

Report Number: F690501/RF-RTL014052-1

Page:

of

62

TEST REPORT

of

FCC Part 15 Subpart E §15.407

FCC ID: XHG-R717

Equipment Under Test : Mobile Hotspot

Model Name

Franklin Technology Inc. **Applicant**

Manufacturer Franklin Technology Inc.

Date of Receipt 2019.05.07

2019.05.08 ~ 2019.07.10 Date of Test(s)

Nancy Park

Jungmin Yang

Date of Issue : 2019.07.22

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date:

2019.07.22

Technical

Manager:

Date:

2019.07.22

Report Number: F690501/RF-RTL014052-1 Page: 2 of 62

INDEX

Table of contents

1. General Information	3
2. Transmitter Radiated Spurious Emissions	10
3. 26 dB Bandwidth & 99 % Bandwidth	30
4. 6 dB Bandwidth	40
5. Maximum Conducted Output Power	45
6. Peak Power Spectral Density	49
7. AC Conducted Power Line Emissions	58
8. Antenna Requirement	62

Report Number: F690501/RF-RTL014052-1 Page: 3 of 62

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Phone No. : +82 31 688 0901 Fax No. : +82 31 688 0921

1.2. Details of Applicant

Applicant : Franklin Technology Inc.

Address : 906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-Gu, Seoul, South Korea, 08502

Contact Person : Lee, James Phone No. : +82 70 8228 6445

1.3. Details of Manufacturer

Company : Same as applicant Address : Same as applicant

1.4. Description of EUT

Kind of Product	Mobile Hotspot
Model Name	Т9
Power Supply	DC 3.8 V
Frequency Range	WLAN 5G Band 1 (11n_HT20): 5 180 Mb ~ 5 240 Mb WLAN 5G Band 1 (11n_HT40): 5 190 Mb ~ 5 230 Mb WLAN 5G Band 3 (11ac_VHT20): 5 745 Mb ~ 5 825 Mb WLAN 5G Band 3 (11ac_VHT40): 5 755 Mb ~ 5 795 Mb WLAN 5G Band 3 (11ac_VHT80): 5 775 Mb
Modulation Technique	OFDM
Number of Channels	WLAN 5G Band 1 (11n_HT20): 4 channels WLAN 5G Band 1 (11n_HT40): 2 channels WLAN 5G Band 3 (11ac_VHT20): 5 channels WLAN 5G Band 3 (11ac_VHT40): 2 channels WLAN 5G Band 3 (11ac_VHT80): 1 channels
Antenna Type	FPCB + Carrier type antenna
Antenna Gain	5 150 Mb ~ 5 250 Mb: 4.69 dBi 5 725 Mb ~ 5 850 Mb: 4.26 dBi

Report Number: F690501/RF-RTL014052-1 Page: 4 of 62

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	Agilent	E8257D	MY51501169	Jul. 03, 2019	Annual	Jul. 03, 2020
Signal Generator	R&S	SMBV100A	255834	Jun. 10, 2019	Annual	Jun. 10, 2020
Spectrum Analyzer	R&S	FSV30	103210	Dec. 05, 2018	Annual	Dec. 05, 2019
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 21, 2018	Annual	Sep. 21, 2019
Spectrum Analyzer	Agilent	N9030A	US51350132	Sep. 21, 2018	Annual	Sep. 21, 2019
Power Meter	Anritsu	ML2495A	1223004	Jun. 05, 2019	Annual	Jun. 05, 2020
Power Sensor	Anritsu	MA2411B	1207272	Jun. 05, 2019	Annual	Jun. 05, 2020
Attenuator	MCLI	FAS-12-10	2	Jun. 07, 2019	Annual	Jun. 07, 2020
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 19, 2019	Annual	Feb. 19, 2020
High Pass Filter	Wainwright Instrument GmbH	WHKX6.0/18G-10SS	51	Jun. 07, 2019	Annual	Jun. 07, 2020
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 05, 2019	Annual	Jun. 05, 2020
DC Power Supply	R&S	HMP2020	019258024	Nov. 06, 2018	Annual	Nov. 06, 2019
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2018	Annual	Aug. 07, 2019
Preamplifier	Agilent	8449B	3008A01932	Feb. 22, 2019	Annual	Feb. 22, 2020
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 13, 2019	Annual	May 13, 2020
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 23, 2017	Biennial	Aug. 23, 2019
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	01126	Mar. 26, 2018	Biennial	Mar. 26, 2020
Horn Antenna	R&S	HF907	100145	Feb. 14, 2018	Biennial	Feb. 14, 2020
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	BBHA9170431	Sep. 10, 2018	Biennial	Sep. 10, 2020
Test Receiver	R&S	ESU26	100109	Jan. 31, 2019	Annual	Jan. 31, 2020
Test Receiver	R&S	ESCI 7	100911	Feb. 20, 2019	Annual	Feb. 20, 2020
Two-Line V-Network	R&S	ENV216	100190	May 14, 2019	Annual	May 14, 2020
Shield Room	SY Corporation	$L \times W \times H$ (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	$L \times W \times H$ (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	SUCOFLEX	104 (3 m)	MY3258414	Jul. 04, 2019	Semi- annual	Jan. 04, 2020
Coaxial Cable	SUCOFLEX	104 (10 m)	MY3145814	Jul. 04, 2019	Semi- annual	Jan. 04, 2020
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 11/20	Feb. 28, 2019	Semi- annual	Aug. 28, 2019

Report Number: F690501/RF-RTL014052-1 Page: 5 of 62

1.6. Summary of Test Result

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart E									
Section	Section Test Item(s)								
15.205(a) 15.209(a) 15.407(b)(1) 15.407(b)(4)	Transmitter Radiated Spurious Emissions	Complied							
15.407(a)	26 dB Bandwidth & 99 % Bandwidth	Complied							
15.407(e)	6 dB Bandwidth	Complied							
15.407(a)(1) 15.407(a)(3)	Maximum Conducted Output Power	Complied							
15.407(a)(1) 15.407(a)(3)	Peak Power Spectral Density	Complied							
15.207	AC Power Line Conducted Emission	Complied							

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 General UNII Test Procedures New Rules v02r01 were used in the measurement of the DUT.

1.8. Sample Calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted Test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation Test

Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

Report Number: F690501/RF-RTL014052-1 Page: 6 of 62

1.9. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
RF Output Power	± 0.34 dB
Occupied Bandwidth	± 9.66 kHz
Power Spectral Density	± 0.41 dB
Conducted Spurious Emission	± 0.76 dB
AC Conducted Emission	± 3.30 dB
Radiated Emission, 9 kHz to 30 MHz	± 3.59 dB
Radiated Emission, below 1 @b	± 5.88 dB
Radiated Emission, above 1 @b	± 5.94 dB

Uncertainty figures are valid to a confidence level of 95 %.

1.10. Automatically Discontinue Transmission

1.10.1. Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operating failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

1.10.2. Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting form remote device and verify whether it shall resend or discontinue transmission.

1.11. Test Report Revision

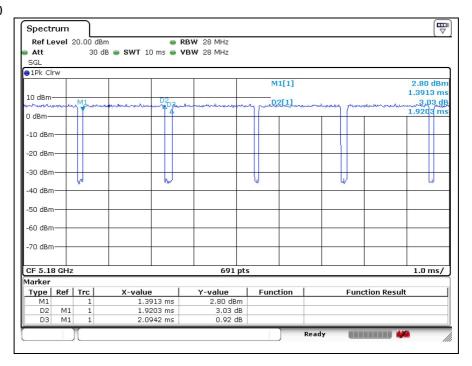
Revision	n Report Number Date of Issue		Description	
0	F690501/RF-RTL014052	2019.07.11	Initial	
1	F690501/RF-RTL014052-1	2019.07.22	Revised the calibration date and Added the Automatically Discontinue Transmission.	

Report Number: F690501/RF-RTL014052-1 Page: 7 of 62

1.12. Duty Cycle of EUT

Regarding to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, B, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below

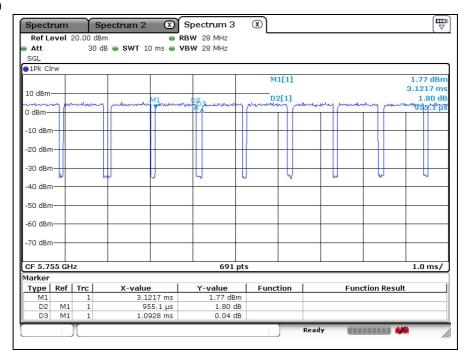
Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value, Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

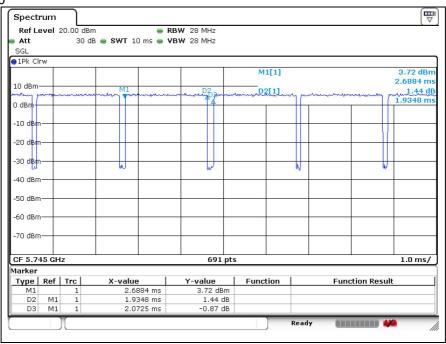

Mode	Data Rate (Mbps)	Duty Cycle (%)	Correction factor (dB)
11n_HT20	MCS0	91.70	0.38
11n_HT40	MCS0	87.40	0.58
11ac_VHT20	MCS0	93.36	0.30
11ac_VHT40	MCS0	85.59	0.68
11ac_VHT80	MCS0	73.71	1.32

Remark;

- 1. As measured duty cycles of EUT, all of mode and data rate keep constant period and are converted to log scale (power averaging) to compensate correction factor to result of average test items.
- 2. Duty cycle (%) = $(Tx \text{ on time } / Tx \text{ on + off time}) \times 100$
- 3. Correction factor (dB) = 10 log (1 / Duty cycle)

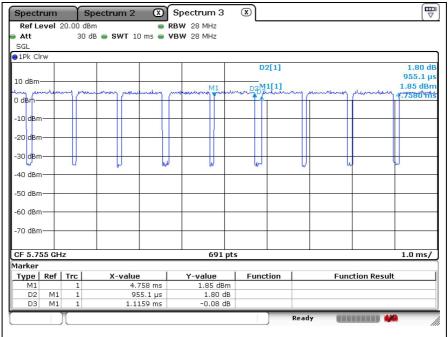
- Test plots

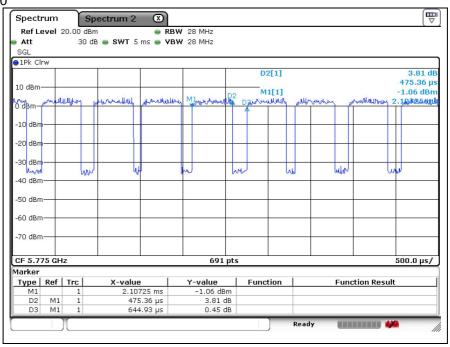

802.11n HT20



Report Number: F690501/RF-RTL014052-1 Page: 8 of 62

802.11n_HT40

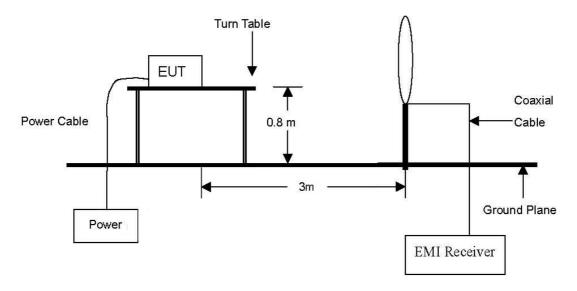

802.11ac VHT20



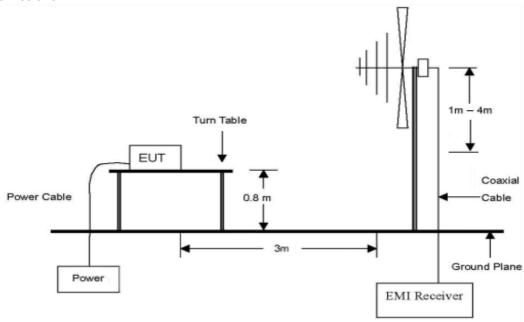
Report Number: F690501/RF-RTL014052-1 Page: 9 of 62

802.11ac_VHT40

802.11ac VHT80


Report Number: F690501/RF-RTL014052-1 Page: 10 of 62

2. Transmitter Radiated Spurious Emissions

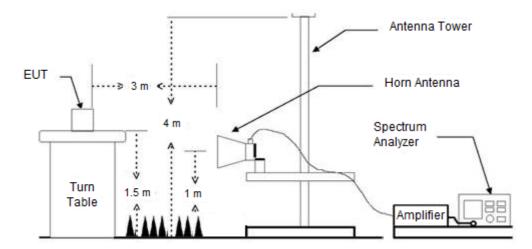

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\mathrm{kl}z$ to 30 $\,\mathrm{ml}z$ emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\, \text{Mz} \,$ to 1 $\, \text{GHz} \,$ emissions.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm x 297 mm)

F690501/RF-RTL014052-1 Report Number: Page: 11 of 62

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

Report Number: F690501/RF-RTL014052-1 Page: 12 of 62

2.2. Limit

According to § 15.407(b)

- (1) For transmitters operating in the 5.15-5.25 $\mbox{ }\mbox{ }\mbox$ not exceed an e.i.r.p. of -27 dB m/Mb.
- (4) For transmitters operating in the 5.725-5.85 @band:
- (i) All emissions shall be limited to a level of -27 dB m/Mb at 75 Mb or more above or below the band edge increasing linearly to 10 dB m/Mz at 25 Mz above or below the band edge, and from 25 Mz above or below the band edge increasing linearly to a level of 15.6 dB m/Mlz at 5 Mlz above or below the band edge, and from 5 Mb above or below the band edge increasing linearly to a level of 27 dB m/Mb at the band edge.

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (账)	Field Strength (μV/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kllz)	300
0.490-1.705	24 000/F(kl/z)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Report Number: F690501/RF-RTL014052-1 Page: 13 of 62

2.3. Test Procedures

Radiated spurious emissions from the EUT were measured according to the dictates in section G of KDB 789033 D02 General UNII Test Procedures New Rules v02r01 and ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 ¾ and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 ¾. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 \times , the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 \times , the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Report Number: F690501/RF-RTL014052-1 Page: of 62

Note;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- II.G.4. Unwanted emissions measurements below 1 GHz. Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

- II.G.5. Unwanted maximum emissions measurements above 1 @b. Peak emission levels are measured by setting the analyzer as follows: Set to RBW = 1 Mt, VBW ≥ 3 Mt, Detector = Peak, Sweep time = auto, Trace mode= Max hold.
- II.G.6. Average unwanted emissions measurements above 1 @\mu. Set to RBW = 1 Mb, VBW ≥ 3 Mb, Detector = power averaging (rms), Averaging type = power averaging (rms), Sweep time = auto, Perform a trace average of at least 100 traces If the transmission is continuous, If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 % duty cycle, at least 200 traces shall be averaged.

If tests are performed with the EUT transmitting at a duty cycle less than 98 %, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle. The correction factor is computed as follows:

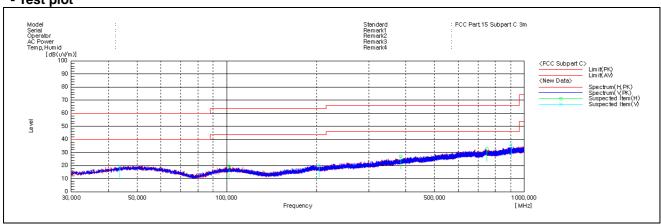
- If power averaging (rms) mode was used in II.G.6.c)(iv), the correction factor is 10 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 %, then 3 dB must be added to the measured emission levels.
- To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is **Y – axis** during radiation test.

Report Number: F690501/RF-RTL014052-1 Page: 15 of 62

2.4. Test Result

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb


The frequency spectrum from 9 klb to 1 000 klb was investigated. All reading values are peak values.

Radia	Radiated Emissions			Correctio	n Factors	Total	Limi	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)			Limit (dBµV/m)	Margin (dB)
749.30	28.70	Peak	Н	20.99	-22.21	27.48	46.00	18.52
905.55	30.70	Peak	V	22.41	-22.00	31.11	46.00	14.89

Remark;

- 2. Reported spurious emissions are in 11ac_VHT40 (Band 3) / MCS0 / High channel as worst case among other modes.
- 3. Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

Report Number: F690501/RF-RTL014052-1 Page: 16 of 62

2.4.2. Radiated Spurious Emission above 1 000 Mb

OFDM: 802.11n_HT20 (MCS0) Band 1

A. Low Channel (5 180 账)

Radiated Emissions			Ant.	Cor	rection Fac	tors	Total Limit		nit
Frequency (脈)	Reading ($dB\mu V$)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 500.00	43.65	Peak	Н	33.80	-23.20	1	54.25	74.00	19.75
*4 500.00	35.08	Average	Н	33.80	-23.20	0.38	46.06	54.00	7.94
*5 022.00	47.30	Peak	Н	34.40	-22.67	-	59.03	74.00	14.97
*5 132.25	35.72	Average	Н	34.07	-22.53	0.38	47.64	54.00	6.36
*5 150.00	46.75	Peak	Н	34.00	-22.57	-	58.18	74.00	15.82
*5 150.00	36.43	Average	Н	34.00	-22.57	0.38	48.24	54.00	5.76

Radiated Emissions		Ant.	Cor	Correction Factors			Lin	nit	
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10 352.00	33.42	Peak	Н	37.30	-18.10	-	52.62	68.23	15.61
Above 10 400.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 220 吨)

Radiated Emissions		Ant.	Cor	Correction Factors			Lin	nit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10 438.20	35.97	Peak	Н	37.48	-17.79	-	55.66	68.23	12.57
Above 10 500.00	Not detected	ı	-	-	-	-	-	-	-

C. High Channel (5 240 Mb)

Radi	Radiated Emissions			Cor	rection Fac	tors	Total Limit		nit
Frequency (脈)	Reading ($dB\mu V$)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10 479.00	34.40	Peak	Н	37.44	-17.57	-	54.27	68.23	13.96
Above 10 500.00	Not detected	-	-	ı	1	-	-	-	-

Report Number: F690501/RF-RTL014052-1 Page: 17 of 62

OFDM: 802.11n_HT40 (MCS0) Band 1

A. Low Channel (5 190 Mb)

Radi	ated Emissio	ns	Ant.	Cor	rection Fac	tors	Total	tal Limit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 500.00	45.09	Peak	Н	33.80	-23.20	-	55.69	74.00	18.31
*4 500.00	35.12	Average	Н	33.80	-23.20	0.58	46.30	54.00	7.70
*5 140.50	53.21	Peak	Н	34.04	-22.55	ı	64.70	74.00	9.30
*5 138.25	36.54	Average	Н	34.05	-22.55	0.58	48.62	54.00	5.39
*5 150.00	46.27	Peak	Н	34.00	-22.57	-	57.70	74.00	16.30
*5 150.00	36.39	Average	Н	34.00	-22.57	0.58	48.40	54.00	5.60

Radi	Radiated Emissions			Cor	rection Fac	tors	Total	Limit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
6 919.80	38.64	Peak	V	35.54	-20.48	-	53.70	68.23	14.53
10 376.60	31.67	Peak	Н	37.35	-18.05	-	50.97	68.23	17.26
Above 10 500.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 230 Mb)

Radi	Radiated Emissions			Cor	rection Fac	tors	Total	Limit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
6 973.24	38.64	Peak	V	35.65	-20.40	-	53.89	68.23	14.34
10 460.50	32.69	Peak	Н	37.48	-17.67	-	52.50	68.23	15.73
Above 10 500.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL014052-1 Page: 18 of 62

OFDM: 802.11ac_VHT20 (MCS0) Band 3

A. Low Channel (5 745 账)

Radi	Radiated Emissions			Correction	on Factors	Total Limit		nit
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 608.84	46.62	Peak	Н	34.66	-21.74	59.54	68.23	8.69
5 687.11	47.05	Peak	Н	34.35	-21.61	59.79	95.69	35.90
5 707.73	45.98	Peak	Н	34.30	-21.55	58.73	107.39	48.66
5 725.00	46.60	Peak	Н	34.30	-21.61	59.29	122.23	62.94

Radi	Radiated Emissions			Correction Factors			Total	Lin	nit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mb)

Radi	Radiated Emissions		Ant.	Correction Factors			Total	Limit	
Frequency	Reading	Detect	Pol.	AF	AMP+CL	DF	Actual	Limit	Margin
(MHz)	(dBμV)	Mode	. 0	(dB/m)	(dB)	(dB)	(dBμV/ m)	(dBμV/m)	(dB)
Above	Not								
1 000.00	detected	-	_	-	-	-	-	-	-

C. High Channel (5 825 Mb)

Radi	ated Emissio	ns	Ant.	Correction	on Factors	Total Lim		nit
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 852.94	45.09	Peak	Н	34.31	-21.40	58.00	115.52	57.52
5 873.92	46.21	Peak	Н	34.40	-21.25	59.36	105.53	46.17
5 914.84	46.42	Peak	Н	34.59	-21.11	59.90	75.75	15.85
5 950.86	44.87	Peak	Н	34.80	-21.18	58.49	68.24	9.75

Radi	Radiated Emissions		Ant.	Correction Factors			Total	Lin	nit
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-		1	-	-	-

Report Number: F690501/RF-RTL014052-1 Page: 19 of 62

OFDM: 802.11ac_VHT40 (MCS0) Band 3

A. Low Channel (5 755 Mb)

Radi	ated Emissio	ns	Ant.	Correction	on Factors	Total	Lin	nit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 627.40	45.32	Peak	Н	34.59	-21.80	58.11	68.23	10.12
5 695.27	45.47	Peak	Н	34.32	-21.55	58.24	101.73	43.49
5 719.09	48.16	Peak	Н	34.30	-21.59	60.87	110.57	49.70
5 721.97	48.77	Peak	Н	34.30	-21.60	61.47	115.32	53.85

Radi	Radiated Emissions			Correction Factors			Total	Lin	nit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 795 账)

Radi	ated Emissio	ns	Ant.	Correction	on Factors	Total	Lin	nit
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 852.61	44.85	Peak	Н	34.31	-21.40	57.76	116.28	58.52
5 868.31	45.14	Peak	Н	34.37	-21.29	58.22	107.10	48.88
5 883.49	46.48	Peak	Н	34.43	-21.19	59.72	98.94	39.22
5 939.47	45.92	Peak	Н	34.74	-21.16	59.50	68.23	8.73

Radiated Emissions		Ant.	Correction Factors			Total	Lin	nit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL014052-1 Page: 20 of 62

OFDM: 802.11ac_VHT80 (MCS0) Band 3

A. Middle Channel (5 775 Mb)

Radi	ated Emissio	ns	Ant.	Correction	on Factors	Total	Lin	nit
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 627.76	46.13	Peak	Н	34.59	-21.80	58.92	68.23	9.31
5 699.77	47.66	Peak	Н	34.30	-21.52	60.44	105.06	44.62
5 711.53	46.18	Peak	Н	34.30	-21.56	58.92	108.46	49.54
5 724.49	47.53	Peak	Н	34.30	-21.61	60.22	121.06	60.84
5 852.41	45.67	Peak	Н	34.31	-21.40	58.58	116.73	58.15
5 857.78	46.10	Peak	Н	34.33	-21.37	59.06	110.05	50.99
5 924.24	47.41	Peak	Н	34.65	-21.13	60.93	68.79	7.86
5 955.46	47.34	Peak	Н	34.79	-21.18	60.95	68.29	7.34

Radiated Emissions		Ant.	Correction Factors			Total	Lin	nit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Remark;

- 1. "*" means the restricted band.
- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using Peak / average detector mode if frequency was in restricted band. Otherwise the frequency was out of restricted band, only peak detector should be used.
- 3. Actual = Reading + AF + AMP + CL + (DF)
- 4. If frequency was out of restricted band, the calculation method for peak limit is same as below. 68.23 $dB\mu V/m = EIRP 20 log (d) + 104.77 = -27 20 log (3) + 104.77$
- 5. In case of the emissions within $\pm 75 \text{ Mz}$ from band edge of band 3, limit should be adjusted to emission mask of 15.407(4)(i).
- 6. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 7. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.

Report Number: F690501/RF-RTL014052-1 Page: 21 of 62

- Test plots

OFDM: 802.11n_HT20 (MCS0)

Low channel Band edge (Peak) - Band 1

Low channel Band edge (Average) - Band 1

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

Report Number: F690501/RF-RTL014052-1 Page: 22 of 62

OFDM: 802.11n_HT40 (MCS0)

Low channel Band edge (Peak) - Band 1

Low channel Band edge (Average) - Band 1

Report Number: F690501/RF-RTL014052-1 Page: 23 of 62

OFDM: 802.11ac_VHT20 (MCS0)

Low channel Band edge (Peak) - Band 3

High channel Band edge (Peak) - Band 3

Page: Report Number: F690501/RF-RTL014052-1 24 of 62

OFDM: 802.11ac_VHT40 (MCS0)

Low channel Band edge (Peak) - Band 3

High channel Band edge (Peak) - Band 3

Report Number: F690501/RF-RTL014052-1 Page: 25 of 62

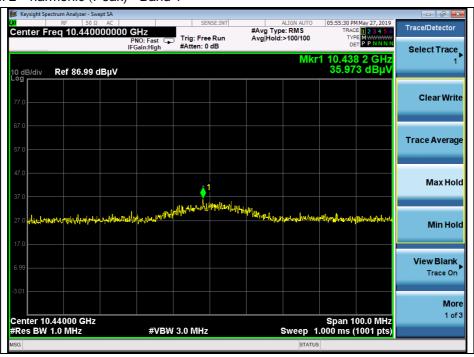
OFDM: 802.11ac_VHT80 (MCS0)

Low channel Band edge (Peak) - Band 3

High channel Band edge (Peak) - Band 3

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr


Report Number: F690501/RF-RTL014052-1 Page: 26 of 62

OFDM: 802.11n_HT20(MCS0)

Low channel 2nd harmonic (Peak) - Band 1

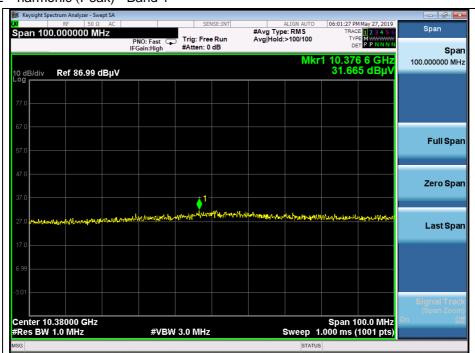
Middle channel 2nd harmonic (Peak) - Band 1

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

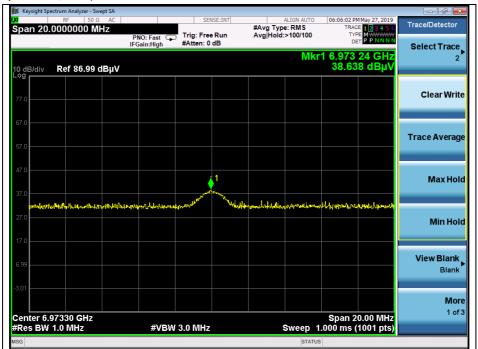
Report Number: F690501/RF-RTL014052-1 Page: 27 of 62

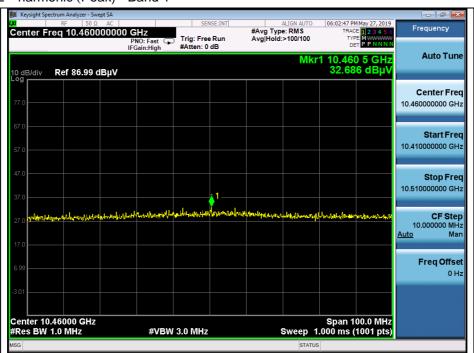
High channel 2nd harmonic (Peak) - Band 1


Report Number: F690501/RF-RTL014052-1 Page: 28 of 62

OFDM: 802.11n_HT40(MCS0)

Low channel Spurious (Peak) - Band 1


Low channel 2nd harmonic (Peak) - Band 1

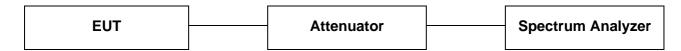


Report Number: F690501/RF-RTL014052-1 Page: 29 of 62

High channel Spurious (Peak) - Band 1

High channel 2nd harmonic (Peak) - Band 1

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

Report Number: F690501/RF-RTL014052-1 Page: 30 of 62

3. 26 dB Bandwidth & 99 % Bandwidth

3.1. Test Setup

3.2. Limit

None; for reporting purpose only.

3.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

3.3.1. 26 dB Bandwidth

- 1. This measurement settings are specified in section C.1 of KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- 2. Set RBW: approximately 1 % of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Report Number: F690501/RF-RTL014052-1 Page: 31 of 62

3.3.2. 99 % Bandwidth

- 1. This measurement settings are specified in section D of KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- 2. Set center frequency to the nominal EUT channel center frequency.
- 3. Set span = 1.5 times to 5.0 times the OBW.
- 4. Set RBW = 1% to 5% of the OBW.
- 5. Set VBW \geq 3 x RBW.
- 6. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 7. Use the 99 % power bandwidth function of the instrument (if available).
- 8. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % occupied bandwidth is the difference between these two frequencies.

In the result,

- DFS requirements are not applicable in the 5 150 Mb - 5 250 Mb.

Report Number: F690501/RF-RTL014052-1 Page: 32 of 62

3.4. Test Result

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Test mode: 11n_HT20

Band	Frequency (썐)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)	99 % Bandwidth (썐)
	5 180	36		20.029	-
U-NII 1	5 220	44	MCS0	19.971	-
	5 240	48		19.797	17.424

Test mode: 11n_HT40

	Band	Frequency (썐)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (婚)	99 % Bandwidth (岻)
	U-NII 1	5 190	38	MCS0	40.984	-
		5 230	46	IVICSU	41.100	36.006

Test mode: 11ac VHT20

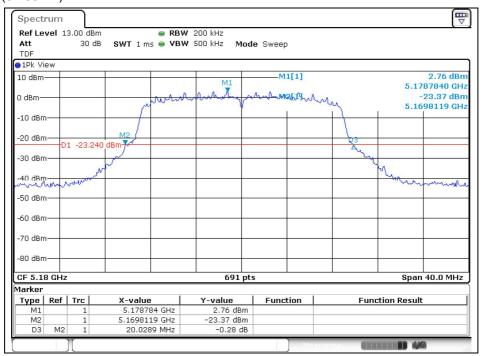
Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (脈)	99 % Bandwidth (胚)
	5 745	149		20.029	-
U-NII 3	5 785	157	MCS0	20.492	-
	5 825	165		20.087	-

Test mode: 11ac_VHT40

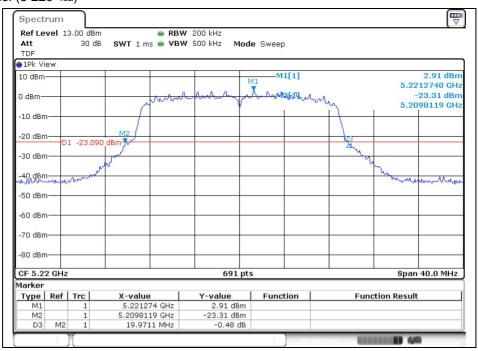
Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)	99 % Bandwidth (脈)
U-NII 3	5 755	151	MCS0	41.795	-
U-INII 3	5 795	159	IVICSU	42.258	-

Test mode: 11ac VHT80

Band	Frequency (贻)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (婚)	99 % Bandwidth (脈)
U-NII 3	5 775	155	MCS0	84.747	-

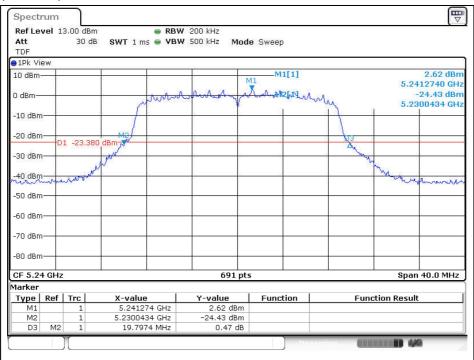

Report Number: F690501/RF-RTL014052-1 Page: 33 of 62

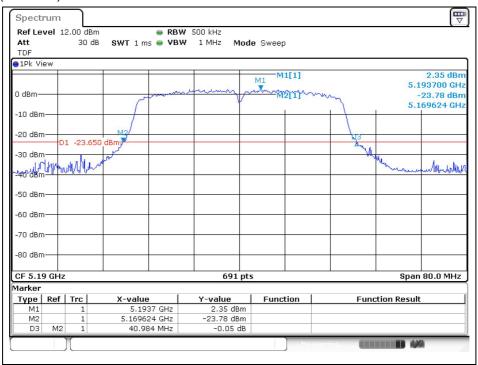
- Test plots


26 dB Bandwidth

802.11n_HT20 (Band 1)

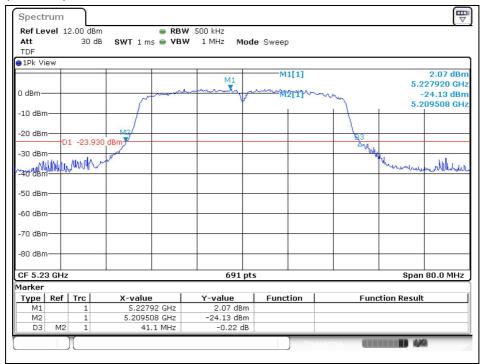
Low Channel (5 180 Mb)

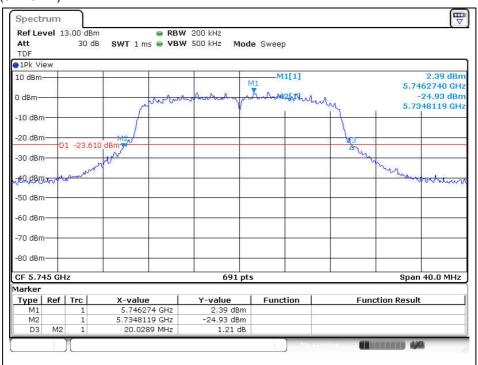

Middle Channel (5 220 Mb)


Report Number: F690501/RF-RTL014052-1 Page: 34 of 62

High Channel (5 240 Mb)

802.11n_HT40 (Band 1)

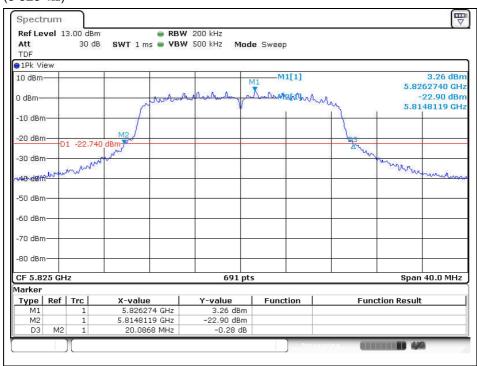

Low Channel (5 190 Mb)


Report Number: F690501/RF-RTL014052-1 Page: 35 of 62

High Channel (5 230 Mb)

802.11ac_VHT20 (Band 3)

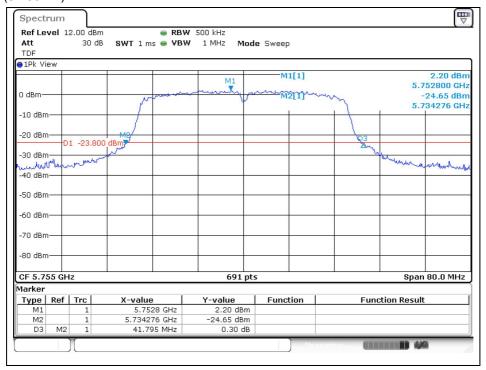
Low Channel (5 745 Mb)

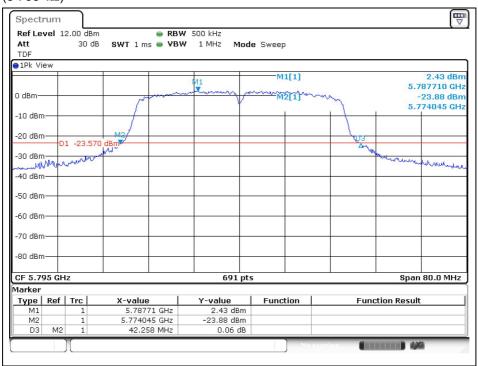


Report Number: F690501/RF-RTL014052-1 Page: 36 of 62

Middle Channel (5 785 Mb)

High Channel (5 825 账)

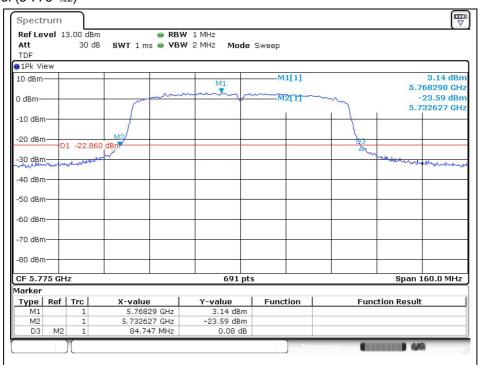



Report Number: F690501/RF-RTL014052-1 Page: 37 of 62

802.11ac_VHT40 (Band 3)

Low Channel (5 755 Mb)

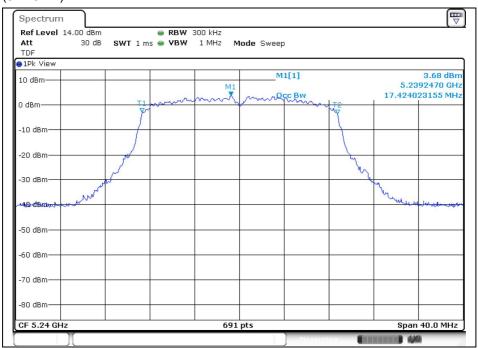
High Channel (5 795 Mb)



Report Number: F690501/RF-RTL014052-1 Page: 38 of 62

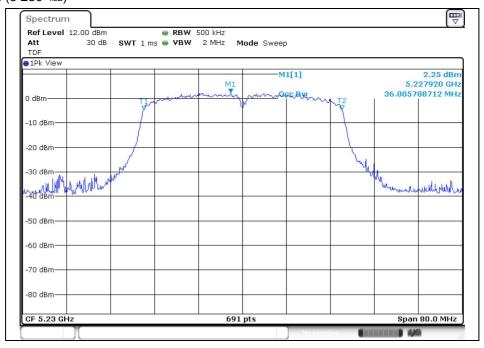
802. 11ac_VHT80 (Band 3)

Middle Channel (5 775 Mb)



Report Number: F690501/RF-RTL014052-1 Page: 39 of 62

99 % Bandwidth


802.11n_HT20 (Band 1)

High Channel (5 240 Mb)

802.11n_HT40 (Band 1)

High Channel (5 230 Mb)

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

Report Number: F690501/RF-RTL014052-1 Page: 40 of 62

4. 6 dB Bandwidth

4.1. Test Setup

4.2. Limit

4.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

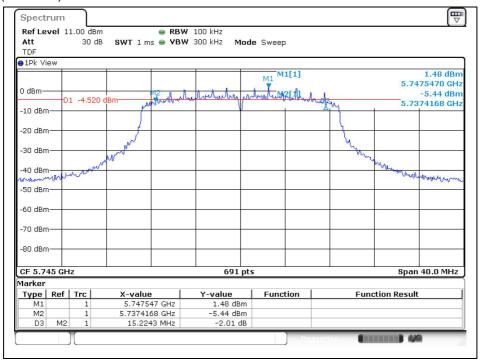
- 1. This measurement settings are specified in section C.2 of KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- 2. Set RBW = 100 kHz.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report Number: F690501/RF-RTL014052-1 Page: 41 of 62

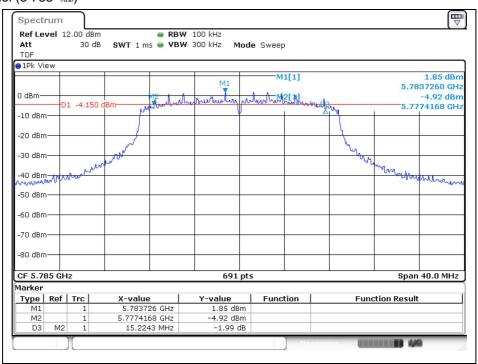
4.4. Test Result

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

Band	and Mode Frequency (Mb)		Ch.	Data Rate (Mbps)	6 dB Bandwidth (Mb)	Minimum Bandwidth (妣)	
		5 745	149		15.224		
	11ac_VHT20	5 785	157	MCS0	15.224	500	
U-NII 3		5 825	165		15.224		
0-1111 3	11ac_VHT40	5 755	151	14000	35.311		
	11ac_VH140	5 795	159	MCS0	35.311		
	11ac_VHT80	5 775	155	MCS0	75.485	1	



Report Number: F690501/RF-RTL014052-1 Page: 42 of 62

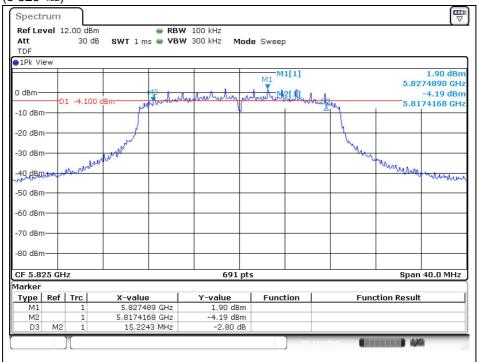

- Test plots

802.11ac_VHT20 (Band 3)

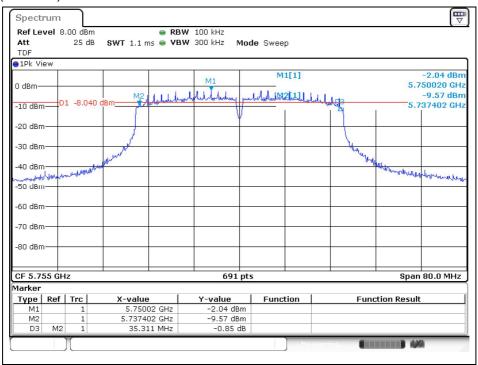
Low Channel (5 745 账)

Middle Channel (5 785 Mb)

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

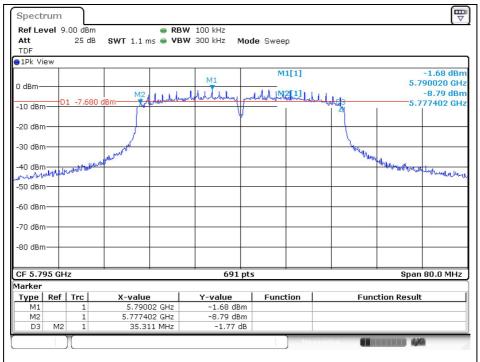

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

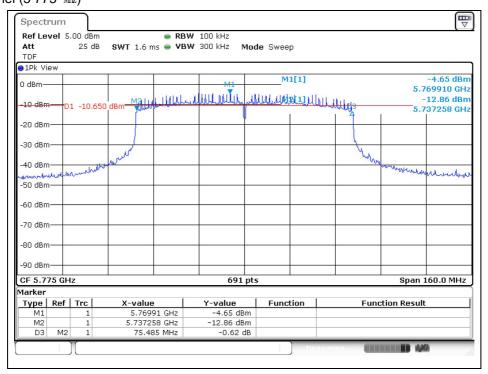
 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm x 297 mm)


Report Number: F690501/RF-RTL014052-1 Page: 43 of 62

High Channel (5 825 账)

802.11ac_VHT40 (Band 3)

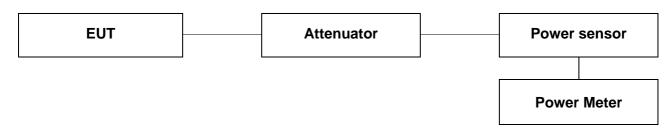

Low Channel (5 755 Mb)


Report Number: F690501/RF-RTL014052-1 Page: 44 of 62

High Channel (5 795 Mb)

802.11ac_VHT80 (Band 3)

Middle Channel (5 775 Mb)



Report Number: F690501/RF-RTL014052-1 Page: 45 of 62

5. Maximum Conducted Output Power

5.1. Test Setup

5.2. Limit

According to 15.407(a)(1)(iv)

For client devices in the 5.15-5.25 $\mbox{ }\mbox{ }$

According to 15.407(a)(3)

For the band 5.725-5.85 $\,\mathrm{GHz}$, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 $\,\mathrm{dB}\,\mathrm{m}$ in any 500- $\,\mathrm{kHz}$ band. If transmitting antennas of directional gain greater than 6 $\,\mathrm{dB}\,\mathrm{i}$ are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in $\,\mathrm{dB}\,\mathrm{that}$ the directional gain of the antenna exceeds 6 $\,\mathrm{dB}\,\mathrm{i}$. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 $\,\mathrm{dB}\,\mathrm{i}$ without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Report Number: F690501/RF-RTL014052-1 Page: 46 of 62

5.3. Test Procedure

- 1. All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.
- 2. This measurement settings are specified in section E.3.a of KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- 3. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:
 - The EUT is configured to transmit continuously or to transmit with a consistent duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 4. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- 5. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 6. Adjust the measurement in dB m by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Report Number: F690501/RF-RTL014052-1 Page: 47 of 62

5.4. Test Result

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Test mode: 11n HT20

Band	Frequency (Mb)	Data Rate (Mbps)	Average Power (dB m)	Duty Cycle Correction Factor (dB)	Average Power Result (dB m)
	5 180		17.01		17.39
U-NII 1	5 220	MCS0	16.66	0.38	17.04
	5 240		16.62		17.00

		Limit								
Band	Frequency (Mb)	Fixed Limit (dB m)	26 dB BW (MHz)	11+10LogB (dB m)	Antenna gain (dB i)	Limit (dB m)				
	5 180									
U-NII 1	5 220	23.98			4.69	23.98				
	5 240									

Test mode: 11n HT40

1000 1110 10							
Band	Frequency (썐)	Data Rate (Mbps)	Average Power (dB m)	Duty Cycle Correction Factor (dB)	Average Power Result (dB m)		
LI NIII 4	5 190	MCS0	16.70	0.58	17.28		
U-NII 1	5 230	MICSU	16.35	0.56	16.93		

	Limit							
Band	Frequency (Mb)	Fixed Limit (dB m)	26 dB BW (MHz)	11+10LogB (dB m)	Antenna gain (dB i)	Limit (dB m)		
U-NII 1	5 190	23.98			4.69	23.98		
O-IVII I	5 230	23.96			4.09	23.96		

Report Number: F690501/RF-RTL014052-1 Page: 48 of 62

Test mode: 11ac_VHT20

Band	Frequency (Mb)	Data Rate (Mbps)	Average Power (dB m)	Duty Cycle Correction Factor (dB)	Average Power Result (dB m)
	5 745		16.73		17.03
U-NII 3	5 785	MCS0	17.17	0.30	17.47
	5 825		17.08		17.38

	Limit								
Band	Frequency (Mb)	Fixed Limit (dB m)	26 dB BW (M版)	11+10LogB (dB m)	Antenna gain (dB i)	Limit (dB m)			
	5 745								
U-NII 3	5 785	30			4.26	30			
	5 825								

Test mode: 11ac VHT40

Band	Frequency (Mb)	Data Rate (Mbps)	Average Power (dB m)	Duty Cycle Correction Factor (dB)	Average Power Result (dB m)
LLNILO	5 755	MCS0	16.47	0.68	17.15
U-NII 3	5 795	MCSU	16.83	0.00	17.51

	Limit							
Band	Frequency (Mb)	Fixed Limit (dB m)	26 dB BW (MHz)	11+10LogB (dB m)	Antenna gain (dB i)	Limit (dB m)		
U-NII 3	5 755	30			4.26	30		
U-INII 3	5 795	30				30		

Test mode: 11ac_VHT80

Band	Frequency (쌘)	Data Rate (Mbps)	Average Power (dB m)	Duty Cycle Correction Factor (dB)	Average Power Result (dB m)
U-NII 3	5 775	MCS0	15.77	1.32	17.09

	Limit							
Band	Frequency (Mb)	Fixed Limit (dB m)	26 dB BW (Mb)	11+10LogB (dB m)	Antenna gain (dB i)	Limit (dB m)		
U-NII 3	5 775	30			4.26	30		

Remark;

Attenuator and cable offset was compensated in test program (R&S Power Viewer) before measuring. Average Power Result (dB m) = Average Power (dB m) + Duty Cycle Correction Factor (dB)

Report Number: F690501/RF-RTL014052-1 Page: 49 of 62

6. Peak Power Spectral Density

6.1. Test Setup

6.2. Limit

According to 15.407(a)(1)(iv)

For client devices in the 5.15-5.25 $\mbox{ db}$ band, the maximum conducted output power over the frequency band of operation shall not exceed 250 $\mbox{ mW}$ provided the maximum antenna gain does not exceed 6 $\mbox{ dB}$ i. In addition, the maximum power spectral density shall not exceed 11 $\mbox{ dB}$ m in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 $\mbox{ dB}$ i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in $\mbox{ dB}$ that the directional gain of the antenna exceeds 6 $\mbox{ dB}$ i.

According to 15.407(a)(3)

For the band 5.725-5.85 \mbox{GHz} , the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dB m in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dB i without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Report Number: F690501/RF-RTL014052-1 Page: 50 of 62

6.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

- 1. This measurement settings are specified in section F of KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- 2. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 3. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 4. Make the following adjustments to the peak value of the spectrum, if applicable:
 - a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 5. The result is the Maximum PSD over 1 Mb reference bandwidth.
- 6. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW $\geq 1/T$, where T is defined in section II.B.1.a).
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 klb, add 10log(500 klb/RBW) to the measured result, whereas RBW (< 500 klb) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 順, add 10log(1 順/RBW) to the measured result, whereas RBW (< 1 順) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Report Number: F690501/RF-RTL014052-1 Page: 51 of 62

6.4. Test Result

Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Test mode: 11n HT20

Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	Measured PPSD (dB m)	Duty Cycle Correction Factor (dB)	Final PPSD (dB m)	Limit (dB m/1 MHz)
	5 180	36		0.93		1.31	
U-NII 1	5 220	44	MCS0	0.59	0.38	0.97	11
	5 240	48		0.66		1.04	

Test mode: 11n HT40

Band	Frequency (썐)	Ch.	Data Rate (Mbps)	Measured PPSD (dB m)	Duty Cycle Correction Factor (dB)	Final PPSD (dB m)	Limit (dB m/1 배z)
U-NII 1	5 190	38	MCS0	-2.59	0.58	-2.01	11
0-1411-1	5 230	40	IVICSU	-2.72		-2.14	''

Test mode: 11ac VHT20

Band	Frequency (船)	Ch.	Data Rate (Mbps)	Measured PPSD (dB m)	Duty Cycle Correction Factor (dB)	Final PPSD (dB m)	Limit (dB m/500 kHz)
	5 745	149		-2.38		-2.08	
U-NII 3	5 785	157	MCS0	-1.99	0.30	-1.69	30
	5 825	165		-1.79		-1.49	

Test mode: 11ac_VHT40

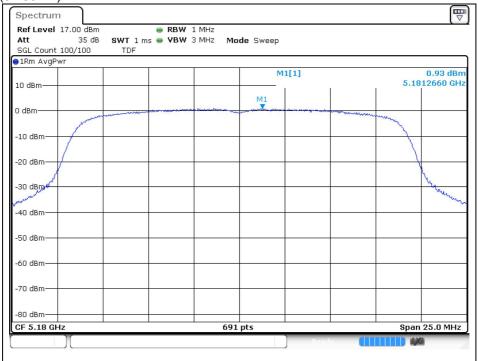
Band	Frequency (飐)	Ch.	Data Rate (Mbps)	Measured PPSD (dB m)	Duty Cycle Correction Factor (dB)	Final PPSD (dB m)	Limit (dB m/500 세z)
U-NII 3	5 755	151	MCS0	-5.60	0.68	-4.92	30
O-IVII 3	5 795	159		-5.33		-4.65	

Test mode: 11ac VHT80

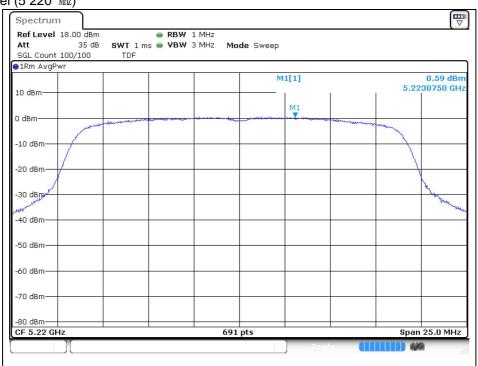
Band	Frequency (M b)	Ch.	Data Rate (Mbps)	Measured PPSD (dB m)	Duty Cycle Correction Factor (dB)	Final PPSD (dB m)	Limit (dB m/500 kHz)
U-NII 3	5 775	155	MCS0	-9.19	1.32	-7.87	30

Remark;

Final PPSD (dB m) = Measured PPSD (dB m) + Duty Cycle Correction Factor (dB)

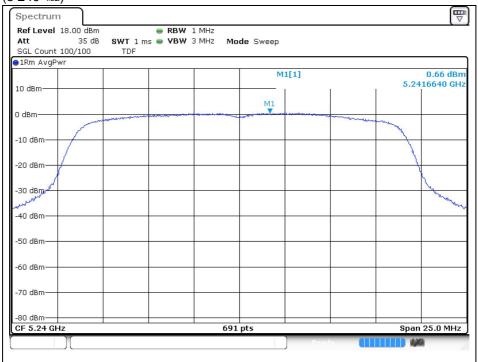


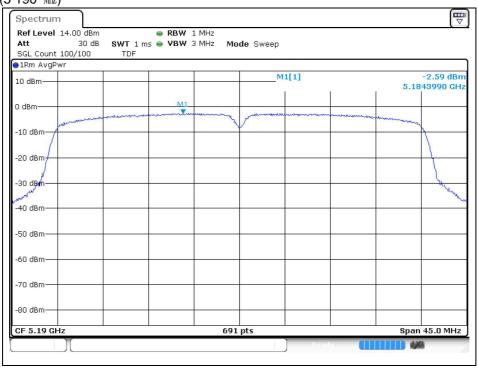
Report Number: F690501/RF-RTL014052-1 Page: 52 of 62


- Test plots

OFDM: 802.11n_HT20 (Band 1)

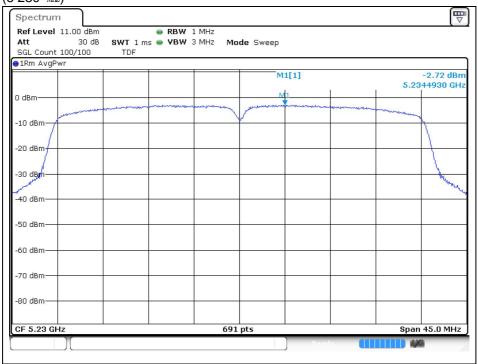
Low Channel (5 180 账)

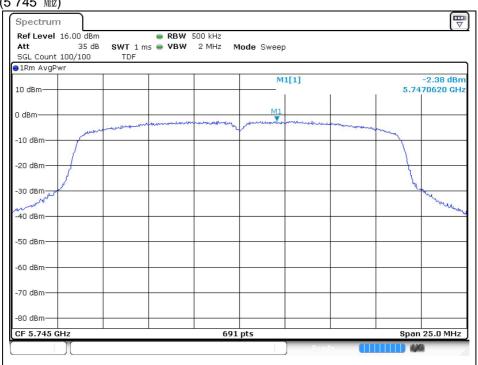

Middle Channel (5 220 Mb)


Report Number: F690501/RF-RTL014052-1 Page: 53 of 62

High Channel (5 240 账)

OFDM: 802.11n_HT40 (Band 1)

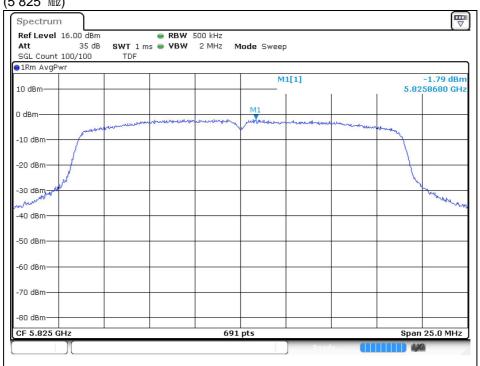

Low Channel (5 190 账)


Report Number: F690501/RF-RTL014052-1 Page: 54 of 62

High Channel (5 230 眦)

OFDM: 802.11ac_VHT20 (Band 3)

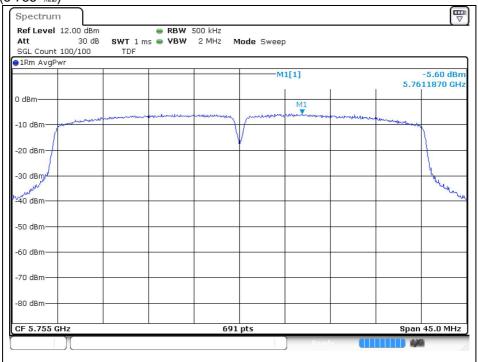
Low Channel (5 745 账)

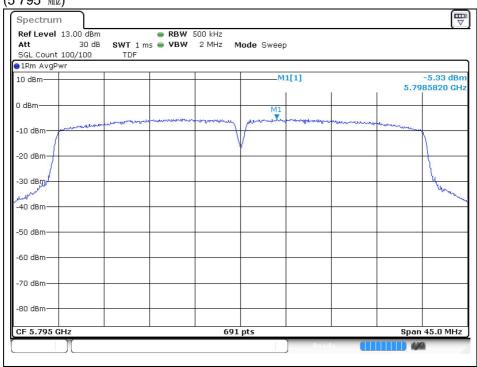


Report Number: F690501/RF-RTL014052-1 Page: 55 of 62

Middle Channel (5 785 Mb)

High Channel (5 825 Mb)

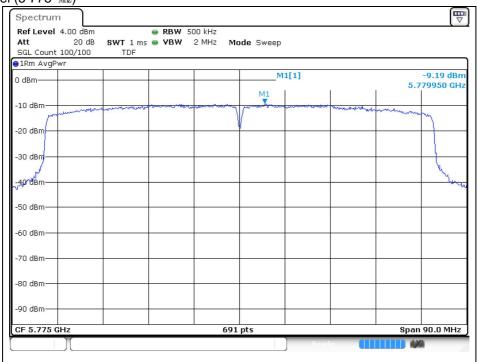



Report Number: F690501/RF-RTL014052-1 Page: 56 of 62

OFDM: 802.11ac_VHT40 (Band 3)

Low Channel (5 755 账)

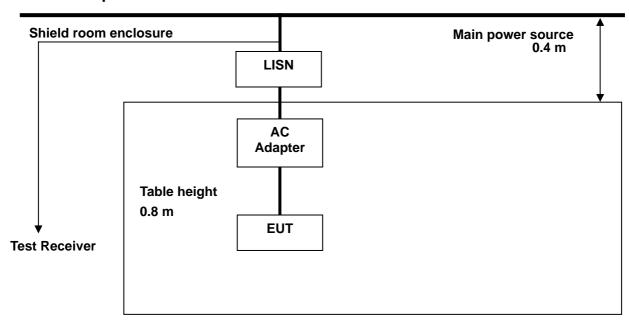
High Channel (5 795 Mb)



Report Number: F690501/RF-RTL014052-1 Page: 57 of 62

OFDM: 802.11ac_VHT80 (Band 3)

Middle Channel (5 775 Mb)



Report Number: F690501/RF-RTL014052-1 Page: 58 of 62

7. Transmitter AC Power Line Conducted Emission

7.1. Test Setup

7.2. Limit

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 $\,\text{Mz}$ to 30 $\,\text{Mz}$, shall not exceed the limits in the following table, as measured using a 50 $\,\mu$ H /50 ohms line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Fraguency of emission (MIL)	Conducted limit (dBµV)				
Frequency of emission (酏)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL014052-1 Page: 59 of 62

7.3. Test Procedures

AC conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Report Number: F690501/RF-RTL014052-1 Page: 60 of 62

7.4. Test Results

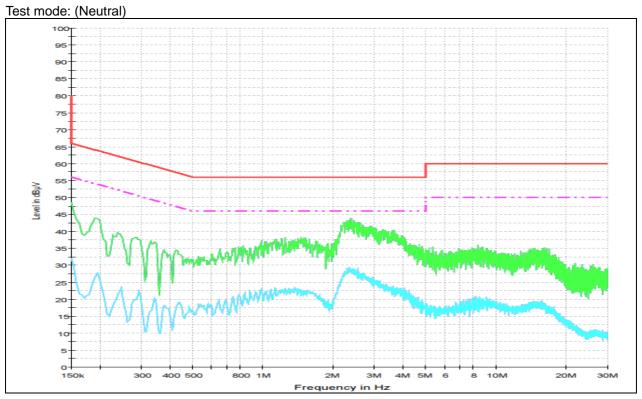
The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

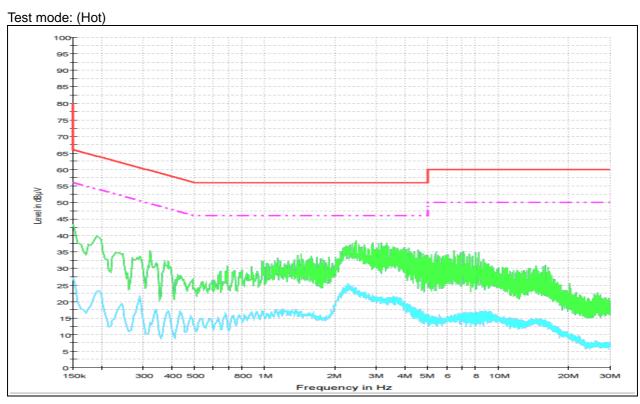
Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

Frequency range : 0.15 Mb - 30 Mb

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	. (dB,W)	LINE	LIMIT	(dBμV)	MARG	iN (dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.19	38.40	25.20	N	64.04	54.04	25.64	28.84
0.42	28.00	17.60	N	57.45	47.45	29.45	29.85
1.21	32.30	22.40	N	56.00	46.00	23.70	23.60
2.34	37.00	29.10	N	56.00	46.00	19.00	16.90
3.59	33.20	22.40	N	56.00	46.00	22.80	23.60
14.84	26.60	17.90	N	60.00	50.00	33.40	32.10
0.19	35.70	22.70	Н	64.04	54.04	28.34	31.34
0.32	26.70	12.30	Н	59.71	49.71	33.01	37.41
0.98	23.80	16.50	Н	56.00	46.00	32.20	29.50
1.45	23.70	15.70	Н	56.00	46.00	32.30	30.30
2.22	31.60	24.50	Н	56.00	46.00	24.40	21.50
6.40	23.60	14.90	Н	60.00	50.00	36.40	35.10


Remark;


- 1. Line (H): Hot, Line (N): Neutral.
- 2. All modes of operation were investigated and the worst-case emissions were reported using 11ac VHT40 (Band 3) / MCS0 / High channel.
- 3. The limit for Class B device(s) from 150 klb to 30 Mb are specified in Section of the Title 47 CFR.
- 4. Traces shown in plot were made by using a peak detector and average detector.
- 5. Deviations to the Specifications: None.

Report Number: F690501/RF-RTL014052-1 Page: 61 of 62

- Test plots

Report Number: F690501/RF-RTL014052-1 Page: 62 of 62

8. Antenna Requirement

8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.407(a) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

8.2. Antenna Connected Construction

Antenna used in this product is FPCB + Carrier type antenna and peak max gain of antenna as below.

Band	5 150 ㎞ ~ 5 250 №	5725 № ~ 5850 №		
Mode	11n_HT20, HT40	11ac_VHT20, VHT40, VHT80		
Gain	4.69 dBi	4.26 dB i		

- End of the Test Report -