWER

Frequency (MHz)	Channel	Resource Block Size	Resource Block		ed Power Bm]		R.P Bm]
(MITZ)		DIOCK SIZE	Offset	QPSK	16QAM	QPSK	16QAM
		1	0	23.87	22.57	25.49	24.19
		1	12	23.81	22.43	25.43	24.05
779.5		1	24	23.85	22.59	25.47	24.21
	23205	12	0	22.84	21.63	24.46	23.25
		12	6	22.72	21.59	24.34	23.21
		12	11	22.71	21.49	24.33	23.11
		25	0	22.74	21.64	24.36	23.26
		1	0	23.92	22.70	25.54	24.32
	23230	1	12	23.90	22.58	25.52	24.20
		1	24	23.82	22.49	25.44	24.11
782.0		12	0	22.75	21.44	24.37	23.06
		12	6	22.66	21.47	24.28	23.09
		12	11	22.78	21.57	24.40	23.19
		25	0	22.65	21.68	24.27	23.30
		1	0	23.94	22.60	25.56	24.22
		1	12	23.77	22.67	25.39	24.29
		1	24	23.89	22.53	25.51	24.15
784.5	23255	12	0	22.78	21.55	24.40	23.17
		12	6	22.74	21.71	24.36	23.33
		12	11	22.73	21.77	24.35	23.39
		25	0	22.69	21.73	24.31	23.35

LTE Conducted Average Output Powers (5 MHz Band 13 LTE)

Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 3.767 dBi
- 3. Peak. Ant Gain(dBd) = 3.767 2.15 = 1.617 dBd
- 4. Limit = 3 Watts(=34.77 dBm)

F-TP22-03 (Rev. 04) Page 23 of 55

Frequency	Channel	Resource Block Size	Resource Block		Conducted Power [dBm]		R.P 3m]
(MHz)			Offset	QPSK	16QAM	QPSK	16QAM
		1	0	23.89	22.65	25.51	24.27
		1	24	23.76	22.60	25.38	24.22
		1	49	23.79	22.54	25.41	24.16
782.0	23230	25	0	22.76	21.69	24.38	23.31
		25	12	22.68	21.53	24.30	23.15
		25	24	22.72	21.55	24.34	23.17
		50	0	22.77	21.48	24.39	23.10

LTE Conducted Average Output Powers (10 MHz Band 13 LTE)

Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 3.767 dBi
- 3. Peak. Ant Gain(dBd) = 3.767 2.15 = 1.617 dBd
- 4. Limit = 3 Watts(=34.77 dBm)

F-TP22-03 (Rev. 04) Page 24 of 55

8.2 RADIATED SPURIOUS EMISSIONS

■ MODE: <u>LTE B13</u>

■ MODULATION SIGNAL: 5 MHz QPSK

■ DISTANCE: 3 meters

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Limit
	1 559.0	-51.95	8.88	-59.29	1.94	V	-60.86	-50.00
23205 (779.5)	2 338.5	-52.61	9.96	-55.53	2.41	Н	-47.98	-13.00
(113.5)	3 118.0	-57.51	11.24	-58.12	2.82	V	-49.70	-13.00
	1 564.0	-51.37	8.92	-58.99	1.94	Н	-62.33	-50.00
23230 (782.0)	2 346.0	-53.94	10.03	-56.74	2.41	Н	-49.12	-13.00
(102.0)	3 128.0	-57.60	11.26	-58.52	2.81	V	-50.07	-13.00
	1 569.0	-51.16	8.96	-59.06	1.94	Н	-59.78	-50.00
23255 (784.5)	2 353.5	-55.10	10.10	-57.77	2.41	Н	-50.08	-13.00
(.31.0)	3 138.0	-57.48	11.28	-57.88	2.82	V	-49.42	-13.00

F-TP22-03 (Rev. 04) Page 25 of 55

■ MODE: <u>LTE B13</u>

■ MODULATION SIGNAL: 10 MHz QPSK

■ DISTANCE: <u>3 meters</u>

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Limit
	1 564.0	-52.94	8.92	-60.56	1.94	Н	-53.58	-50.00
23230 (782.0)	2 346.0	-54.12	10.03	-56.92	2.41	Н	-49.30	-13.00
(102.0)	3 128.0	-58.04	11.26	-58.96	2.81	Н	-50.51	-13.00

F-TP22-03 (Rev. 04) Page 26 of 55

1559 MHz ~ 1610 MHz BAND

■ OPERATING FREQUENCY: 779.5 MHz, 782.0 MHz, 784.5 MHz

■ MEASURED OUTPUT POWER: 5 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ WIDEBAND EMISSION LIMIT: -80 dBW/ MHz (= -50 dBm/ MHz)

Operating Frequency (MHz)	Measured Frequency (MHz)	EMISSION TYPE	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Margin (dB)
779.5	1607.4		-63.68	9.30	-73.30	1.99	Н	-65.99	15.99
782.0	1559.7	Narrow Band	-59.11	8.88	-66.45	1.94	Н	-59.51	9.51
784.5	1564.7		-58.73	8.92	-66.35	1.94	Н	-59.37	9.37

Note:

The lower narrowband limit was applied because the spurious emission was not found.

■ OPERATING FREQUENCY: 782.0 MHz

■ MEASURED OUTPUT POWER: 10 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ WIDEBAND EMISSION LIMIT: -80 dBW/ MHz (= -50 dBm/ MHz)

Operating Frequency (MHz)		EMISSION TYPE	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Margin (dB)
782.0	1607.6	Narrow Band	-63.69	9.30	-73.31	1.99	Н	-66.00	16.00

Note:

The lower narrowband limit was applied because the spurious emission was not found.

F-TP22-03 (Rev. 04) Page 27 of 55

8.3 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	E MIL		QPSK	25	0	4.5066
10	5 MHz	782.0	16-QAM	25	0	4.4946
13	13		QPSK	50	0	8.9346
1	10 MHz		16-QAM	50	0	8.9425

Note:

F-TP22-03 (Rev. 04) Page 28 of 55

^{1.} Plots of the EUT's Occupied Bandwidth are shown Page 47 \sim 50.

8.4 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		779.5	3.6970	27.976	-67.344	-39.368	
12	5	782.0	3.7124	27.976	-66.999	-39.023	12.00
13		784.5	3.1601	27.976	-66.942	-38.966	-13.00
	10	782.0	3.6745	27.976	-67.011	-39.035	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 51 \sim 54.
- 2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 – 1	25.270
1 - 5	27.976
5 – 10	28.591
10 - 15	29.116
15 – 20	29.489
Above 20(26.5)	30.131

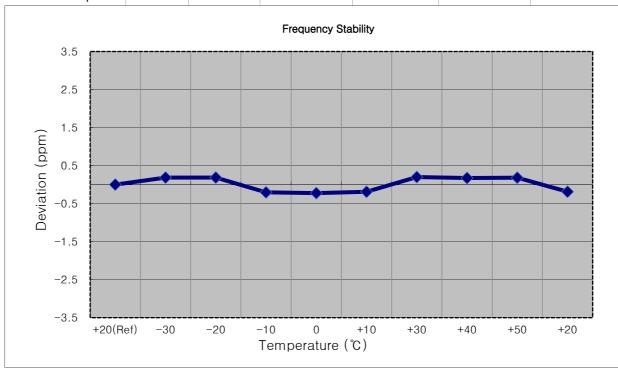
8.5 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 35 ~ 46.

F-TP22-03 (Rev. 04) Page 29 of 55

8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ MODE: LTE 13


■ OPERATING FREQUENCY: <u>779,500,000 Hz</u>

■ CHANNEL: 23205 (5 MHz)

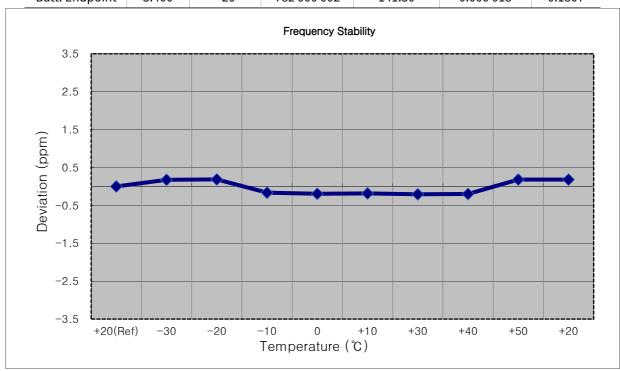
■ REFERENCE VOLTAGE: 3.800 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100 %		+20(Ref)	779 499 834	0.00	0.000 000	0.0000
100 %		-30	779 499 978	143.70	0.000 018	0.1843
100 %		-20	779 499 978	144.20	0.000 018	0.1850
100 %		-10	779 499 675	-158.70	-0.000 020	-0.2036
100 %	3.800	0	779 499 660	-174.50	-0.000 022	-0.2239
100 %		+10	779 499 687	-147.10	-0.000 019	-0.1887
100 %		+30	779 499 989	154.60	0.000 020	0.1983
100 %		+40	779 499 969	134.90	0.000 017	0.1731
100 %		+50	779 499 976	141.40	0.000 018	0.1814
Batt. Endpoint	3.400	+20	779 499 688	-145.70	-0.000 019	-0.1869

F-TP22-03 (Rev. 04) Page 30 of 55

■ MODE: <u>LTE 13</u>


■ OPERATING FREQUENCY: 782,000,000 Hz

■ CHANNEL: <u>23230 (5 MHz)</u>

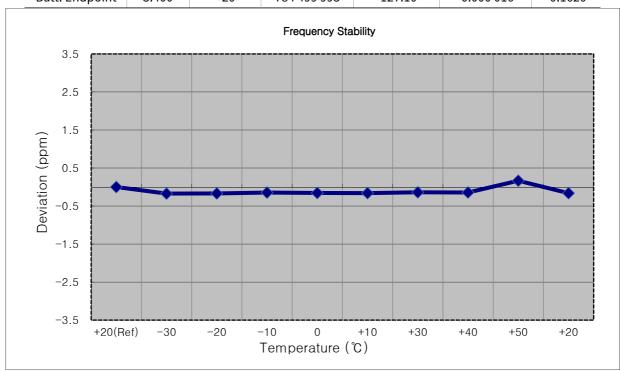
■ REFERENCE VOLTAGE: 3.800 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	
100 %	3.800	+20(Ref)	781 999 861	0.00	0.000 000	0.0000
100 %		-30	781 999 998	136.80	0.000 017	0.1749
100 %		-20	782 000 006	145.10	0.000 019	0.1855
100 %		-10	781 999 732	-128.80	-0.000 016	-0.1647
100 %		0	781 999 709	-151.70	-0.000 019	-0.1940
100 %		+10	781 999 717	-144.10	-0.000 018	-0.1843
100 %		+30	781 999 699	-162.10	-0.000 021	-0.2073
100 %		+40	781 999 706	-155.20	-0.000 020	-0.1985
100 %		+50	782 000 003	141.70	0.000 018	0.1812
Batt. Endpoint	3.400	+20	782 000 002	141.30	0.000 018	0.1807

F-TP22-03 (Rev. 04) Page 31 of 55

■ MODE: LTE 13


■ OPERATING FREQUENCY: 784,500,000 Hz

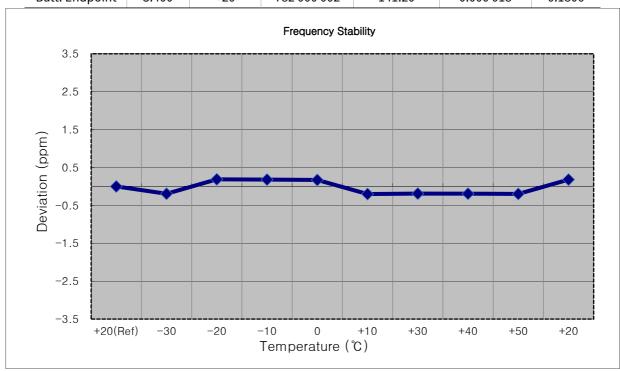
■ CHANNEL: 23255 (5 MHz)

■ REFERENCE VOLTAGE: 3.800 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	
100 %	3.800	+20(Ref)	784 500 120	0.00	0.000 000	0.0000
100 %		-30	784 499 985	-135.30	-0.000 017	-0.1725
100 %		-20	784 499 988	-132.50	-0.000 017	-0.1689
100 %		-10	784 500 006	-114.40	-0.000 015	-0.1458
100 %		0	784 499 997	-122.70	-0.000 016	-0.1564
100 %		+10	784 499 994	-125.70	-0.000 016	-0.1602
100 %		+30	784 500 011	-108.80	-0.000 014	-0.1387
100 %		+40	784 500 007	-113.10	-0.000 014	-0.1442
100 %		+50	784 500 250	130.30	0.000 017	0.1661
Batt. Endpoint	3.400	+20	784 499 993	-127.10	-0.000 016	-0.1620

F-TP22-03 (Rev. 04) Page 32 of 55


■ MODE: LTE 13

■ OPERATING FREQUENCY: 782,000,000 Hz ■ CHANNEL: 23230 (10 MHz)

■ REFERENCE VOLTAGE: 3.800 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	
100 %	3.800	+20(Ref)	781 999 861	0.00	0.000 000	0.0000
100 %		-30	781 999 709	-151.40	-0.000 019	-0.1936
100 %		-20	782 000 007	146.60	0.000 019	0.1875
100 %		-10	782 000 002	141.10	0.000 018	0.1804
100 %		0	781 999 994	133.60	0.000 017	0.1708
100 %		+10	781 999 704	-157.10	-0.000 020	-0.2009
100 %		+30	781 999 713	-147.90	-0.000 019	-0.1891
100 %		+40	781 999 711	-149.70	-0.000 019	-0.1914
100 %		+50	781 999 706	-154.70	-0.000 020	-0.1978
Batt. Endpoint	3.400	+20	782 000 002	141.20	0.000 018	0.1806

F-TP22-03 (Rev. 04) Page 33 of 55

9. TEST PLOTS

F-TP22-03 (Rev. 04) Page 34 of 55

5 M_BandEdge_Lowest Channel_QPSK_FullRB(1)

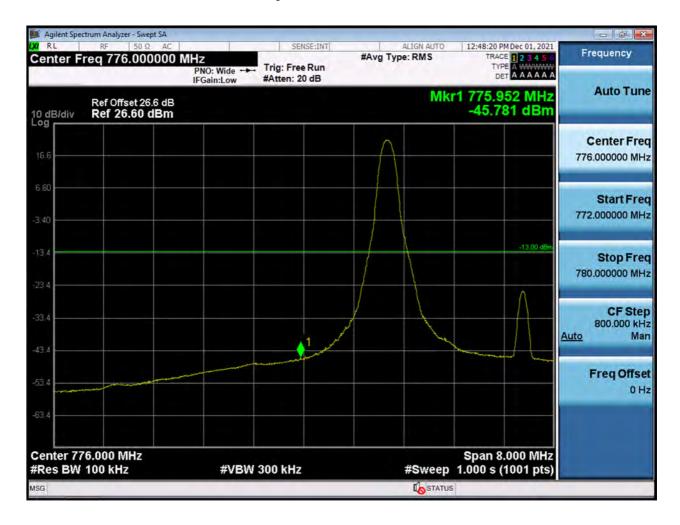
F-TP22-03 (Rev. 04) Page 35 of 55

5 M_BandEdge_Lowest Channel_QPSK_FullRB(2)

F-TP22-03 (Rev. 04) Page 36 of 55

5 M_BandEdge_Highest Channel_QPSK_FullRB(1)

F-TP22-03 (Rev. 04) Page 37 of 55


5 M_BandEdge_Highest Channel_QPSK_FullRB(2)

F-TP22-03 (Rev. 04) Page 38 of 55

5 M_BandEdge_Lowest Channel_QPSK_1RB

F-TP22-03 (Rev. 04) Page 39 of 55

5 M_BandEdge_Highest Channel_QPSK_1RB

F-TP22-03 (Rev. 04) Page 40 of 55

밀

10 M_BandEdge_Mid Channel(Lower)_QPSK_FullRB(1)

F-TP22-03 (Rev. 04) Page 41 of 55

10 M_BandEdge_Mid Channel(Lower)_QPSK_FullRB(2)

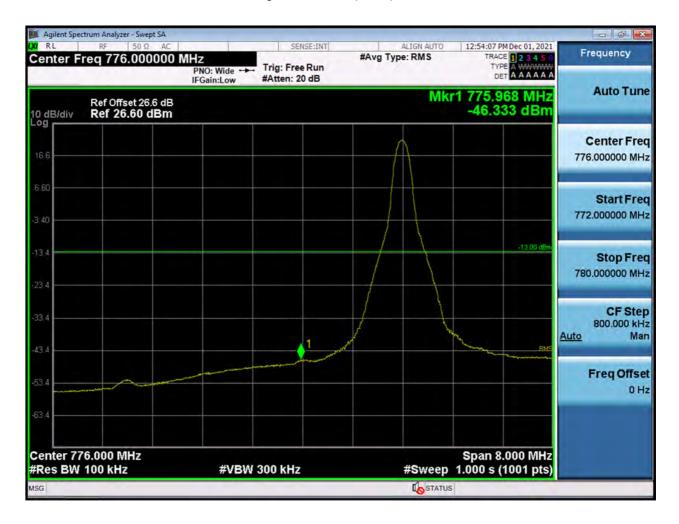
F-TP22-03 (Rev. 04) Page 42 of 55

밀

10 M_BandEdge_Mid Channel(Higher)_QPSK_FullRB(1)

F-TP22-03 (Rev. 04) Page 43 of 55

밀

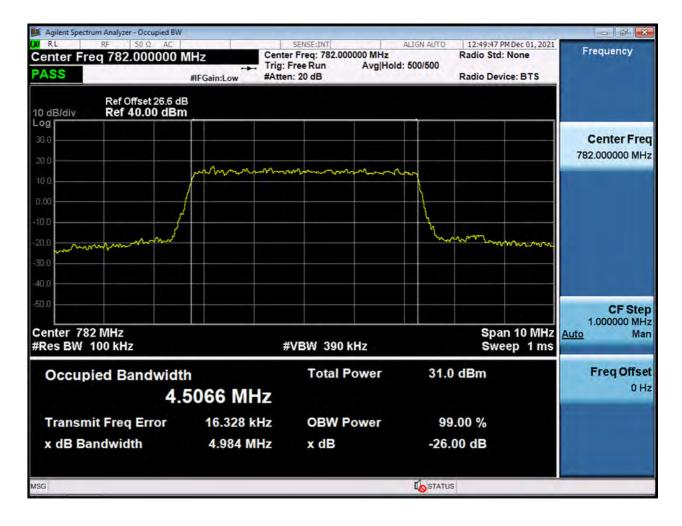

10 M_BandEdge_Mid Channel(Higher)_QPSK_FullRB(2)

F-TP22-03 (Rev. 04) Page 44 of 55

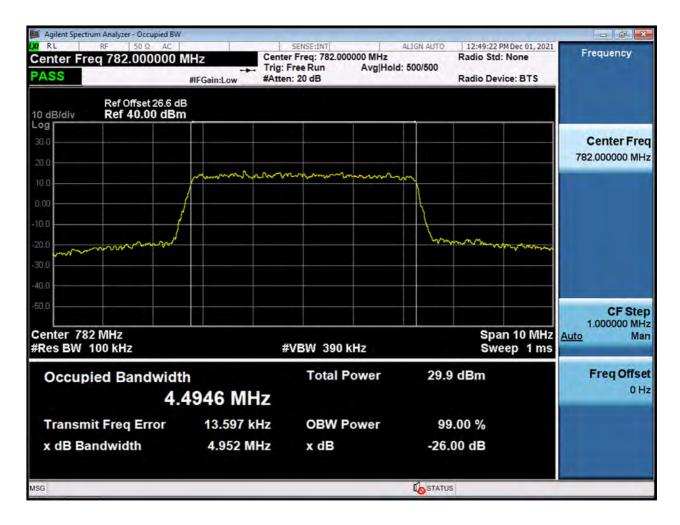
10 M_BandEdge_Mid Channel(Lower)_QPSK_1RB

F-TP22-03 (Rev. 04) Page 45 of 55

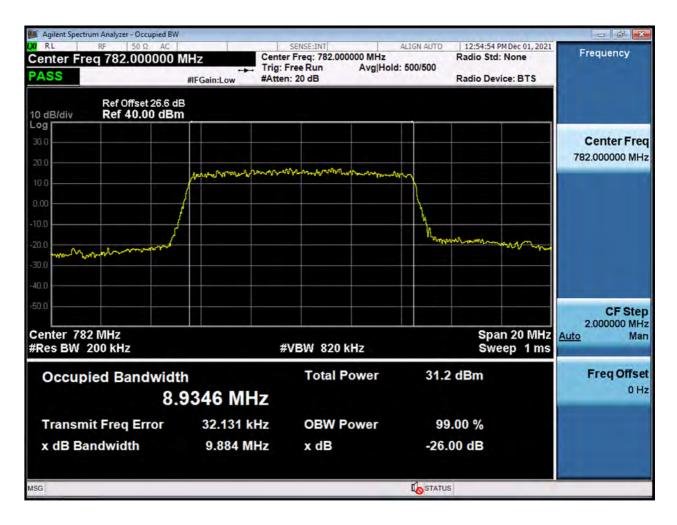
10 M_BandEdge_Mid Channel(Higher)_QPSK_1RB



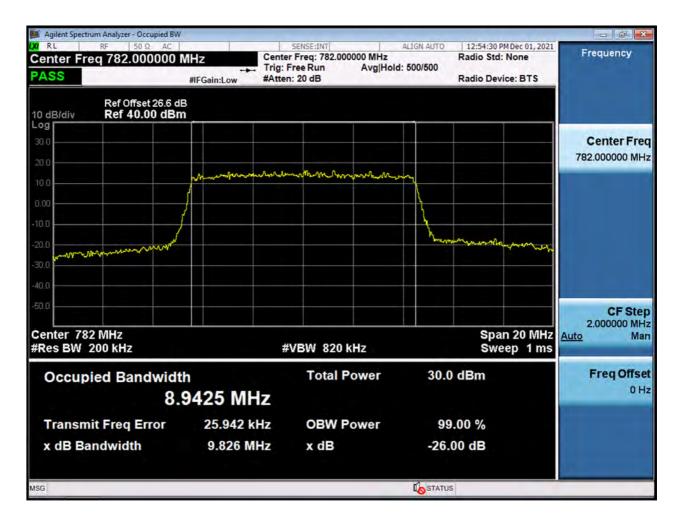
F-TP22-03 (Rev. 04) Page 46 of 55


5 M_OBW_Mid Channel_QPSK_FullRB

F-TP22-03 (Rev. 04) Page 47 of 55

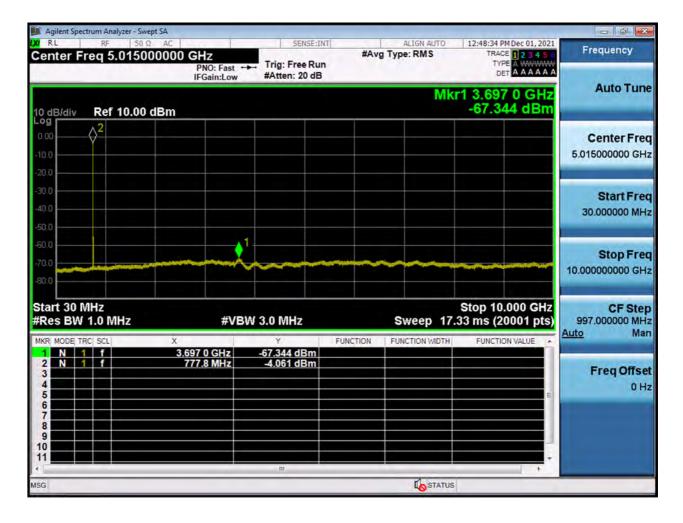

5 M_OBW_Mid Channel_16QAM_FullRB

F-TP22-03 (Rev. 04) Page 48 of 55


10 M_OBW_Mid Channel_QPSK_FullRB

F-TP22-03 (Rev. 04) Page 49 of 55

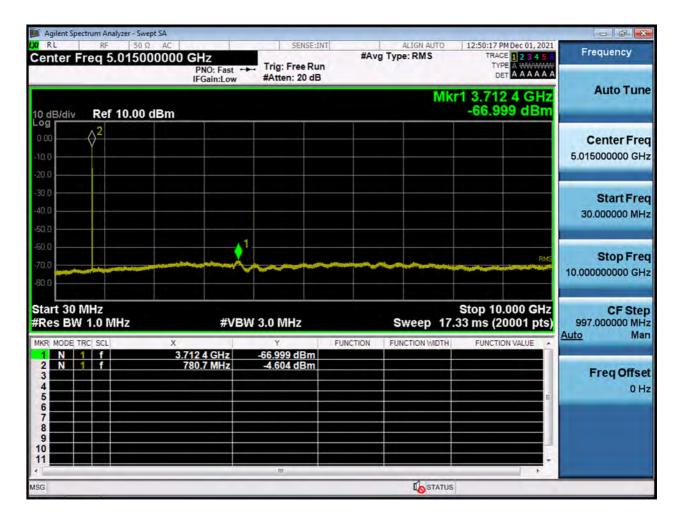
10 M_OBW_Mid Channel_16QAM_FullRB



F-TP22-03 (Rev. 04) Page 50 of 55

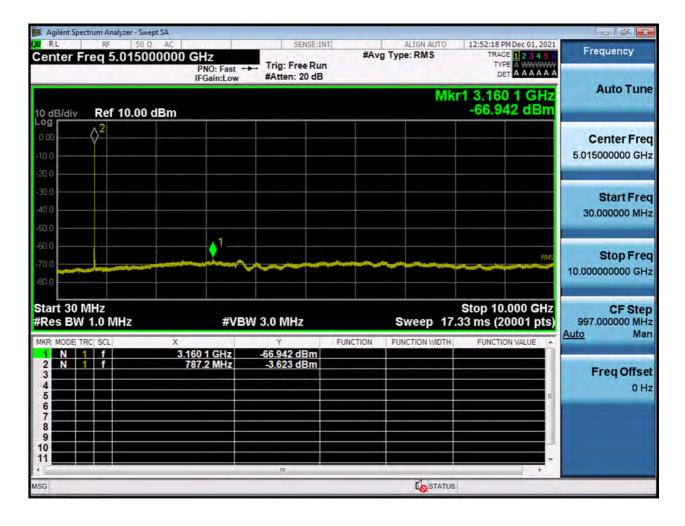
Report No. HCT-RF-2112-FC028

5 M_CSE(30 M-10 G)_Lowest Channel_QPSK_1RB

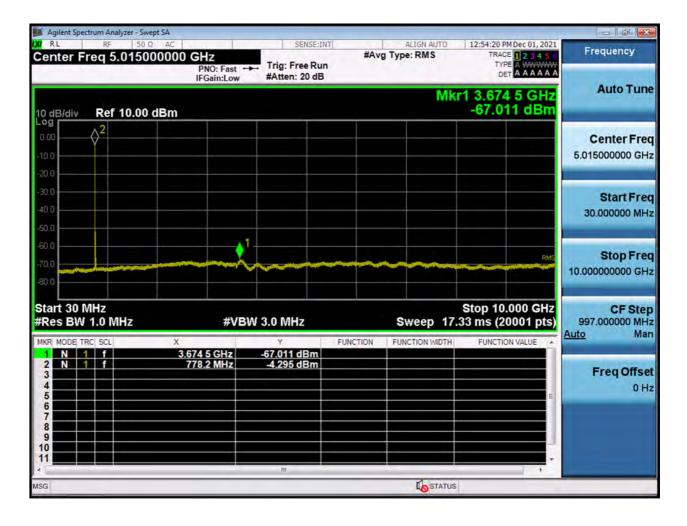


F-TP22-03 (Rev. 04) Page 51 of 55

Report No. HCT-RF-2112-FC028


5 M_CSE(30 M-10 G)_Mid Channel_QPSK_1RB

F-TP22-03 (Rev. 04) Page 52 of 55


5 M_CSE(30 M-10 G)_Highest Channel_QPSK_1RB

F-TP22-03 (Rev. 04) Page 53 of 55

10 M_CSE(30 M-10 G)_Mid Channel_QPSK_1RB

F-TP22-03 (Rev. 04) Page 54 of 55

10. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2112-FC028-P

Page 55 of 55 F-TP22-03 (Rev. 04)