

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

SAR EVALUATION REPORT (WWAN Portion)

For

3G/4G Module Consists of Cellular CDMA, PCS CDMA, EVDO Rel 0, Rev. A and WiMax (Tested inside of Lenovo Notebook PC Lenovo Ideapad S205s, model: 2090 and 20127)

MODEL NUMBER: M600A FCC ID: XHG-M600A

REPORT NUMBER: 11U13741-2A1 ISSUE DATE: September 27, 2011

Prepared for FRANKLIN TECHNOLOGY INC. 1505 DIGITAL TOWER ASTON, 505-15 GASAN-DONG, GUMCHEON-GU, SEOUL, KOREA

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By		
	September 26, 2011	Initial Issue			
А	September 27, 2011	Update info on Section 8	Sunny Shih		
A1	September 27, 2011	Update report based on reviewer's comments.	Sunny Shih		
		 Section 5 (page 8): Updated "Assessment of SAR evaluation for Simultaneous transmission" 			
		 Page 16: Added section "13. Simultaneous Transmission SAR Analysis" 			

Page 2 of 23

Tablet of Contents

1.	Atte	estation of Test Results	4
2.	Tes	st Methodology	5
3.	Fac	cilities and Accreditation	5
4.	Cal	ibration and Uncertainty	6
4	1 .1.	Measuring Instrument Calibration	6
4	4.2.	Measurement Uncertainty	7
5.	Equ	uipment Under Test	8
6.	Sys	stem Specifications	9
7.	Со	mposition of Ingredients for Tissue Simulating Liquids	0
8.	Sin	nulating Liquid Parameters	11
8	3.1.	Simulating Liquid Check Results	11
9.	Sys	stem Verification	12
g	9.1.	System Check Results	12
10.	SA	R Measurement Procedures	13
11.	Out	tput Power Verification	14
12.	~ •		
	SA	R Test Results	15
13.		R Test Results	
	Sin		16
14.	Sin SA	nultaneous Transmission SAR Analysis	6 7
14. 15.	Sin SA	nultaneous Transmission SAR Analysis R Test Plots	16 17 20
14. 15.	Sin SA Apj	nultaneous Transmission SAR Analysis R Test Plots pendixes	16 17 20 20
14. 15.	Sin SA Api 15.1.	nultaneous Transmission SAR Analysis R Test Plots pendixes Appendix A: System Check Plots	16 17 20 20
14. 15.	Sin SA Ap 15.1. 15.2.	nultaneous Transmission SAR Analysis R Test Plots pendixes Appendix A: System Check Plots Appendix B: Certificate of E-Field Probe - EX3DV4 SN 3686	16 17 20 20 20 20
14. 15.	Sin SA Ap 15.1. 15.2. 15.3. 15.4.	nultaneous Transmission SAR Analysis R Test Plots pendixes Appendix A: System Check Plots Appendix B: Certificate of E-Field Probe - EX3DV4 SN 3686 Appendix C: Calibration Certificate - Validation Dipole D835V2 - SN 4d117	16 17 20 20 20 20 20
14. 15. 1 1 1 1 16.	Sin SA Apj 15.1. 15.2. 15.3. 15.4. Ant	R Test Plots pendixes Appendix A: System Check Plots Appendix B: Certificate of E-Field Probe - EX3DV4 SN 3686 Appendix C: Calibration Certificate - Validation Dipole D835V2 - SN 4d117 Appendix D: Calibration Certificate - Validation Dipole D1900V2 - SN 5d140	 16 17 20 20 20 20 20 20 20 20 21

1. Attestation of Test Results

Applicant name:	Franklin Technology Inc.							
EUT description:	3G/4G Module Consists WiMax	3G/4G Module Consists of Cellular CDMA, PCS CDMA, EVDO Rel 0, Rev. A and WiMax						
	Tested inside of Lenovo	Notebook PC Lenovo Ideapad S205s, model:	2090 and 20127					
Model number:	M600A							
Device category:	Portable	Portable						
Exposure category:	General Population/Uncontrolled Exposure							
Date tested:	August 4, 2011							
FCC Rule Parts	Freq. Range[MHz]	The Highest 1g SAR mW/g	Limit (mW/g)					
22H	824 - 849	0.012 mW/g	1.0					
24E	1.6 1850 - 1910 0.014 mW/g							
	Test Results							
FCC OET Bulletin 65	Pass							

IEEE STD 1528: 2003

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Tested By:

reinay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS)

Chakrit Thammanavarat SAR Engineer Compliance Certification Services (UL CCS)

Page 4 of 23

2. Test Methodology

FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003 and the following KDB test procedures:

- o 941225 D01 SAR test for 3G devices
- $\circ~$ 616217 D03 SAR Supp Note and Netbook Laptop v01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 23

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

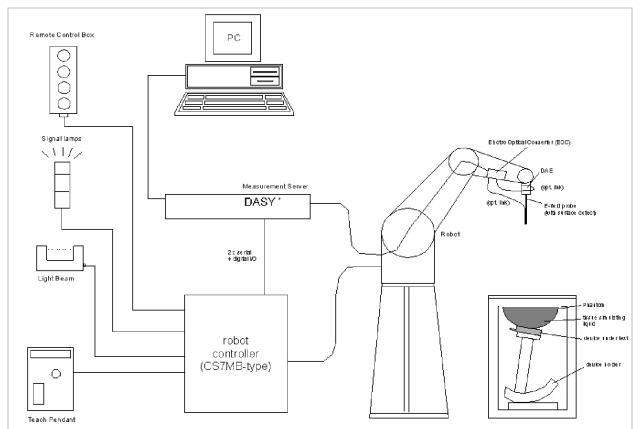
Nome of Equipment	Manufaaturar	Turne /Mandal	Carial Na	С	al. Du	e date
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A		N//	4
Robot Remote Control	Stäubli	CS7MB	S-0396		N//	4
DASY4 Measurement Server	SPEAG	SEUMS001BA	1246		N//	Ą
Probe Alignment Unit	SPEAG	LB5/ 80	SE UKS 030 AA		N//	4
SAM Twin Phantom	SPEAG	QDOOOP40CD	1629		N//	4
Oval Flat Phantom (ELI 5.0) A	SPEAG	QDOVA001BB	1120		N//	4
Oval Flat Phantom (ELI 5.0) B	SPEAG	QDOVA001BB	1118		N//	4
Dielectric Probe kit	HP	85070C	N/A	N/A		4
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2012
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012
E-Field Probe	SPEAG	EX3DV4	3686	1	24	2012
Thermometer	ERTCO	639-1S	1718	8	19	2012
Data Acquisition Electronics	SPEAG	DAE4	1239	12	9	2011
System Validation Dipole	SPEAG	D835V2	4d117	4	15	2012
System Validation Dipole	SPEAG	D1900V2	5d140	4	18	2012
Power Meter	Giga-tronics	8651A	8651404	3	13	2012
Power Sensor	Giga-tronics	80701A	1834588	3 13 2012		2012
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		4
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		4
Simulating Liquid	SPEAG	MSL900	N/A	Withir	ו 24 h	rs of first te
Simulating Liquid	SPEAG	MSL1900	N/A	Withir	n 24 hi	rs of first te

Page 6 of 23

4.2. Measurement Uncertainty

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System				,	
Probe Calibration (k=1)	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity		Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time		Rectangular	1.732	1	0.46
Integration Time		Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom		Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)		Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	4.61	Normal	1	0.64	2.95
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement uncertainty	-1.67		1	0.6	-1.00
		combined Standard		nty Uc(y) =	9.94
Expanded Uncertainty U, Covera				19.88	%
Expanded Uncertainty U, Covera	ige Factor	= 2, > 95 % Confid	dence =	1.58	dB


Page 7 of 23

5. Equipment Under Test

	Ilar CDMA, PCS CDMA, EVDO Rel 0, Rev. A and WiMax bok PC Lenovo Idea pad S205s, model: 2090 and 20127)					
Normal operation:	Laptop mode (display open at 90° to the keyboard)					
Antenna tested:	ManufacturerPart numberACONTx1: APP8P-700261					
Antenna-to-antenna/user separation distances:	See Section 16 for details of antenna locations and separation distances					
Assessment for SAR evaluation for Simultaneous	WWAN & WiMax					
transmission:	The WWAN and 802.16e WiMAX radio will not transmit simultaneously.					
	WWAN – WiFi					
	The WWAN and 802.11b/g/n WiFi radio can transmit simultaneously.					
	<i>Note:</i> Simultaneous transmission is not required due to Sum of the 1g SAR < SAR limit. See section 13 for details.					
	WWAN – Bluetooth					
	Simultaneous Bluetooth SAR evaluation is not necessary due to the BT power < 60/f (GHz) mW.					
	WiMax & WiFi					
	The WMAx and WiFi radio can transmit simultaneously.					
	<i>Note:</i> Simultaneous transmission is not required due to Sum of the 1g SAR < SAR limit. See section 13 for details.					

Page 8 of 23

6. System Specifications

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. Composition of Ingredients for Tissue Simulating Liquids

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	4	50	835		900		1800 - 1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium ChlorideSugar: 98+% Pure SucroseWater: De-ionized, 16 MΩ+ resistivityHEC: Hydroxyethyl CelluloseDGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

,					
Ingredients	(% by weight)				
Water	78				
Mineral oil	11				
Emulsifiers	9				
Additives and Salt	2				

Page 10 of 23

8. Simulating Liquid Parameters

The simulating liquids are checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity were within \pm 5% of the target values. For frequencies above 2 GHz the measured conductivity was within \pm 5% of the target values. The measured relative permittivity tolerance was within \pm 10% of the target value.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
Target Frequency (MHz)	٤ _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

 $(\varepsilon_r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m³)$

8.1. Simulating Liquid Check Results

Date	Freq. (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit ±(%)
8/4/2011 Body 835	e'	55.2512	Relative Permittivity (ε_r):	55.25	55.20	0.09	5	
	B00y 035	e"	21.2332	Conductivity (σ):	0.99	0.97	1.63	5
8/4/2011	Rody 1000	e'	55.5002	Relative Permittivity (ε_r):	52.41	53.30	-1.67	5
8/4/2011 Body 1900	e"	21.2443	Conductivity (σ):	1.59	1.52	4.61	5	

Page 11 of 23

9. System Verification

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY system with an Isotropic E-Field Probe EX3DV4-SN: 3686 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5x5x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

System	Cal. certificate #	Cal. date	SAR Avg (mW/g)			
validation dipole		Cal. Uale	Tissue:	Head	Body	
D835V2	D835V2-4d117_Apr11	4/15/11	1g SAR:	9.64	10.1	
SN: 4d117			10g SAR:	6.28	6.6	
D1900V2	D1900V2-5d140_Apr11	4/18/11	1g SAR:	41.6	41.2	
SN: 5d140			10g SAR:	21.5	21.6	

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

9.1. System Check Results

System	Date Tested	Measured (N	ormalized to 1 W)	Torgot	Delta (%)	Tolerance	
validation dipole	Date Testeu	Tissue:	Body	Target	Della (%)	(%)	
D835V2	08/04/11	1g SAR:	10.2	10.1	0.99	±10	
SN: 4d002		10g SAR:	6.7	6.6	1.52	±10	
D1900V2	08/04/11	1g SAR:	44.5	41.2	8.01	±10	
SN: 5d043	00/04/11	10g SAR:	23.3	21.6	7.87	±10	

10. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 13 of 23

11. Output Power Verification

RF Power Output for EV-DO Rel 0

Band	FTAP Rate	RTAP Rate	Channel	f (MHz)	Conducted power (dBm)	
Danu	TTAFINALE		Channer	r (ivii i <i>z)</i>	Average	Peak
Cellular	307.2 kbps (2 slot, QPSK)	153.6 kbps	1013	824.70	23.80	
			384	836.52	24.00	
			777	848.31	24.00	
PCS	307.2 kbps (2 slot, QPSK)	153.6 kbps	25	1851.25	23.90	
			600	1880.00	23.80	
			1175	1908.75	23.80	

RF Power Output for EV-DO Rev A

	FETAP	RETAP		f (MHz) 824.70 836.52 848.31 1851.25	Conducted power (dBm)	
Band	Traffic Format	Data Payload Size	Channel		Average	Peak
	307.2k, QPSK/ ACK	4096	1013	824.70	24.00	
	channel is transmitted		384	836.52	23.90	
	at all the slots		777	848.31	Hz) Average .70 24.00 .52 23.90 .31 23.80 1.25 23.50 0.00 23.60	
· · · · · · · · · · · · · · · · · · ·	307.2k, QPSK/ ACK		25	1851.25	23.50	
	channel is transmitted at all the slots		600	1880.00	23.60	
			1175	1908.75	23.70	

Page 14 of 23

12. SAR Test Results

Lap-Held Position (display open at 90° to the keyboard)

Band	Mode	Ch No.	f (MHz)	Avg Output	SAR (mW/g)	
Dana	Mode	on No.	1 (IVII 12)	Power (dBm)	1-g	10-g
Cellular	1xEVDO Rel.0	1013	824.70	23.80		
		384	836.52	24.00	0.012	0.0083
		777	848.31	24.00		
PCS	1xEVDO Rel.0	25	1851.25	23.90		
		600	1880.00	23.80	0.014	0.0097
		1175	1908.75	23.80		

Page 15 of 23

13. Simultaneous Transmission SAR Analysis

	Test configuration	(1) CDMA850 1xEVDO	(2) CDMA1900 1xEVDO	(3)* WiFi	(4)** WiMax	Sum of 1g SAR (mW/g)
		0.012		0.004		0.016
	Lap-held		0.014	0.004		0.018
			0.004	0.011	0.015	

Note(s)

1. *: WiFi max. 1g SAR from SAR report "11U13741-1B FCC WiFi SAR report" submitted under FCC ID: VQF-RT3090-1T1R (Ralink Technology Corporation)

 **: WiMax max. 1g SAR from SAR report "11U13741-3 WiMax SAR report" submitted under FCC ID: XHG-M600A (Franklin Technology Inc.)

Conclusions:

 \boxtimes Simultaneous transmission SAR is not required for CDMA 1xRTT (voice), CDMA 1xEVDO (data) & WiFi because the sum of the 1-g SAR is < 1.6 W/kg

Simultaneous transmission SAR is not required for WiFi & WWAN because the SAR to peak location separation ratios is < 0.3 for WiFi and WWAN antenna pairs.

14. SAR Test Plots

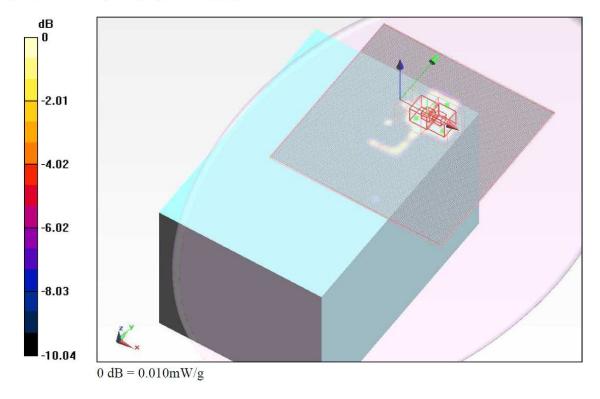
SAR Test Plots for Cell Band

Date: 8/4/2011

Test Laboratory: UL CCS SAR Lab A

2-1_CDMA2000 EVDO Lap Held Cell Band

Communication System: CDMA2000 (1xEV-DO, 153.6kbps); Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.991 mho/m; ϵ_r = 55.345; ρ = 1000 kg/m³ Phantom section: Flat Section


Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(8.78, 8.78, 8.78); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

1xEVDO Rel.0/M-Ch/Area Scan (141x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.025 mW/g

1xEVDO Rel.0/M-Ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.440 V/m; Power Drift = 0.51 dB Peak SAR (extrapolated) = 0.016 W/kg SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00731 mW/g Maximum value of SAR (measured) = 0.013 mW/g

1xEVDO Rel.0/M-Ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.440 V/m; Power Drift = 0.51 dB Peak SAR (extrapolated) = 0.018 W/kg SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00833 mW/g Maximum value of SAR (measured) = 0.014 mW/g

Page 17 of 23

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

SAR Test Plots for PCS Band

Date: 8/4/2011

Test Laboratory: UL CCS SAR Lab A

2-2_CDMA2000 1xEVDO Lap Held PCS Band

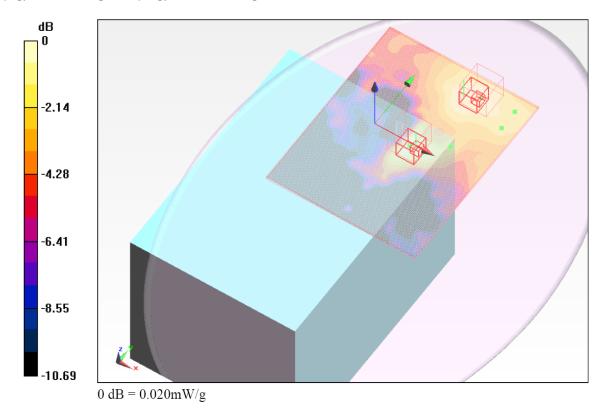
Communication System: CDMA2000 (1xEV-DO, 153.6kbps); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.579 mho/m; ϵ_r = 52.246; ρ = 1000 kg/m³ Phantom section: Flat Section Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.99, 6.99, 6.99); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI v5.0 (B); Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

1xEVDO Rel.0/M-Ch/Area Scan (121x151x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.018 mW/g

1xEVDO Rel.0/M-Ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.765 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.026 W/kg SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00828 mW/g Maximum value of SAR (measured) = 0.018 mW/g

1xEVDO Rel.0/M-Ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.765 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.024 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00972 mW/g

Page 18 of 23

SAR Test Plots for PCS Band – Z

Date: 8/4/2011

Test Laboratory: UL CCS SAR Lab A

2-2_CDMA2000 1xEVDO Lap Held PCS Band

Communication System: CDMA2000 (1xEV-DO, 153.6kbps); Frequency: 1880 MHz; Duty Cycle: 1:1

1xEVDO Rel.0/M-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.016 mW/g

Page 19 of 23

15. Appendixes

Refer to separated files for the following appendixes.

- 15.1. Appendix A: System Check Plots
- 15.2. Appendix B: Certificate of E-Field Probe EX3DV4 SN 3686
- 15.3. Appendix C: Calibration Certificate Validation Dipole D835V2 SN 4d117
- 15.4. Appendix D: Calibration Certificate Validation Dipole D1900V2 SN 5d140