

RADIO TEST REPORT

FCC ID : XHG-CG770

Equipment : CPE

Brand Name : Jextream

Model Name : CG770

Applicant : Franklin Technology Inc.

906 JEI Platz, 186, Gasan digital 1-ro,

Gumcheon-Gu, Seoul, South Korea, 08502

Manufacturer : Franklin Technology Inc.

906 JEI Platz, 186, Gasan digital 1-ro,

Gumcheon-Gu, Seoul, South Korea, 08502

Standard: 47 CFR FCC Part 15.247

The product was received on Feb. 25, 2022, and testing was started from Mar. 08, 2022 and completed on May 05, 2022. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_10 Ver1.3

Page Number : 1 of 33

Issued Date : Jul. 04, 2022

Report Version : 01

Table of Contents

Histo	ory of this test report	3
Sum	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	9
1.3	Testing Location Information	9
1.4	Measurement Uncertainty	10
2	Test Configuration of EUT	11
2.1	Test Channel Mode	
2.2	The Worst Case Measurement Configuration	
2.3	EUT Operation during Test	
2.4	Accessories	
2.5	Support Equipment	
2.6	Test Setup Diagram	15
3	Transmitter Test Result	18
3.1	AC Power-line Conducted Emissions	18
3.2	DTS Bandwidth	
3.3	Maximum Conducted Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	27
4	Test Equipment and Calibration Data	31
Appe	endix A. Test Results of AC Power-line Conducted Emissions	
Appe	endix B. Test Results of DTS Bandwidth	
Appe	endix C. Test Results of Maximum Conducted Output Power	
Appe	endix D. Test Results of Power Spectral Density	
Appe	endix E. Test Results of Emissions in Non-restricted Frequency Bands	
Appe	endix F. Test Results of Emissions in Restricted Frequency Bands	
Appe	endix G. Test Results of Radiated Emission Co-location	
	endix H. Test Photos	
Phot	ographs of EUT v01	

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_10 Ver1.3

Page Number : 2 of 33

Issued Date : Jul. 04, 2022

Report No.: FR221722AA

Report Version : 01

History of this test report

Report No. : FR221722AA

Report No.	Version	Description	Issued Date
FR221722AA	01	Initial issue of report	Jul. 04, 2022

TEL: 886-3-656-9065 Page Number : 3 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04,

Summary of Test Result

Report No.: FR221722AA

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

- The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to report "Measurement Uncertainty".

Comments and Explanations:

- 1. The test configuration, test mode and test software were written in this test report are declared by the manufacturer.
- 2. The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Penny Kao

TEL: 886-3-656-9065 Page Number: 4 of 33
FAX: 886-3-656-9085 Issued Date: Jul. 04, 2022

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), ax (HEW20)	2412-2462	1-11 [11]

Report No.: FR221722AA

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	2.4-2.4835GHz 802.11ax HEW20		2TX

Note:

- ◆ 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- HEW20 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

1.1.2 Antenna Information

For WWAN Function

Ant.	Brand	Model Name	Antenna Type	Connector	TX/RX Function	Gain (dBi)
1	Partron	APCMA1CG770	PCB Antenna	I-PEX	TX/RX	
2	Partron	APCMA2CG770	PCB Antenna	I-PEX	RX	
3	Partron	APCMA3CG770	PCB Antenna	I-PEX	RX	Noted
4	Partron	APCMA4CG770	PCB Antenna	I-PEX	TX/RX	Note1
5	Partron	APCSB1CG770	PCB Antenna	I-PEX	RX	
6	Partron	APCSB2CG770	PCB Antenna	I-PEX	RX	

Report No.: FR221722AA

Note1:

Band	Uplink(UL) Frequency Range (MHz)	Downlink(DL) Frequency Range (MHz)	Ant. 1 Gain (dBi)	Ant. 2 Gain (dBi)	Ant. 3 Gain (dBi)	Ant. 4 Gain (dBi)	Ant. 5 Gain (dBi)	Ant. 6 Gain (dBi)
WCDMA Band 2	1850-1910	1930-1990	-4.68	-	-5.07	-	-	-
WCDMA Band 4	1710-1755	2110-2155	-2.09	-	-2.33	-	-	ı
WCDMA Band 5	824-849	869-894	-2.51	-	-2.49	-	-	i
LTE Band 4	1710-1755	2110-2155	-2.09	-2.22	-2.33	-2.78	-	ı
LTE Band 5	824-849	869-894	-2.51	-	-2.49	-	-	-
LTE Band 12	699-716	729-746	-	-3.94	ı	-3.22	-	i
LTE Band 41	2496-2690		-2.77	-3.41	-3.33	-2.94	-	ı
LTE Band 48 and 5G NR n48	355	0-3700	-3.99	-4.44	-5.16	-4.55	-	ı
LTE Band 66 and 5G NR n66	1710-1780	2110-2200	-2.09	-2.22	-2.33	-2.78	-	-

Note2: The above information was declared by manufacturer.

Note3:

For 1TX/2RX (WCDMA Band 2, 4 and 5 / 4G Band 5):

Only Ant. 1 can be used as transmitting functions. Ant. 1 and Ant. 3 could receive simultaneously.

For 1TX/2RX (4G Band 12):

Only Ant. 4 can be used as transmitting functions. Ant. 2 and Ant. 4 could receive simultaneously

For 1TX/4RX (4G Band 41 and 48 / 5G Band n48,n66):

Only Ant. 1 can be used as transmitting functions.

Ant. 1, 2, 3 and Ant. 4 could receive simultaneously.

For 1TX/4RX (4G Band 4, 66):

The EUT supports the Ant. 1 and Ant. 4 with TX diversity function. At once time there is only one antenna port can transmitting RF signal

Ant. 1, 2, 3 and Ant. 4 could receive simultaneously.

TEL: 886-3-656-9065 Page Number : 6 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

For WLAN Function

Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
7	1	Partron	APCBWCG770	PCB Antenna	I-PEX	Noto1
8	2	Partron	APCBWCG770	PCB Antenna	I-PEX	Note1

Report No.: FR221722AA

Note1:

Band	Ant. 7 Gain (dBi)	Ant. 8 Gain (dBi)
WLAN-2.4GHz	-2.2	-4.08
WLAN-5GHz	-4.28	-3.0

Note2: The above information was declared by manufacturer.

Note3:

For 2.4GHz function:

For IEEE 802.11b/g/n/ax mode (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11n/ac/ax mode (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

Note4: Directional gain information

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	Directional Gain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{AMT}} \left\{ \sum_{k=1}^{N_{AMT}} \mathbf{g}_{j,k} \right\}^{2}}{N_{AMT}} \right]$

Ex.

Directiona
$$IGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{AST}} \left\{ \sum_{k=1}^{N_{AST}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

 $NSS1(g1,1) = 10^{G1/20}$; $NSS1(g1,2) = 10^{G2/20}$; $NSS1(g1,2) = 10^{G3/20}$; $NSS1(g1,2) = 10^{G4/20}$

$$gj,k = (Nss1(g1,1) + Nss1(g1,2) + Nss1(g1,3) + Nss1(g1,4))^2$$

DG =
$$10 \log[(Nss1(g1,1) + Nss1(g1,2) + Nss1(g1,3) + Nss1(g1,4))^2 / N_{ANT}] => 10$$

$$\log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / N_{ANT}]$$

Where;

$$5G = G1 = -4.28$$
; $G2 = -3$

2.4G DG = -0.08 dBi

5 GHz U-NII-1 DG = -0.61 dBi

5 GHz U-NII-3 DG = -0.61 dBi

TEL: 886-3-656-9065 Page Number : 7 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.11b	0.979	0.09	690u	3k
802.11g	0.991	0.04	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11n HT20	0.996	0.02	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11ax HEW20	0.995	0.02	n/a (DC>=0.98)	n/a (DC>=0.98)

Report No.: FR221722AA

N	0+0.

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	For	Form power adapter or battery			
Beamforming Function		☐ With beamforming ☐ Without beamforming			
Function				Point-to-point	
Test Software Version	QRCT v4.0.00189.0				

Note: The above information was declared by manufacturer.

 TEL: 886-3-656-9065
 Page Number : 8 of 33

 FAX: 886-3-656-9085
 Issued Date : Jul. 04, 2022

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR221722AA

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab. : Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH03-CB	Lucas Huang	23.9-24.4 / 63-65	Mar. 08, 2022~ Apr. 13, 2022
Radiated Above 1GHz (Other test items)	03CH02-CB		23.8-24.9 / 55-58	Mar. 00, 2020
Radiated Above 1GHz (Other test items), below 1GHz and Co-location	03CH05-CB	Kevin Huang	24.5-25.6 / 56-59	Mar. 08, 2022~ May 05, 2022
AC Conduction	CO01-CB	Joe Chu	20~22 / 60~62	Mar. 25, 2022

TEL: 886-3-656-9065 Page Number: 9 of 33
FAX: 886-3-656-9085 Issued Date: Jul. 04, 2022

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR221722AA

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.5 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	2.5 dB	Confidence levels of 95%
Output Power Measurement	1.3 dB	Confidence levels of 95%
Power Density Measurement	2.5 dB	Confidence levels of 95%
Bandwidth Measurement	0.9%	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 10 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.11b_Nss1,(1Mbps)_2TX	-
2412MHz	18
2437MHz	18
2462MHz	18
802.11g_Nss1,(6Mbps)_2TX	-
2412MHz	16.5
2437MHz	16
2462MHz	16.5
802.11n HT20_Nss1,(MCS0)_2TX	-
2412MHz	14.5
2437MHz	14.5
2462MHz	14.5
802.11ax HEW20_Nss1,(MCS0)_2TX	-
2412MHz	13.5
2437MHz	13.5
2462MHz	14

Report No.: FR221722AA

 TEL: 886-3-656-9065
 Page Number
 : 11 of 33

 FAX: 886-3-656-9085
 Issued Date
 : Jul. 04, 2022

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode Normal Link			
1 EUT+WLAN 2.4GHz/5GHz+WAN+battery-powered from adapter			
2 EUT+WLAN 2.4GHz/5GHz+WWAN-3G Band 2+battery-powered from adapter			
3	EUT+WLAN 2.4GHz/5GHz+WWAN-4G Band 4+battery-powered from adapter		
4 EUT+WLAN 2.4GHz/5GHz+WWAN-5G Band n66+battery-powered from adapte			
For operating mode 1 is the worst case and it was record in this test report.			

Report No.: FR221722AA

The Worst Case Mode for Following Conformance Tests			
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density		
Test Condition Conducted measurement at transmit chains			

The Worst Case Mode for Following Conformance Tests				
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
	CTX			
Operating Mode < 1GHz	The EUT was performed at X axis, Y axis and Z axis position for Emissions in Radiated measurement above 1GHz test, and the worst case was found at Y axis for WLAN 2.4GHz and at X axis for WLAN 5GHz. So the measurement will follow this same test configuration.			
1	EUT in Y axis+WLAN 2.4GHz+battery-powered from adapter			
2	EUT in Y axis+WLAN 2.4GHz+battery-powered from battery			
Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3 will foll this same test mode.				
3	EUT in X axis+WLAN 5GHz+battery-powered from adapter			
For operating mode 3 is the worst case and it was record in this test report.				

 TEL: 886-3-656-9065
 Page Number
 : 12 of 33

 FAX: 886-3-656-9085
 Issued Date
 : Jul. 04, 2022

	СТХ
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis position. The worst case as below:
1	EUT in Z axis (Bandedge)
2	EUT in Y axis (Harmonic)

Report No.: FR221722AA

The Worst Case Mode for Following Conformance Tests			
Tests Item	Simultaneous Transmission Analysis - Radiated Emission Co-location		
Test Condition Radiated measurement			
	Normal Link		
Operating Mode	The EUT can be placed in X axis, Y axis and Z axis. EUT in Y axis has been evaluated to be the worst case at Emissions in Radiated measurement above 1GHz; thus, the measurement will follow this same test		
1	EUT in Y axis + WLAN 2.4GHz + WLAN 5GHz		
Refer to Appendix G for Radiated Emission Co-location.			

Note: The micro USB port can not be used by the end-user. It is generally used for debugging by engineers.

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

TEL: 886-3-656-9065 Page Number : 13 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

2.4 Accessories

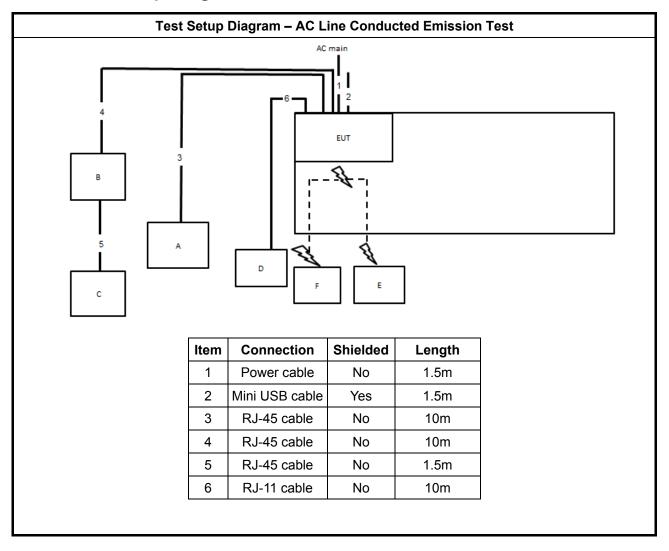
	Accessories						
No.	Equipment Name	Brand Name	Model Name	Rating			
1	Adapter	Franklin	APS-M024120200W-G	INPUT: 100-240V~50-60Hz, 0.6A Max. OUTPUT: 12V, 2.0A			
2	Lithium Ion Polymer(LIP) battery	AE- Tech.	941-A05053-011	3.8V, 15.01Wh, 3950m4Ah			

Report No.: FR221722AA

2.5 Support Equipment

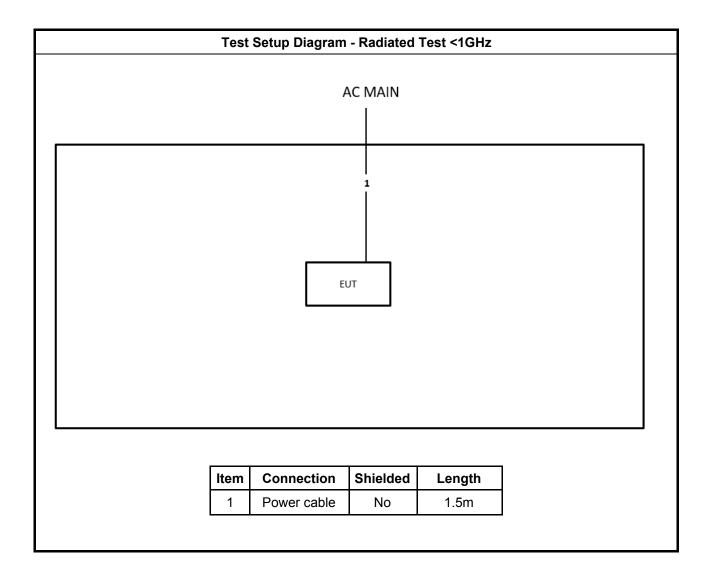
For AC Conduction:

	Support Equipment							
No.	No. Equipment Brand Name Model Name FCC ID							
Α	LAN NB	DELL	E6430	N/A				
В	AP Router	ASUS	RP-N53	MSQ-RPN53				
С	WAN NB	DELL	E6430	N/A				
D	Phone	SAMPO	HT-B 907WL	N/A				
Е	5G NB	DELL	E6430	N/A				
F	2.4G NB	DELL	E6430	N/A				

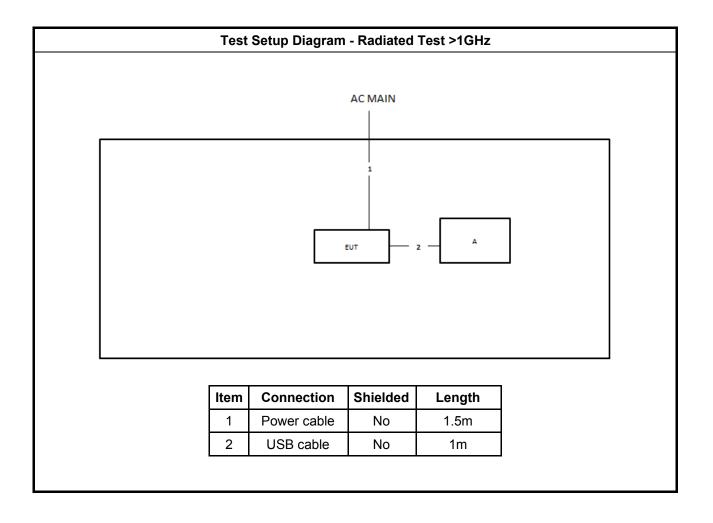

For Radiated and RF Conducted:

Support Equipment								
No.	No. Equipment Brand Name Model Name FCC ID							
Α	A Notebook DELL E4300 N/A							

TEL: 886-3-656-9065 Page Number : 14 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022


Report No. : FR221722AA

2.6 Test Setup Diagram


TEL: 886-3-656-9065 Page Number : 15 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

Report No.: FR221722AA

TEL: 886-3-656-9065 Page Number : 16 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

Report No.: FR221722AA

TEL: 886-3-656-9065 Page Number : 17 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3 Transmitter Test Result

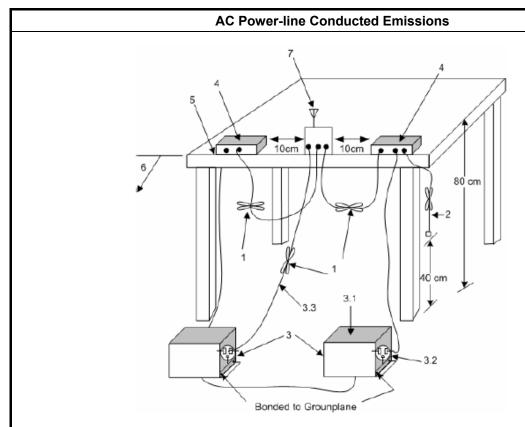
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

Report No.: FR221722AA

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number : 18 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.1.4 Test Setup

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR221722AA

- 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.
- 3.3—LISN at least 80 cm from nearest part of EUT chassis.
- 4—Non-EUT components of EUT system being tested.
- 5—Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.
- 6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

3.1.5 Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

3.1.6 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

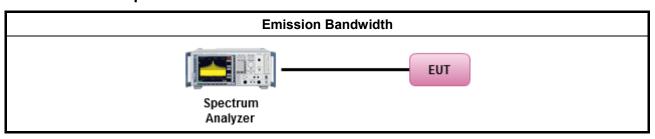
TEL: 886-3-656-9065 Page Number: 19 of 33
FAX: 886-3-656-9085 Issued Date: Jul. 04, 2022

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit					
Systems using digital modulation techniques:					
■ 6 dB bandwidth ≥ 500 kHz.					

Report No.: FR221722AA


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
•	For the emission bandwidth shall be measured using one of the options below:								
	\boxtimes	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.							
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 20 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If G_{TX} ≤ 6 dBi, then P_{Out} ≤ 30 dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

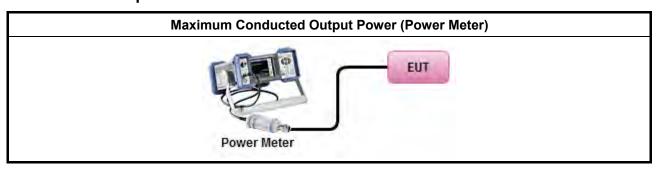
Report No.: FR221722AA

 P_{out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 21 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022


3.3.3 Test Procedures

		Test Method
•	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).
•	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)
	Mea	surement using a power meter (PM)
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For	conducted measurement.
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = $P_{total} + DG$

Report No.: FR221722AA

TEL: 886-3-656-9065 Page Number : 22 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.3.4 Test Setup

Report No.: FR221722AA

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-656-9065 Page Number : 23 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

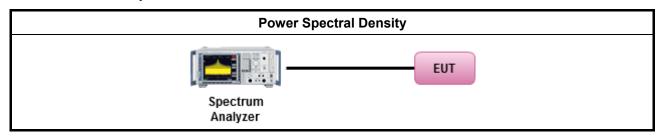
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR221722AA

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method								
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).								
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.							
•	For co	onducted measurement.							
	•	f The EUT supports multiple transmit chains using options given below:							
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.							
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,							
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							

TEL: 886-3-656-9065 Page Number : 24 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.4.4 Test Setup

Report No.: FR221722AA

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 25 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

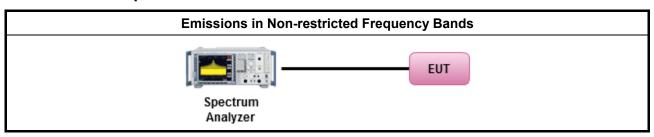
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit						
RF output power procedure Limit (dBc)						
Peak output power procedure	20					
Average output power procedure	30					

Report No.: FR221722AA

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
 Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands. 	

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 26 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (uV/m) Field Strength (dBuV/m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960 500		54	3				

Report No.: FR221722AA

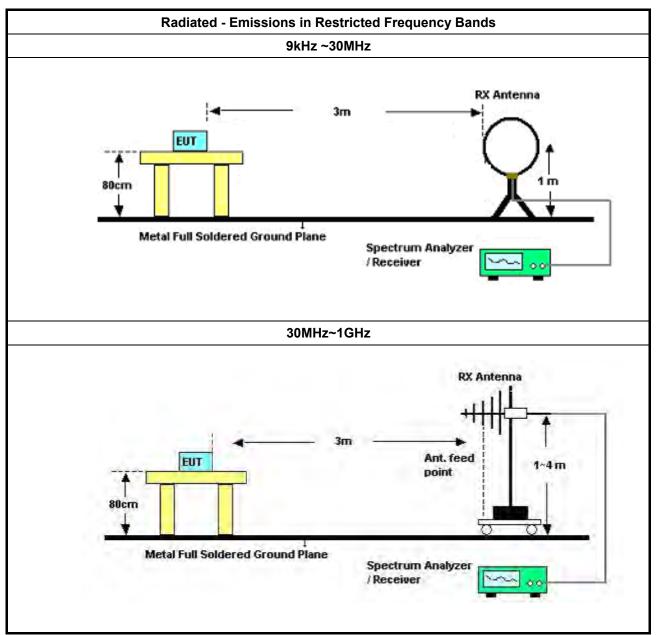
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 27 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.6.3 Test Procedures


		Test Method						
•	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].						
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
•	For the transmitter unwanted emissions shall be measured using following options below:							
	Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.							
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).						
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).						
		☐ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).						
		Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.						
		Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.						
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.						
•	For	the transmitter band-edge emissions shall be measured using following options below:						
	•	Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.						
	•	Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.						
	•	Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).						
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB						
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.						

Report No.: FR221722AA

TEL: 886-3-656-9065 Page Number : 28 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

3.6.4 Test Setup

TEL: 886-3-656-9065 Page Number : 29 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

Report No.: FR221722AA

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number: 30 of 33
FAX: 886-3-656-9085 Issued Date: Jul. 04, 2022

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Feb. 22, 2022	Feb. 21, 2023	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Feb. 09, 2022	Feb. 08, 2023	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Jan. 07, 2022	Jan. 06, 2023	Conduction (CO01-CB)
Pulse Limiter	Rohde&Schwa rz	ESH3-Z2	100430	9kHz ~ 30MHz	Feb. 10, 2022	Feb. 09, 2023	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 19, 2021	May 18, 2022	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
3m Semi Anechoic Chamber (NSA)	RIKEN	SAC-3M	03CH02-CB	30 MHz ~ 1 GHz	Mar. 27, 2021	Mar. 26, 2022	Radiation (03CH02-CB)
3m Semi Anechoic Chamber NSA	RIKEN	SAC-3M	03CH02-CB	30 MHz ~ 1 GHz	Mar. 26, 2022	Mar. 25, 2023	Radiation (03CH02-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz 3m	Mar. 27, 2021	Mar. 26, 2022	Radiation (03CH02-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	Mar. 26, 2022	Mar. 25, 2023	Radiation (03CH02-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	BBHA 9120 D 1370	1GHz~18GHz	Sep. 14, 2021	Sep. 13, 2022	Radiation (03CH02-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 05, 2021	Aug. 04, 2022	Radiation (03CH02-CB)
Pre-Amplifier	Agilent	83017A	MY39501305	1GHz ~ 26.5GHz	Jul. 12, 2021	Jul. 11, 2022	Radiation (03CH02-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 13, 2021	Jul. 12, 2022	Radiation (03CH02-CB)
Spectrum analyzer	R&S	FSU	100015	9kHz~26GHz	Oct. 25, 2021	Oct. 24, 2022	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Oct. 04, 2021	Oct. 03, 2022	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz	Oct. 04, 2021	Oct. 03, 2022	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#5+7	1GHz ~ 40 GHz	Dec. 14, 2021	Dec. 13, 2022	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 08, 2021	Dec. 07, 2022	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#7	1GHz ~ 40 GHz	Dec. 14, 2021	Dec. 13, 2022	Radiation (03CH02-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_10 Ver1.3

Page Number : 31 of 33 Issued Date : Jul. 04, 2022

Report No.: FR221722AA

Report Version : 01

Calibration Calibration Instrument **Brand** Model No. Serial No. Characteristics Remark **Date Due Date** Radiation Test Software **SPORTON** SENSE N.C.R. N.C.R. V5 10 (03CH02-CB) 3m Semi Radiation 03CH05-CB Aug. 09, 2021 Aug. 08, 2022 Anechoic TDK SAC-3M 30 MHz ~ 1 GHz (03CH05-CB) Chamber NSA 3m Semi Radiation Anechoic 1GHz ~18GHz 03CH05-CB Nov. 07, 2021 Nov. 06, 2022 **TDK** SAC-3M Chamber 3m (03CH05-CB) **VSWR** Bilog Antenna CBL 6112D & TESEQ & 35236 & Radiation with 6dB 30MHz ~ 2GHz Mar. 26, 2021 Mar. 25, 2022 AT-N0610 (03CH05-CB) **EMCI** N-6-06 Attenuator Bilog Antenna CBL 6112D & TESEQ & 35236 & Radiation with 6dB 30MHz ~ 2GHz Mar. 25, 2022 Mar. 24, 2023 AT-N0610 (03CH05-CB) **EMCI** N-6-06 Attenuator **SCHWARZBE BBHA 9120** Radiation Horn Antenna **BBHA9120D** 1GHz~18GHz Oct. 14, 2021 Oct. 13, 2022 CK D-1291 (03CH05-CB) Radiation Schwarzbeck **BBHA 9170** BBHA9170252 15GHz ~ 40GHz Horn Antenna Aug. 05, 2021 Aug. 04, 2022 (03CH05-CB) Radiation FMC330N 980331 20MHz ~ 3GHz Pre-Amplifier **FMCI** Apr. 27, 2021 Apr. 26, 2022 (03CH05-CB) Radiation Pre-Amplifier **FMCI** FMC330N 980331 20MHz ~ 3GHz Apr. 26, 2022 Apr. 25, 2023 (03CH05-CB) Radiation Pre-Amplifier **EMCI** EMC12630SE 980287 1GHz - 26.5GHz Jul. 02, 2021 Jul. 01, 2022 (03CH05-CB) TTA1840-35-H Radiation Pre-Amplifier MITEQ 1864479 18GHz ~ 40GHz Jul. 13, 2021 Jul. 12, 2022 (03CH05-CB) Signal Radiation Mar. 21, 2022 R&S FSV40 101903 9kHz ~ 40GHz Mar. 22, 2021 (03CH05-CB) Analyzer Spectrum Radiation R&S FSP40 100304 9kHz ~ 40GHz Mar. 14, 2022 Mar. 13, 2023 Analyzer (03CH05-CB) **EMI Test** Radiation 826547/017 9kHz ~ 2.75GHz R&S **ESCS** Jun. 21, 2021 Jun. 20, 2022 Receiver (03CH05-CB) Radiation RF Cable-low Woken RG402 30MHz~1GHz Oct. 13, 2021 Oct. 12, 2022 Cable-04+23 (03CH05-CB) Radiation RG402 High Cable-28 1GHz~18GHz Oct. 13, 2021 Oct. 12, 2022 RF Cable-high Woken (03CH05-CB) High Radiation RF Cable-high Woken RG402 1GHz~18GHz Oct. 13, 2021 Oct. 12, 2022 Cable-04+28 (03CH05-CB) Radiation WCA0929M 40G#5+7 1GHz ~ 40 GHz High Cable Woken Dec. 14, 2021 Dec. 13, 2022 (03CH05-CB) Radiation High Cable Woken WCA0929M 40G#5 1GHz ~ 40 GHz Dec. 08, 2021 Dec. 07, 2022 (03CH05-CB) Radiation Dec. 13, 2022 WCA0929M 40G#7 High Cable Woken 1GHz ~ 40 GHz Dec. 14, 2021 (03CH05-CB) Radiation Test Software **SPORTON** SENSE V5.10 N.C.R. N.C.R. (03CH05-CB) Spectrum Conducted FSV40 R&S 101028 9kHz~40GHz Jan. 07, 2022 Jan. 06, 2023

TEL: 886-3-656-9065 FAX: 886-3-656-9085

analyzer

Report Template No.: CB-A10_10 Ver1.3

Page Number : 32 of 33 Issued Date : Jul. 04, 2022

(TH03-CB)

Report No.: FR221722AA

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Power Sensor	Anritsu	MA2411B	1726195	300MHz~40GHz	Aug. 22, 2021	Aug. 21, 2022	Conducted (TH03-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Aug. 22, 2021	Aug. 21, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-11	1 GHz –18 GHz	Oct. 04, 2021	Oct. 03, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-12	1 GHz –18 GHz	Oct. 04, 2021	Oct. 03, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-13	1 GHz –18 GHz	Oct. 04, 2021	Oct. 03, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-14	1 GHz –18 GHz	Oct. 04, 2021	Oct. 03, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-15	1 GHz –18 GHz	Oct. 04, 2021	Oct. 03, 2022	Conducted (TH03-CB)
Switch	SPTCB	SP-SWI	SWI-03	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	SWI-03-P1	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	SWI-03-P2	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	SWI-03-P3	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	SWI-03-P4	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	SWI-03-P5	1 GHz –26.5 GHz	Dec. 13, 2021	Dec. 12, 2022	Conducted (TH03-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH03-CB)

Report No.: FR221722AA

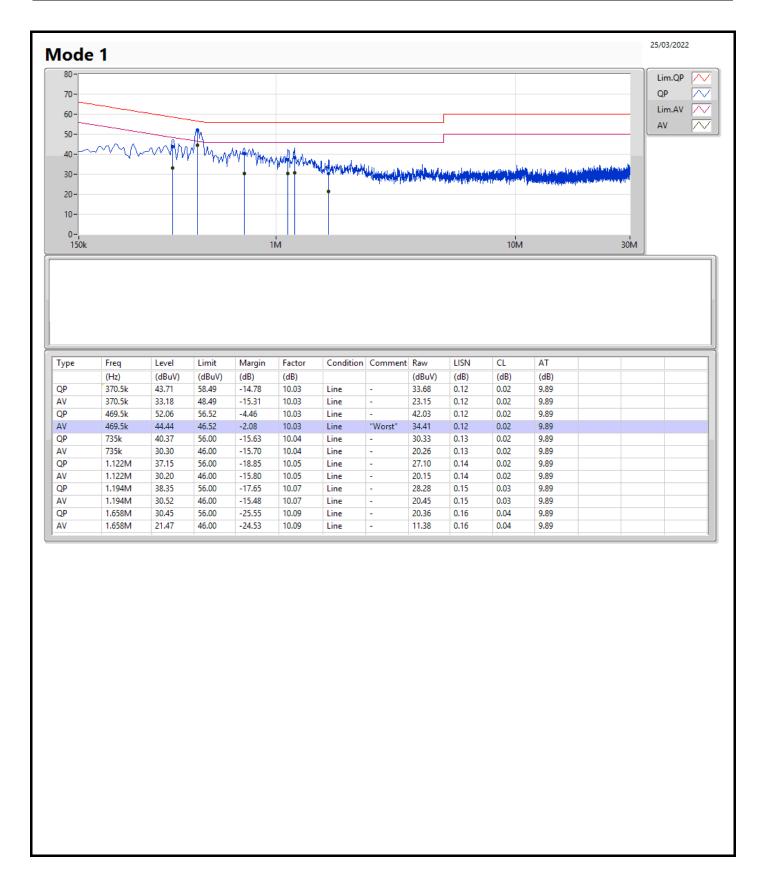
Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

TEL: 886-3-656-9065 Page Number : 33 of 33
FAX: 886-3-656-9085 Issued Date : Jul. 04, 2022

Conducted Emissions at Powerline

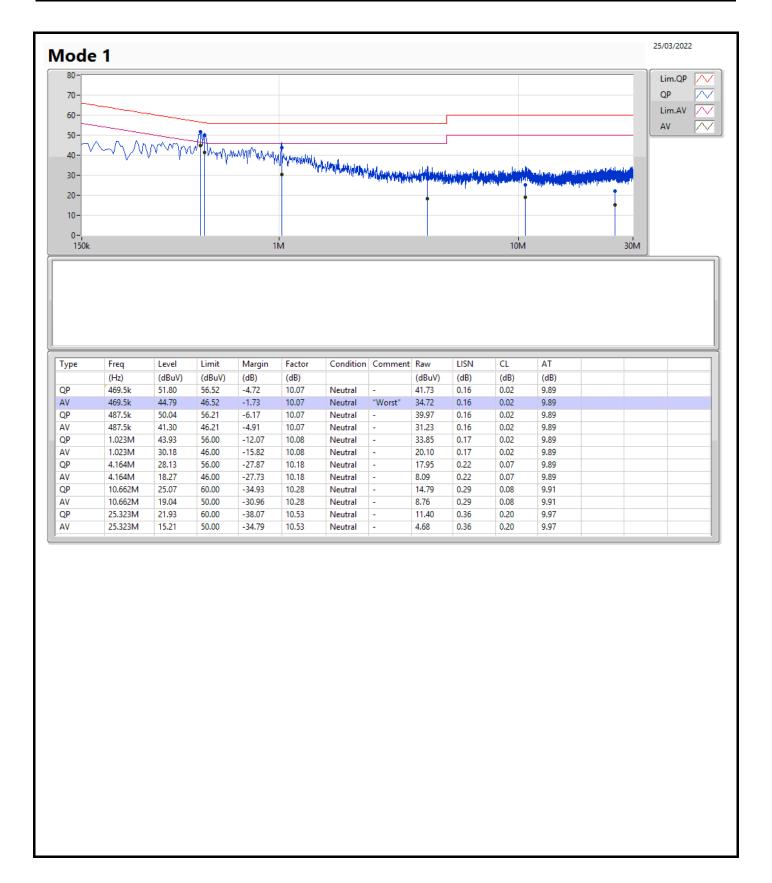
Appendix A


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 1	Pass	AV	469.5k	44.79	46.52	-1.73	Neutral

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of

Report No. : FR221722AA



Page No. : 2 of 3

Report No. : FR221722AA

Page No. : 3 of 3

Report No. : FR221722AA

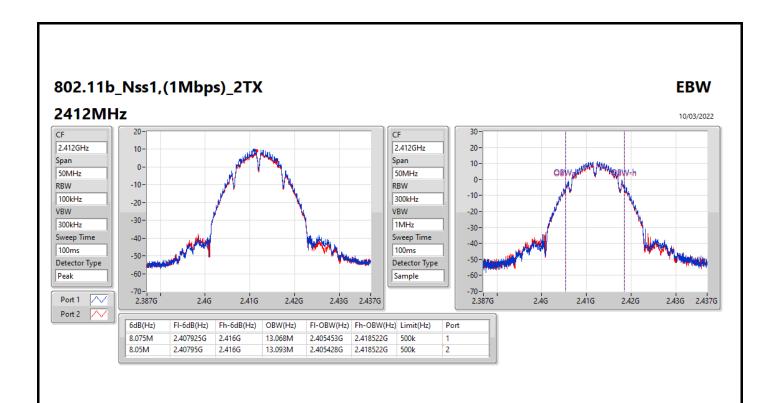
Summary

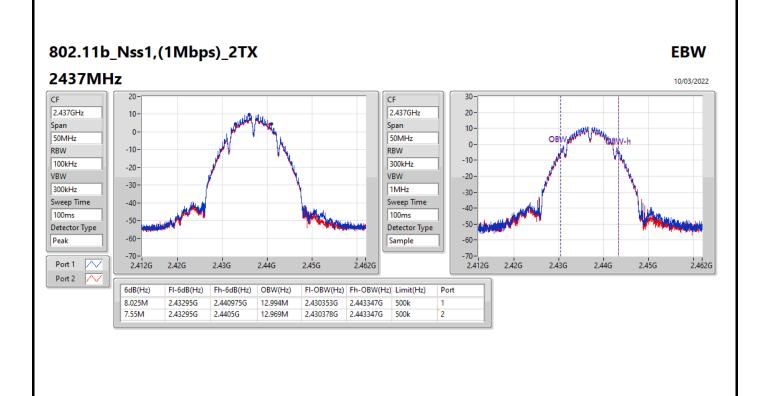
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	8.075M	13.093M	13M1G1D	7.55M	12.744M
802.11g_Nss1,(6Mbps)_2TX	16.3M	16.442M	16M4D1D	15.45M	16.367M
802.11n HT20_Nss1,(MCS0)_2TX	17.3M	17.675M	17M7D1D	15.025M	17.55M
802.11ax HEW20_Nss1,(MCS0)_2TX	18.925M	18.966M	19M0D1D	17.95M	18.866M

 $\label{eq:max-N} Max-N\,dB = Maximum\,6dB\,down\,bandwidth;\,Max-OBW = Maximum\,99\%\,occupied\,bandwidth;\,Min-N\,dB = Minimum\,6dB\,down\,bandwidth;\,Min-OBW = Minimum\,99\%\,occupied\,bandwidth$

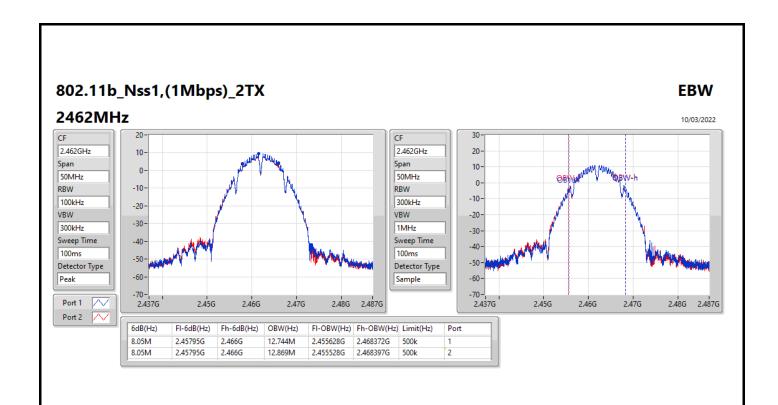
Sporton International Inc. Hsinchu Laboratory Page No. : 1 of

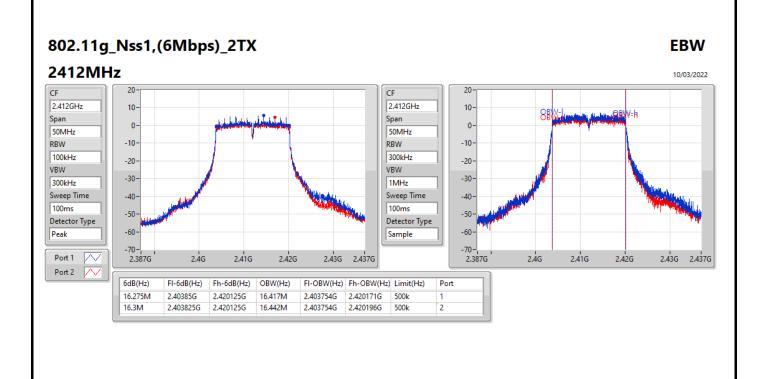
Report No. : FR221722AA

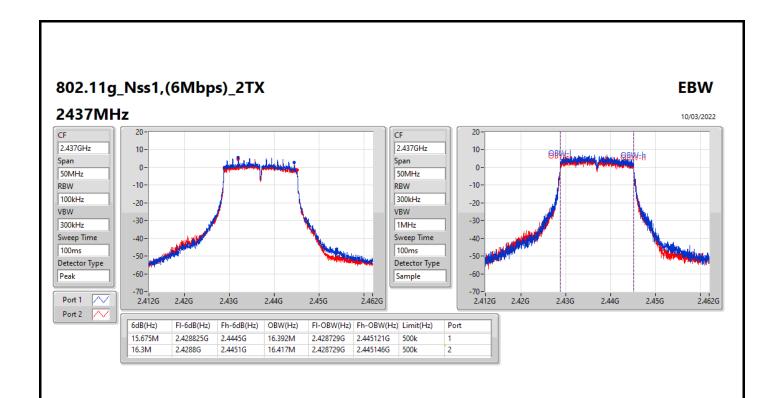

Result

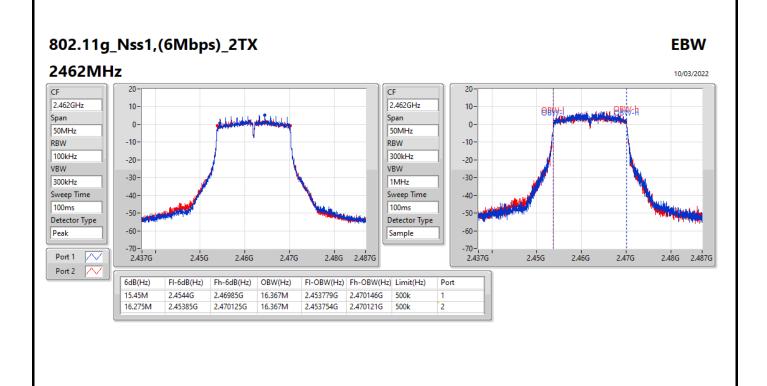

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	8.075M	13.068M	8.05M	13.093M
2437MHz	Pass	500k	8.025M	12.994M	7.55M	12.969M
2462MHz	Pass	500k	8.05M	12.744M	8.05M	12.869M
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	16.275M	16.417M	16.3M	16.442M
2437MHz	Pass	500k	15.675M	16.392M	16.3M	16.417M
2462MHz	Pass	500k	15.45M	16.367M	16.275M	16.367M
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	17.3M	17.625M	16.9M	17.675M
2437MHz	Pass	500k	16.5M	17.65M	17.125M	17.65M
2462MHz	Pass	500k	15.025M	17.55M	17.15M	17.55M
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	18.325M	18.891M	17.95M	18.891M
2437MHz	Pass	500k	18.925M	18.916M	18.775M	18.966M
2462MHz	Pass	500k	18.2M	18.866M	18.1M	18.866M

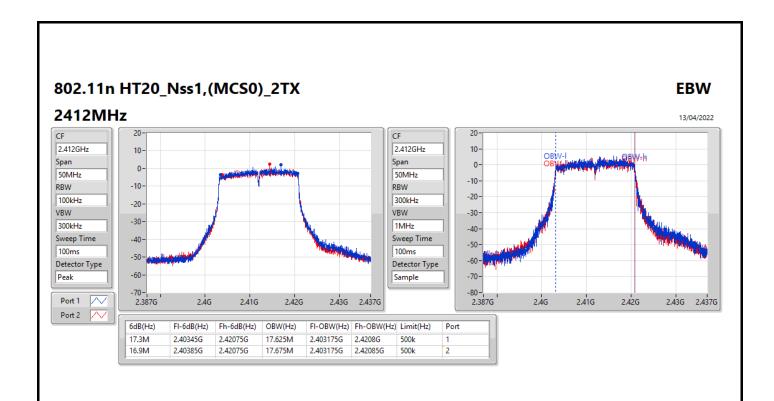
Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

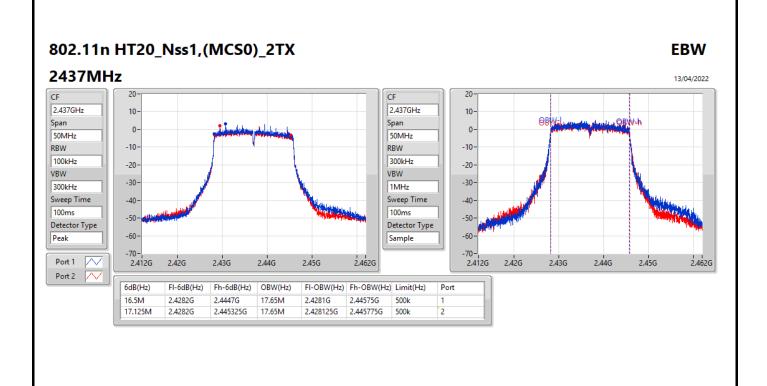

Page No. : 2 of 9

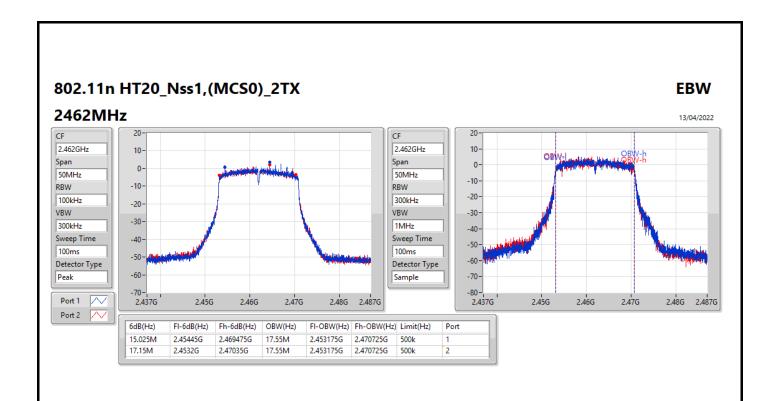

Report No. : FR221722AA

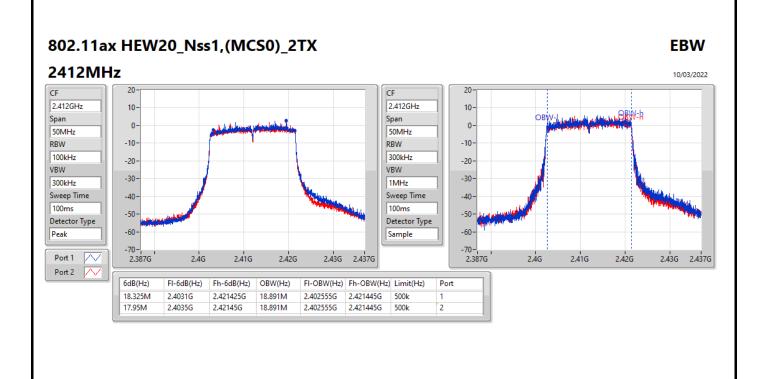


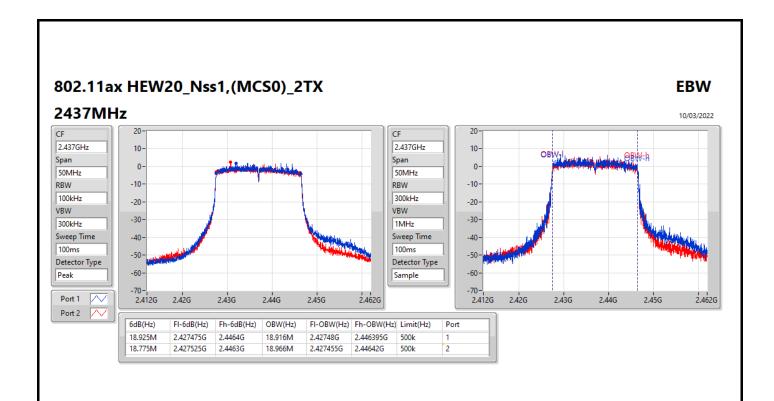

Page No. : 3 of 9
Report No. : FR221722AA

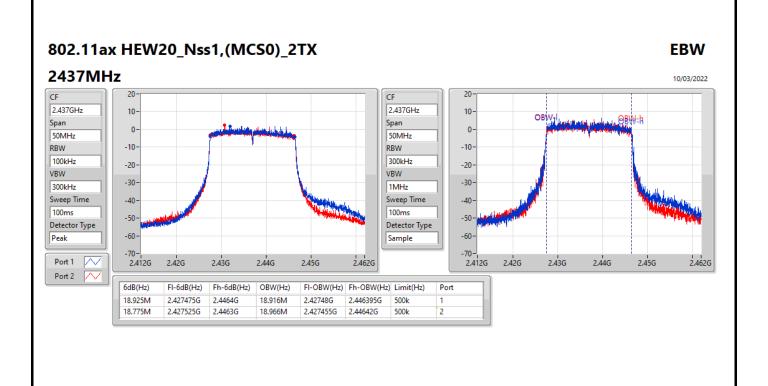



Page No. : 4 of 9
Report No. : FR221722AA

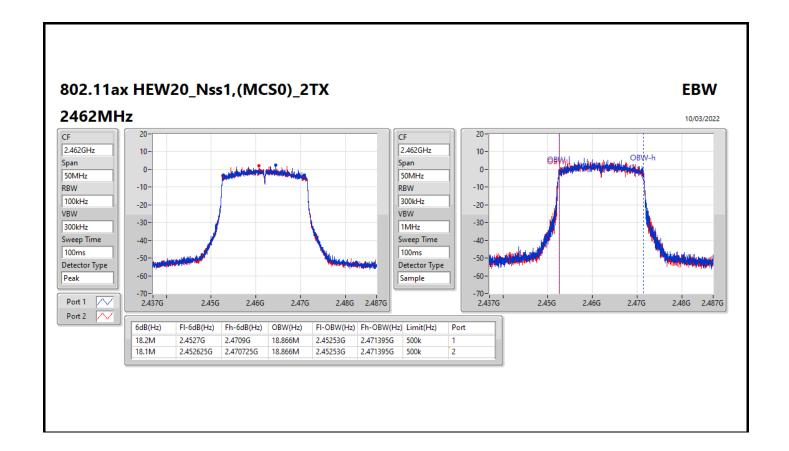



Page No. : 5 of 9
Report No. : FR221722AA




Page No. : 6 of 9
Report No. : FR221722AA

Page No. : 7 of 9
Report No. : FR221722AA



Page No. : 8 of 9
Report No. : FR221722AA

SPORTON LAB.

EBW Appendix B

Page No. : 9 of 9
Report No. : FR221722AA

Average Power Appendix C

Summary

Mode	Total Power	Total Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
802.11b_Nss1,(1Mbps)_2TX	21.26	0.13366
802.11g_Nss1,(6Mbps)_2TX	19.25	0.08414
802.11n HT20_Nss1,(MCS0)_2TX	17.27	0.05333
802.11ax HEW20_Nss1,(MCS0)_2TX	16.48	0.04446

Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 2

Report No. : FR221722AA

Appendix C Average Power

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	-2.20	18.46	17.84	21.17	30.00
2437MHz	Pass	-2.20	18.64	17.82	21.26	30.00
2462MHz	Pass	-2.20	18.19	18.10	21.16	30.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	-2.20	16.55	15.79	19.20	30.00
2437MHz	Pass	-2.20	16.57	15.53	19.09	30.00
2462MHz	Pass	-2.20	16.26	16.22	19.25	30.00
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	-2.20	14.48	13.71	17.12	30.00
2437MHz	Pass	-2.20	14.72	13.75	17.27	30.00
2462MHz	Pass	-2.20	13.97	13.82	16.91	30.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	-2.20	13.45	12.83	16.16	30.00
2437MHz	Pass	-2.20	13.60	12.86	16.26	30.00
2462MHz	Pass	-2.20	13.50	13.44	16.48	30.00

DG = Directional Gain; Port X = Port X output power

Page No. Report No. : FR221722AA

: 2 of 2

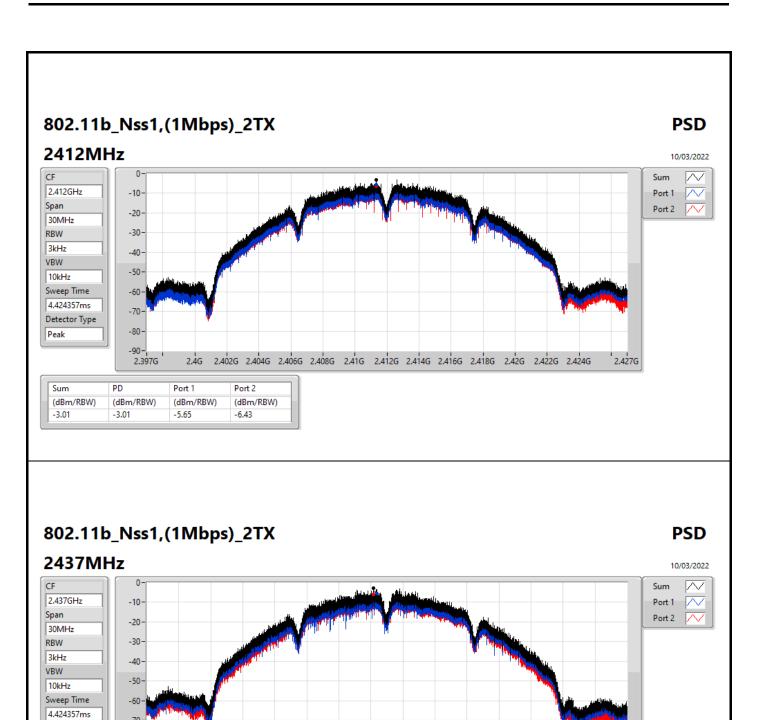
Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
802.11b_Nss1,(1Mbps)_2TX	-2.96
802.11g_Nss1,(6Mbps)_2TX	-9.02
802.11n HT20_Nss1,(MCS0)_2TX	-8.16
802.11ax HEW20_Nss1,(MCS0)_2TX	-10.08

RBW = 3kHz;

Page No. : 1 of 8

Report No. : FR221722AA


Result

Mode	Result	DG	Port 1	Port 2	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	-0.08	-5.65	-6.43	-3.01	8.00
2437MHz	Pass	-0.08	-5.77	-5.97	-2.97	8.00
2462MHz	Pass	-0.08	-5.89	-4.52	-2.96	8.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	-0.08	-9.90	-12.23	-9.27	8.00
2437MHz	Pass	-0.08	-10.37	-11.69	-9.26	8.00
2462MHz	Pass	-0.08	-11.20	-11.03	-9.02	8.00
802.11n HT20_Nss1,(MCS0)_2TX	-	-	•	-	-	-
2412MHz	Pass	-0.08	-10.78	-10.07	-8.26	8.00
2437MHz	Pass	-0.08	-10.34	-10.26	-8.16	8.00
2462MHz	Pass	-0.08	-9.71	-10.02	-8.70	8.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	-0.08	-12.98	-13.16	-11.07	8.00
2437MHz	Pass	-0.08	-12.39	-12.92	-10.08	8.00
2462MHz	Pass	-0.08	-12.81	-12.78	-10.44	8.00

Sporton International Inc. Hsinchu Laboratory

: 2 of 8 Page No. Report No. : FR221722AA

DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

2.422G 2.424G 2.426G 2.428G 2.43G 2.432G 2.434G 2.436G 2.438G 2.444G 2.444G 2.446G 2.448G 2.45G 2.452G

Sporton	International Inc	Hsinchu	Laboratory

-80-

(dBm/RBW)

Port 1

-5.77

(dBm/RBW)

Port 2

-5.97

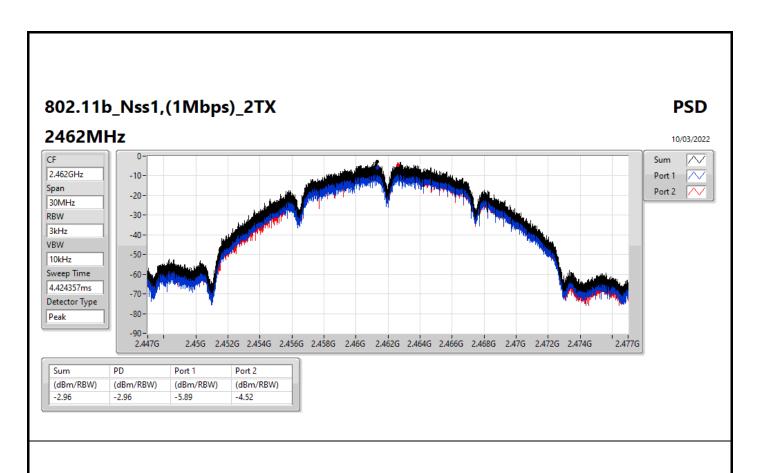
(dBm/RBW)

PD

-2.97

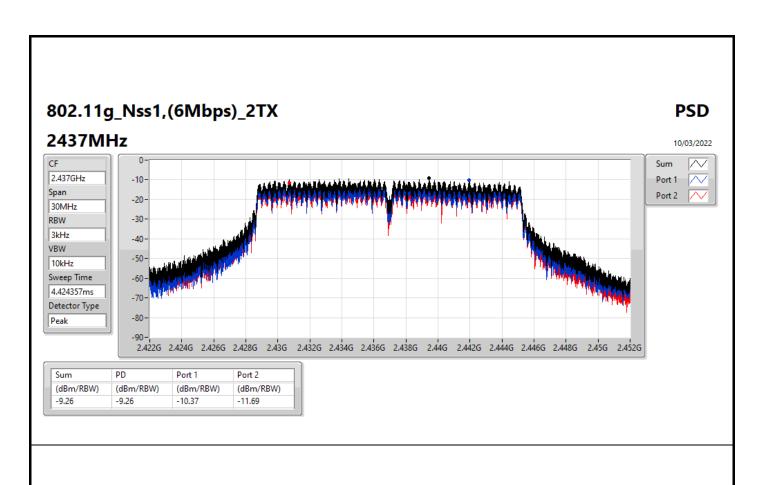
Detector Type

Peak

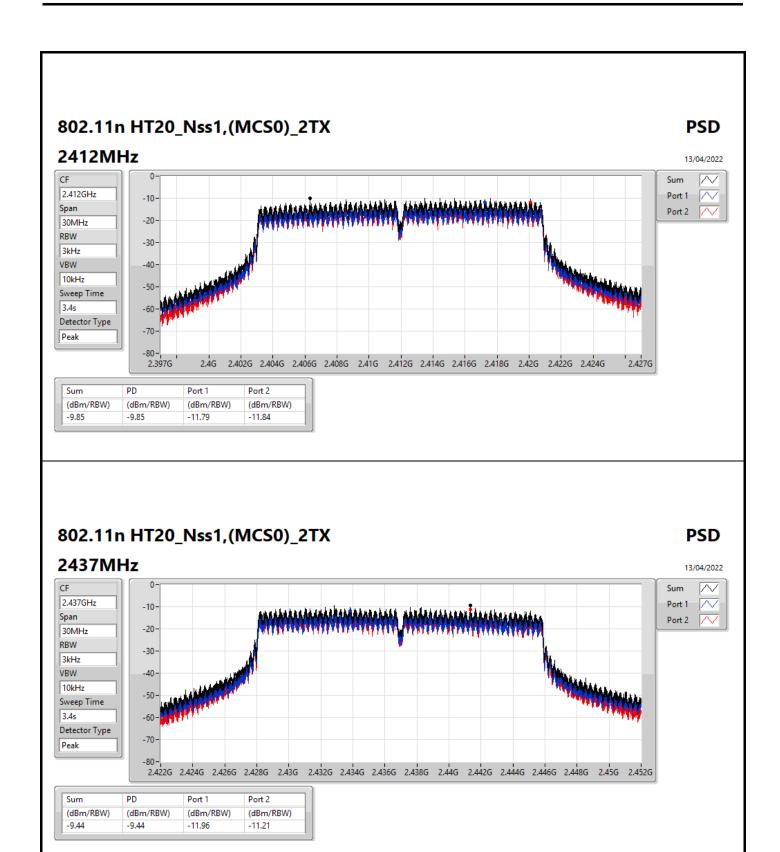

Sum

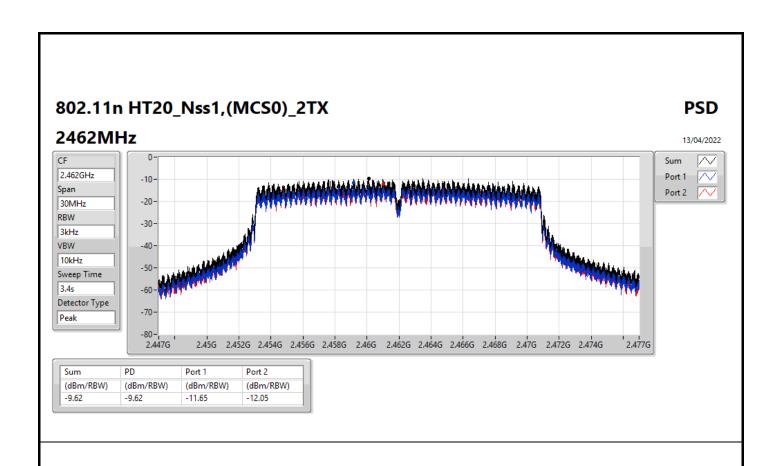
-2.97

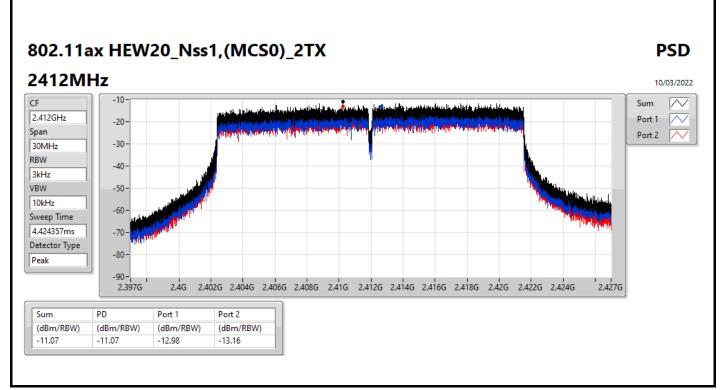
(dBm/RBW)


Page No. : 3 of 8

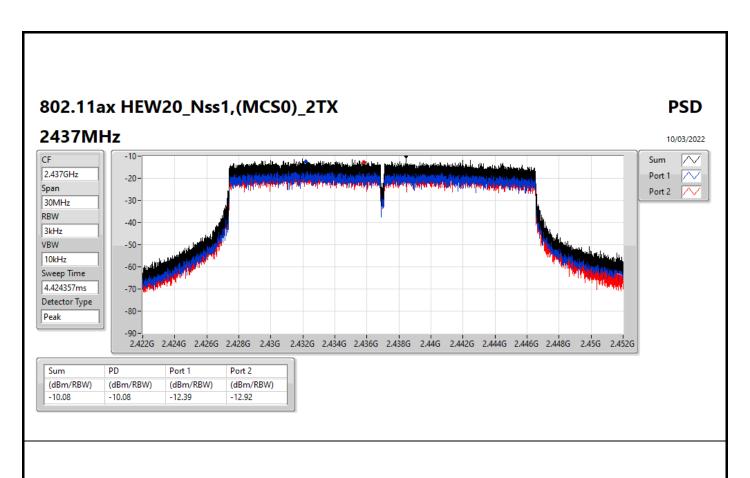
Report No. : FR221722AA


Page No. : 4 of 8
Report No. : FR221722AA


Page No. : 5 of 8


Report No. : FR221722AA

Page No. : 6 of 8


Report No. : FR221722AA

Page No. : 7 of 8

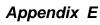
Report No. : FR221722AA

802.11ax HEW20_Nss1,(MCS0)_2TX **PSD** 2462MHz 10/03/2022 /2.462GHz -20-Port 1 Span Port 2 -30-30MHz -40-RBW 3kHz -50-VBW -60-Sweep Time -70-4.424357ms -80 Detector Type -90-Peak 2.447G (dBm/RBW) (dBm/RBW) (dBm/RBW) (dBm/RBW) -10.44 -12.81 -12.78

Page No. : 8 of 8

Report No. : FR221722AA

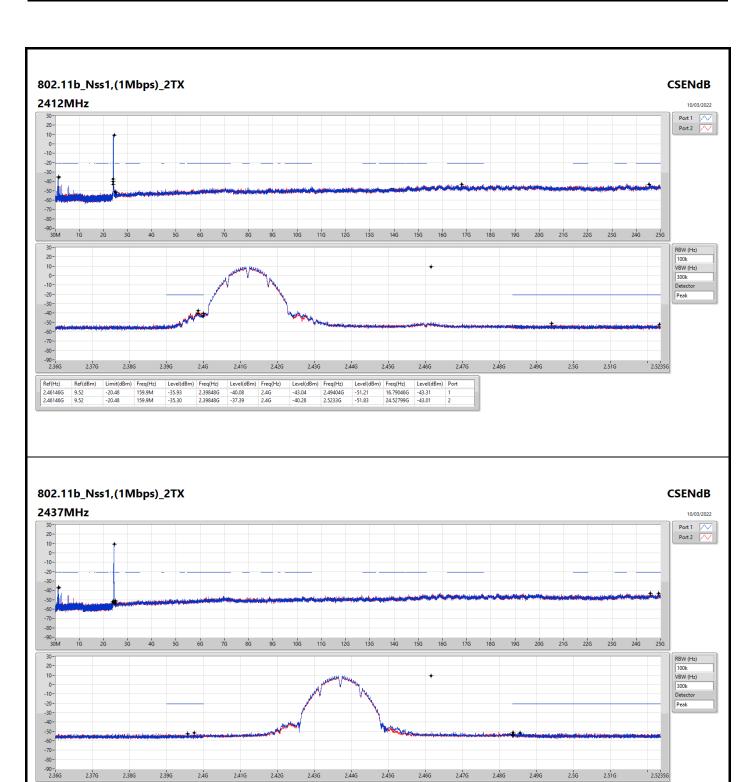
Appendix E


Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	Pass	2.46146G	9.52	-20.48	159.9M	-35.30	2.39848G	-37.39	2.4G	-40.28	2.5233G	-51.83	24.52799G	-43.01	2
802.11g_Nss1,(6Mbps)_2TX	Pass	2.4645G	4.87	-25.13	159.9M	-38.05	2.39986G	-35.62	2.4G	-37.57	2.48422G	-51.35	23.59803G	-43.06	1
802.11n HT20_Nss1,(MCS0)_2TX	Pass	2.43319G	4.15	-25.85	861.23M	-51.75	2.39988G	-36.49	2.4G	-36.68	2.50348G	-50.08	24.87357G	-43.93	1
802.11ax HEW20_Nss1,(MCS0)_2TX	Pass	2.43073G	3.23	-26.77	159.9M	-36.14	2.39152G	-52.98	2.4G	-53.83	2.48468G	-50.22	16.61065G	-43.92	1

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of

Report No. : FR221722AA


Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.46146G	9.52	-20.48	159.9M	-35.93	2.39848G	-40.08	2.4G	-43.04	2.49404G	-51.21	16.79046G	-43.31	1
2412MHz	Pass	2.46146G	9.52	-20.48	159.9M	-35.30	2.39848G	-37.39	2.4G	-40.28	2.5233G	-51.83	24.52799G	-43.01	2
2437MHz	Pass	2.46146G	9.52	-20.48	159.9M	-37.42	2.39564G	-52.32	2.4835G	-54.60	2.48556G	-51.64	24.5898G	-43.29	1
2437MHz	Pass	2.46146G	9.52	-20.48	159.9M	-36.69	2.39744G	-51.42	2.4835G	-52.79	2.48364G	-51.07	24.91852G	-43.27	2
2462MHz	Pass	2.46146G	9.52	-20.48	159.9M	-36.91	2.39538G	-51.86	2.4835G	-52.57	2.48528G	-51.43	23.44631G	-43.00	1
2462MHz	Pass	2.46146G	9.52	-20.48	159.9M	-36.82	2.3959G	-52.04	2.4835G	-52.22	2.49308G	-51.54	17.4788G	-42.10	2
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-		-	-	-		,	-	-		,	-
2412MHz	Pass	2.4645G	4.87	-25.13	159.9M	-38.05	2.39986G	-35.62	2.4G	-37.57	2.48422G	-51.35	23.59803G	-43.06	1
2412MHz	Pass	2.4645G	4.87	-25.13	159.9M	-37.55	2.3998G	-37.06	2.4G	-36.11	2.50332G	-51.26	24.98314G	-42.48	2
2437MHz	Pass	2.4645G	4.87	-25.13	159.9M	-37.02	2.3964G	-52.47	2.4G	-52.18	2.51768G	-51.09	16.60503G	-43.34	1
2437MHz	Pass	2.4645G	4.87	-25.13	159.9M	-36.61	2.3993G	-52.65	2.4G	-55.20	2.50674G	-51.48	24.65723G	-42.21	2
2462MHz	Pass	2.4645G	4.87	-25.13	159.9M	-36.47	2.39362G	-51.77	2.4835G	-53.84	2.48362G	-49.44	16.31564G	-43.46	1
2462MHz	Pass	2.4645G	4.87	-25.13	159.9M	-37.15	2.3985G	-52.68	2.4835G	-53.46	2.49378G	-51.16	24.56171G	-43.57	2
802.11n HT20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.43319G	4.15	-25.85	861.23M	-51.75	2.39988G	-36.49	2.4G	-36.68	2.50348G	-50.08	24.87357G	-43.93	1
2412MHz	Pass	2.43319G	4.15	-25.85	539.98M	-51.90	2.39982G	-38.22	2.4G	-38.99	2.4914G	-50.16	24.84828G	-43.39	2
2437MHz	Pass	2.43319G	4.15	-25.85	786.38M	-51.46	2.39708G	-52.01	2.4G	-53.23	2.50154G	-50.80	16.84103G	-44.01	1
2437MHz	Pass	2.43319G	4.15	-25.85	917.73M	-51.68	2.39756G	-51.34	2.4835G	-54.00	2.50428G	-50.19	23.45474G	-43.85	2
2462MHz	Pass	2.43319G	4.15	-25.85	313.39M	-51.35	2.39836G	-51.72	2.4835G	-52.19	2.49388G	-50.79	17.08265G	-43.90	1
2462MHz	Pass	2.43319G	4.15	-25.85	2.1069G	-51.76	2.3982G	-51.63	2.4835G	-53.68	2.52028G	-50.42	24.49147G	-43.01	2
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-		-	-	-		,	-	-	-	,	-
2412MHz	Pass	2.43073G	3.23	-26.77	159.9M	-37.23	2.39962G	-39.30	2.4G	-38.94	2.50526G	-50.78	16.55726G	-43.77	1
2412MHz	Pass	2.43073G	3.23	-26.77	159.9M	-37.62	2.3993G	-40.80	2.4G	-39.53	2.49094G	-51.68	16.95622G	-42.93	2
2437MHz	Pass	2.43073G	3.23	-26.77	159.9M	-36.86	2.3986G	-52.99	2.4835G	-54.60	2.50182G	-50.34	24.63195G	-42.60	1
2437MHz	Pass	2.43073G	3.23	-26.77	159.9M	-36.40	2.3923G	-51.80	2.4835G	-55.19	2.5205G	-51.68	16.59941G	-43.25	2
2462MHz	Pass	2.43073G	3.23	-26.77	159.9M	-36.14	2.39152G	-52.98	2.4G	-53.83	2.48468G	-50.22	16.61065G	-43.92	1
2462MHz	Pass	2.43073G	3.23	-26.77	159.9M	-36.97	2.39722G	-52.03	2.4835G	-52.96	2.51174G	-50.94	24.60666G	-43.33	2

Page No. : 2 of 8

Report No. : FR221722AA

2.37G

Ref(Hz)

2.46146G 2.46146G

2.38G

Limit(dBm) Freq(Hz)

2.39G

2.4G

Level(dBm) Freq(Hz)

2.41G

Level(dBm) Freq(Hz)

2.42G

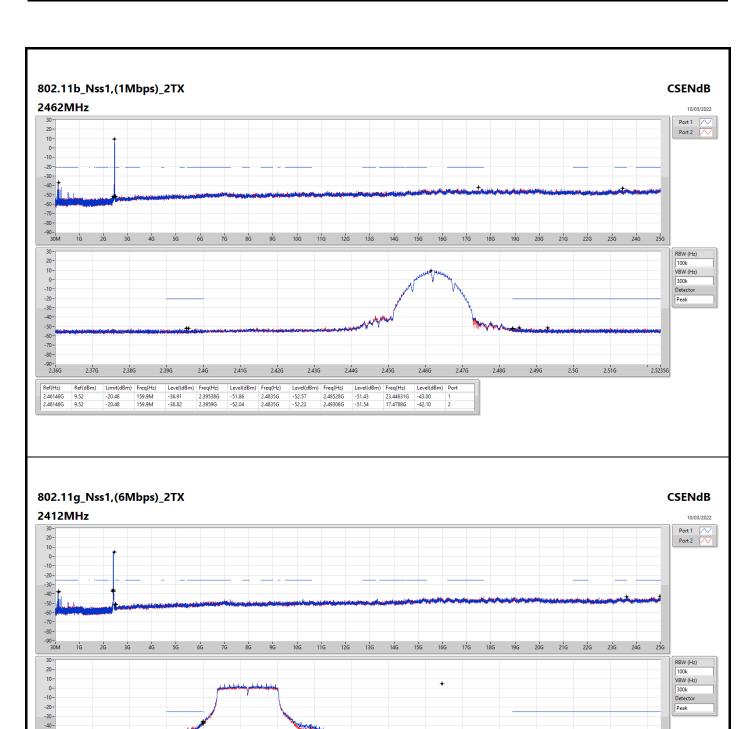
2.43G

Level(dBm) Freq(Hz)
-54.60 2.48556G
-52.79 2.48364G

2.44G

-51.64 -51.07

2.45G


24.5898G 24.91852G

Level(dBm) Freq(Hz)

2.46G

Page No. : 3 of 8 Report No. : FR221722AA

2.44G

-51.35 -51.26

2.43G

2.50332G

-37.57 -36.11 2.45G

23.59803G -43.06 24.98314G -42.48

Level(dBm) Freq(Hz)

-25.13 -25.13 2.39G

159.9M 159.9M Level(dBm) Freq(Hz)

2.39986G 2.3998G 2.41G

2.4G 2.4G

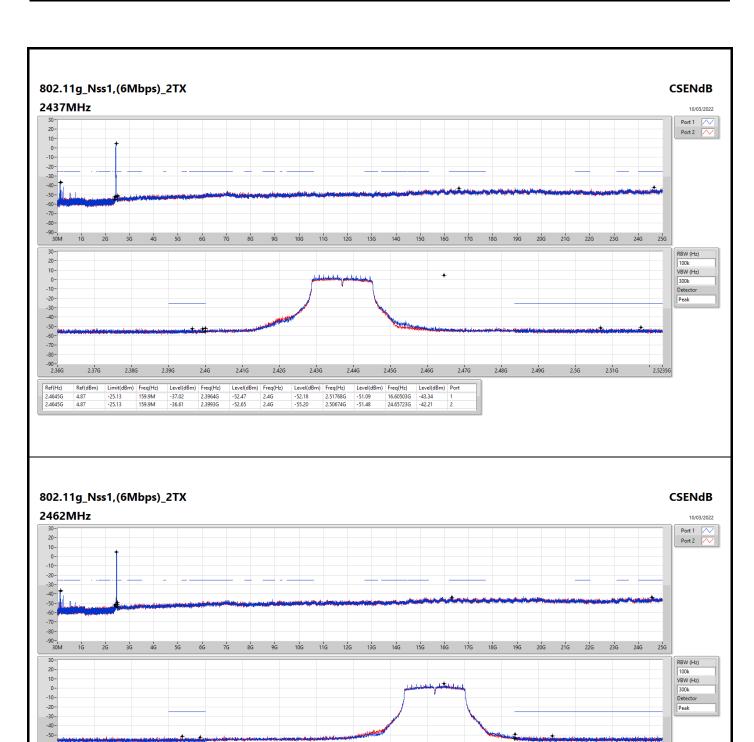
-90-2.36G

2.4645G 4.87 2.4645G 4.87

Page No. : 4 of 8

Report No. : FR221722AA

2.48G


2.47G

2.49G

2.5G

2.51G

2.41G

-51.77 -52.68

Level(dBm) Freq(Hz)

2.4G

2.42G

2.4835G 2.4835G 2.43G

2.49378G

-53.84 -53.46 2.44G

-49.44 -51.16 2.45G

16.31564G -43.46 24.56171G -43.57

-90-2.36G

2.4645G 4.87 2.4645G 4.87

2.37G

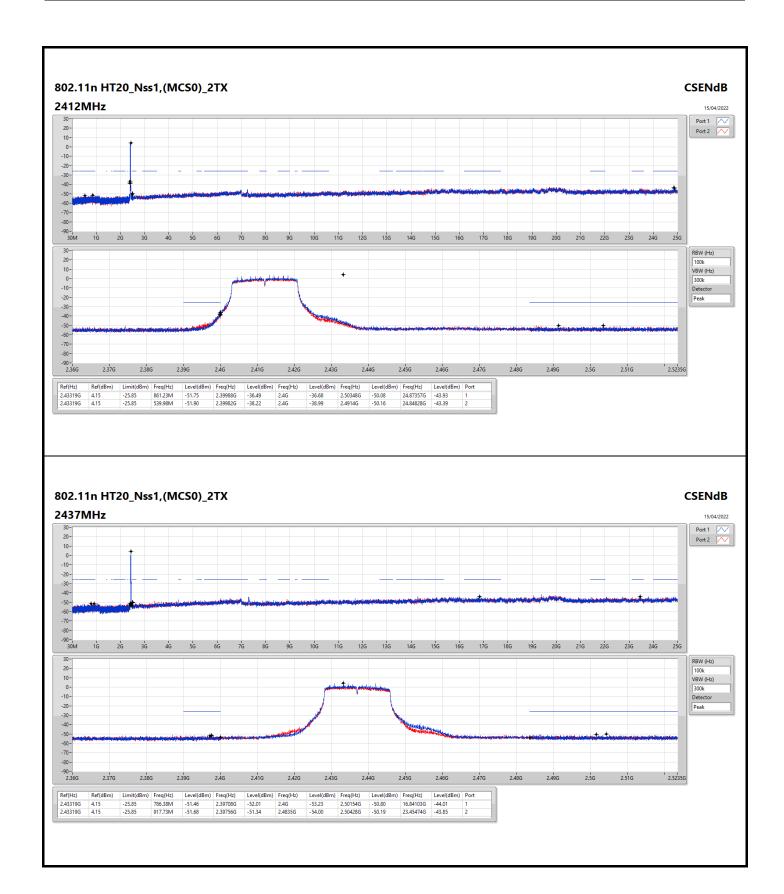
2.38G

-25.13 -25.13 2.39G

Page No. : 5 of 8

Report No. : FR221722AA

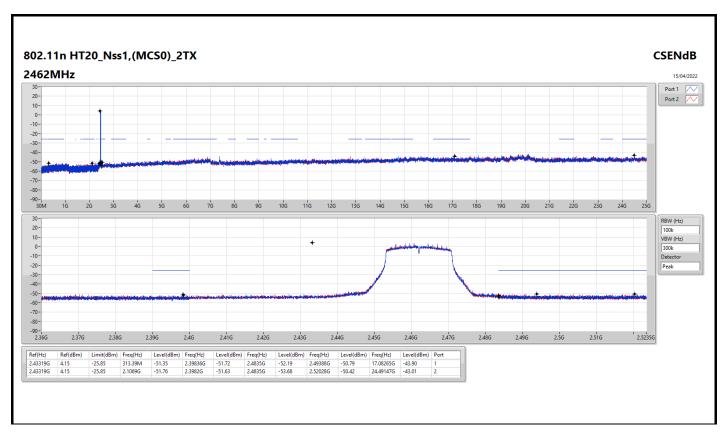
2.48G

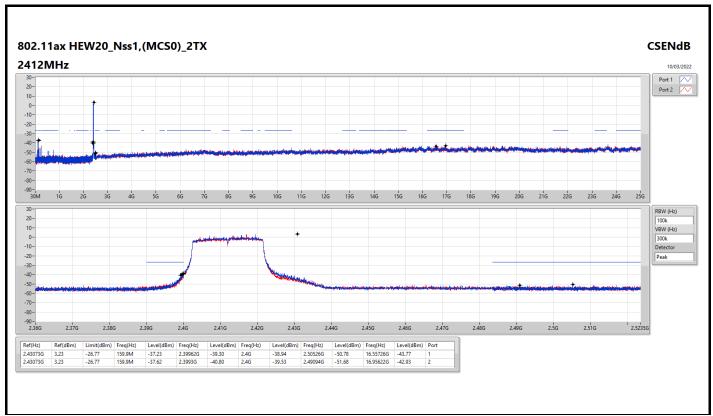

2.47G

2.49G

2.5G

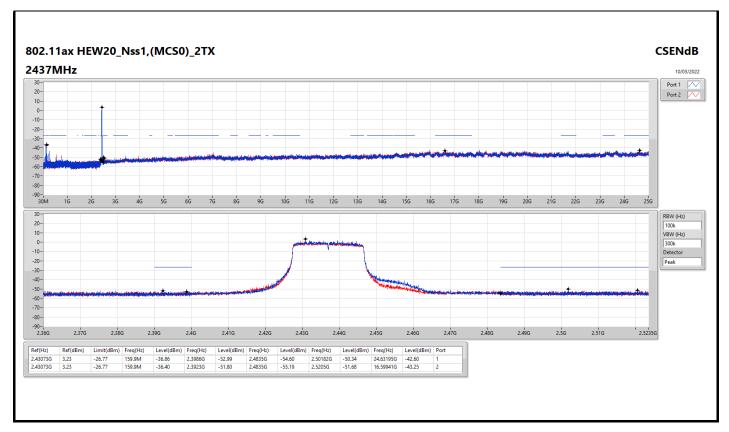
2.51G

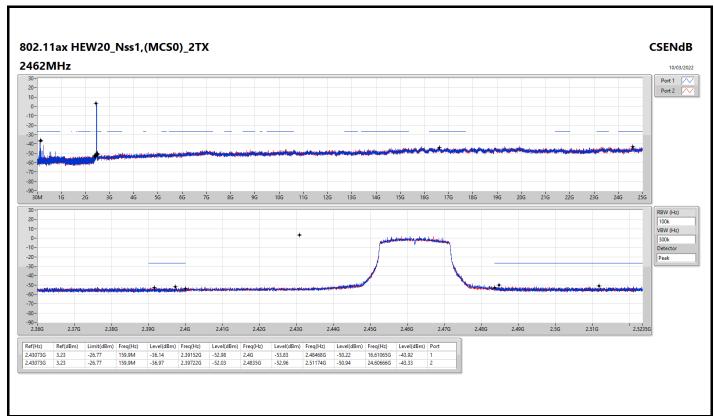




Page No. : 6 of 8

Report No. : FR221722AA





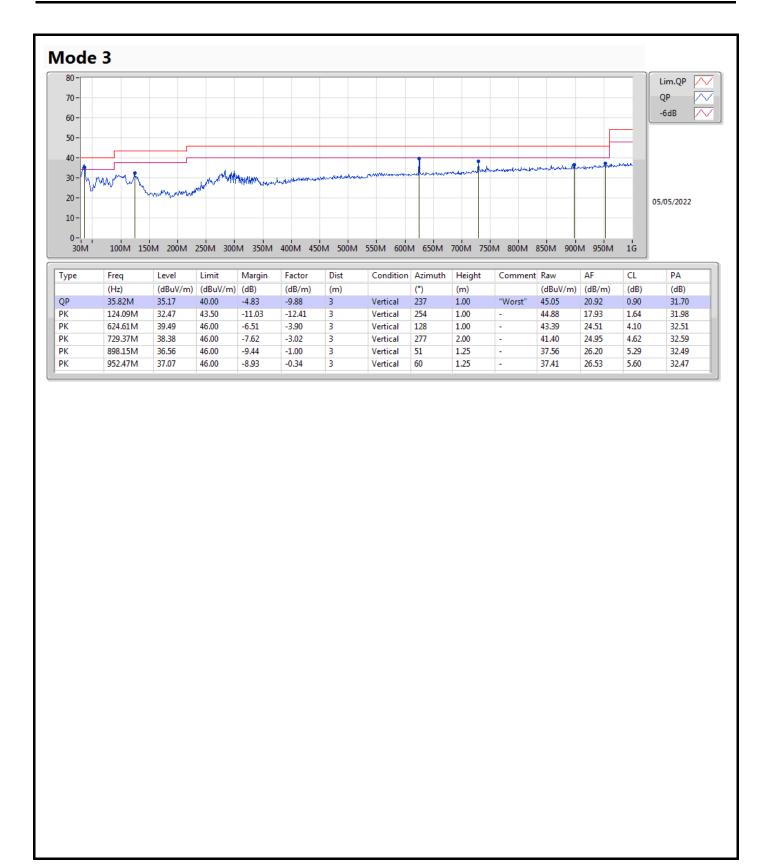
Page No. : 7 of 8

Report No. : FR221722AA

Page No. : 8 of 8

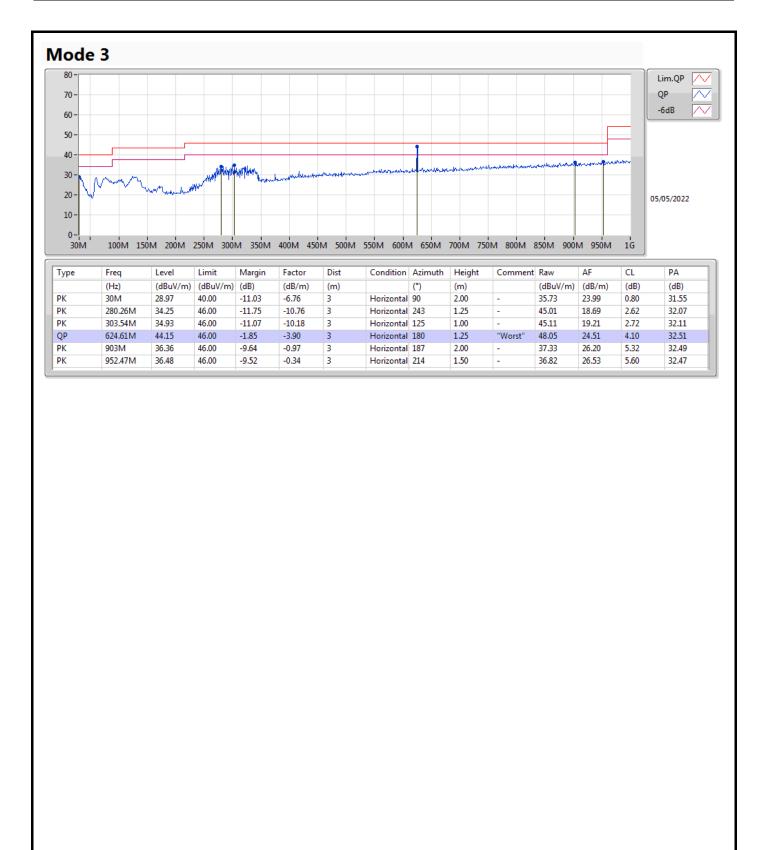
Report No. : FR221722AA

Radiated Emissions below 1GHz


Appendix F.1

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 3	Pass	QP	624.61M	44.15	46.00	-1.85	Horizontal


Sporton International Inc. Hsinchu Laboratory Page No. : 1 c

Report No. : FR221722AA

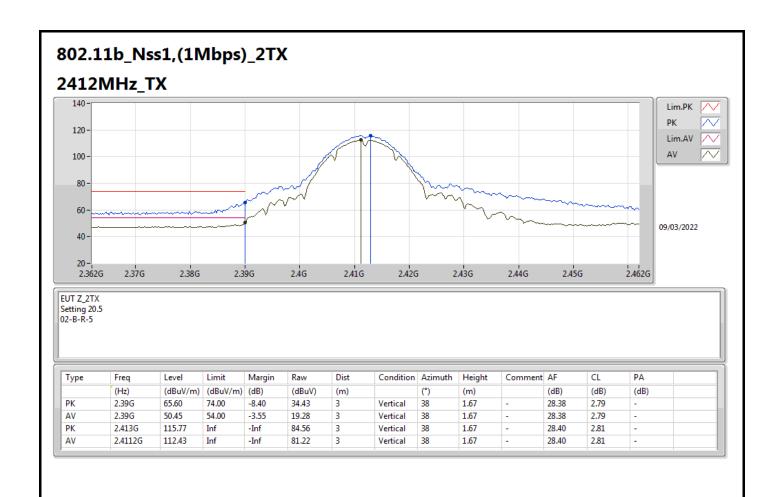
Page No. : 2 of 3
Report No. : FR221722AA

Page No. : 3 of 3

Report No. : FR221722AA

RSE TX above 1GHz

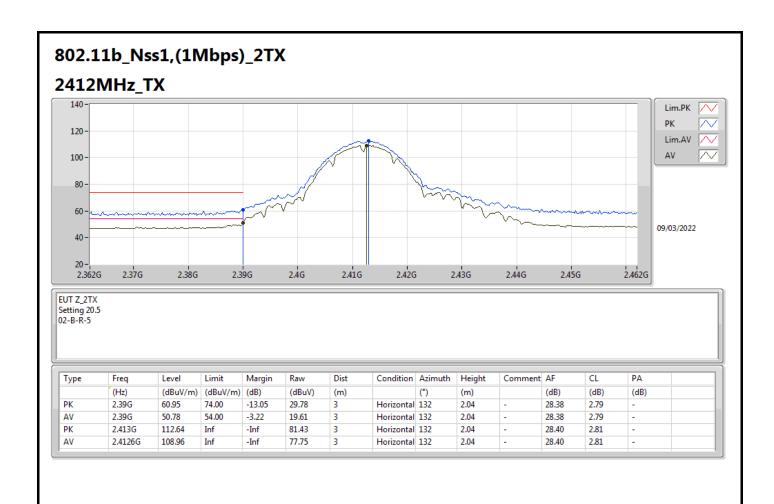
Appendix F.2


Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-			-	-	-	-	-	-
802.11ax HEW20_Nss1,(MCS0)_2TX	Pass	AV	2.39G	53.96	54.00	-0.04	3	Vertical	38	1.65	-

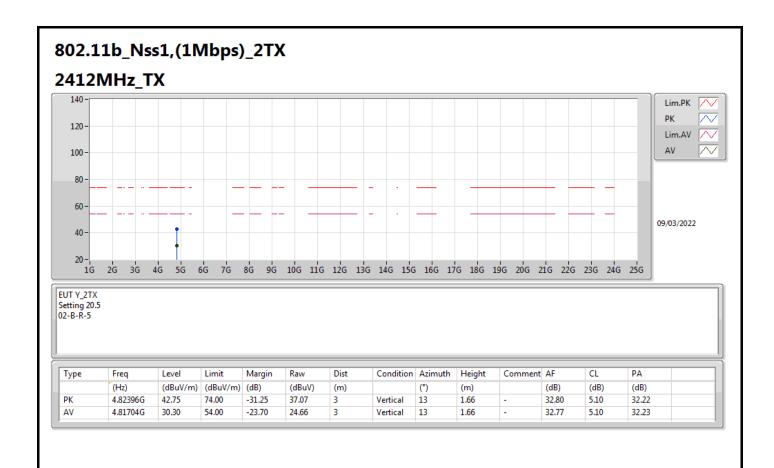
Sporton International Inc. Hsinchu Laboratory Page No.

Report No. : FR221722AA



Page No. : 2 of 49

Report No. : FR221722AA



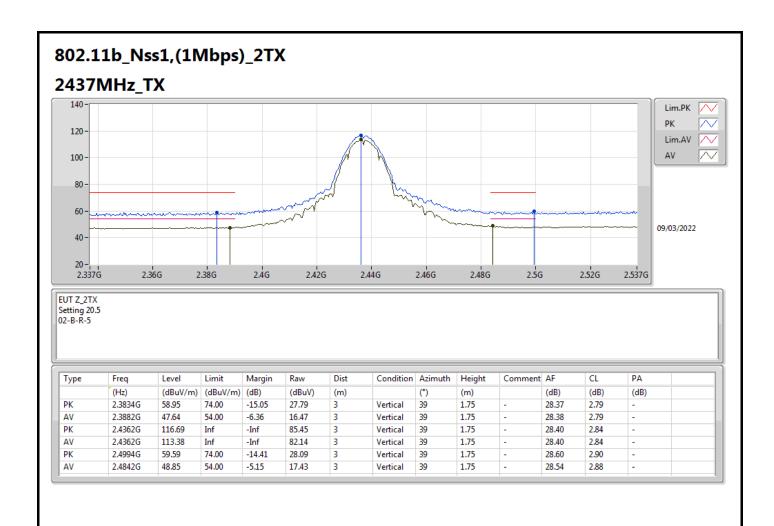
Page No. : 3 of 49

Report No. : FR221722AA



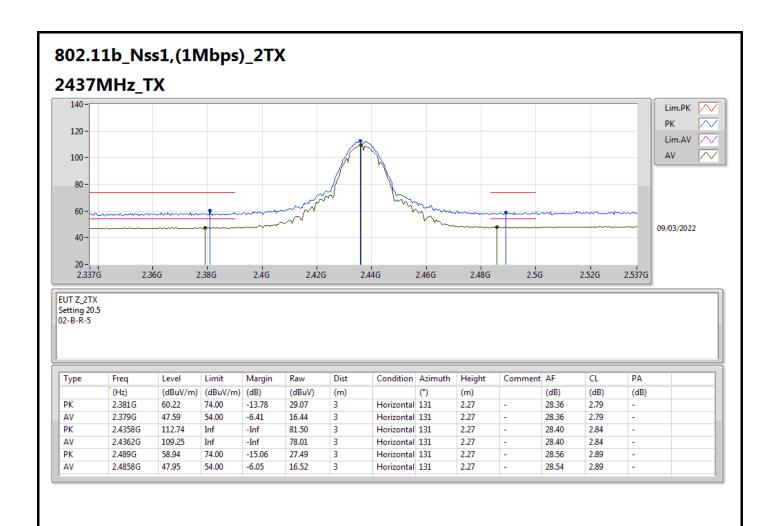
Page No. : 4 of 49

Report No. : FR221722AA

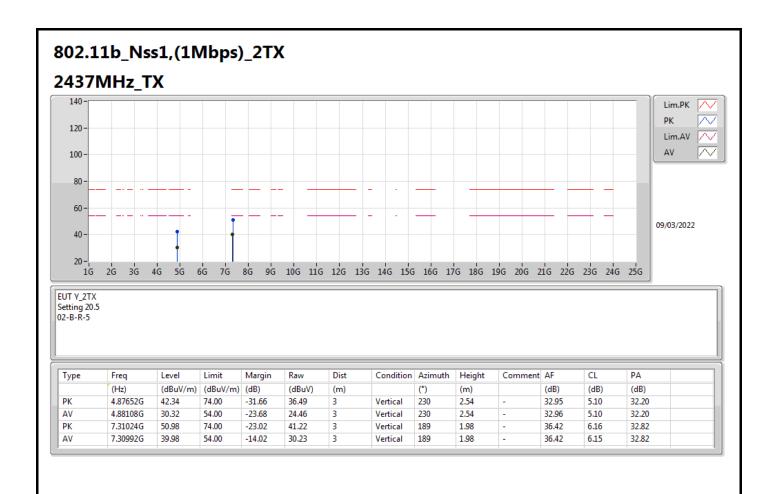


Page No. : 5 of 49

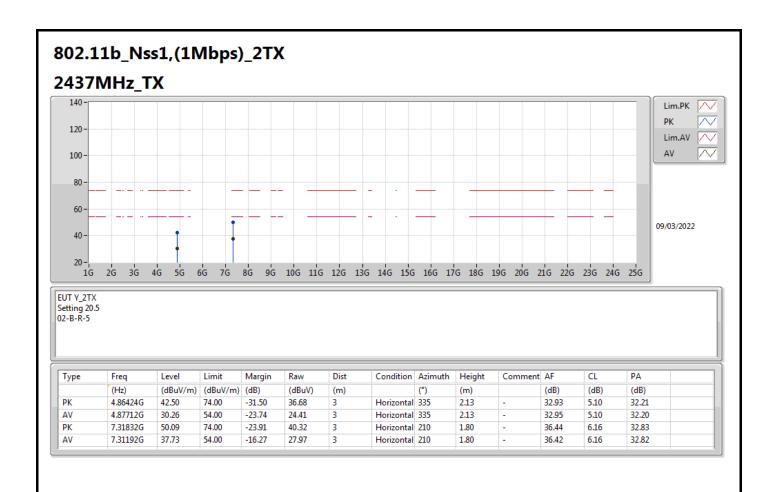
Report No. : FR221722AA



Page No. : 6 of 49

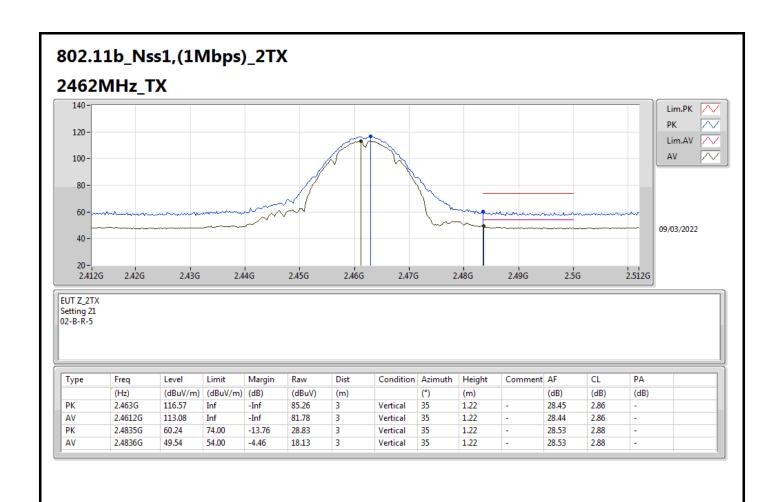

Report No. : FR221722AA

Page No. : 7 of 49
Report No. : FR221722AA



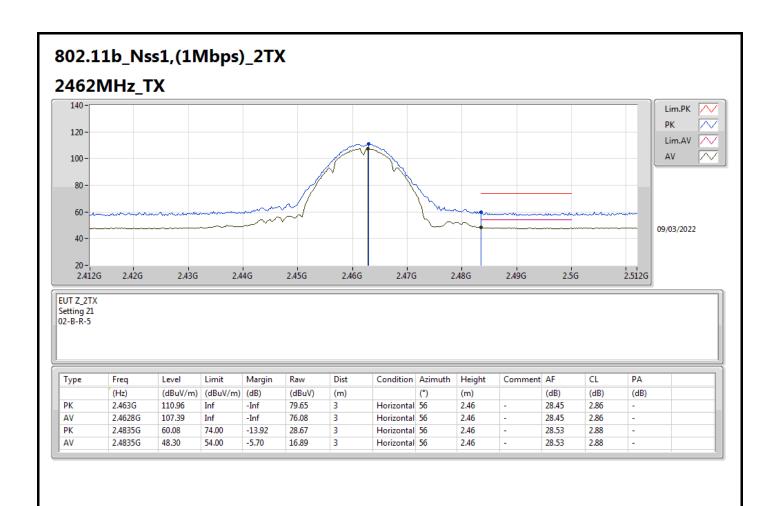
Page No. : 8 of 49

Report No. : FR221722AA



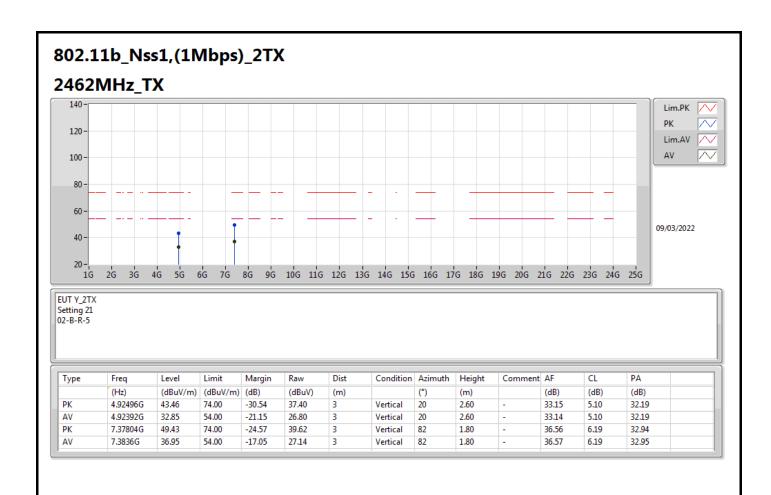
Page No. : 9 of 49

Report No. : FR221722AA



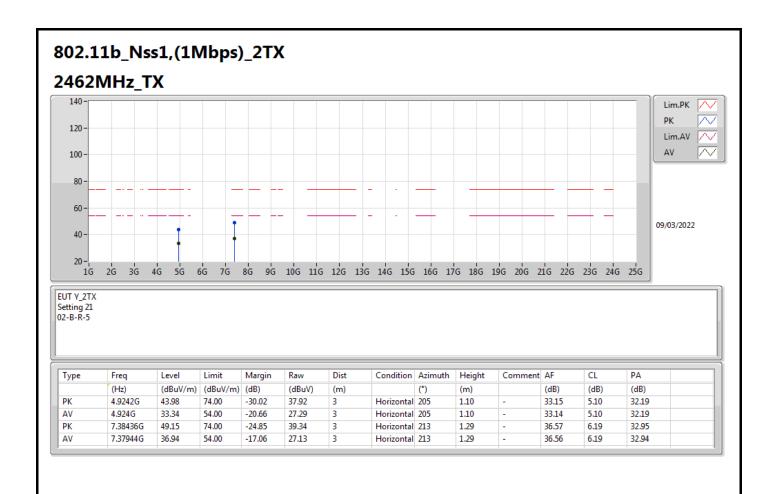
Page No. : 10 of 49

Report No. : FR221722AA



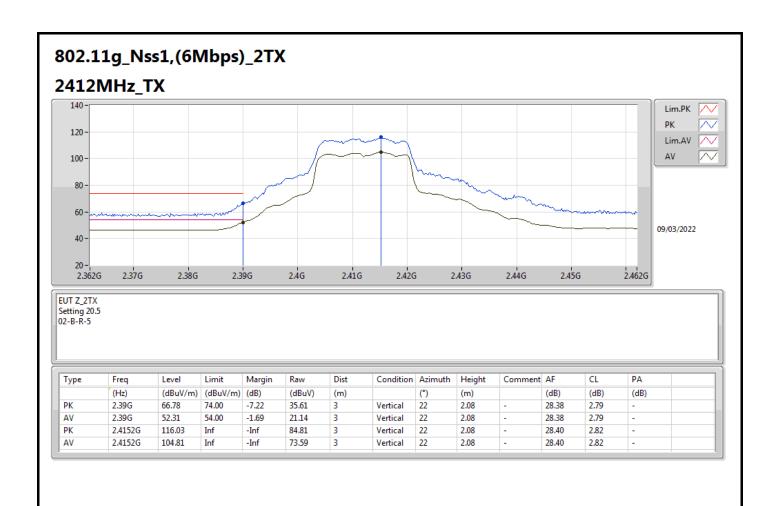
Page No. : 11 of 49

Report No. : FR221722AA



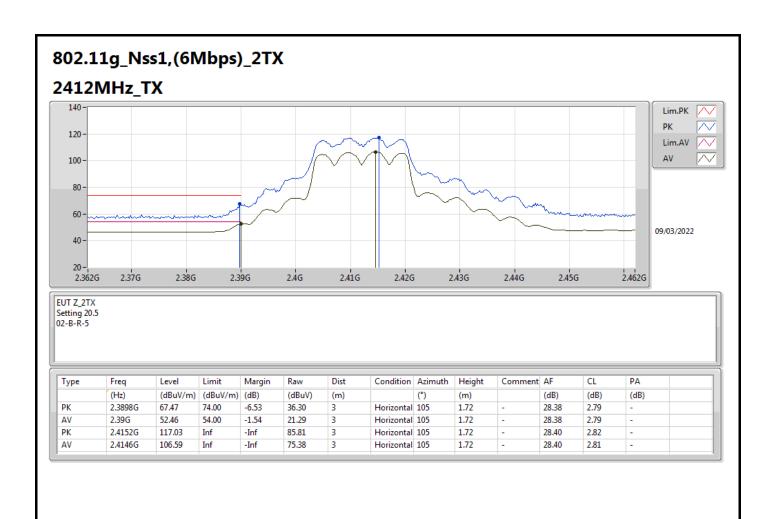
Page No. : 12 of 49

Report No. : FR221722AA



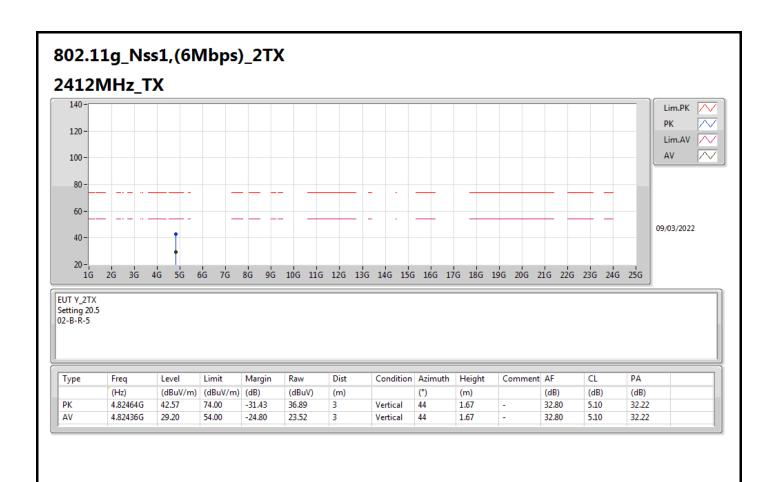
Page No. : 13 of 49

Report No. : FR221722AA



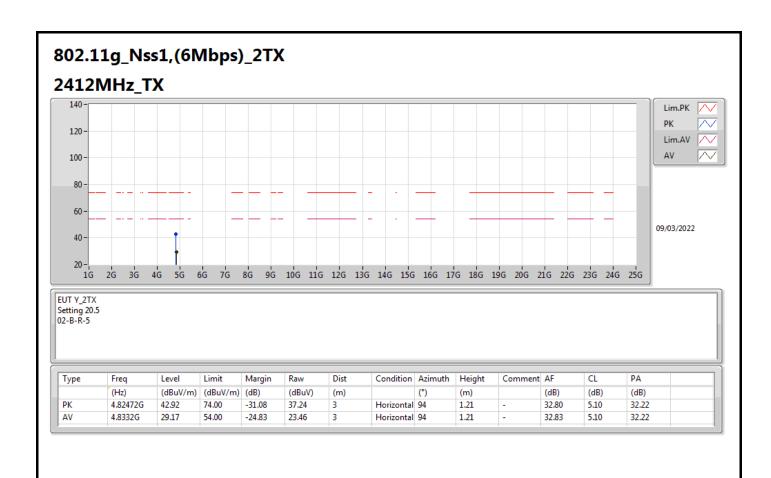
Page No. : 14 of 49

Report No. : FR221722AA



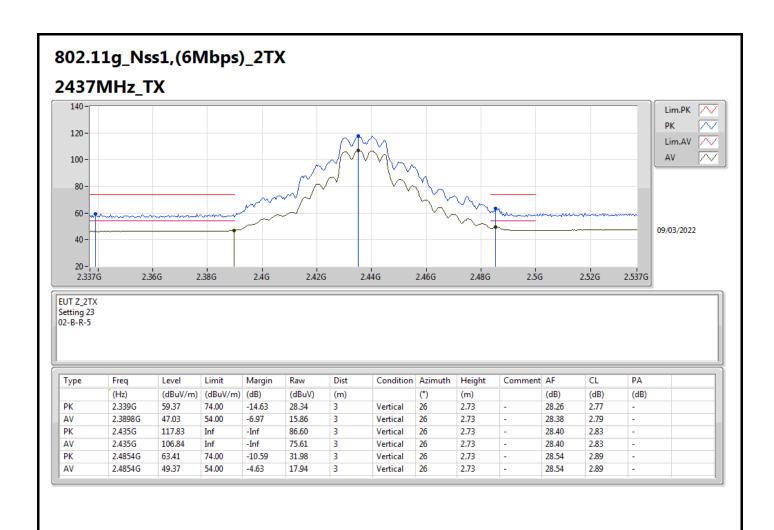
Page No. : 15 of 49

Report No. : FR221722AA



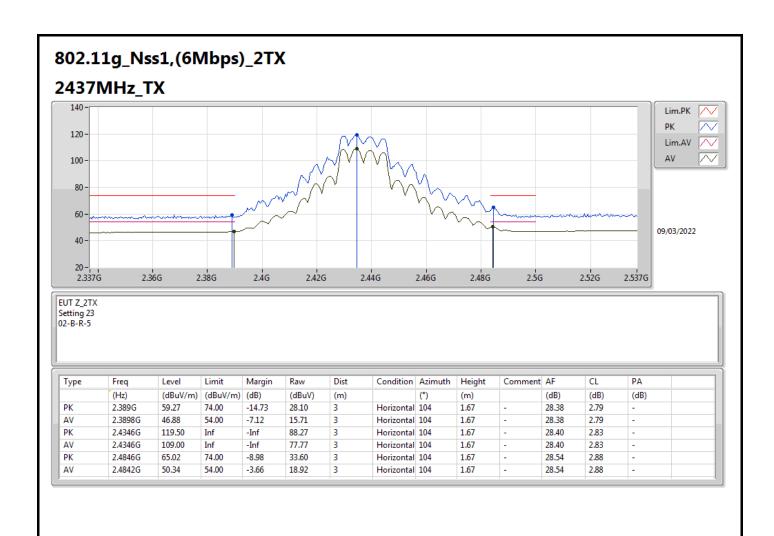
Page No. : 16 of 49

Report No. : FR221722AA



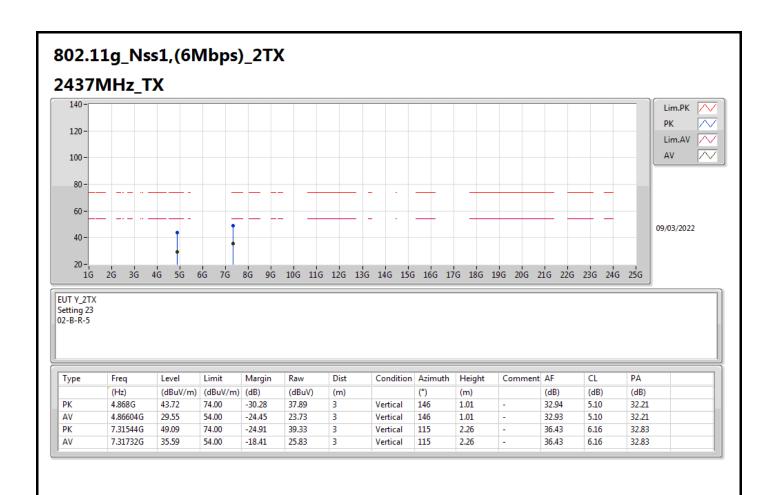
Page No. : 17 of 49

Report No. : FR221722AA



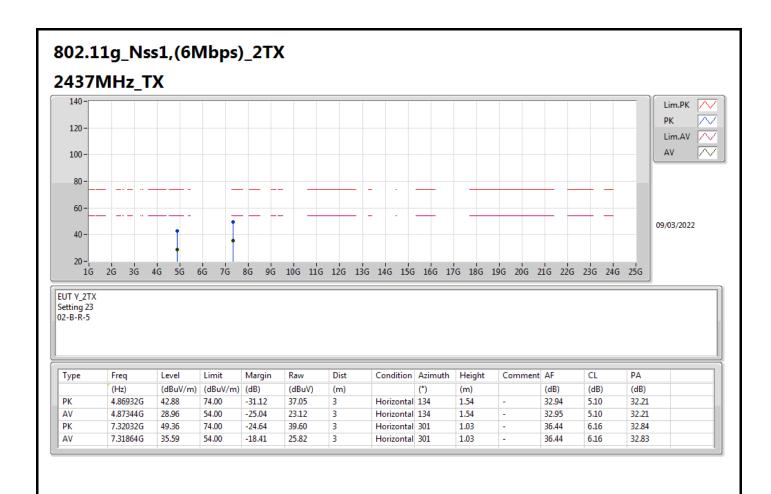
Page No. : 18 of 49

Report No. : FR221722AA



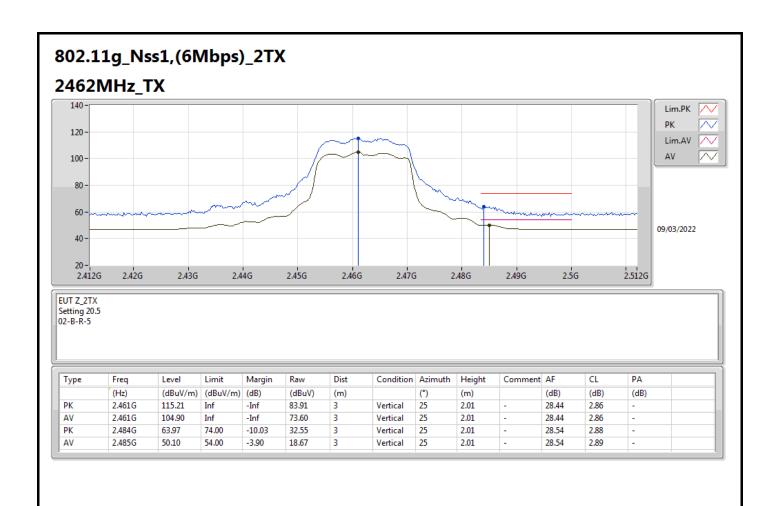
Page No. : 19 of 49

Report No. : FR221722AA



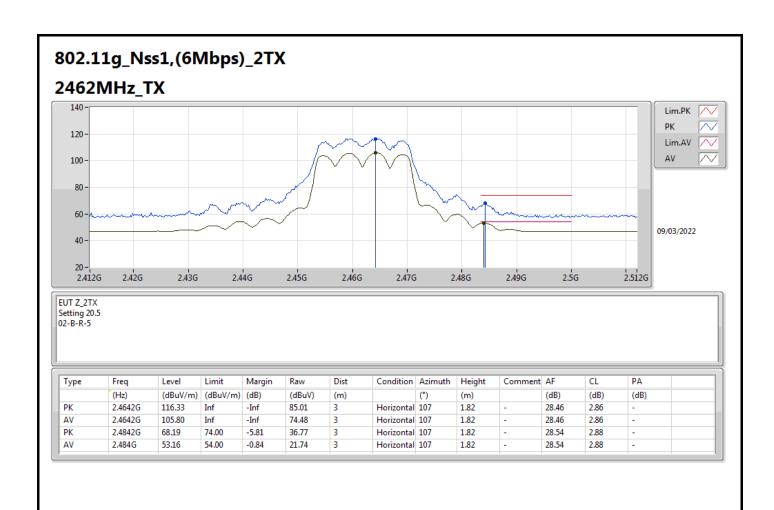
Page No. : 20 of 49

Report No. : FR221722AA



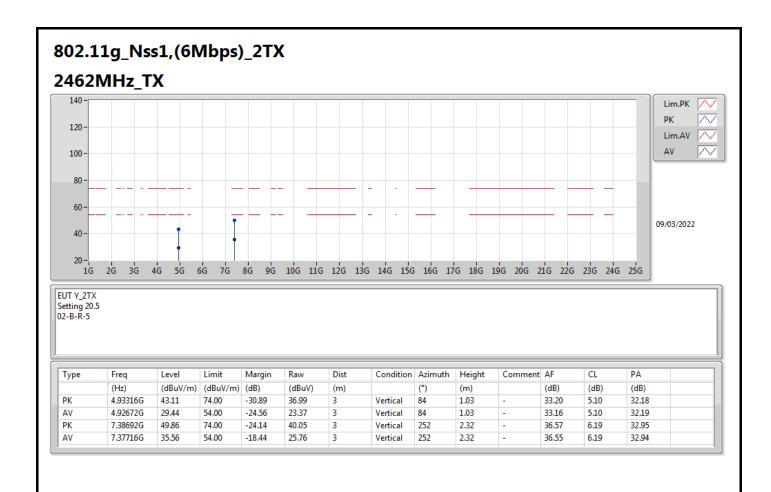
Page No. : 21 of 49

Report No. : FR221722AA



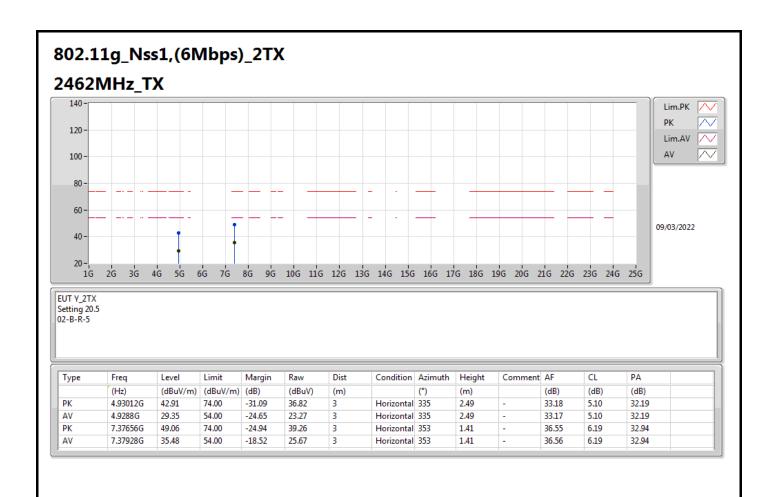
Page No. : 22 of 49

Report No. : FR221722AA



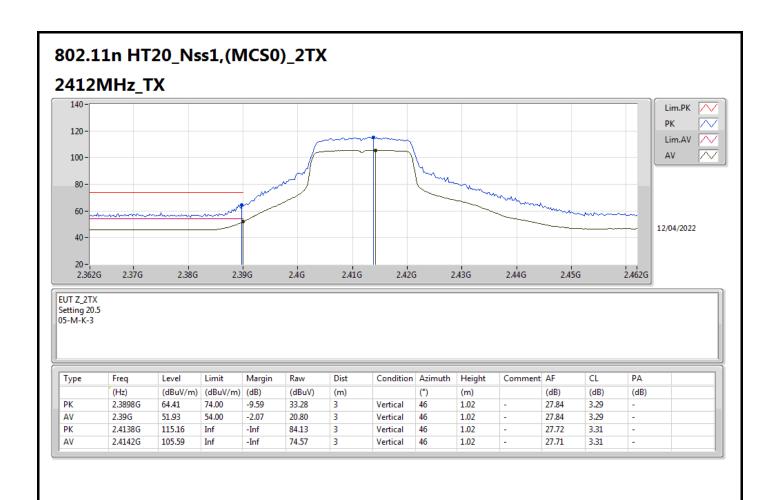
Page No. : 23 of 49

Report No. : FR221722AA



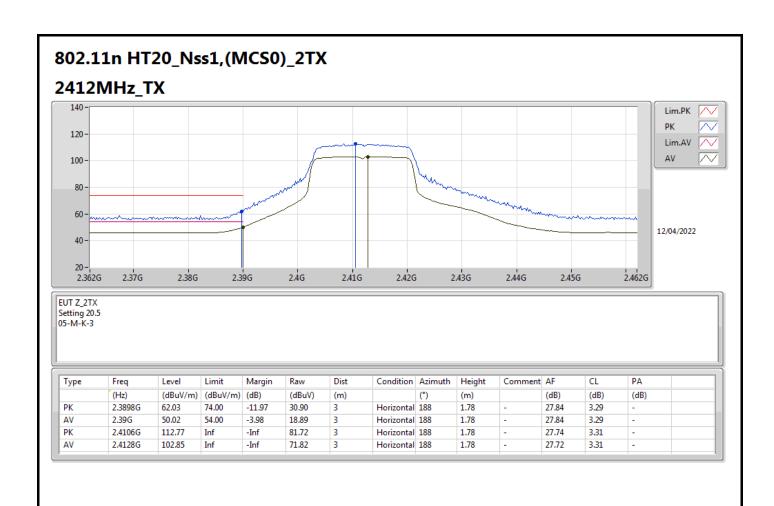
Page No. : 24 of 49

Report No. : FR221722AA



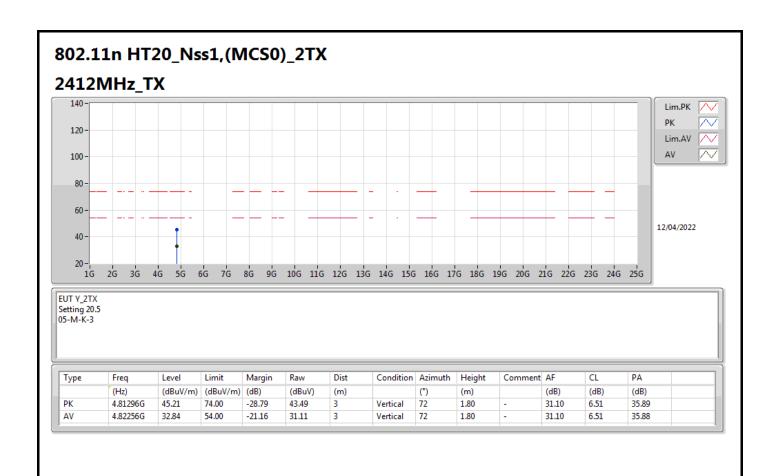
Page No. : 25 of 49

Report No. : FR221722AA



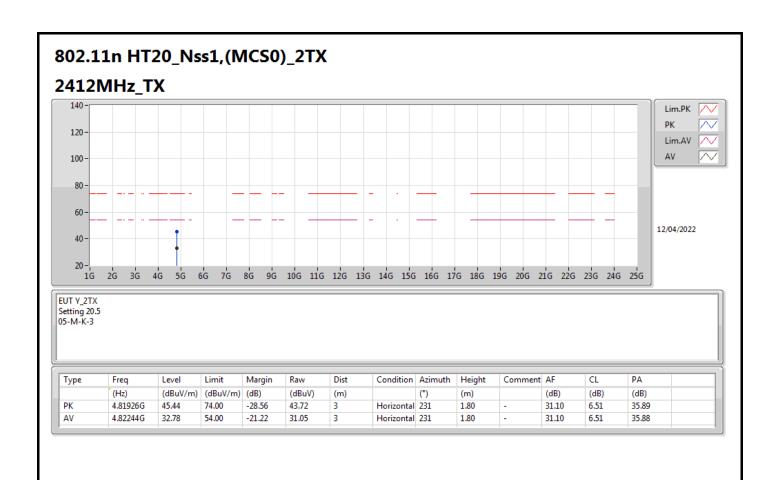
Page No. : 26 of 49

Report No. : FR221722AA



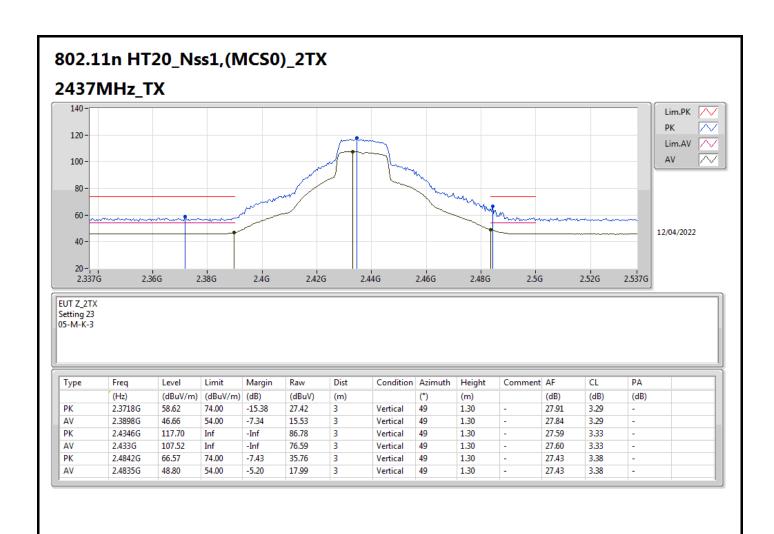
Page No. : 27 of 49

Report No. : FR221722AA



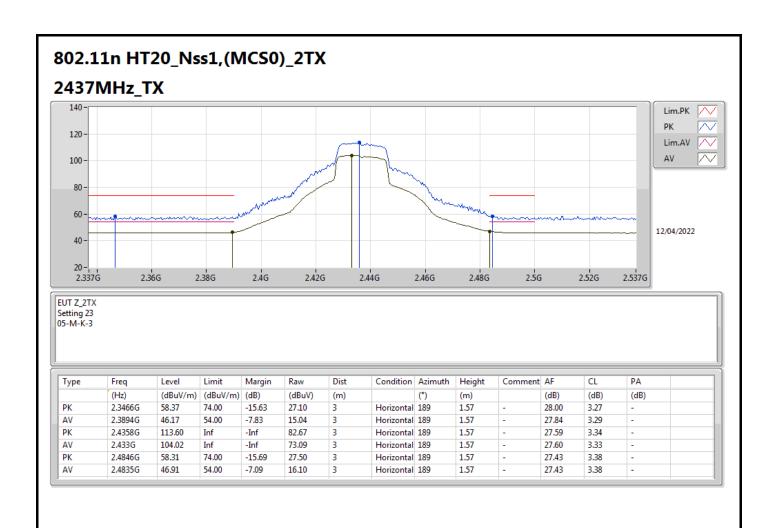
Page No. : 28 of 49

Report No. : FR221722AA



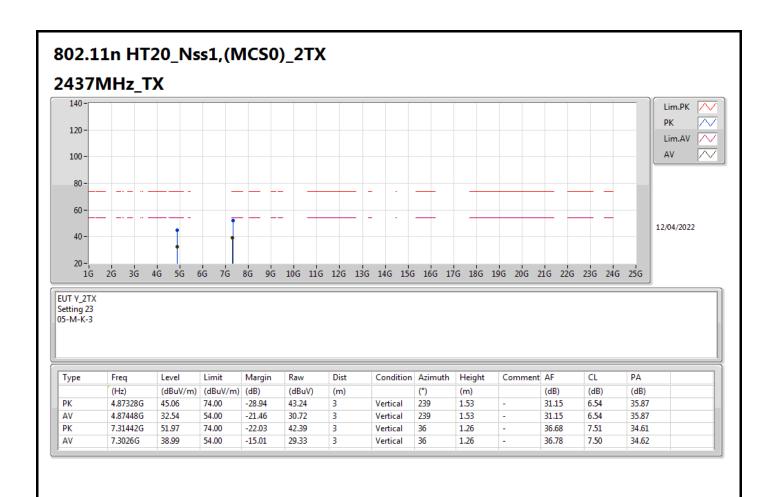
Page No. : 29 of 49

Report No. : FR221722AA



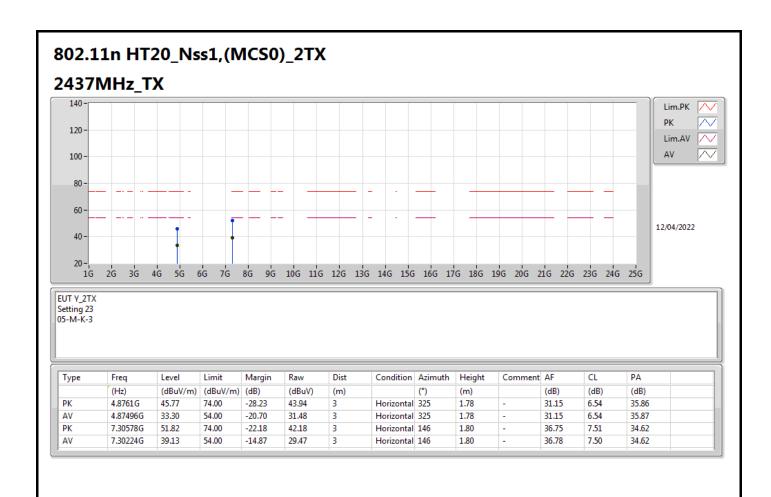
Page No. : 30 of 49

Report No. : FR221722AA



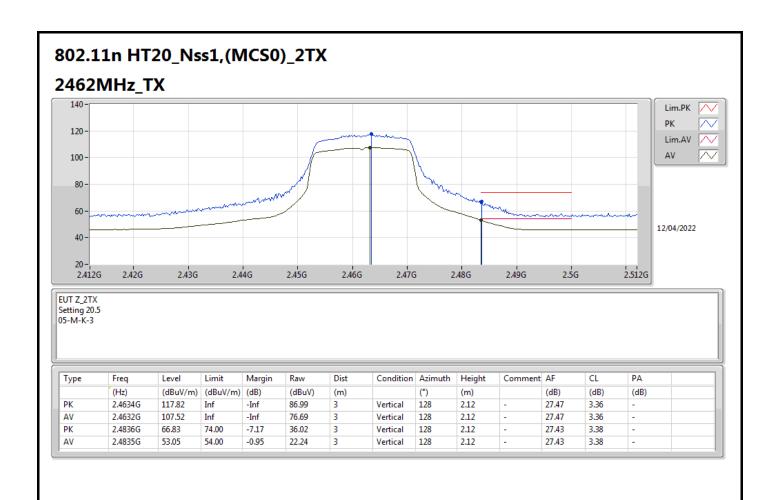
Page No. : 31 of 49

Report No. : FR221722AA



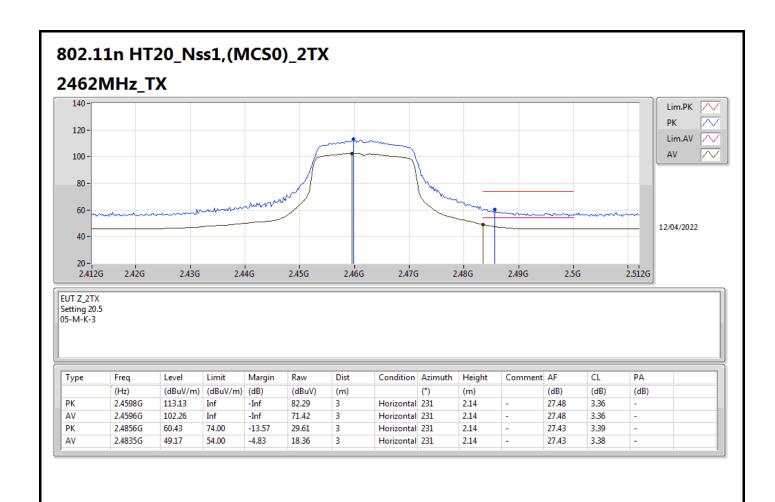
Page No. : 32 of 49

Report No. : FR221722AA



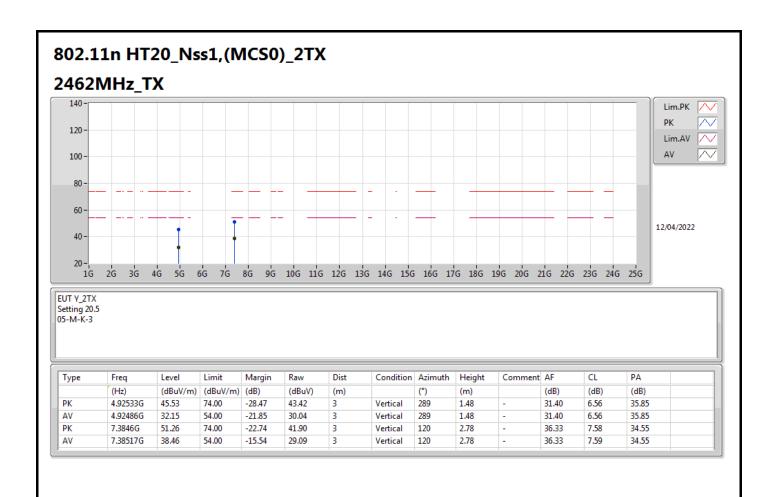
Page No. : 33 of 49

Report No. : FR221722AA



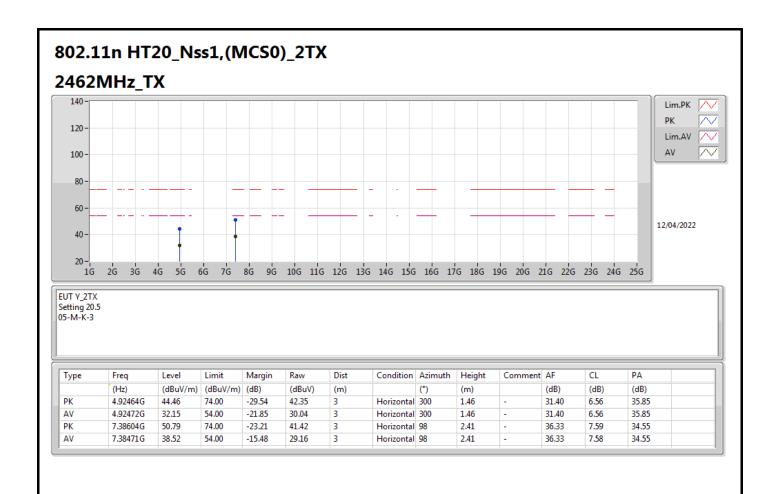
Page No. : 34 of 49

Report No. : FR221722AA



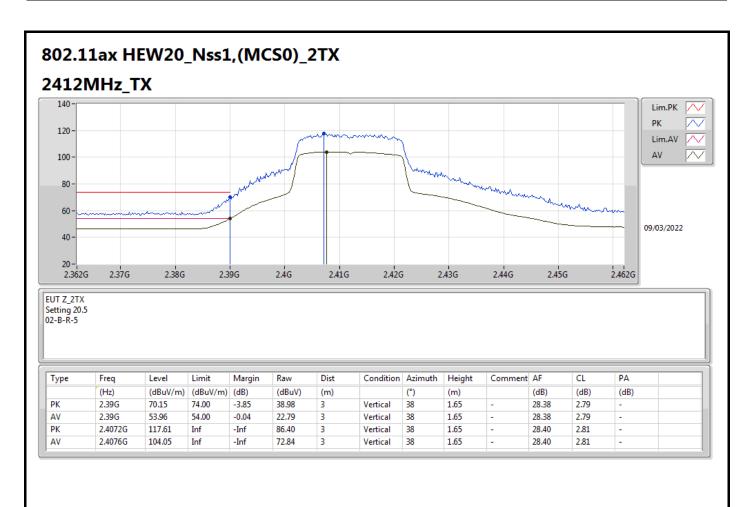
Page No. : 35 of 49

Report No. : FR221722AA



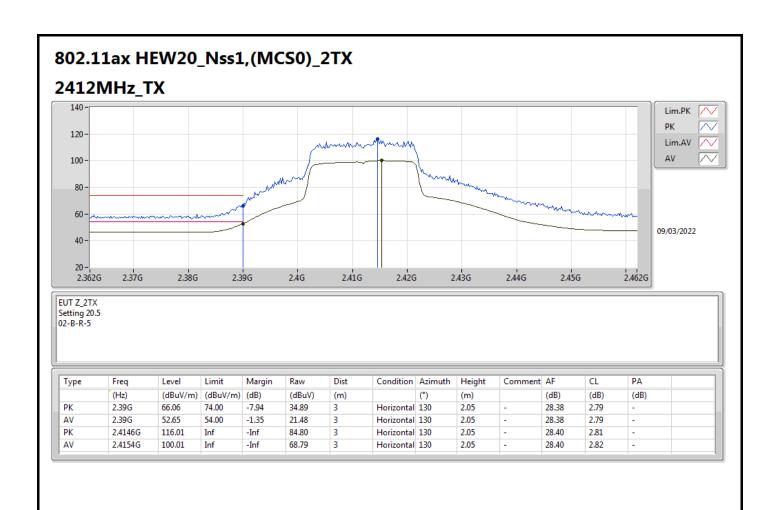
Page No. : 36 of 49

Report No. : FR221722AA



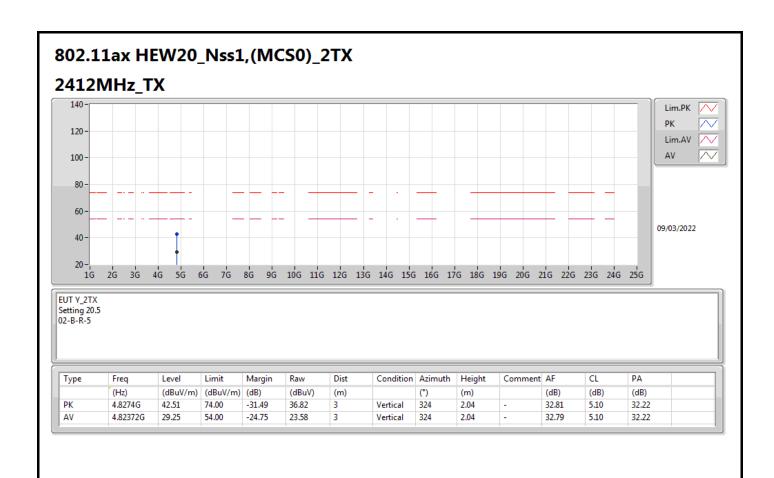
Page No. : 37 of 49

Report No. : FR221722AA



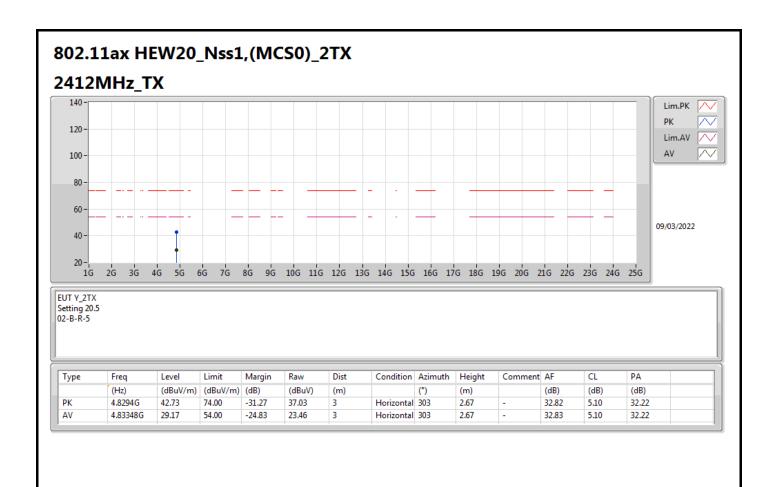
Page No. : 38 of 49

Report No. : FR221722AA



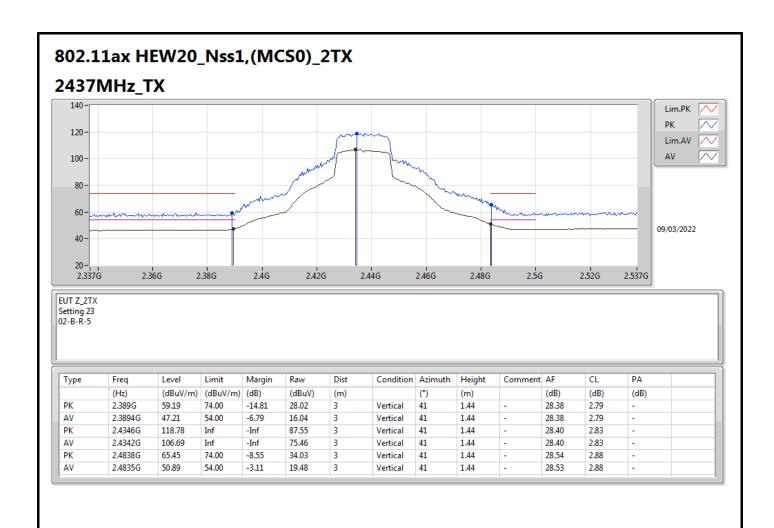
Page No. : 39 of 49

Report No. : FR221722AA



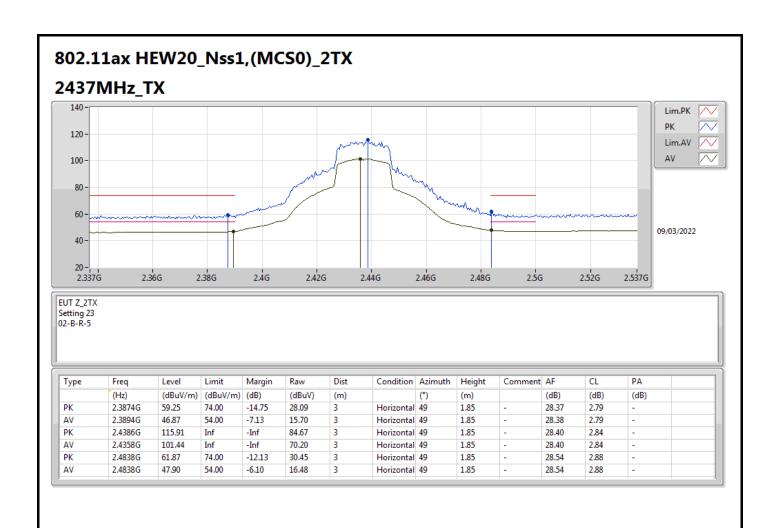
Page No. : 40 of 49

Report No. : FR221722AA



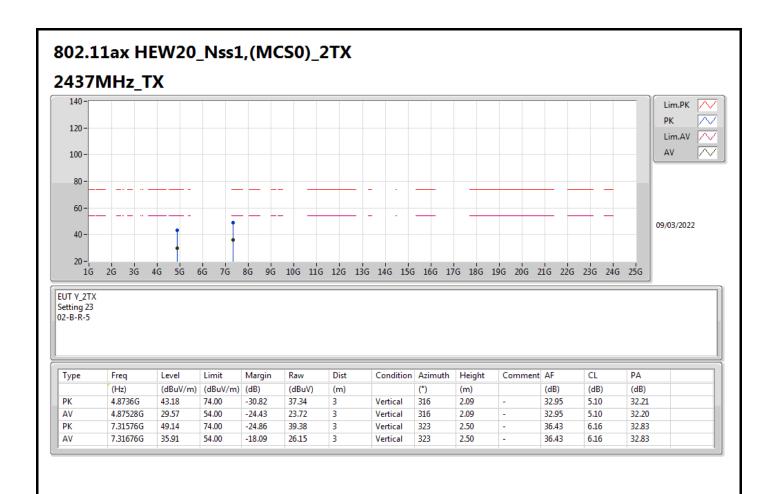
Page No. : 41 of 49

Report No. : FR221722AA



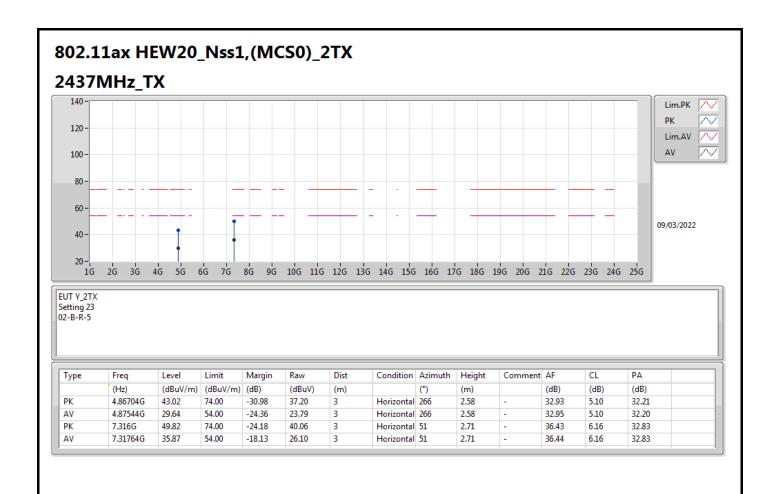
Page No. : 42 of 49

Report No. : FR221722AA



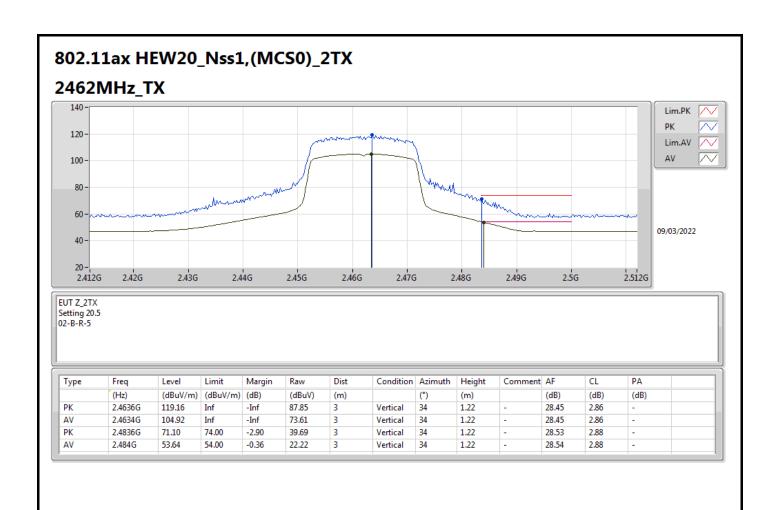
Page No. : 43 of 49

Report No. : FR221722AA



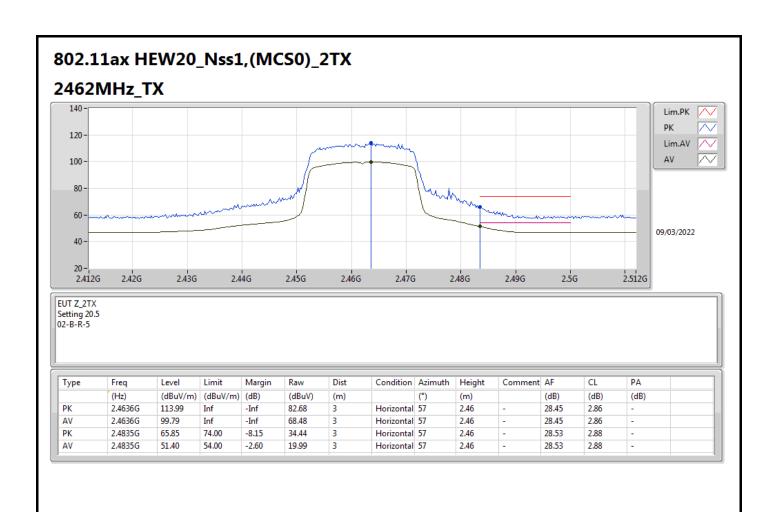
Page No. : 44 of 49

Report No. : FR221722AA



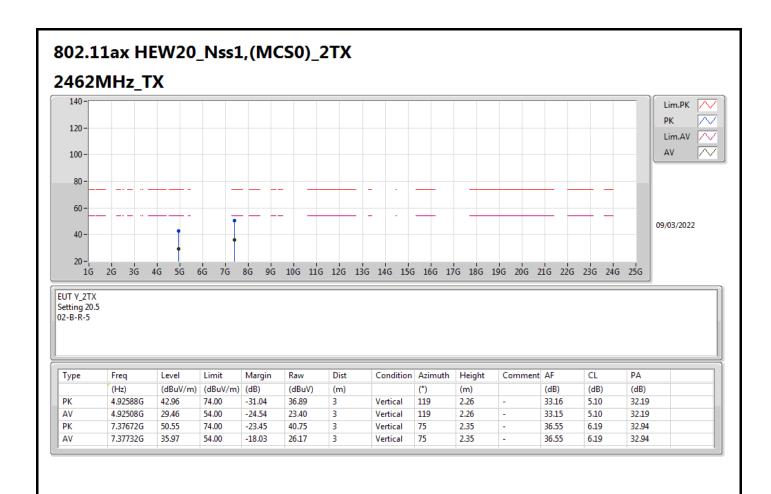
Page No. : 45 of 49

Report No. : FR221722AA



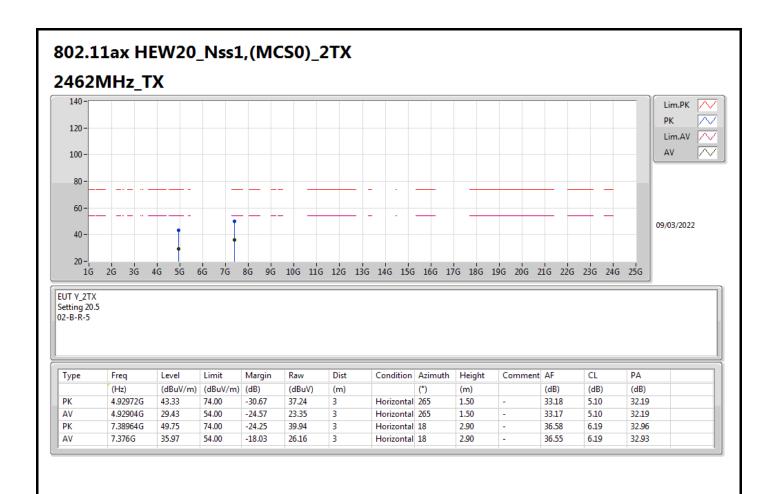
Page No. : 46 of 49

Report No. : FR221722AA



Page No. : 47 of 49

Report No. : FR221722AA



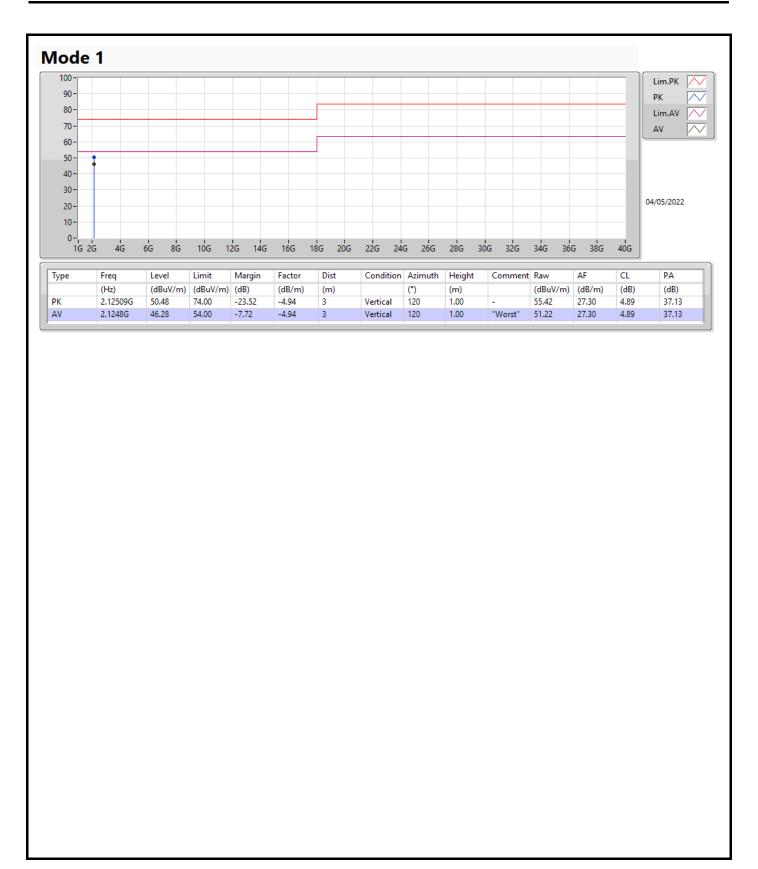
Page No. : 48 of 49

Report No. : FR221722AA

Page No. : 49 of 49

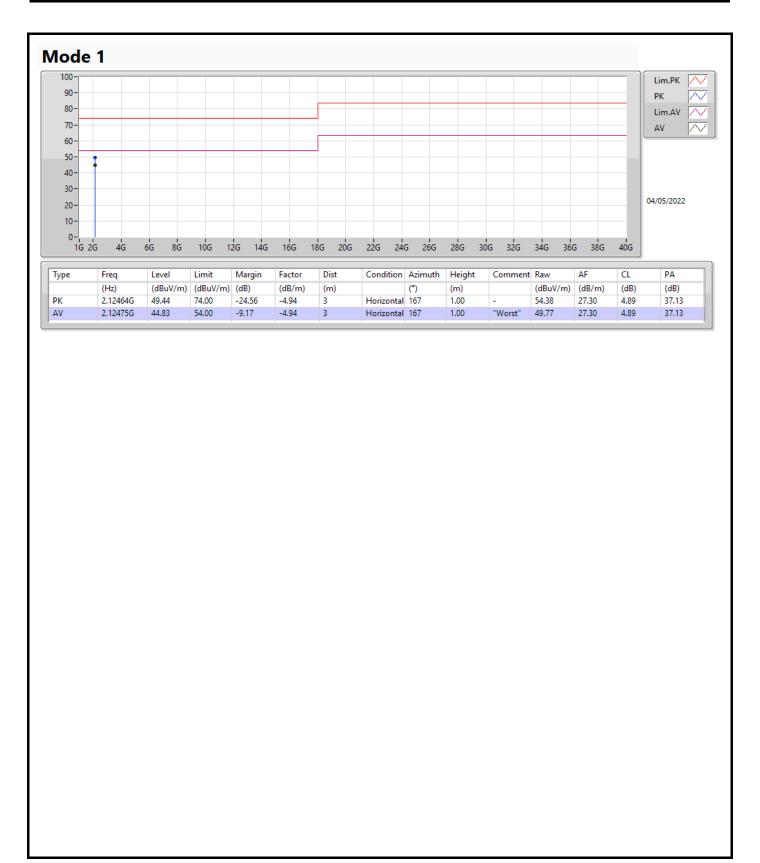
Report No. : FR221722AA

Radiated Emissions above 1GHz_Co-location


Appendix G

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	AV	2.1248G	46.28	54.00	-7.72	Vertical


Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 3 Report No. : FR221722AA

Page No. : 2 of 3

Report No. : FR221722AA

Page No. : 3 of 3

: FR221722AA Report No.