

Applicant Name:

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE FCC Certification

Date of Issue:

Franklin Technology Inc.		October 18, 2013 Test Site/Location:		
Address: 906 JEI Platz, 459-11 Gasan-dong, Gumcheon-gu,		HCT CO., LTD., 105-1, Jangam-ri, Majang-Myeon,		
		Icheon-si, Kyunggi-Do, Korea		
Seoul, Korea		Report No.: HCTR1310FR06		
		HCT FRN: 0005866421		
FCC ID:	XHG-R700			
APPLICANT:	Franklin Tech	nology Inc.		
FCC Model(s):	MHS700L			
EUT Type:	Mobile Router			
FCC Classification:	Licensed Non-Broad	cast Transmitter (TNB)		
FCC Rule Part(s):	§2 , §27	§2 , §27		
Tx Frequency:	782 MHz (LTE–Band	l 13)		
Max. RF Output Power:	Band 13 (10MHz) :	0.357 W (QPSK) (25.53 dBm) 0.372 W (16-QAM) (25.70 dBm)		

Emission Designator(s):

Band 13 (10MHz): 9M00G7D (QPSK) / 8M95W7D (16-QAM)

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

n

Report prepared by : Jae Chul Shin Test engineer of RF Team

Approved by : Chang Seok Choi Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

FCC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700
		Page 1 of 24	

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCTR1310FR06	October 18, 2013	First Approval Report

FCC CERTIFICATION REPORT			www.hct.co.kr		
Test Report No. HCTR1310FR06					
	HCTR1310FR06 October 18, 2013 Mobile Router XHG-R700 Page 2 of 24				

Table of Contents

1. GENERAL INFORMATION 4	
2. INTRODUCTION	;
2.1. EUT DESCRIPTION	;
2.2. MEASURING INSTRUMENT CALIBRATION	;
2.3. TEST FACILITY	;
3. DESCRIPTION OF TESTS	ì
3.1 ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS6	ì
3.2 OCCUPIED BANDWIDTH	,
3.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	;
3.4 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE)
4. LIST OF TEST EQUIPMENT)
5. SUMMARY OF TEST RESULTS11	
6. SAMPLE CALCULATION 12	
7. TEST DATA	;
7.1 OCCUPIED BANDWIDTH	;
7.2 CONDUCTED SPURIOUS EMISSIONS13	;
7.2.1 BAND EDGE	;
7.3 EFFECTIVE RADIATED POWER OUTPUT14	•
7.4 RADIATED SPURIOUS EMISSIONS	;
7.4.1 RADIATED SPURIOUS EMISSIONS (Band 13) 15	j
7.4.2 RADIATED SPURIOUS EMISSIONS (1559 ~ 1610 MHz Band)	;
7.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
8. TEST PLOTS	,

		FCC CERTIFICATION REPORT	www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700	

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	Franklin Technology Inc.		
Address:	906 JEI Platz, 459-11 Gasan-dong, Gumcheon-gu, Seoul, Korea		
FCC ID:	XHG-R700		
Application Type:	Certification		
FCC Classification:	Licensed Non-Broad	cast Transmitter (TNB)	
FCC Rule Part(s):	§2 , §27		
EUT Type:	Mobile Router		
FCC Model(s):	MHS700L		
Tx Frequency:	782 MHz (LTE–Band	13)	
Max. RF Output Power:	Band 13 (10MHz) :	0.357 W (QPSK) (25.53 dBm) 0.372 W (16-QAM) (25.70 dBm)	
Emission Designator(s):	Band 13 (10 MHz) :	9M00G7D (QPSK) / 8M95W7D (16-QAM)	
Date(s) of Tests:	September 12, 2013 ~ September 30, 2013		
Antenna Specification	Manufacturer: KWANG HYUN AIRTECH CO., LTD Antenna type: PIFA type		
	Peak Gain: -3.8 dBi		

FCC CERTIFICATION REPORT			www.hct.co.kr		
Test Report No. Date of Issue: EUT Type: HCTR1310FR06 October 18, 2013 Mobile Router			FCC ID: XHG-R700		
	Page 4 of 24				

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Franklin Technology Inc. MHS700L Mobile Router consists of LTE 13.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic and conducted measurement facility used to collect the radiated data are located at the 105-1, Jangam-ri, Majang-Myeon, Icheon-si, Kyunggi-Do, 467-811, Korea.

FCC CERTIFICATION REPORT			www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700	

3. DESCRIPTION OF TESTS

3.1 ERP/EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

ERP/EIRP

Note: ERP(Effective Radiated Power), EIRP(Effective Isotropic Radiated Power)

Test Procedure

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-C-2004 Clasue 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and postion of the maximized emission is recorded with the spectrum analyzer using a positive peak detector.

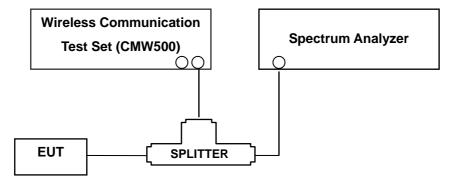
A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is caculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration


Radiated spurious emissions

- 1. Frequency Range : 30 MHz ~ 10th Harmonics of highest channel fundamental frequency.
- 2. Measured distance : 30 MHz ~ 10^{th} Harmonics at 3m

FCC CERTIFICATION REPORT			www.hct.co.kr		
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700		
	Page 6 of 24				

Test set-up

(Configuration of conducted Emission measurement)

Test Procedure

The EUT was setup to maximum output power at its lowest channel. The occupied bandwidth was measured using a spectrum analyzer. The measurements are repeated for the highest and a middle channel. The EUT's occupied bandwidth is measured as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Plots of the EUT's occupied bandwidth are shown herein.

FCC CERTIFICATION REPORT			www.hct.co.kr		
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700		
	Page 7 of 24				

3.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

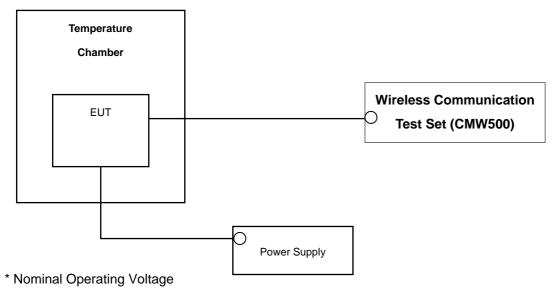
The spectrum is scanned from the lowest frequency generated

in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 30kHz bandwidth may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency

Additionally, for operations in the 776-788MHz band, the power of any emission outside the licensee's frequency band of operation shall be attenuated below the transmitted power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 776-788MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43+10log(P)dB.
- (2) On all frequencies between 763-775 and 793-805MHz, by a factor not less than 65+10log(P)dB in a 6.25kHz band segment.

For operations in the 788–793 MHz band, the power of any emission outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:


- On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (2) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB

FCC CERTIFICATION REPORT			www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700	

3.4 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.

b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 %(\pm 2.5 ppm) of the center frequency.

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC CERTIFICATION REPORT						
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700			

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Interval	Calibration Due
Agilent	E9327A/ Power Sensor	MY4442009	Annual	04/16/2014
MITEQ	AMF-6D-001180-35-20P/AMP	1081666	Annual	09/12/2014
Wainwright	WHK1.2/15G-10EF/H.P.F	4	Annual	06/24/2014
Wainwright	WHK3.3/18G-10EF/H.P.F	2	Annual	06/24/2014
Hewlett Packard	11667B / Power Splitter	10126	Annual	11/07/2013
Digital	EP-3010/ Power Supply	3110117	Annual	11/07/2013
Schwarzbeck	UHAP/ Dipole Antenna	557	Biennial	03/05/2015
Schwarzbeck	UHAP/ Dipole Antenna	558	Biennial	05/03/2015
Korea Engineering	KR-1005L / Chamber	KRAB05063-3CH	Annual	11/07/2013
Schwarzbeck	BBHA 9120D/ Horn Antenna	147	Biennial	05/15/2014
Schwarzbeck	BBHA 9120D/ Horn Antenna	1151	Biennial	10/05/2015
Agilent	E9020A/Spectrum Analyzer	MY51110063	Annual	05/14/2014
WEINSCHEL	ATTENUATOR	BR0592	Annual	11/07/2013
REOHDE&SCHWARZ	FSV40/Spectrum Analyzer	1307.9002K40-100931-NK	Annual	06/10/2014
Agilent	8960 (E5515C)/ Base Station	GB44400269	Annual	02/14/2014

FCC CERTIFICATION REPORT							
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700				
	Page 10 of 24						

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result
2.1049, 27.53	Occupied Bandwidth	N/A		PASS
2.1051, 27.53(c)	Band Edge / Spurious and Harmonic < 43 +10 log10 (P[Watts]) at Band		CONDUCTED	PASS
*2.1046	Conducted Output Power	N/A		PASS
2.1055, 27.54	Frequency stability / variation of ambient temperature	< 2.5 ppm		PASS
27.50(b)(10)	Effective Radiated Power (Band 13)	< 3 Watts max. ERP		PASS
2.1053, 27.53(c)	Undesirable Emissions	< 43 +10 log ₁₀ (P[Watts]) for all out-of-band emissions	RADIATED	PASS
2.1053,27.53(f)	Undesirable Emissions in the 1559 – 1610 MHz band	< -40dBm/MHz EIRP (wideband) < -50dBm EIRP (narrowband)		PASS

*: See SAR Report

Note regarding all Emission Mask test plots:

The FCC limit is $65 + 10log_{10}(P_{[Watts]}) = -35dBm in a 6.25kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25kHz with the available equipment, a bandwidth of 10kHz was used instead to show compliance. By using a 10kHz bandwidth, the limit was adjusted by <math>10log_{10}(10kHz/6.25kHz) = 2.04dB$. Thus, the limit shown in all emission mask plots for all available modulation types was -35dBm + 2.04dB = -32.96dBm.

FCC CERTIFICATION REPORT							
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700				
	Page 11 of 24						

6. SAMPLE CALCULATION

A. ERP Sample Calculation

Mada	Ch.	Ch./ Freq. Measured Substitude		Ant. Gain	C.L	Pol.	ERP		
Mode	channel	Freq.(MHz)	Level(dBm)	LEVEL(dBm)	(dBd)	U.L	POI.	w	dBm
LTE	23230	782	-23.12	36.72	-10.62	0.83	Н	0.337	25.27

ERP = SubstitudeLEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive tuntable is 0.8 meter above test site ground level.
- 2) During the test , the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (**ERP**).

B. Emission Designator

QPSK Modulation

Emission Designator = 8M95G7D

- LTE BW = 8.95 MHz
- G = Phase Modulation
- 7 = Quantized/Digital Info
- D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M94W7D

LTE BW = 8.94 MHz

- D = Amplitude/Angle Modulated
- 7 = Quantized/Digital Info
- W = Combination (Audio/Data)

FCC CERTIFICATION REPORT							
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700				
	Page 12 of 24						

7.1 OCCUPIED BANDWIDTH

Band	Band Width (MHz)	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
Pond 12	10	790	QPSK	50	0	8.9972
Dallu 13	nd 13 10	782	16-QAM	50	0	8.9517

- Plots of the EUT's Occupied Bandwidth are shown Page 18.

7.2 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Modulation	Resource	Resource Block Offset	Frequency of Maximum Harmonic (GHz)	Maximum Data [dBm]
Band 13	10	782	QPSK	1	0	3.1992	-28.484

- Plots of the EUT's Conducted Spurious Emissions are shown Page 24.

7.2.1 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 20 ~ 23.

FCC CERTIFICATION REPORT							
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700				
	Page 13 of 24						

7.3 EFFECTIVE RADIATED POWER OUTPUT

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	ER	P
(MHz)			Level (dBm)	Level (dBm)	Gain(dBd)			W	dBm
792.0	782.0 10 MHz	QPSK	-22.86	36.98	-10.62	0.83	V	0.357	25.53
762.0		16-QAM	-22.69	37.15	-10.62	0.83	V	0.372	25.70

Effective Radiated Power Data (Band 13 – 10 MHz)

Note: Worst case is 1 resource block.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For 1 MHz BW signals, a peak detector is used, with RBW = VBW = 1 MHz. For 10 MHz BW signals, a peak detector is used, with RBW = VBW = 1 MHz. For 10 MHz BW signals, a peak detector is used, with RBW = VBW = 1 MHz. For 10 MHz BW signals, a peak detector is used, with RBW = VBW = 10 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is y plane in LTE mode. Also worst case of detecting Antenna is vertical polarization in LTE mode.

FCC CERTIFICATION REPORT							
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700				
	Page 14 of 24						

7.4 RADIATED SPURIOUS EMISSIONS 7.4.1 RADIATED SPURIOUS EMISSIONS (Band 13)

OPERATING FREQUENCY :	782.00 MHz
MEASURED OUTPUT POWER:	25.70 dBm = 0.372 W
MODULATION SIGNAL:	10 MHz 16-QAM
DISTANCE:	3 meters
LIMIT: 43 + 10 log10 (W) =	38.70 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	Spurious Emission Level (dBm)	
	2346.00	-53.24	7.75	-56.44	1.68	н	-50.37	76.07
23230 (782.00)	3128.00	-51.51	9.26	-53.86	1.93	V	-46.53	72.23
(782.00)	3910.00	-48.64	10.31	-50.97	2.15	V	-42.81	68.51

NOTES: <u>1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method</u> <u>according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:</u>

> <u>2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3</u> maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
> <u>3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.</u>

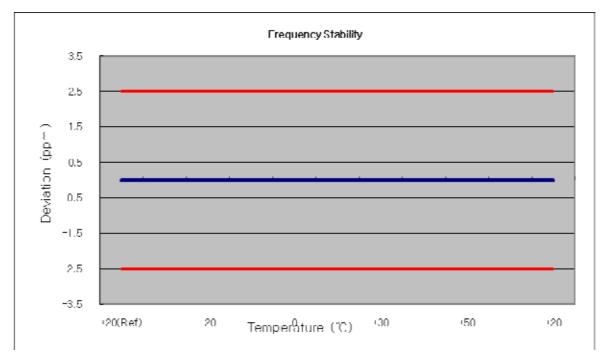
4. Worst case is 1 resource block.

7.4.2 RADIATED SPURIOUS EMISSIONS (1559 ~ 1610 MHz Band)

OPERATING FREQUENCY :	782.00 MHz
MODULATION SIGNAL:	10 MHz QPSK
DISTANCE:	<u>3 meters</u>
WIDEBAND EMISSION LIMIT:	- 40 dBm/MHz

FREQUENCY (MHz)	EMISSION TYPE	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	Spurious Emission Level (dBm)	MARGIN (dB)
1567.8	WIDEBAND	-55.47	6.81	-61.90	1.11	Н	-56.20	16.20

	FCC CERTIFICATION REPORT					
Test Report No. HCTR1310FR06						
	HCTR1310FR06 October 18, 2013 Mobile Router XHG-R700 Page 15 of 24					


7.5 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

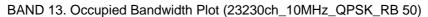
OPERATING FREQUENCY:	782,000,000 Hz
CHANNEL:	23230 (10 MHz)
REFERENCE VOLTAGE:	3.8 VDC

DEVIATION LIM IT:

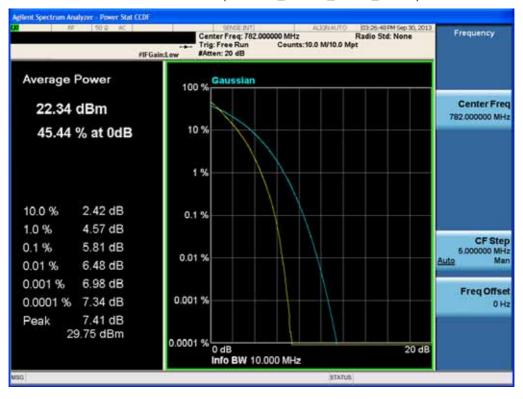
± 0.000 25 % or 2.5 ppm

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	()	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	782 000 003	0	0.000 000	0.000
100%		-30	781 999 995	-7.90	-0.000 001	-0.010
100%		-20	781 999 993	-9.90	-0.000 001	-0.013
100%		-10	781 999 995	-8.20	-0.000 001	-0.010
100%	3.80	0	782 000 000	-3.50	0.000 000	-0.004
100%		+10	781 999 999	-4.50	-0.000 001	-0.006
100%		+30	781 999 992	-11.00	-0.000 001	-0.014
100%		+40	782 000 000	-3.60	0.000 000	-0.005
100%		+50	781 999 999	-4.60	-0.000 001	-0.006
115%	4.37	+20	782 000 004	0.40	0.000 000	0.001
85%	3.23	+20	782 000 000	-2.90	0.000 000	-0.004

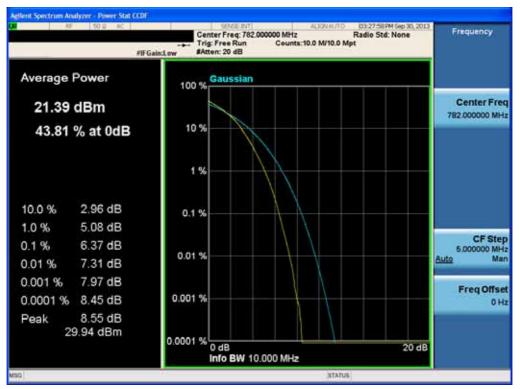



FCC CERTIFICATION REPORT						
Test Report No. HCTR1310FR06						
	Page 16 of 24					

FCC CERTIFICATION REPORT					
Test Report No. HCTR1310FR06					
Page 17 of 24					



BAND 13. Occupied Bandwidth Plot (23230ch_10MHz_16-QAM_RB 50)


	FCC CERTIFICATION REPORT				
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700		
	Page 18 of 24				

BAND 13. PAR Plot (23230ch_10MHz_QPSK_RB 50)

FCC CERTIFICATION REPORT						
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700			
	Page 19 of 24					

BAND 13. Low Band Edge Plot (23230ch_10MHz_QPSK_RB 50)

BAND 13. Low Band Edge Plot (23230ch_10MHz_16-QAM _RB 50)

	FCC CERTIFICATION REPORT				
Test Report No. HCTR1310FR06				CC ID: (HG-R700	
Page 20 of 24					

	SENGENT	OTMINELA	03-51:03PM Sep 30, 2013	Frequency
PRO: Wide ++- IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: RMS Avg Hold: 1/1	TRACE 2 4	
		Mk	1 774.916 MHz -53.058 dBm	Auto Tun
				Center Fre 769.000000 MH
				Start Fre 763.000000 MH
				Stop Fre 776.000000 MH
			-12.90 dbm	CF Ste 1.200000 MH Auto Ma
	an a	-Antering and the state of the	and the second	Freq Offse 0 H
	1700H421515		Stop 775.000 MHz	
	IFGain:Low	PN0: Wide ↔ Trig: Free Run IFGain:Low #Atten: 20 dB	PNO: Wode Trig: Free Run Avg Type: RMS Avg Hold: 1/1 Miktion: 20 dB Miktion: 20 dB	PRO: Wide Trig: Free Run Avg Type: RMS Avg Hold: 1/1 Try RATE B214

BAND 13. Low Emission Mask Plot (23230ch_10MHz_ QPSK _RB 50)

BAND 13. Low Emission Mask Plot (23230ch_10MHz_16-QAM _RB 50)

FCC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1310FR06	October 18, 2013	Mobile Router	XHG-R700
Page 21 of 24			

BAND 13. Upper Band Edge Plot (23230ch_10MHz_QPSK_RB 50)

BAND 13. Upper Band Edge Plot (23230ch_10MHz_16-QAM _RB 50)

FCC CERTIFICATION REPORT			www.hct.co.kr
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700
Page 22 of 24			

MF 50.2 MC	PNO: Wide	Trig: Free Run #Atten: 20 dB	Avg Type: RMS Avg Hold: 1/1	03:50:23 PM Sep 30, 2013 TRACE 2 4 TYPE MULTINE MULTINE MULTINE	Frequency
Ref Offset 26.6 dB 0 dB/div Ref 25.00 dBm	a contector		Mkr	1 793.024 MHz -58.071 dBm	Auto Tun
160					Center Fre 799.000000 MH
5.00					Start Fre 793.000000 MH
15.0					Stop Fre 805.000000 MH
45.0				- 13 96 d i m	CF Ste 1.200000 MH Auto Ma
ES 0 1	-	erialanal flor Delarrianise.co	وروي الأروار و والورو و و المراجع و الم		Freq Offse 0 H
Start 793.000 MHz Res BW 10 kHz		30 kHz"	#Sweep	Stop 805.000 MHz 3.00 s (1001 pts)	

BAND 13. Upper Emission Mask Plot (23230ch_10MHz_ QPSK _RB 50)

BAND 13. Upper Emission Mask Plot (23230ch_10MHz_16-QAM _RB 50)


FCC CERTIFICATION REPORT			www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router		FCC ID: XHG-R700
Page 23 of 24				

BAND 13. Conducted Spurious Plot_1 (23230ch_10MHz_QPSK_RB 1_0)

BAND 13. Conducted Spurious Plot_2 (23230ch_10MHz_QPSK_RB 1_0)

FCC CERTIFICATION REPORT			www.hct.co.kr	
Test Report No. HCTR1310FR06	Date of Issue: October 18, 2013	EUT Type: Mobile Router	FCC ID: XHG-R700	
Page 24 of 24				