Report No:CCISE191106906

FCC REPORT

Applicant: COPPERNIC

Address of Applicant: 185 avenue Archimede, 13857 Aix en Provence, FRANCE

Equipment Under Test (EUT)

Product Name: C-One e-ID, RAPID3

Model No.: C-One e-ID

Trade mark: COPPERNIC, IDEMIA

FCC ID: XGK-C-ONE-EID-ELY

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 11 Nov., 2019

Date of Test: 12 Nov., to 30 Dec., 2019

Date of report issued: 31 Dec., 2019

Test Result: PASS *

*In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 Dec., 2019	Original

Reviewed by: Date: 31 Dec., 2019

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	TI	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.9	LABORATORY FACILITY	6
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS ANDMEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
ጸ	FI	LIT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	Pass
Radiated Emission	Part15.109	Pass
Remark:		

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	COPPERNIC
Address:	185 avenue Archimede, 13857 Aix en Provence, FRANCE
Manufacturer:	ASKEY COMPUTER Corp.
Address:	10 F, N°119, JIANKANG RD., ZHONGHE DIST., New Tapei City, TAIWAN

5.2 General Description of E.U.T.

Product Name:	C-One e-ID, RAPID3
Model No.:	C-One e-ID
Power supply:	Rechargeable Li-ion Battery DC3.7V/3300mAh
AC adapter:	Model No.: SYS1561-1105-1 Input: AC100-240V, 50/60Hz 1.0 A Output: DC 5.35V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visibledefects.
Remark:	Product Name: C-One e-ID, RAPID3 were identical inside, the electrical circuit design, layout, components used and internal wiring. They only differences were Trade mark: C-One e-ID (for trade mark COPPERNIC) RAPID3 (for trade mark IDEMIA)

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
Docking station mode:	Keep the EUT in charging(by docking station) and LAN link mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Report No: CCISE191106906

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielded	1.0m	EUT	PC/Adapter
DC Power USB Cable	Un-shielded	1.0m	EUT	Adapter

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC- Designation No.: CN1211

Shenzhen ZhongjianNanfang Testing Co., Ltd.has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen ZhongjianNanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen ZhongjianNanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

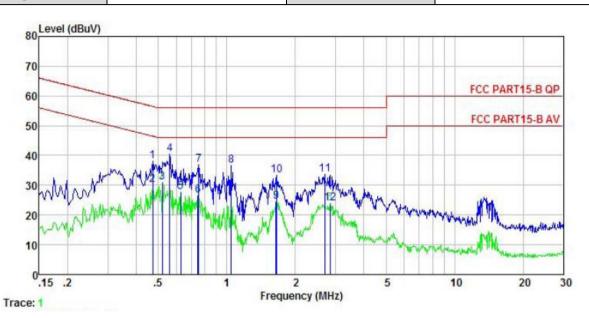
Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	DDUA 0470	A 9170 BBHA9170582 -	11-21-2018	11-20-2019
nom Antenna	SURWARZBEUK	вына 9170		11-21-2019	11-20-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
Spectrum analyzer	Ronde & Schwarz	F3F40	100303	11-21-2019	11-20-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

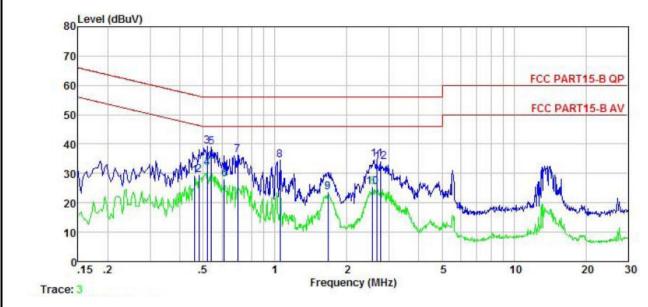
6 Test results and Measurement Data


6.1 Conducted Emission

0.15-0.5 66 to 56* 56	verage 5 to 46*		
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit (dBμV) Quasi-peak Av. 0.15-0.5 66 to 56* 56			
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit (dBμV) Quasi-peak Av. 0.15-0.5 66 to 56* 56			
Limit: Frequency range (MHz) Limit (dBμV) Quasi-peak Av. 0.15-0.5 66 to 56* 56			
0.15-0.5 66 to 56* 56			
	10.46"		
	46		
* Decreases with the logarithm of the frequency.	50		
Test setup: Reference Plane			
Test procedure LISN 40cm 80cm Filter AC power EMI Receiver Test table/Insulation plane Remark E U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power the	nrough a line		
impedance stabilization network(L.I.S.N.). The provide a 50oh coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power LISN that provides a 50ohm/50uH coupling impedance with 50 termination. (Please refers to the block diagram of the test set photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relapositions of equipment and all of the interface cables must be according to ANSI C63.4(latest version)on conducted measuring means the coupling impedance with 50 termination.	nm/50uH through a one of the control		
Test Instruments: Refer to section 5.11 for details	Refer to section 5.11 for details		
Test mode: Refer to section 5.3 for details	Refer to section 5.3 for details		
Test results: Pass			

Measurement data:

Product name:	C-One e-ID,RAPID3	Product Model:	C-One e-ID
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.471	27.84	-0.38	-0.15	10.75	38.06	56.49	-18.43	QP
2	0.471	19.98	-0.38	-0.15	10.75	30.20	46.49	-16.29	Average
3	0.521	21.07	-0.39	-0.36	10.76	31.08	46.00	-14.92	Average
4	0.561	30.32	-0.39	-0.37	10.76	40.32	56.00	-15.68	QP
4 5 6	0.627	17.73	-0.38	-0.38	10.77	27.74	46.00	-18.26	Average
6	0.747	16.53	-0.38	-0.24	10.79	26.70	46.00	-19.30	Average
7	0.751	26.75	-0.38	-0.24	10.79	36.92	56.00	-19.08	QP
7 8 9	1.043	25.69	-0.38	0.41	10.88	36.60	56.00	-19.40	QP
9	1.645	13.95	-0.40	-0.10	10.93	24.38	46.00	-21.62	Average
10	1.654	22.91	-0.40	-0.11	10.94	33.34	56.00	-22.66	QP
11	2.692	23.32	-0.43	-0.24	10.93	33.58	56.00	-22.42	QP
12	2.839	13.60	-0.44	-0.23	10.93	23.86	46.00	-22.14	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	C-One e-ID,RAPID3	Product model:	C-One e-ID
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀		<u>dB</u>		dBu√	dBu∀	<u>dB</u>	
1	0.461	19.22	-0.65	0.00	10.74	29.31	46.67	-17.36	Average
1 2 3 4 5 6 7 8 9	0.481	19.27	-0.65	0.02	10.75	29.39	46.32	-16.93	Average
3	0.521	29.23	-0.65	0.03	10.76	39.37	56.00	-16.63	QP
4	0.521	21.84	-0.65	0.03	10.76	31.98	46.00	-14.02	Average
5	0.541	28.90	-0.65	0.03	10.76	39.04	56.00	-16.96	QP
6	0.614	17.84	-0.64	0.04	10.77	28.01	46.00	-17.99	Average
7	0.697	26.23	-0.64	0.04	10.77	36.40	56.00	-19.60	QP
8	1.049	24.17	-0.63	0.09	10.88	34.51	56.00	-21.49	QP
9	1.662	13.31	-0.66	0.15	10.94	23.74	46.00	-22.26	Average
10	2.567	14.75	-0.67	0.26	10.94	25.28	46.00	-20.72	Average
11	2.664	24.16	-0.67	0.27	10.93	34.69	56.00	-21.31	QP
12	2.765	23.46	-0.67	0.28	10.93	34.00	56.00	-22.00	QP

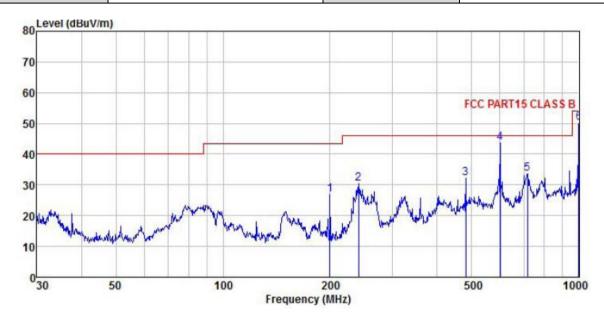
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part15 B Se	FCC Part15 B Section 15.109							
Test Frequency Range:	30MHz to 6000MI	Hz							
Test site:	Measurement Dis	tance: 3m	(Sem	i-Anechoic (Chamber)				
Receiver setup:	Frequency Detector			RBW	VBW	Remark			
	30MHz-1GHz	30MHz-1GHz Quasi-pe		120kHz	300kHz	Quasi-peak Value			
	Above 1GHz Peak			1MHz	3MHz	Peak Value			
	Above 1GHZ	RMS		1MHz	3MHz	Average Value			
Limit:	Frequenc		Lim	nit (dBuV/m	@3m)	Remark			
	30MHz-88MHz 40.0 Quasi-peak								
	88MHz-216	+		43.5		Quasi-peak Value			
	216MHz-960			46.0		Quasi-peak Value			
	960MHz-1G	6HZ		54.0		Quasi-peak Value			
	Above 1GI	-lz		54.0		Average Value			
Test setup:				74.0		Peak Value			
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz								
	AE H	- IV V \	3m	Pa	Antenna Town	er			
Test Procedure:	groundat a 3 m degrees todete 2. The EUT was s whichwas mou 3. The antenna he ground to deter	eter semi-a rmine the p set 3 meters nted on the eight is vari rmine the m	anech oositions awa top of ed from naxim	noic camber. on of the hig ay from the in of a variable om one mete um value of	The table hest radia nterference height are to four the field s	ce-receiving antenna, ntenna tower. meters above the			

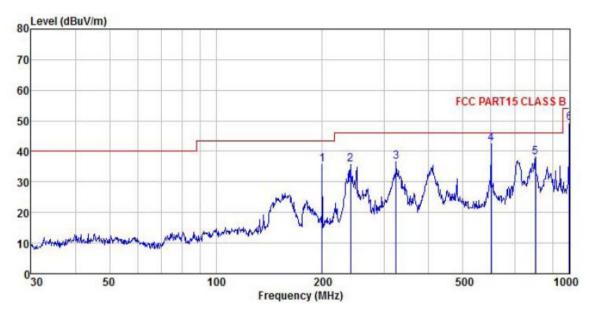
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of theobserved value above 6GHz ware theniose floor , which were no recorded



Measurement Data:

Below 1GHz:

Product Name:	C-One e-ID,RAPID3	Product Model:	C-One e-ID
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



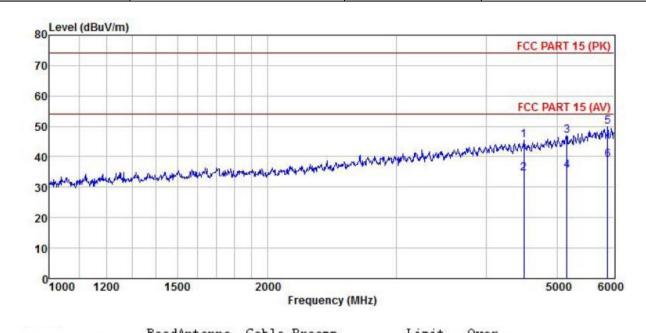
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	-dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	199.986	42.34	10.60	2.87	28.83	26.98	43.50	-16.52	QP
2	239.987	43.77	12.30	2.82	28.59	30.30	46.00	-15.70	QP
2 3 4 5	480.528	40.04	17.52	3.46	28.92	32.10	46.00	-13.90	QP
4	601.427	49.03	19.51	3.94	28.93	43.55	46.00	-2.45	QP
5	716.682	37.50	20.48	4.24	28.60	33.62	46.00	-12.38	QP
6	1000.000	50.39	22.80	4.47				-3.77	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	C-One e-ID,RAPID3	Product Model:	C-One e-ID
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	199.986	51.10	10.60	2.87	28.83	35.74	43.50	-7.76	QP
2	239.987	49.21	12.30	2.82	28.59	35.74	46.00	-10.26	QP
2	323.320	47.90	14.09	3.02	28.50	36.51	46.00	-9.49	QP
4	601.427	47.99	19.51	3.94				-3.49	A STATE OF THE PARTY OF THE PAR
5 6	801.786	40.53	21.50	4.34	28.19	38.18	46.00	-7.82	QP
6	1000.000	49.48	22.80	4.47	27.43				

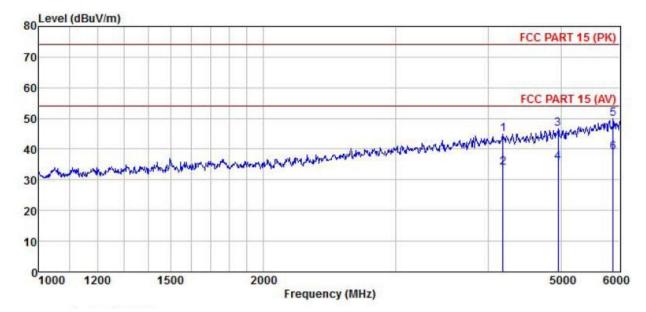
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Measurement Data:

Above 1GHz:

Product Name:	C-One e-ID,RAPID3	Product Model:	C-One e-ID		
Test By:	Mike	Test mode:	PC mode		
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



	Freq		Factor				Limit	Limit	Remark
	MHz	dBuV		dB	dB	dBu√/m	dBuV/m	dB	
1	4504.505	48.06	30.43	6.81	42.06	45.60	74.00	-28.40	Peak
2	4504.505	36.86	30.43	6.81	42.06	34.40	54.00	-19.60	Average
3	5161.626	47.53	31.80	7.06	41.94			-27.00	
4	5161.626	36.03	31.80	7.06	41.94	35.50	54.00	-18.50	Average
5	5872.370	48.61	32.67	7.90	42.03	49.91	74.00	-24.09	Peak
6	5872.370	37.64	32.67	7.90	42.03	38.94	54.00	-15.06	Average

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	C-One e-ID,RAPID3	Product Model:	C-One e-ID		
Test By:	Mike	Test mode:	PC mode		
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq						Limit Line		Remark
MHz	dBu∇	dB/m	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
4185.457	47.61	30.34	6.37	41.81	44.77	74.00	-29.23	Peak
4185.457	36.84	30.34	6.37	41.81	34.00			
4953.236	47.85	31.31	6.91	41.87	46.69	74.00	-27.31	Peak
4953, 236	36.85	31.31	6.91	41.87	35.69			
5872.370	48.54	32.68	7.90	42.03	49.85			
5872.370			7.90	42.03	38.93			
	MHz 4185. 457 4185. 457 4953. 236 4953. 236 5872. 370	MHz dBuV 4185.457 47.61 4185.457 36.84 4953.236 47.85 4953.236 36.85 5872.370 48.54	Freq Level Factor MHz dBuV dB/m 4185.457 47.61 30.34 4185.457 36.84 30.34 4953.236 47.85 31.31 4953.236 36.85 31.31 5872.370 48.54 32.68	Freq Level Factor Loss MHz dBuV dB/m dB 4185.457 47.61 30.34 6.37 4185.457 36.84 30.34 6.37 4953.236 47.85 31.31 6.91 4953.236 36.85 31.31 6.91 5872.370 48.54 32.68 7.90	MHz dBuV dB/m dB dB 4185.457 47.61 30.34 6.37 41.81 4185.457 36.84 30.34 6.37 41.81 4953.236 47.85 31.31 6.91 41.87 4953.236 36.85 31.31 6.91 41.87 5872.370 48.54 32.68 7.90 42.03	MHz dBuV dB/m dB dB dBuV/m 4185.457 47.61 30.34 6.37 41.81 44.77 4185.457 36.84 30.34 6.37 41.81 34.00 4953.236 47.85 31.31 6.91 41.87 46.69 4953.236 36.85 31.31 6.91 41.87 35.69 5872.370 48.54 32.68 7.90 42.03 49.85	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 4185.457 47.61 30.34 6.37 41.81 44.77 74.00 4185.457 36.84 30.34 6.37 41.81 34.00 54.00 4953.236 47.85 31.31 6.91 41.87 46.69 74.00 4953.236 36.85 31.31 6.91 41.87 35.69 54.00 5872.370 48.54 32.68 7.90 42.03 49.85 74.00	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dB dB uV/m dB dB uV/m dB uV/m dB dB uV/m dB uV/m

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.