

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

## **FCC LTE REPORT**

#### Certification

# Applicant Name:<br/>Franklin Technology Inc.Date of Issue:<br/>December 28, 2018<br/>Location:Address:<br/>906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-guHCT CO., LTD.,74. Secicheon-ro 578beon-roi

Seoul, 08502 South Korea

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA **Report No.:** HCT-RF-1812-FC016-R1

#### XHG-F800HPVL

#### APPLICANT:

FCC ID:

### Franklin Technology Inc.

Model(s): EUT Type: FCC Classification: FCC Rule Part(s): F800HPVL VoLTE Home Phone Connect TNB-Licensed Non-Broadcast Station Transmitter §27, §2

|                   | T                     | Emission |        | ERP               |                     |  |
|-------------------|-----------------------|----------|--------|-------------------|---------------------|--|
|                   | Tx Frequency<br>(MHz) |          |        | Max. Power<br>(W) | Max. Power<br>(dBm) |  |
| LTE – Band13 (5)  | 779.5 –784.5          | 4M53G7D  | QPSK   | 0.303             | 24.82               |  |
|                   |                       | 4M51W7D  | 16QAM  | 0.254             | 24.05               |  |
| LTE – Band13 (10) | 782.0                 | 9M01G7D  | - QPSK | 0.297             | 24.73               |  |
|                   |                       | 9M04W7D  | 16QAM  | 0.252             | 24.01               |  |

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

AP

Report prepared by : Jae Ryang Do Engineer of Telecommunication Testing Center Report approved by : Kwon Jeong Manager of Telecommunication Testing Center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.



## <u>Version</u>

| TEST REPORT NO.      | DATE              | DESCRIPTION             |  |  |
|----------------------|-------------------|-------------------------|--|--|
| HCT-RF-1812-FC016    | December 11, 2018 | - First Approval Report |  |  |
| HCT-RF-1812-FC016-R1 | December 28, 2018 | - Revised the E.R.P     |  |  |
|                      |                   |                         |  |  |
|                      |                   |                         |  |  |

Report No.:HCT-RF-1812-FC016-R1

CO.,LTD.

## **Table of Contents**

| 1. GENERAL INFORMATION                                     |
|------------------------------------------------------------|
| 2. INTRODUCTION                                            |
| 2.1. DESCRIPTION OF EUT                                    |
| 2.2. MEASURING INSTRUMENT CALIBRATION                      |
| 2.3. TEST FACILITY                                         |
| 3. DESCRIPTION OF TESTS                                    |
| 3.1 TEST PROCEDURE                                         |
| 3.2 EFFECTIVE RADIATED POWER7                              |
| 3.3 RADIATED POWER                                         |
| 3.4 RADIATED SPURIOUS EMISSIONS                            |
| 3.5 OCCUPIED BANDWIDTH                                     |
| 3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL11  |
| 3.7 BAND EDGE 12                                           |
| 3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE |
| 3.9 WORST CASE(RADIATED TEST)14                            |
| 3.10 WORST CASE(CONDUCTED TEST) 15                         |
| 4. LIST OF TEST EQUIPMENT                                  |
| 5. MEASUREMENT UNCERTAINTY 17                              |
| 6. SUMMARY OF TEST RESULTS                                 |
| 7. EMISSION DESIGNATOR 19                                  |
| 8. TEST DATA                                               |
| 8.1 EFFECTIVE RADIATED POWER                               |
| 8.2 RADIATED SPURIOUS EMISSIONS 22                         |
| 8.3 OCCUPIED BANDWIDTH                                     |
| 8.4 CONDUCTED SPURIOUS EMISSIONS                           |
| 8.5 BAND EDGE                                              |
| 8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE |
| 9. TEST PLOTS                                              |
| 10. ANNEX A_ TEST SETUP PHOTO                              |



## **MEASUREMENT REPORT**

## **1. GENERAL INFORMATION**

| Applicant Name:     | Franklin Technology Inc.                                               |
|---------------------|------------------------------------------------------------------------|
| Address:            | 906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-gu Seoul, 08502 South |
|                     | Korea                                                                  |
| FCC ID:             | XHG-F800HPVL                                                           |
| Application Type:   | Certification                                                          |
| FCC Classification: | TNB-Licensed Non-Broadcast Station Transmitter                         |
| FCC Rule Part(s):   | §27, §2                                                                |
| EUT Type:           | VoLTE Home Phone Connect                                               |
| Model(s):           | F800HPVL                                                               |
| Tx Frequency:       | 779.5 MHz –784.5 MHz (LTE – Band 13 (5MHz))                            |
|                     | 782 MHz (LTE – Band 13 (10 MHz))                                       |
| Date(s) of Tests:   | November 26, 2018 ~ December 03, 2018                                  |
| Peak. Ant gain:     | 5.63 dBi                                                               |



## 2. INTRODUCTION

#### 2.1. DESCRIPTION OF EUT

The EUT was a VoLTE Home Phone Connect with LTE.

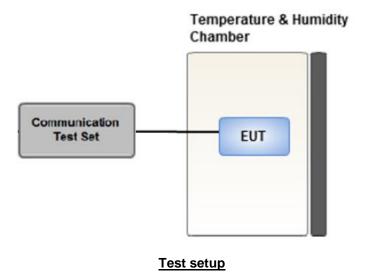
#### 2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

#### 2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.




## **3. DESCRIPTION OF TESTS**

#### 3.1 TEST PROCEDURE

| Test Description                           | Test Procedure Used                            |  |  |  |
|--------------------------------------------|------------------------------------------------|--|--|--|
| Occupied Pendwidth                         | - KDB 971168 D01 v03r01 – Section 4.3          |  |  |  |
| Occupied Bandwidth                         | - ANSI C63.26-2015 – Section 5.4.4             |  |  |  |
| Dand Edge                                  | - KDB 971168 D01 v03r01 – Section 6.0          |  |  |  |
| Band Edge                                  | - ANSI C63.26-2015 – Section 5.7               |  |  |  |
| Spurious and Harmonic Emissions at Antenna | - KDB 971168 D01 v03r01 – Section 6.0          |  |  |  |
| Terminal                                   | - ANSI C63.26-2015 – Section 5.7               |  |  |  |
|                                            | - KDB 971168 D01 v03r01 – Section 5.7          |  |  |  |
| Peak- to- Average Ratio                    | - ANSI C63.26-2015 – Section 5.2.3.4           |  |  |  |
|                                            | - ANSI C63.26-2015 – Section 5.2.6(only GSM)   |  |  |  |
| Frequency stability                        | - ANSI C63.26-2015 – Section 5.6               |  |  |  |
| Effective Radiated Power/                  | - KDB 971168 D01 v03r01 – Section 5.2 & 5.6    |  |  |  |
| Effective Isotropic Radiated Power         | - ANSI C63.26-2015 – Section 5.2.4.2 & 5.2.5.5 |  |  |  |
| Dediated Sourious and Harmonia Entireira   | - KDB 971168 D01 v03r01 – Section 6.2          |  |  |  |
| Radiated Spurious and Harmonic Emissions   | - ANSI/TIA-603-E-2016 – Section 2.2.12         |  |  |  |



#### **3.2 EFFECTIVE RADIATED POWER**



#### **Test Overview**

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies.

Conducted Output Power was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v03r01, Section 5.2.

#### Test Note

1. The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided is:

ERP or EIRP =  $P_{Meas} + G_T$ 

where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm)

P<sub>Meas</sub> = measured transmitter output power or PSD, in dBm or dBW

 $G_T$  = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

#### 3.3 RADIATED POWER

#### **Test Overview**

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

#### Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power"

measurement capability for signals with continuous operation.

- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\ge$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with

continuous operation.

- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

#### Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$ 

Where:  $P_d$  is the dipole equivalent power and  $P_g$  is the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.



#### 3.4 RADIATED SPURIOUS EMISSIONS

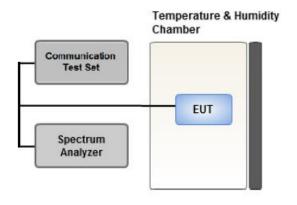
#### **Test Overview**

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

#### Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\ge$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel : Low/ Middle/ High
- 9. Frequency range : We are performed all frequency to 10<sup>th</sup> harmonics from 9 kHz.


#### Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data



#### 3.5 OCCUPIED BANDWIDTH.

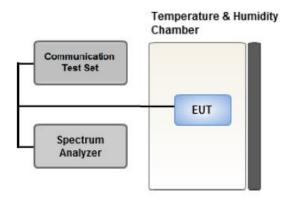


#### Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.


The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
  - 1-5% of the 99% occupied bandwidth observed in Step 7

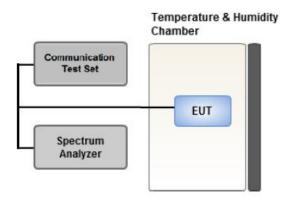


#### 3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL



#### Test setup

#### **Test Overview**


The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### Test Settings

- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Trace Mode = max hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 \* Span / RBW



#### 3.7 BAND EDGE



#### Test setup

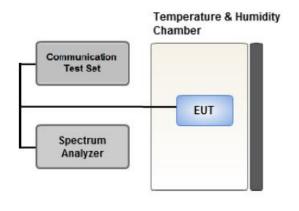
#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW >  $3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points  $\geq$  2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

#### Test Notes


According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)

The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.



#### 3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE



#### Test setup

#### **Test Overview**

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

- 2. Primary Supply Voltage:
  - Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
  - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

#### Test Settings

- The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.



#### 3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- The worst case is reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data.
- Please refer to the table below.

| [ Worst case ]                           |            |         |           |      |  |  |  |
|------------------------------------------|------------|---------|-----------|------|--|--|--|
| Test Description                         | Modulation | RB size | RB offset | Axis |  |  |  |
| Radiated Spurious and Harmonic Emissions | QPSK       | 1       | 0         | Z    |  |  |  |

#### F 1 A /



#### 3.10 WORST CASE(CONDUCTED TEST)

| [ Worst case ]                     |                |                    |           |         |           |  |  |
|------------------------------------|----------------|--------------------|-----------|---------|-----------|--|--|
| Test Description                   | Modulation     | Bandwidth<br>(MHz) | Frequency | RB size | RB offset |  |  |
| Occupied Bandwidth                 | QPSK,<br>16QAM | 5, 10              | Mid       | Full RB | 0         |  |  |
|                                    |                | 5<br>10            | Low       | 1       | 0         |  |  |
|                                    | * QPSK         |                    | High      | 1       | 24        |  |  |
| Band Edge                          |                |                    | Low       | 1       | 0         |  |  |
| Danu Luge                          |                |                    | High      | 1       | 49        |  |  |
|                                    |                | 5, 10              | Low,      | Full RB | 0         |  |  |
|                                    |                | 5, 10              | High      |         |           |  |  |
| Spurious and Harmonic Emissions at |                |                    | Low,      |         |           |  |  |
| Antenna Terminal                   | * QPSK         | 5, 10              | Mid,      | 1       | 0         |  |  |
|                                    |                |                    | High      |         |           |  |  |

\* Worst case : Of all modulation, We have tested modulation of the high Conducted Output Power.



## **4. LIST OF TEST EQUIPMENT**

| Manufacture         | Model/ Equipment                                        | Serial<br>Number | Calibration<br>Date | Calibration<br>Interval | Calibration<br>Due |
|---------------------|---------------------------------------------------------|------------------|---------------------|-------------------------|--------------------|
| REOHDE &<br>SCHWARZ | SCU 18 / AMPLIFIER                                      | 10094            | 04/17/2018          | Annual                  | 04/17/2019         |
| Wainwright          | WHK1.2/15G-10EF/H.P.F                                   | 4                | 04/04/2018          | Annual                  | 04/04/2019         |
| Wainwright          | WHK3.3/18G-10EF/H.P.F                                   | 2                | 04/04/2018          | Annual                  | 04/04/2019         |
| Hewlett Packard     | 11667B / Power Splitter(DC~26.5 GHz)                    | 5001             | 06/07/2018          | Annual                  | 06/07/2019         |
| Agilent             | E3632A/DC Power Supply                                  | KR75303243       | 05/09/2018          | Annual                  | 05/09/2019         |
| Schwarzbeck         | UHAP/ Dipole Antenna                                    | 557              | 03/31/2017          | Biennial                | 03/31/2019         |
| Schwarzbeck         | UHAP/ Dipole Antenna                                    | 558              | 03/31/2017          | Biennial                | 03/31/2019         |
| ESPEC               | SU-642 / Chamber                                        | 93000718         | 08/07/2018          | Annual                  | 08/07/2019         |
| Schwarzbeck         | BBHA 9120D/ Horn Antenna(1~18GHz)                       | 147              | 09/14/2018          | Annual                  | 09/14/2019         |
| Schwarzbeck         | BBHA 9120D/ Horn Antenna(1~18GHz)                       | 9120D-1298       | 10/04/2018          | Annual                  | 10/04/2019         |
| Schwarzbeck         | BBHA 9170/ Horn Antenna(15~40GHz)                       | BBHA9170342      | 04/25/2017          | Biennial                | 04/25/2019         |
| Schwarzbeck         | BBHA 9170/ Horn Antenna(15~40GHz)                       | BBHA9170124      | 04/25/2017          | Biennial                | 04/25/2019         |
| Agilent             | N9020A/Signal Analyzer(10Hz~26.5GHz)                    | MY52090906       | 06/08/2018          | Annual                  | 06/08/2019         |
| Hewlett Packard     | 8493C/ATTENUATOR(20dB)                                  | 17280            | 06/21/2018          | Annual                  | 06/21/2019         |
| REOHDE &<br>SCHWARZ | FSV40/Spectrum Analyzer(10Hz~40GHz)                     | 100931           | 10/22/2018          | Annual                  | 10/22/2019         |
| Agilent             | 8960 (E5515C)/ Base Station                             | MY48360800       | 09/27/2018          | Annual                  | 09/27/2019         |
| Schwarzbeck         | FMZB1513/ Loop Antenna(9kHz~30MHz)                      | 1513-175         | 08/23/2018          | Biennial                | 08/23/2020         |
| Schwarzbeck         | VULB9160/ Bilog Antenna                                 | 9160-3368        | 08/09/2018          | Biennial                | 08/09/2020         |
| Schwarzbeck         | VULB9160/ Hybrid Antenna                                | 760              | 04/06/2017          | Biennial                | 04/06/2019         |
| REOHDE &<br>SCHWARZ | SMB100A/ SIGNAL GENERATOR<br>(100kHz~40GHz)             | 177633           | 07/19/2018          | Annual                  | 07/19/2019         |
| REOHDE &<br>SCHWARZ | ESU40 / EMI TEST RECEIVER                               | 100524           | 07/27/2018          | Annual                  | 07/27/2019         |
| HCT CO., LTD.,      | FCC LTE Mobile Conducted RF Automation<br>Test Software | -                | -                   | -                       | -                  |

#### Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date



## **5. MEASUREMENT UNCERTAINTY**

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Parameter                                | Expanded Uncertainty (±dB) |  |  |
|------------------------------------------|----------------------------|--|--|
| Conducted Disturbance (150 kHz ~ 30 MHz) | 1.82                       |  |  |
| Radiated Disturbance (9 kHz ~ 30 MHz)    | 3.40                       |  |  |
| Radiated Disturbance (30 MHz ~ 1 GHz)    | 4.80                       |  |  |
| Radiated Disturbance (1 GHz ~ 18 GHz)    | 5.70                       |  |  |
| Radiated Disturbance (18 GHz ~ 40 GHz)   | 5.71                       |  |  |



## **6. SUMMARY OF TEST RESULTS**

#### 6.1 Test Condition : Conducted Test

| Test Description                                                       | FCC Part<br>Section(s) | Test Limit                                                                  | Test Result |
|------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|-------------|
| Occupied Bandwidth                                                     | §2.1049                | N/A                                                                         | PASS        |
| Band Edge / Spurious and<br>Harmonic Emissions at Antenna<br>Terminal. | §2.1051,<br>§27.53(c)  | < 43 + 10log10 (P[Watts]) at Band Edge<br>and for all out-of-band emissions | PASS        |
| Effective Radiated Power                                               | 27.50(b)(10)           | < 3 Watts max. ERP                                                          | PASS        |
| Frequency stability / variation of ambient temperature                 | §2.1055,<br>§ 27.54    | Emission must remain in band                                                | PASS        |

#### 6.2 Test Condition : Radiated Test

| Test Description               | FCC Part<br>Section(s) | Test Limit                    | Test Result |  |
|--------------------------------|------------------------|-------------------------------|-------------|--|
| Radiated Spurious and Harmonic | §2.1053,               | < 43 + 10log10 (P[Watts]) for | PASS        |  |
| Emissions                      | §27.53(g)              | all out-of band emissions     |             |  |
| Undesirable Emissions in       |                        | < -70dBW/MHz EIRP (wideband)  | DASS        |  |
| the 1559 – 1610 MHz band       | 2.1053, 27.53(f)       | < -80dBW EIRP (narrowband)    | PASS        |  |

#### Note regarding all Emission Mask test plots:

The FCC limit is  $65 + 10log_{10}(P_{[Watts]}) = -35$  dBm in a 6.25 kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth, the limit was adjusted by  $10log_{10}(10 \text{ kHz}/6.25 \text{ kHz}) = 2.04$  dB. Thus, the limit shown in all emission mask plots for all available modulation types was -35 dBm + 2.04 dB = -32.96 dBm.



## 7. EMISSION DESIGNATOR

#### **GSM Emission Designator**

Emission Designator = 249KGXW GSM BW = 249 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

#### **EDGE Emission Designator**

Emission Designator = 249KG7W GSM BW = 249 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

#### WCDMA Emission Designator

Emission Designator = 4M17F9W WCDMA BW = 4.17 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

#### **QPSK Modulation**

Emission Designator = 4M48G7D LTE BW = 4.48 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission; telemetry; telecommand

<u>16QAM Modulation</u> Emission Designator = 4M48W7D LTE BW = 4.48 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission; telemetry; telecommand



## 8. TEST DATA

#### 8.1 EFFECTIVE RADIATED POWER

| Frequency<br>(MHz) | Channel | Resource   | Block Size Block |       | Conducted Power<br>[dBm] |       | E.R.P<br>[dBm] |  |
|--------------------|---------|------------|------------------|-------|--------------------------|-------|----------------|--|
|                    |         | BIOCK SIZE | Offset           | QPSK  | 16QAM                    | QPSK  | 16QAM          |  |
|                    |         | 1          | 0                | 21.34 | 20.57                    | 24.82 | 24.05          |  |
|                    |         | 1          | 12               | 20.78 | 19.99                    | 24.26 | 23.47          |  |
|                    |         | 1          | 24               | 20.49 | 19.81                    | 23.97 | 23.29          |  |
| 779.5              | 23205   | 12         | 0                | 19.76 | 18.79                    | 23.24 | 22.27          |  |
|                    |         | 12         | 6                | 19.76 | 18.74                    | 23.24 | 22.22          |  |
|                    |         | 12         | 11               | 19.60 | 18.58                    | 23.08 | 22.06          |  |
|                    |         | 25         | 0                | 19.90 | 18.87                    | 23.38 | 22.35          |  |
|                    | 23230   | 1          | 0                | 20.47 | 19.87                    | 23.95 | 23.35          |  |
|                    |         | 1          | 12               | 20.60 | 19.77                    | 24.08 | 23.25          |  |
|                    |         | 1          | 24               | 21.12 | 20.30                    | 24.60 | 23.78          |  |
| 782.0              |         | 12         | 0                | 19.47 | 18.44                    | 22.95 | 21.92          |  |
|                    |         | 12         | 6                | 19.69 | 18.66                    | 23.17 | 22.14          |  |
|                    |         | 12         | 11               | 19.72 | 18.62                    | 23.20 | 22.10          |  |
|                    |         | 25         | 0                | 19.61 | 18.63                    | 23.09 | 22.11          |  |
|                    | 23255   | 1          | 0                | 20.60 | 19.89                    | 24.08 | 23.37          |  |
|                    |         | 1          | 12               | 21.29 | 20.43                    | 24.77 | 23.91          |  |
|                    |         | 1          | 24               | 21.33 | 20.46                    | 24.81 | 23.94          |  |
| 784.5              |         | 12         | 0                | 19.73 | 18.63                    | 23.21 | 22.11          |  |
|                    |         | 12         | 6                | 20.32 | 19.21                    | 23.80 | 22.69          |  |
|                    |         | 12         | 11               | 20.38 | 19.39                    | 23.86 | 22.87          |  |
|                    |         | 25         | 0                | 20.03 | 19.04                    | 23.51 | 22.52          |  |

LTE Conducted Average Output Powers (5 MHz Band 13 LTE)

#### Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 5.63 dBi
- 3. Peak. Ant Gain(dBd) = 5.63 2.15 = 3.48 dBd
- 3. Limit = 3 Watts(=34.77dBm)



#### Report No.:HCT-RF-1812-FC016-R1

| Frequency | Channel | Resource   | Resource<br>Block |       | ed Power<br>3m] | E.F<br>[dB |       |
|-----------|---------|------------|-------------------|-------|-----------------|------------|-------|
| (MHz)     |         | Block Size | Offset            | QPSK  | 16QAM           | QPSK       | 16QAM |
|           |         | 1          | 0                 | 21.17 | 20.36           | 24.65      | 23.84 |
|           |         | 1          | 24                | 20.72 | 19.89           | 24.20      | 23.37 |
|           |         | 1          | 49                | 21.25 | 20.53           | 24.73      | 24.01 |
| 782.0     | 23230   | 25         | 0                 | 19.71 | 18.74           | 23.19      | 22.22 |
|           |         | 25         | 12                | 19.75 | 18.77           | 23.23      | 22.25 |
|           |         | 25         | 24                | 20.18 | 19.07           | 23.66      | 22.55 |
|           |         | 50         | 0                 | 19.78 | 18.79           | 23.26      | 22.27 |

LTE Conducted Average Output Powers (10 MHz Band 13 LTE)

#### Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 5.63 dBi
- 3. Peak. Ant Gain(dBd) = 5.63 2.15 = 3.48 dBd
- 3. Limit = 3 Watts(=34.77dBm)



#### 8.2 RADIATED SPURIOUS EMISSIONS

| MODE:              | <u>LTE B13</u>           |
|--------------------|--------------------------|
| MODULATION SIGNAL: | <u>5 MHz QPSK</u>        |
| DISTANCE:          | <u>3 meters</u>          |
| LIMIT:             | <u>43 + 10 log10 (W)</u> |

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitute<br>Level (dBm) | C.L  | Pol | Result<br>(dBm) | Margin<br>(dB) |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|-----------------|----------------|
|                  | 1,559.0    | -48.85                  | 6.73               | -53.34                    | 1.23 | н   | -49.99          | 36.99          |
| 23205<br>(779.5) | 2,338.5    | -47.98                  | 7.87               | -51.50                    | 1.56 | V   | -47.34          | 34.34          |
| (113.3)          | 3,118.0    | -52.13                  | 9.21               | -55.24                    | 1.83 | V   | -50.01          | 37.01          |
|                  | 1,564.0    | -47.27                  | 6.76               | -51.72                    | 1.23 | н   | -48.35          | 35.35          |
| 23230<br>(782.0) | 2,346.0    | -44.80                  | 7.92               | -48.24                    | 1.55 | V   | -44.02          | 31.02          |
| (102.0)          | 3,128.0    | -50.54                  | 9.21               | -53.57                    | 1.82 | V   | -48.33          | 35.33          |
|                  | 1,569.0    | -48.26                  | 6.78               | -52.67                    | 1.23 | н   | -49.27          | 36.27          |
| 23255<br>(784.5) | 2,353.5    | -46.51                  | 7.97               | -50.16                    | 1.53 | н   | -45.87          | 32.87          |
| (101.0)          | 3,138.0    | -50.33                  | 9.20               | -53.39                    | 1.84 | Н   | -48.18          | 35.18          |

#### Note:

1. Limit = 43 + 10 log<sub>10</sub> (W) = -13.0 dBm



| MODE:              | <u>LTE B13</u>           |
|--------------------|--------------------------|
| MODULATION SIGNAL: | <u>10 MHz QPSK</u>       |
| DISTANCE:          | <u>3 meters</u>          |
| LIMIT:             | <u>43 + 10 log10 (W)</u> |

| Ch               | Freq (MHz) | Measured<br>Level (dBm) | Ant. Gain<br>(dBd) | Substitute<br>Level (dBm) | C.L  | Pol | Result<br>(dBm) | Margin<br>(dB) |
|------------------|------------|-------------------------|--------------------|---------------------------|------|-----|-----------------|----------------|
|                  | 1,564.0    | -46.83                  | 6.76               | -59.61                    | 1.23 | Н   | -51.94          | 38.94          |
| 23230<br>(782.0) | 2,346.0    | -48.52                  | 7.92               | -58.12                    | 1.55 | Н   | -49.60          | 36.60          |
| (102.0)          | 3,128.0    | -52.69                  | 9.21               | -61.45                    | 1.82 | V   | -51.91          | 38.91          |

#### Note:

1. Limit = 43 + 10 log<sub>10</sub> (W) = -13.0 dBm



#### 1559 MHz ~ 1610 MHz BAND

| OPERATING FREQUENTY:   | <u>779.5 MHz, 782.0 MHz, 784.5 MHz</u> |
|------------------------|----------------------------------------|
| MEASURED OUTPUT POWER: | <u>5 MHz QPSK</u>                      |
| DISTANCE:              | <u>3 meters</u>                        |
|                        |                                        |

WIDEBAND EMISSION LIMIT:

-70 dBW/ MHz (= -40 dBm/ MHz)

| Operating<br>Frequency<br>(MHz) | Measured<br>Frequency<br>(MHz) | EMISSION TYPE | Measured<br>Level (dBm) | Ant. Gain<br>(dBi) | Substitute<br>Level (dBm) | C.L  | Pol | Result<br>(dBm) | Margin<br>(dB) |
|---------------------------------|--------------------------------|---------------|-------------------------|--------------------|---------------------------|------|-----|-----------------|----------------|
| 779.5                           | 1575.41                        |               | -54.69                  | 6.84               | -63.24                    | 1.24 | V   | -59.78          | 19.78          |
| 782.0                           | 1564.82                        | WIDEBAND      | -46.06                  | 6.76               | -54.54                    | 1.23 | н   | -51.17          | 11.17          |
| 784.5                           | 1564.72                        |               | -46.25                  | 6.76               | -54.74                    | 1.23 | Н   | -51.36          | 11.36          |

OPERATING FREQUENTY: 782.0 MHz MEASURED OUTPUT POWER: 10 MHz QPSK

DISTANCE:

WIDEBAND EMISSION LIMIT:

-70 dBW/ MHz (= -40 dBm/ MHz)

| Operating<br>Frequency<br>(MHz) | Measured<br>Frequency<br>(MHz) | EMISSION TYPE | Measured<br>Level<br>(dBm) | Ant.<br>Gain<br>(dBi) | Substitute<br>Level (dBm) | C.L  | Pol | Result<br>(dBm) | Margin<br>(dB) |
|---------------------------------|--------------------------------|---------------|----------------------------|-----------------------|---------------------------|------|-----|-----------------|----------------|
| 782.0                           | 1590.39                        | WIDEBAND      | -54.62                     | 7.01                  | -63.44                    | 1.24 | V   | -59.82          | 19.82          |

3 meters



#### **8.3 OCCUPIED BANDWIDTH**

| Band   | Band<br>Width | Frequency<br>(MHz) | Modulation | Resource<br>Block Size | Resource<br>Block<br>Offset | Data ( MHz ) |        |
|--------|---------------|--------------------|------------|------------------------|-----------------------------|--------------|--------|
|        | 5 MHz         |                    | QPSK       | 25                     | 0                           | 4.5301       |        |
| 10     | 5 IVITIZ      | 700.0              | 16-QAM     | 25                     | 0                           | 4.5082       |        |
| 13     |               |                    | 782.0      | QPSK                   | 50                          | 0            | 9.0128 |
| 10 MHz |               | 16-QAM             | 50         | 0                      | 9.0359                      |              |        |

#### Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 33 ~ 36.

#### **8.4 CONDUCTED SPURIOUS EMISSIONS**

| Band | Band<br>Width<br>(MHz) | Frequency<br>(MHz) | Frequency of<br>Maximum Harmonic<br>(GHz) | Factor<br>(dB) | Measurement<br>Maximum Data<br>(dBm) | Result<br>(dBm) | Limit<br>(dBm) |
|------|------------------------|--------------------|-------------------------------------------|----------------|--------------------------------------|-----------------|----------------|
|      |                        | 779.5              | 3.7269                                    | 27.976         | -67.143                              | -39.167         |                |
| 10   | 5                      | 782.0              | 3.6745                                    | 27.976         | -67.266                              | -39.290         | 12.00          |
| 13   |                        | 784.5              | 3.7020                                    | 27.976         | -67.334                              | -39.358         | -13.00         |
|      | 10                     | 782.0              | 3.6780                                    | 27.976         | -67.167                              | -39.191         |                |

#### Note:

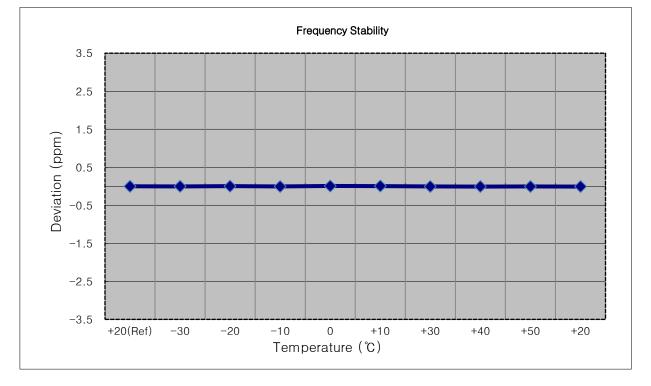
1. Plots of the EUT's Conducted Spurious Emissions are shown Page 49 ~ 52.

2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0

3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)

4. Factor(dB) = Cable Loss + Attenuator + Power Splitter

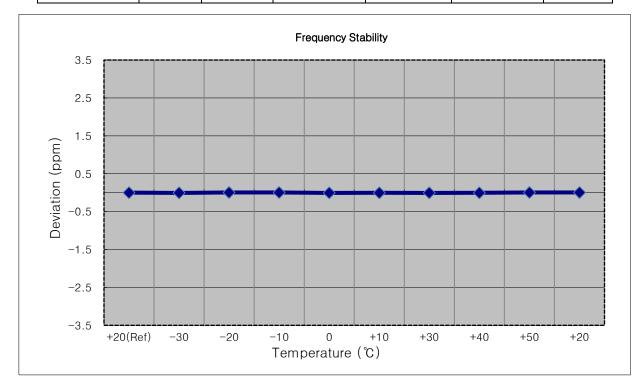
| Frequency Range (GHz) | Factor [dB] |
|-----------------------|-------------|
| 0.03 – 1              | 25.270      |
| 1 – 5                 | 27.976      |
| 5 – 10                | 28.591      |
| 10 – 15               | 29.116      |
| 15 – 20               | 29.489      |
| Above 20              | 30.131      |


#### 8.5 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 37 ~ 48.

#### 8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

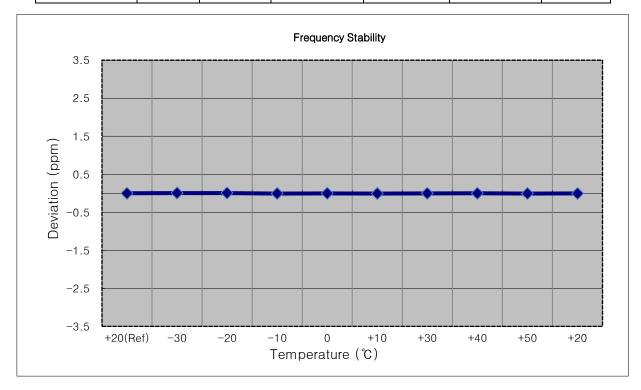
| MODE:                | <u>LTE 13</u>                |
|----------------------|------------------------------|
| OPERATING FREQUENCY: | <u>779,500,000 Hz</u>        |
| CHANNEL:             | <u>23205 (5 MHz)</u>         |
| REFERENCE VOLTAGE:   | <u>3.80 VDC</u>              |
| DEVIATION LIMIT:     | Emission must remain in band |


| Voltage        | Power | Temp.    | Frequency Frequency |                 | Deviation  |         |
|----------------|-------|----------|---------------------|-----------------|------------|---------|
| (%)            | (VDC) | (°°)     | (Hz)                | (Hz) Error (Hz) |            | ppm     |
| 100%           |       | +20(Ref) | 779 499 997         | 0.00            | 0.000 000  | 0.0000  |
| 100%           |       | -30      | 779 499 994         | -2.70           | 0.000 000  | -0.0035 |
| 100%           | 3.80  | -20      | 779 500 000         | 3.50            | 0.000 000  | 0.0045  |
| 100%           |       | -10      | 779 499 994         | -3.10           | 0.000 000  | -0.0040 |
| 100%           |       | 0        | 779 500 002         | 5.40            | 0.000 001  | 0.0069  |
| 100%           |       | +10      | 779 500 000         | 3.80            | 0.000 000  | 0.0049  |
| 100%           |       | +30      | 779 499 993         | -4.10           | -0.000 001 | -0.0053 |
| 100%           |       | +40      | 779 499 991         | -5.90           | -0.000 001 | -0.0076 |
| 100%           |       | +50      | 779 499 993         | -3.40           | 0.000 000  | -0.0044 |
| Batt. Endpoint | 3.40  | +20      | 779 499 992         | -4.90           | -0.000 001 | -0.0063 |





| MODE:                | <u>LTE 13</u>                |
|----------------------|------------------------------|
| OPERATING FREQUENCY: | <u>782,000,000 Hz</u>        |
| CHANNEL:             | <u>23230 (5 MHz)</u>         |
| REFERENCE VOLTAGE:   | 3.80 VDC                     |
| DEVIATION LIMIT:     | Emission must remain in band |

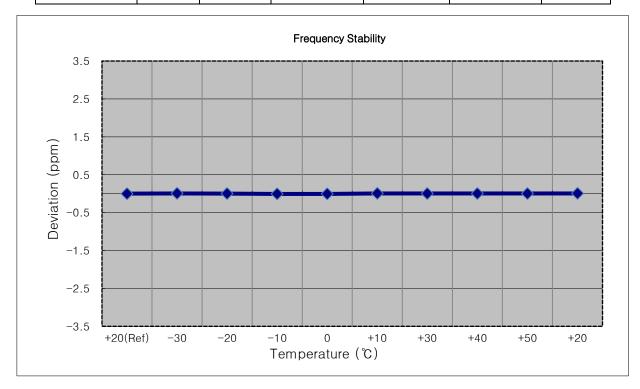

| Voltage        | Power | Temp.               | Frequency Frequency |       | Deviation  |         |
|----------------|-------|---------------------|---------------------|-------|------------|---------|
| (%)            | (VDC) | (℃) (Hz) Error (Hz) |                     | (%)   | ppm        |         |
| 100%           |       | +20(Ref)            | 782 000 004         | 0.00  | 0.000 000  | 0.0000  |
| 100%           |       | -30                 | 782 000 000         | -4.00 | -0.000 001 | -0.0051 |
| 100%           | 3.80  | -20                 | 782 000 007         | 3.10  | 0.000 000  | 0.0040  |
| 100%           |       | -10                 | 782 000 008         | 4.30  | 0.000 001  | 0.0055  |
| 100%           |       | 0                   | 781 999 999         | -4.60 | -0.000 001 | -0.0059 |
| 100%           |       | +10                 | 782 000 000         | -3.50 | 0.000 000  | -0.0045 |
| 100%           |       | +30                 | 782 000 000         | -3.80 | 0.000 000  | -0.0049 |
| 100%           |       | +40                 | 782 000 001         | -2.20 | 0.000 000  | -0.0028 |
| 100%           |       | +50                 | 782 000 007         | 3.80  | 0.000 000  | 0.0049  |
| Batt. Endpoint | 3.40  | +20                 | 782 000 007         | 3.80  | 0.000 000  | 0.0049  |





| MODE:                | <u>LTE 13</u>                |
|----------------------|------------------------------|
| OPERATING FREQUENCY: | <u>784,500,000 Hz</u>        |
| CHANNEL:             | <u>23255 (5 MHz)</u>         |
| REFERENCE VOLTAGE:   | <u>3.80 VDC</u>              |
| DEVIATION LIMIT:     | Emission must remain in band |

| Voltage        | Power | Temp.    | Frequency Frequency  |       | Deviation  |         |  |
|----------------|-------|----------|----------------------|-------|------------|---------|--|
| (%)            | (VDC) | (°°)     | (°C) (Hz) Error (Hz) |       | (%)        | ppm     |  |
| 100%           |       | +20(Ref) | 779 499 994          | 0.00  | 0.000 000  | 0.0000  |  |
| 100%           |       | -30      | 779 499 998          | 4.20  | 0.000 001  | 0.0054  |  |
| 100%           | 3.80  | -20      | 779 499 999          | 5.20  | 0.000 001  | 0.0067  |  |
| 100%           |       | -10      | 779 499 989          | -5.20 | -0.000 001 | -0.0067 |  |
| 100%           |       | 0        | 779 499 991          | -2.50 | 0.000 000  | -0.0032 |  |
| 100%           |       | +10      | 779 499 988          | -6.20 | -0.000 001 | -0.0080 |  |
| 100%           |       | +30      | 779 499 991          | -2.60 | 0.000 000  | -0.0033 |  |
| 100%           |       | +40      | 779 499 993          | -1.10 | 0.000 000  | -0.0014 |  |
| 100%           |       | +50      | 779 499 989          | -5.20 | -0.000 001 | -0.0067 |  |
| Batt. Endpoint | 3.40  | +20      | 779 499 990          | -3.30 | 0.000 000  | -0.0042 |  |






| Report No.:HCT-RF-1812-FC016-R1 |
|---------------------------------|
|---------------------------------|

| MODE:                | LTE 13                       |
|----------------------|------------------------------|
| OPERATING FREQUENCY: | <u>782,000,000 Hz</u>        |
| CHANNEL:             | <u>23230 (10 MHz)</u>        |
| REFERENCE VOLTAGE:   | 3.80 VDC                     |
| DEVIATION LIMIT:     | Emission must remain in band |

| Voltage        | Power     | Temp.    | Frequency Frequency |            | Deviation  |         |  |
|----------------|-----------|----------|---------------------|------------|------------|---------|--|
| (%)            | (%) (VDC) |          | (Hz)                | Error (Hz) | (%)        | ppm     |  |
| 100%           |           | +20(Ref) | 782 000 003         | 0.00       | 0.000 000  | 0.0000  |  |
| 100%           |           | -30      | 782 000 010         | 6.20       | 0.000 001  | 0.0079  |  |
| 100%           | 3.80      | -20      | 782 000 006         | 2.70       | 0.000 000  | 0.0035  |  |
| 100%           |           | -10      | 781 999 999         | -4.30      | -0.000 001 | -0.0055 |  |
| 100%           |           | 0        | 781 999 999         | -4.70      | -0.000 001 | -0.0060 |  |
| 100%           |           | +10      | 782 000 008         | 5.00       | 0.000 001  | 0.0064  |  |
| 100%           |           | +30      | 782 000 008         | 4.30       | 0.000 001  | 0.0055  |  |
| 100%           |           | +40      | 782 000 008         | 4.30       | 0.000 001  | 0.0055  |  |
| 100%           |           | +50      | 782 000 006         | 3.00       | 0.000 000  | 0.0038  |  |
| Batt. Endpoint | 3.40      | +20      | 782 000 009         | 5.30       | 0.000 001  | 0.0068  |  |





## 9. TEST PLOTS



|          |         | um Analyzer - Occ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | upied BW  |                                        |                        |                         |          |           |          |            |                      |               | ×  |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|------------------------|-------------------------|----------|-----------|----------|------------|----------------------|---------------|----|
| Cen      | -       | RF 50 Ω<br>eq 782.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 AC      |                                        | Center F               | NSE:INT<br>req: 782.000 |          | ALIGN A   | Ra       | 5:29:50 PM | Nov 23, 2018<br>None | Frequency     |    |
| PAS      | S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #         | ↔<br>#IFGain:Low                       | Trig: Fre<br>#Atten: 2 |                         | Avg Hold | 3: 000/00 |          | idio Devic | e: BTS               |               |    |
|          |         | Ref Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                        |                        |                         |          |           |          |            |                      |               |    |
| 10 dE    | 3/div   | Ref 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 dBm     |                                        |                        |                         |          |           |          |            |                      |               |    |
| 30.0     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          |           |          |            |                      | Center Fre    | eq |
| 20.0     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          |           |          |            |                      | 782.000000 MI | Hz |
| 10.0     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | harman                 | manha                   | mm       | $\sim$    |          |            |                      |               |    |
| 0.00     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /         |                                        |                        |                         |          |           |          |            |                      |               |    |
| -10.0    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h         |                                        |                        |                         |          | <u> </u>  | <b>h</b> |            |                      |               |    |
| -20.0    | m m     | han and the state of the state | hand hand |                                        |                        |                         |          |           | h        | male       |                      |               |    |
| -30.0    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          | +         |          | ~~ ~ (r.   |                      |               |    |
| -40.0    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          |           |          |            |                      |               |    |
| -50.0    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          |           |          |            |                      | CF Ste        | ep |
| Cent     | ter 78: | 2 MH7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                        |                        |                         |          |           |          | Snan       | 10 MHz               | 1.000000 M    |    |
|          |         | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                        | #VE                    | 3W 390 k                | Hz       |           |          | Swee       | ep 1 ms              |               |    |
| 0        | guoo    | ied Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | width     |                                        |                        | Total P                 | ower     | 2         | 28.5 dE  | Зm         |                      | Freq Offs     | et |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 301 MI                                 | Hz                     |                         |          |           |          |            |                      | 01            | Hz |
| <b>.</b> | ranem   | it Freq Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 24.449                                 |                        | OBW P                   | ower     |           | 99.00    | 9/-        |                      |               |    |
|          |         | indwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 5.145 N                                |                        | x dB                    | ower     |           | -26.00   |            |                      |               |    |
| ×        | ив ва   | nawiath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 3.143 N                                |                        | Хав                     |          |           | 20.00    | αв         |                      |               |    |
| MSG      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                        |                        |                         |          | T -       | TATUS    |            |                      |               |    |
| MSG      |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                        |                        |                         |          | 40 S      | TATUS    |            |                      |               | _  |

#### BAND 13. Occupied Bandwidth Plot (Ch.23230 QPSK RB 25) 5 MHz



|                             | nalyzer - Occupied BW               |                   |                          |                        | _         |                 |                       |                           |                               |
|-----------------------------|-------------------------------------|-------------------|--------------------------|------------------------|-----------|-----------------|-----------------------|---------------------------|-------------------------------|
| Center Fred                 | 50 Ω AC<br>782.000000 M             | Hz                | Center Fre               | SE:INT<br>q: 782.00000 |           | ALIGN AUTO      | 05:29:36<br>Radio Std | PM Nov 23, 2018<br>: None | Frequency                     |
| PASS                        |                                     | +→<br>#IFGain:Low | Trig: Free<br>#Atten: 20 |                        | vg Hold:  | 500/500         | Radio Dev             | vice: BTS                 |                               |
| 10 dB/div                   | Ref Offset 26.2 dB<br>Ref 40.00 dBm | Guineow           |                          |                        |           |                 |                       |                           |                               |
| 30.0                        |                                     |                   |                          |                        |           |                 |                       |                           | Center Freq<br>782.000000 MHz |
| 20.0                        |                                     | man man           | ym John Mar              | ham                    | ᠕ᠬᢇᠬᡳᠻᡁᠯ᠆ | <sup>رس</sup> م |                       |                           |                               |
| 0.00                        |                                     |                   |                          |                        |           |                 |                       |                           |                               |
| -10.0                       | www.                                |                   |                          |                        |           |                 | harmon                |                           |                               |
| -30.0                       |                                     |                   |                          |                        |           |                 |                       | - Archine                 |                               |
| -40.0                       |                                     |                   |                          |                        |           |                 |                       |                           | CF Step                       |
| Center 782 M<br>#Res BW 100 |                                     |                   | #\/BI                    | W 390 kHz              |           |                 | Spa<br>Sw             | an 10 MHz<br>eep 1 ms     | 1.000000 MHz                  |
|                             | Bandwidth                           |                   |                          | Total Pov              |           | 27 /            | 4 dBm                 | eep mis                   | Freq Offset                   |
| Occupied                    |                                     | 082 M⊦            |                          |                        |           | 21              |                       |                           | 0 Hz                          |
| Transmit F                  | req Error                           | 20.958 k          | Hz                       | OBW Pow                | /er       | 99              | 9.00 %                |                           |                               |
| x dB Band                   | width                               | 5.017 M           | Hz                       | x dB                   |           | -26.            | 00 dB                 |                           |                               |
| MSG                         |                                     |                   |                          |                        |           |                 | s                     |                           |                               |

#### BAND 13. Occupied Bandwidth Plot (Ch.23230 16-QAM RB 25) 5 MHz



|                         | ım Analyzer - Occu     |              |                 |                           |                         |                            |           |        |                          |                     |                         |
|-------------------------|------------------------|--------------|-----------------|---------------------------|-------------------------|----------------------------|-----------|--------|--------------------------|---------------------|-------------------------|
| Center Fre              | RF 50 Ω                |              | 17              |                           | NSE:INT<br>req: 782.000 | 000 MHz                    | ALIGN     |        | 05:34:23 P<br>Radio Std: | MNov 23, 2018       | Frequency               |
| PASS                    |                        |              | ⊷<br>IFGain:Low | . Trig: Free<br>#Atten: 2 |                         | Avg Ho                     | ld: 500/5 |        | Radio Dev                | ice: BTS            |                         |
| 10 dB/div               | Ref Offset<br>Ref 40.0 |              |                 |                           |                         |                            |           |        |                          |                     |                         |
| Log<br>30.0             |                        |              |                 |                           |                         |                            |           |        |                          |                     | Center Freq             |
| 20.0                    |                        |              |                 |                           |                         |                            |           |        |                          |                     | 782.000000 MHz          |
| 10.0                    |                        |              | MWWANNALLA      | fther was a for the       | ᢇ᠇᠗ᡙᠧ᠕ᡟ᠆᠆ᠰᡟ᠋ᡁ           | <sub>ᡊᢏᠣᢞᡃᠥ</sub> ᡘᢦᢪᢆᢆᡗᡀᡀ |           |        |                          |                     |                         |
| 0.00                    |                        |              |                 |                           |                         |                            |           |        |                          |                     |                         |
| -10.0                   |                        | 1            |                 |                           |                         |                            | \         | -<br>1 |                          |                     |                         |
| -20.0                   | an Wan                 |              |                 |                           |                         |                            |           | "how   | horal and and a          | 8. I)               |                         |
| -30.0                   |                        |              |                 |                           |                         |                            |           |        | ملائدين <u>ب</u> ر       | "wall-you low you   |                         |
| -40.0                   |                        |              |                 |                           |                         |                            |           |        |                          |                     |                         |
| -50.0                   |                        |              |                 |                           |                         |                            |           |        |                          |                     | CF Step<br>2.000000 MHz |
| Center 782<br>#Res BW 2 |                        |              |                 | #VE                       | 3W 820 k                | Hz                         |           |        | Spa<br>Swe               | n 20 MHz<br>ep 1 ms | <u>Auto</u> Man         |
| Occupi                  | ed Band                | width        |                 |                           | Total P                 | ower                       |           | 28.7   | dBm                      |                     | Freq Offset             |
|                         |                        | <b>9.0</b> ′ | 128 MI          | Ηz                        |                         |                            |           |        |                          |                     | 0 Hz                    |
| Transmi                 | it Freq Err            | or           | 41.730          | Hz                        | OBW P                   | ower                       |           | 99.    | 00 %                     |                     |                         |
| x dB Ba                 | ndwidth                |              | 10.11 N         | IHz                       | x dB                    |                            |           | -26.0  | 0 dB                     |                     |                         |
|                         |                        |              |                 |                           |                         |                            |           |        |                          |                     |                         |
| MSG                     |                        |              |                 |                           |                         |                            | <b>(</b>  | STATUS |                          |                     |                         |

#### BAND 13. Occupied Bandwidth Plot (Ch.23230 QPSK RB 50) 10 MHz



| 🔰 Agilent Spectrum Analyzer - Occupied B    | N                 |                                       |               |                |                           |                      |                               |  |
|---------------------------------------------|-------------------|---------------------------------------|---------------|----------------|---------------------------|----------------------|-------------------------------|--|
| ເ× RL RF 50Ω AC<br>Center Freq 782.000000   | MHz               | SENSE:INT<br>Center Freq: 782.00      | 00000 MHz     | ALIGN AUTO     | 05:34:09 Pt<br>Radio Std: | Nov 23, 2018<br>None | Frequency                     |  |
| PASS                                        | #IFGain:Low       | Trig: Free Run<br>#Atten: 20 dB       | Avg Hold      | 1: 500/500     | Radio Devi                | ce: BTS              |                               |  |
| Ref Offset 26.2 /<br>10 dB/div Ref 40.00 dB | dB                |                                       |               |                |                           |                      |                               |  |
| 30.0                                        |                   |                                       |               |                |                           |                      | Center Freq<br>782.000000 MHz |  |
| 10.0                                        | Multiplestopurper | youth and a start and a start a start | walle and wat |                |                           |                      |                               |  |
| 0.00                                        |                   |                                       |               | +              |                           |                      |                               |  |
| -10.0                                       |                   |                                       |               |                |                           |                      |                               |  |
| -20.0<br>-30.0                              |                   |                                       |               | <u>М</u> ,     | whohnmanth                | while where where    |                               |  |
| -40.0                                       |                   |                                       |               |                |                           |                      |                               |  |
| -50.0                                       |                   |                                       |               |                |                           |                      | CF Step<br>2.000000 MHz       |  |
| Center 782 MHz<br>#Res BW 200 kHz           |                   | #VBW 820                              | kHz           |                | Spai<br>Swe               | n 20 MHz<br>ep 1 ms  | Auto Mar                      |  |
| Occupied Bandwid                            |                   | Total                                 | Power         | 27.            | 5 dBm                     |                      | Freq Offset<br>0 Hz           |  |
| 9                                           | .0359 MI          | lz                                    |               |                |                           |                      | 0112                          |  |
| Transmit Freq Error                         | 28.425 k          | Hz OBW                                | Power         | 99             | 0.00 %                    |                      |                               |  |
| x dB Bandwidth                              | 10.03 M           | lHz x dB                              |               | -26.           | 00 dB                     |                      |                               |  |
|                                             |                   |                                       |               |                |                           |                      |                               |  |
| MSG                                         |                   |                                       |               | <b>I</b> STATU | S                         |                      |                               |  |

#### BAND 13. Occupied Bandwidth Plot (Ch.23230 16-QAM RB 50) 10 MHz



| 📕 Agilent Spec  | ctrum Analyzer - Swept SA<br>RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | ENSE:INT |          | ALIGN AUTO | 05:28:42 PM Nov 23, 2018                            |                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------|----------|------------|-----------------------------------------------------|----------------------------------------|
|                 | req 776.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | ee Run   | #Avg Typ |            | TRACE 1 2 3 4 5 6<br>TYPE A WWWW<br>DET A A A A A A | Frequency<br>Auto Tun                  |
| 0 dB/div<br>.og | Ref Offset 26.2 dB<br>Ref 26.20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |          |          | Mk         | 1 775.984 MHz<br>-48.601 dBm                        |                                        |
| 6.2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |          |          |            |                                                     | Center Fre<br>776.000000 MH            |
| .80             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |          |          |            |                                                     | Start Fre<br>772.000000 MH             |
| 3.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |          |          |            | -13.00 dBm                                          | Stop Fre<br>780.000000 M⊦              |
| 3.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |          |          |            |                                                     | CF Ste<br>800.000 kH<br><u>Auto</u> Ma |
| 3.8             | ng met all with the all and an all and a state of the all and a | and the second |          |          |            |                                                     | Freq Offs<br>0 H                       |
| 3.8<br>enter 77 | 76.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |          |          |            | Span 8.000 <u>MHz</u>                               |                                        |
|                 | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #VBW 300 kH                                                                                                      | Z        |          | #Sweep     | Span 8.000 MHz<br>1.000 s (1001 pts)                |                                        |

#### Band 13 Lower Band Edge Plot (5M BW Ch.23205 QPSK\_RB1 OFFSET\_0)



|                                           |                                               |                                        |         |         |                        |                           | trum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|-------------------------------------------|-----------------------------------------------|----------------------------------------|---------|---------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Frequency                                 | 05:27:58 PM Nov 23, 2018<br>TRACE 1 2 3 4 5 6 | ALIGN AUTO                             | #Avg Ty | NSE:INT |                        | MHz                       | RF 50 Ω AC<br>req 776.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LXI RL<br>Center    |
|                                           |                                               |                                        |         |         | Trig: Fre<br>#Atten: 2 | PNO: Wide ↔<br>IFGain:Low |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Auto Tune                                 | 1 775.992 MHz<br>-32.740 dBm                  | Mkr                                    |         |         |                        |                           | Ref Offset 26.2 dB<br>Ref 26.20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 dB/div<br>Log    |
| Center Freq<br>776.000000 MHz             |                                               |                                        |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.2                |
| Start Freq<br>772.000000 MHz              |                                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.80               |
| Stop Freq                                 | -13.00 dBm                                    |                                        |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.60               |
| 780.000000 MHz                            |                                               |                                        |         | 1       |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -23.8               |
| CF Step<br>800.000 kHz<br><u>Auto</u> Man |                                               |                                        |         |         |                        |                           | and the second s | -33.8               |
| <b>Freq Offset</b><br>0 Hz                |                                               |                                        |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -53.8               |
|                                           |                                               |                                        |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -63.8               |
|                                           | Span 8.000 MHz<br>1.000 s (1001 pts)          | #Sweep                                 |         | 2       | N 300 kHz              | #VBV                      | 6.000 MHz<br>100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center 7<br>#Res BW |
|                                           |                                               | <b>I</b> STATUS                        |         |         |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSG                 |

#### Band 13 Lower Band Edge Plot (5M BW Ch.23205 QPSK\_RB\_25)



## Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (5M BW Ch.23205 QPSK\_RB25\_0)



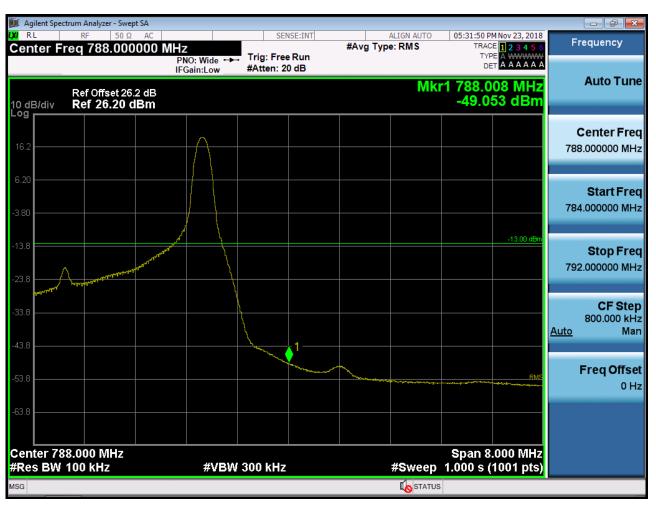


| nalyzer - Swept SA                                                        |        |                                                                                    |                                           |
|---------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|-------------------------------------------|
| 50 Ω AC SEN<br>776.000000 MHz<br>PNO: Wide →→<br>IFGain:Low<br>#Atten: 20 |        | 05:33:44 PM Nov 23, 2018<br>TRACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A A A A A A A | Frequency                                 |
| Offset 26.2 dB<br>f 26.20 dBm                                             | Mk     | r1 775.992 MHz<br>-46.693 dBm                                                      | Auto Tune                                 |
|                                                                           |        |                                                                                    | Center Freq<br>776.000000 MHz             |
|                                                                           |        |                                                                                    | Start Freq<br>772.000000 MHz              |
|                                                                           |        | -13.00 dBm                                                                         | <b>Stop Freq</b><br>780.000000 MHz        |
|                                                                           | 1      |                                                                                    | CF Step<br>800.000 kHz<br><u>Auto</u> Man |
|                                                                           |        |                                                                                    | Freq Offset<br>0 Hz                       |
| 0 MHz<br>kHz #VBW 300 kHz                                                 | #Swoon | Span 8.000 MHz<br>1.000 s (1001 pts)                                               |                                           |
| KHZ #VBW 300 KHZ                                                          | #Sweep |                                                                                    |                                           |

# Band 13 Lower Band Edge Plot (10M BW Ch.23230 QPSK\_RB1 OFFSET\_0)



| Agilent Spec   | ctrum Analyzer - Swept SA<br>RF 50 Ω AC                                                                         |                           | SENSE:INT                       | ALIGN AUTO     | 05:33:01 PM Nov 23, 2018                                          |                             |
|----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|----------------|-------------------------------------------------------------------|-----------------------------|
| enter F        | req 776.00000                                                                                                   | PNO: Wide ↔<br>IFGain:Low | Trig: Free Run<br>#Atten: 20 dB | #Avg Type: RMS | TRACE <b>1 2 3 4 5 6</b><br>TYPE A WWWW<br>DET <b>A A A A A A</b> | Frequency                   |
| ) dB/div<br>°g | Ref Offset 26.2 dB<br>Ref 26.20 dBm                                                                             |                           |                                 | Mk             | r1 775.960 MHz<br>-31.743 dBm                                     | Auto Tun                    |
| 6.2            |                                                                                                                 |                           |                                 |                |                                                                   | Center Fre<br>776.000000 M⊦ |
| .20            |                                                                                                                 |                           |                                 |                | RMS                                                               | Start Fre<br>772.000000 M⊦  |
| 3.8            |                                                                                                                 |                           |                                 |                | -13.00 dBm                                                        | Stop Fre                    |
| 3.8            |                                                                                                                 |                           | 1                               |                |                                                                   | CF Ste<br>800.000 ki        |
| .8             | and potential design of the |                           |                                 |                |                                                                   | Auto Ma                     |
| ).8            |                                                                                                                 |                           |                                 |                |                                                                   | Freq Offs<br>0 F            |
| 3.8            |                                                                                                                 |                           |                                 |                |                                                                   |                             |
|                | 76.000 MHz<br>100 kHz                                                                                           | #VBV                      | V 300 kHz                       | #Sweep         | Span 8.000 MHz<br>1.000 s (1001 pts)                              |                             |
| G              |                                                                                                                 |                           |                                 |                |                                                                   |                             |


# BAND 13. Lower & Upper Band Edge Plot (10M BW Ch.23230 QPSK RB\_50)



## Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (10M BW Ch.23230 QPSK\_RB50\_0)



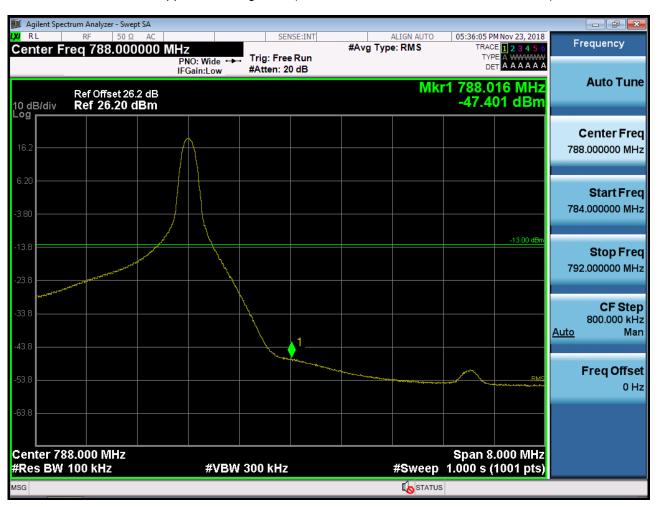




#### Band 13 Upper Band Edge Plot (5M BW Ch.23255 QPSK\_RB1\_Offset 24)



|                      | ctrum Analyzer - Swept SA           |                            |                                 |                              |                                               |                                           |
|----------------------|-------------------------------------|----------------------------|---------------------------------|------------------------------|-----------------------------------------------|-------------------------------------------|
| Center F             | RF 50 Ω AC<br>req 788.000000 I      | MHz                        | SENSE:INT                       | ALIGN AUTO<br>#Avg Type: RMS | 05:31:03 PM Nov 23, 2018<br>TRACE 1 2 3 4 5 6 | Frequency                                 |
|                      |                                     | PNO: Wide ↔→<br>IFGain:Low | Trig: Free Run<br>#Atten: 20 dB |                              |                                               |                                           |
| 10 dB/div<br>Log     | Ref Offset 26.2 dB<br>Ref 26.20 dBm |                            |                                 | Mk                           | r1 788.000 MHz<br>-32.359 dBm                 | Auto Tune                                 |
| 16.2                 |                                     |                            |                                 |                              |                                               | Center Freq<br>788.000000 MHz             |
| 6.20                 | *******                             |                            |                                 |                              |                                               | Start Freq<br>784.000000 MHz              |
| -3.80                |                                     |                            |                                 |                              | -13.00 dBm                                    | Stop Freq                                 |
| -23.8                |                                     |                            | . 1                             |                              |                                               | 792.000000 MHz                            |
| -33.8                |                                     |                            |                                 |                              | RMS                                           | CF Step<br>800.000 kHz<br><u>Auto</u> Man |
| -53.8                |                                     |                            |                                 |                              |                                               | Freq Offset                               |
| -63.8                |                                     |                            |                                 |                              |                                               |                                           |
| Center 78<br>#Res BW | 38.000 MHz<br>100 kHz               | #VBW                       | 300 kHz                         | #Sweep                       | Span 8.000 MHz<br>1.000 s (1001 pts)          |                                           |
| MSG                  |                                     |                            |                                 |                              | 3                                             |                                           |


# Band 13 Upper Band Edge Plot (5M BW Ch.23255 QPSK\_RB\_25)



# Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (5M BW Ch.23255 QPSK\_RB25\_0)

|                  | pectrum Analyzer - Swep | et SA       |                    |                |                  |                        |                 |                           |                                    |          | d X            |
|------------------|-------------------------|-------------|--------------------|----------------|------------------|------------------------|-----------------|---------------------------|------------------------------------|----------|----------------|
| LXI RL           | RF 50 Ω                 |             |                    | SEN            | ISE:INT          | #Avg Typ               | ALIGN AUTO      |                           | 4 Nov 23, 2018                     | Freque   | ncy            |
| Center           | Freq 799.000            |             | PNO: Wide +++      | Trig: Free     |                  | #/18 199               | e. 11110        | TYP                       |                                    |          |                |
|                  |                         |             | IFGain:Low         | #Atten: 20     | 0 dB             |                        |                 |                           |                                    | Aut      | o Tune         |
|                  | Ref Offset 26.          | 2 dB        |                    |                |                  |                        | Mk              | r1 793.2                  | 52 MHz                             | Aut      | orune          |
| 10 dB/div<br>Log | Ref -10.00              | dBm         |                    |                |                  |                        |                 | -57.14                    | 46 dBm                             |          |                |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    | Cent     | er Freq        |
| -20.0            |                         |             |                    |                |                  |                        |                 |                           |                                    | 799.0000 |                |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    | 735.0000 | 00 10112       |
| -30.0            |                         |             |                    |                |                  |                        |                 |                           |                                    |          |                |
|                  |                         |             |                    |                |                  |                        |                 |                           | -32.96 dBm                         | Sta      | rt Freq        |
| -40.0            |                         |             |                    |                |                  |                        |                 |                           |                                    | 793.0000 | 000 MHz        |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    |          |                |
| -50.0            |                         |             |                    |                |                  |                        |                 |                           |                                    | Oto      | n Erog         |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    | 805.0000 | p Freq         |
| -60.0            | Margarden and Margare   |             |                    |                |                  |                        |                 |                           |                                    | 805.000  |                |
|                  | The                     | we with the | Hageneraph marting | 1. Mar. 1      |                  |                        |                 |                           | RMS                                |          |                |
| -70.0            |                         |             |                    | warune anyanya | ዾዀኯኯዸቝቘጚዸዀዸዺኯኯዸኯ | Law Brandston barangan | 1/1-h/14/14/110 | di'),ariyarakal'ndijikiya | -สามะสุมะณ <sub>์</sub> สหสุดสุดรู |          | F Step         |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    | Auto     | Man            |
| -80.0            |                         |             |                    |                |                  |                        |                 |                           |                                    |          |                |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    | Ener     | Offeret        |
| -90.0            |                         |             |                    |                |                  |                        |                 |                           |                                    | Freq     | 0ffset<br>0 Hz |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    |          | 0 H2           |
| -100             |                         |             |                    |                |                  |                        |                 |                           |                                    |          |                |
|                  |                         |             |                    |                |                  |                        |                 |                           |                                    |          |                |
| Stort 70         |                         |             |                    |                |                  |                        |                 | Oton 905                  |                                    |          |                |
|                  | 3.000 MHz<br>N 10 kHz   |             | #VBW               | 30 kHz         |                  |                        | #Sweep          | Stop 805.<br>1.000 s (′   | 1001 mHz                           |          |                |
| MSG              |                         |             | (A.A74)            |                |                  |                        |                 |                           |                                    |          |                |
| mod              |                         |             |                    |                |                  |                        | Norki Us        |                           |                                    |          |                |





#### Band 13 Upper Band Edge Plot (10M BW Ch.23230 QPSK\_RB1\_Offset\_49)



|           | trum Analyzer - Swept SA            |                            |                                 |                                               |                                               |                        |
|-----------|-------------------------------------|----------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------|
| Center F  | RF 50 Ω AC<br>req 788.000000        | MHz                        | SENSE:INT                       | ALIGN AUTO<br>#Avg Type: RMS                  | 05:35:20 PM Nov 23, 2018<br>TRACE 1 2 3 4 5 6 | Frequency              |
|           |                                     | PNO: Wide ↔→<br>IFGain:Low | Trig: Free Run<br>#Atten: 20 dB |                                               |                                               |                        |
| 10 dB/div | Ref Offset 26.2 dB<br>Ref 26.20 dBm |                            |                                 | Mk                                            | r1 788.096 MHz<br>-36.077 dBm                 | Auto Tune              |
|           |                                     |                            |                                 |                                               |                                               | Center Freq            |
| 16.2      |                                     |                            |                                 |                                               |                                               | 788.000000 MHz         |
| 6.20      |                                     |                            |                                 |                                               |                                               |                        |
|           |                                     |                            |                                 |                                               |                                               | Start Freq             |
| -3.80     |                                     |                            |                                 |                                               |                                               | 784.000000 MHz         |
| -13.8     |                                     |                            |                                 |                                               | -13.00 dBm                                    | Stop Freq              |
|           |                                     |                            |                                 |                                               |                                               | 792.000000 MHz         |
| -23.8     |                                     |                            |                                 |                                               |                                               |                        |
| -33.8     |                                     |                            | 1                               |                                               |                                               | CF Step<br>800.000 kHz |
| -43.8     |                                     |                            |                                 | and and the second and a second second second | RMS                                           | <u>Auto</u> Man        |
| 40.0      |                                     |                            |                                 |                                               |                                               | Freq Offset            |
| -53.8     |                                     |                            |                                 |                                               |                                               | 0 Hz                   |
| -63.8     |                                     |                            |                                 |                                               |                                               |                        |
|           |                                     |                            |                                 |                                               |                                               |                        |
|           | 8.000 MHz                           |                            |                                 |                                               | Span 8.000 MHz                                |                        |
| #Res BW   | 100 KHZ                             | #VBW                       | 300 kHz                         | #Sweep                                        | 1.000 s (1001 pts)                            |                        |

# Band 13 Upper Band Edge Plot (10M BW Ch.23230 QPSK\_QPSK\_RB\_50)



#### Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (10M BW Ch.23230 QPSK\_RB50\_0)





| Agilent Spect<br>X RL                        | trum Analyzer - Swept<br>RF 50 Ω | SA<br>AC                      | CEN                          | SE:INT        | ALIGN AUTO     | 05:28:56 PM Nov 23, 2018                          |                                     |
|----------------------------------------------|----------------------------------|-------------------------------|------------------------------|---------------|----------------|---------------------------------------------------|-------------------------------------|
|                                              | eq 5.01500                       |                               |                              | ##<br>Run     | vg Type: RMS   | TRACE 1 2 3 4 5<br>TYPE A WWWW<br>DET A A A A A A | Frequency                           |
| 10 dB/div                                    | Ref 10.00 d                      | Bm                            |                              |               | MI             | kr1 3.726 9 GHz<br>-67.143 dBm                    | Auto Tune                           |
| - <b>og</b><br>0.00<br>10.0<br>20.0          |                                  |                               |                              |               |                |                                                   | Center Frec<br>5.015000000 GHz      |
| 30.0<br>40.0<br>50.0                         |                                  |                               |                              |               |                |                                                   | Start Free<br>30.000000 MH          |
| 60.0<br>70.0<br>80.0                         |                                  |                               | 1                            |               |                |                                                   | <b>Stop Free</b><br>10.000000000 GH |
| tart 30 M<br>Res BW                          |                                  | #V                            | BW 3.0 MHz                   |               | Sweep 17       | Stop 10.000 GHz<br>7.33 ms (20001 pts)            | CF Ste<br>997.000000 MH<br>Auto Ma  |
| MKR MODE TR<br>1 N 1<br>2 N 1<br>3<br>4<br>5 | C SCL<br>f<br>f                  | X<br>3.726 9 GHz<br>777.8 MHz | Ƴ<br>-67.143 dB<br>-5.821 dB | FUNCTION<br>m | FUNCTION WIDTH | FUNCTION VALUE                                    | Freq Offse                          |
| 6<br>7<br>8<br>9<br>10<br>11                 |                                  |                               |                              |               |                |                                                   |                                     |
| sg                                           |                                  |                               | III                          |               |                | 8                                                 |                                     |

### BAND 13. Conducted Spurious Plot (23205ch\_5MHz\_QPSK\_RB 1\_0)



| 🔟 Agilent Spec<br>📈 R L                      | trum Analyzer - Swep<br>RF 50 Ω | t SA<br>AC                           | SEN                          | SE:INT             | ALIGN AUTO     | 05:30:11 PM Nov 23, 201                         | 8 _                                   |
|----------------------------------------------|---------------------------------|--------------------------------------|------------------------------|--------------------|----------------|-------------------------------------------------|---------------------------------------|
| Center Fi                                    | req 5.01500                     | 0000 GHz<br>PNO: Fast<br>IFGain:Low  | +++ Trig: Free               | #A<br>Run          | vg Type: RMS   | TRACE 1 2 3 4 5<br>TYPE A WWWW<br>DET A A A A A | 6<br>W<br>A                           |
| 10 dB/div<br>Log                             | Ref 10.00 c                     | IBm                                  |                              |                    | MI             | kr1 3.674 5 GH:<br>-67.266 dBn                  | Auto Tune                             |
| 0.00<br>-10.0                                |                                 |                                      |                              |                    |                |                                                 | <b>Center Freq</b><br>5.015000000 GHz |
| -30.0<br>-40.0<br>-50.0                      |                                 |                                      |                              |                    |                |                                                 | Start Free<br>30.000000 MH;           |
| -60.0<br>-70.0<br>-80.0                      |                                 |                                      | 1                            |                    |                | RM                                              | <b>Stop Fred</b><br>10.000000000 GH:  |
| Start 30 N<br>#Res BW                        |                                 | #V                                   | BW 3.0 MHz                   |                    | Sweep 17       | Stop 10.000 GH<br>7.33 ms (20001 pts            | CF Ster<br>997.000000 MH<br>Auto Ma   |
| MKR MODE TF<br>1 N 1<br>2 N 1<br>3<br>4<br>5 | f                               | X<br><u>3.674 5 GHz</u><br>780.7 MHz | Ƴ<br>-67.266 dB<br>-6.274 dB | FUNCTION<br>m<br>m | FUNCTION WIDTH | FUNCTION VALUE                                  |                                       |
| 6<br>7<br>8<br>9<br>10<br>11                 |                                 |                                      |                              |                    |                |                                                 | -                                     |
| ISG                                          |                                 |                                      |                              |                    | <b>I</b> STATU | s                                               |                                       |

## BAND 13. Conducted Spurious Plot (23230ch\_5MHz\_QPSK\_RB 1\_0)



| RL   RF   50 Ω AC<br>enter Freq 5.015000000                      |                           | SENSE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    |                   |                                              |
|------------------------------------------------------------------|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|-------------------|----------------------------------------------|
|                                                                  | 0 GH7                     | SENSE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGN AUTO<br>g Type: RMS |                    | MNov 23, 2018     | Frequency                                    |
|                                                                  | PNO: Fast ←<br>IFGain:Low | Trig: Free R<br>#Atten: 20 d          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    |                   |                                              |
| dB/div Ref 10.00 dBm                                             |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mk                        | r1 3.702<br>-67.33 | 2 0 GHz<br>34 dBm | Auto Tune                                    |
| 2<br>.00<br>.00                                                  |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    |                   | Center Fred<br>5.015000000 GHz               |
| 0.0<br>0.0<br>0.0                                                |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    |                   | Start Fred<br>30.000000 MH;                  |
| D.0<br>D.0<br>D.0<br>D.0                                         |                           |                                       | , en , so t- un t- , et t- , e |                           |                    | RMS               | Stop Frec<br>10.000000000 GHz                |
| tart 30 MHz<br>Res BW 1.0 MHz                                    | #VB1                      | N 3.0 MHz                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep 17                  | .33 ms (20         |                   | CF Step<br>997.000000 MH:<br><u>Auto</u> Mar |
| R MODE TRC SCI X   1 N 1 f 3   2 N 1 f 3   3 4 4 4 4   5 4 4 4 4 | 8.702 0 GHz<br>787.2 MHz  | Ƴ<br><u>-67.334 dBm</u><br>-5.154 dBm | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FUNCTION WIDTH            | FUNCTIO            |                   | Freq Offse<br>0 H;                           |
| 6<br>7<br>8<br>9<br>9<br>0<br>1                                  |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    |                   |                                              |
|                                                                  |                           | III                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                    | 4                 |                                              |

### BAND 13. Conducted Spurious Plot (23255ch\_5MHz\_QPSK\_ RB 1\_0)



| 🔰 Agilent Spectrum Analyzer - S | wept SA                 |                  |     |                |                                               |                                              |
|---------------------------------|-------------------------|------------------|-----|----------------|-----------------------------------------------|----------------------------------------------|
|                                 |                         | SENSE            |     | ALIGN AUTO     | 05:33:59 PM Nov 23, 2018<br>TRACE 1 2 3 4 5 6 | Frequency                                    |
| Center Freq 5.015               | PNO: Fast<br>IFGain:Low |                  | lun | rype. Rivis    |                                               |                                              |
| 10 dB/div Ref 10.0              | 0 dBm                   |                  |     | Mk             | r1 3.678 0 GHz<br>-67.167 dBm                 | Auto Tune                                    |
| -10.0                           |                         |                  |     |                |                                               | Center Freq<br>5.015000000 GHz               |
| -30.0                           |                         |                  |     |                |                                               | Start Freq<br>30.000000 MHz                  |
| -60.0<br>-70.0<br>-80.0         |                         |                  |     |                | RMS                                           | <b>Stop Freq</b><br>10.000000000 GHz         |
| Start 30 MHz<br>#Res BW 1.0 MHz | #V                      | BW 3.0 MHz       |     | Sweep 17       | Stop 10.000 GHz<br>33 ms (20001 pts)          | <b>CF Step</b><br>997.000000 MHz<br>Auto Man |
| MKR MODE TRC SCL                | ×<br>3.678 0 GHz        | Y<br>-67.167 dBn |     | FUNCTION WIDTH | FUNCTION VALUE                                | Auto Man                                     |
| 2 N 1 f<br>3 4 5                | 778.2 MHz               | -5.813 dBn       |     |                | =                                             | Freq Offset<br>0 Hz                          |
| 6<br>7<br>8<br>9<br>10          |                         |                  |     |                |                                               |                                              |
| <pre></pre>                     |                         | III              |     | I STATUS       | • • • • • • • • • • • • • • • • • • •         |                                              |

# BAND 13. Conducted Spurious Plot (Ch.23230 10 MHz QPSK RB 1, Offset 0)



# **10. ANNEX A\_ TEST SETUP PHOTO**

Please refer to test setup photo file no. as follows;

| No. | Description         |
|-----|---------------------|
| 1   | HCT-RF-1812-FC016-P |
| 2   | HCT-RF-1812-FC017-P |