

FCC Test ReportReport M:RFBUUY:WTW-P22060272CFC H:GB-V2MADCFC H:GB-V2MADWICCAN HIMINI AR DONGLEULCAN HIMINI AR DONGLERepeived M:022/6/13Test Der:202/7/5 ~ 2022/7/2Argene:022/9/26Marce Marce022/9/26Marce MarceMovement Products Services (H.S.) Ltd., Taoyuan Branch
Marce MarceMarce MarceMovement Products Services (H.S.) Ltd., Taoyuan Branch
MarceMarce MarceMarceMarce Marce<t

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

R	elease	e Control Record	3
1	С	Certificate of Conformity	4
2	S	Summary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	6
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	7 8 9 10 10
4	т	est Types and Results	.11
	$\begin{array}{c} 4.1.2\\ 4.1.3\\ 4.1.4\\ 4.1.5\\ 4.1.6\\ 4.1.7\\ 4.2\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.2.6\\ 4.2.7\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.3.4\end{array}$	Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results. Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Instruments Test Procedures. Deviation From Test Standard Test Setup. EUT Operating Conditions Test Instruments Test Setup. EUT Operating Condition Amount Test Setup. EUT Operating Condition Test Results Channel Bandwidth Test Setup. Test Instruments Test Setup. Test Instruments Test Procedure Deviation from Test Standard Test Procedure Deviation from Test Standard	$\begin{array}{c} .11\\ 12\\ 14\\ 14\\ 15\\ 16\\ 17\\ 22\\ 23\\ 23\\ 23\\ 23\\ 24\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26$
		EUT Operating Condition Test Results	
5	Р	Pictures of Test Arrangements	28
A	ppend	lix – Information of the Testing Laboratories	29

Release Control Record

Issue No.	Description	Date Issued
RFBUUY-WTW-P22060272	Original release.	2022/9/26

Certificate of Conformity 1

Product:	Wireless Dongle
Brand:	ROCCAT
Test Model:	VULCAN II MINI AIR DONGLE
Sample Status:	Engineering sample
Applicant:	Voyetra Turtle Beach, Inc.
Test Date:	2022/7/5 ~ 2022/7/27
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

nnie Chang, Date: 2022/9/26

Annie Chang / Senior Specialist

2022/9/26

Approved by :

_____, Date:_____ em.1

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -14.49dB at 8.56641MHz.			
15.215	Channel Bandwidth Measurement	PASS	Meet the requirement of limit.			
15.209 15.249 (a) 15.249 (d)	Radiated Emission and Bandedge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -10.9dB at 2390.00MHz.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
AC Power Conducted Emissions	150 kHz ~ 30 MHz	3.00 dB
Conducted Emissions	9 kHz ~ 40 GHz	2.63 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.62 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.41 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Dongle
Brand	ROCCAT
Test Model	VULCAN II MINI AIR DONGLE
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from host equipment
Modulation Type	GFSK
Operating Frequency	2403MHz ~ 2480MHz
Number of Channel	78
Field Strength	75.6 dBuV/m (3m)
Antenna Type	Chip antenna with -1.2dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

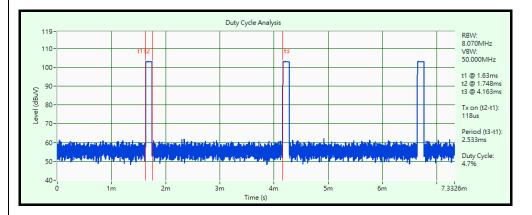
Note:

1. Due to radiated measurements are made and the antenna gain is already accounted for this device, so provide an antenna datasheet and/or antenna measurement report is not required. The antenna dimensions and pictures (include antenna wire length if have) are stated in EUT photo exhibit.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

78 channels are provided to this EUT:

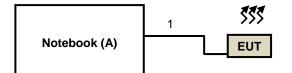

Channel	Freq. (MHz)						
0	2403	20	2423	40	2443	60	2463
1	2404	21	2424	41	2444	61	2464
2	2405	22	2425	42	2445	62	2465
3	2406	23	2426	43	2446	63	2466
4	2407	24	2427	44	2447	64	2467
5	2408	25	2428	45	2448	65	2468
6	2409	26	2429	46	2449	66	2469
7	2410	27	2430	47	2450	67	2470
8	2411	28	2431	48	2451	68	2471
9	2412	29	2432	49	2452	69	2472
10	2413	30	2433	50	2453	70	2473
11	2414	31	2434	51	2454	71	2474
12	2415	32	2435	52	2455	72	2475
13	2416	33	2436	53	2456	73	2476
14	2417	34	2437	54	2457	74	2477
15	2418	35	2438	55	2458	75	2478
16	2419	36	2439	56	2459	76	2479
17	2420	37	2440	57	2460	77	2480
18	2421	38	2441	58	2461		
19	2422	39	2442	59	2462		

3.2.1 Test Mode Applicability and Tested Channel Detail

UT Configure		Applic	able To	Description		
Mode	RE≥1G	RE<1G	PLC	APCM		Description
-		\checkmark	V	\checkmark		
Vhere Bande	G: Radiated Em	ent	RE		Emission below 1GH	_
	Power Line Con				ort Conducted Measu	
IOIE: The EUT	had been pre-tes	sted on the pos	itioned of each 3	axis. The worst	case was found whe	en positioned on Y axis.
adiated Emis						
					•	sible combinations betwe
				•		ersity architecture).
		<u>r</u>	ected for the			
EUT Config	gure Mode	Avail	able Channel	Те	sted Channel	Modulation Type
	-		0 to 77		0, 38, 77	GFSK
between av	vailable modu	ulations, data		ntenna ports	(if EUT with ante	sible combinations anna diversity architectur
	gure Mode	Avail	able Channel	Те	sted Channel	Modulation Type
EUT Confi	•	7.004			_	
Power Line Co ☑ Pre-Scan h between av	as been con ailable modu	nission Tes ducted to de lations, data	termine the ware the structure the structure termine the structure termine the structure termine termin	tenna ports	(if EUT with ante	GFSK sible combinations nna diversity architecture
Power Line Co ☐ Pre-Scan h between av ☐ Following c	as been con ailable modu hannel(s) wa	nission Tes ducted to de lations, data is (were) sel	<u>t:</u> termine the w	tenna ports final test as l	ode from all poss (if EUT with ante	GFSK sible combinations nna diversity architecture
ower Line Co ☐ Pre-Scan h between av	as been con ailable modu hannel(s) wa	nission Test ducted to de lations, data ls (were) sel Availa	termine the w termine the w a rates and an ected for the	tenna ports final test as l	ode from all poss (if EUT with ante isted below.	GFSK
ower Line Co Pre-Scan h between av Following c EUT Config -	as been con railable modu channel(s) wa gure Mode <u>Conducted l</u> cludes all tes ras been con railable modu	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data	termine the war a rates and an ected for the ble Channel D to 77 nt: ach mode, bu	tenna ports final test as l Tes t only include rorst-case mo tenna ports	ode from all pose (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all pose (if EUT with ante	GFSK sible combinations nna diversity architecture Modulation Type
Cower Line Co Pre-Scan h between av Following co EUT Config •	as been con railable modu channel(s) wa gure Mode <u>Conducted l</u> cludes all tes ras been con railable modu	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel	termine the w rates and an ected for the ble Channel to 77 nt: ach mode, bu termine the w a rates and an	tenna ports final test as l Tes t only include vorst-case m ntenna ports final test as l	ode from all pose (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all pose (if EUT with ante	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations
Power Line Co Pre-Scan h between av Following c EUT Config Confi	as been conv railable modu channel(s) wa gure Mode <u>Conducted I</u> acludes all tes vas been conv vailable modu channel(s) wa	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel	termine the warates and an ected for the ble Channel to 77 nt: ach mode, bu termine the warates and an ected for the	tenna ports final test as l Tes t only include vorst-case m ntenna ports final test as l	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below.	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architectur
Power Line Comparison Pre-Scan here between av Following comparison EUT Config Intis item in mode. Pre-Scan here Pre-Scan here Following comparison Following comparison EUT Configuration Following comparison EUT Configuration	as been conv ailable modu hannel(s) wa gure Mode Conducted I acludes all tes as been conv vailable modu hannel(s) wa gure Mode	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel	termine the w rates and an ected for the ble Channel to 77 nt: ach mode, bu termine the w a rates and ar ected for the able Channel	tenna ports final test as l Tes t only include vorst-case m ntenna ports final test as l	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below. sted Channel	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architectur Modulation Type
Power Line Comparison Pre-Scan here between av Following comparison EUT Config Intis item in mode. Pre-Scan here Pre-Scan here Following comparison Following comparison EUT Config EUT Config	as been conv railable modu channel(s) wa gure Mode Conducted I includes all tes vailable modu channel(s) wa gure Mode	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel Avail	termine the w rates and an ected for the ble Channel to 77 nt: ach mode, bu termine the w a rates and ar ected for the able Channel	tenna ports final test as l Tes t only include vorst-case m itenna ports final test as l Te	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below. sted Channel	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architectur Modulation Type
Power Line Comparison Pre-Scan here between av Following comparison EUT Config Intis item in mode. Pre-Scan here between av Following comparison Following comparison Following comparison EUT Config EUT Config Following comparison Following comparison EUT Config Following comparison Following comparison EUT Config Following comparison Followin	as been conv railable modu channel(s) wa gure Mode Conducted I acludes all tes railable modu channel(s) wa gure Mode 	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel Avail	termine the war a rates and an ected for the ble Channel ble Channel blo to 77 nt: ach mode, but termine the war a rates and ar ected for the ble Channel ble Channel 0 to 77	tenna ports final test as l Tes t only include vorst-case montenna ports final test as l Te	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below. sted Channel 0, 38, 77	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architectur Modulation Type GFSK
Pre-Scan h between av Following c EUT Config Intenna Port This item in mode. Pre-Scan h between av Following c EUT Config	as been conv railable modu channel(s) wa gure Mode Conducted I acludes all tes as been conv railable modu channel(s) wa gure Mode C C C C C C C C C C C C C C C C C C C	nission Test ducted to de lations, data is (were) sel Availa Measureme at value of ea ducted to de ilations, data is (were) sel Avail Environmen 25deg.	termine the warates and an ected for the ble Channel to 77 nt: ach mode, but termine the warates and an ected for the ble Channel of the ble Channel of the ble Channel of to 77 tal Conditions	tenna ports final test as l Tes t only include vorst-case materna ports final test as l Te l 120Vac,	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below. sted Channel 0, 38, 77 ut Power	GFSK sible combinations nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architectur Modulation Type GFSK GFSK
Power Line Co Pre-Scan h between av Following co EUT Config Antenna Port This item in mode. Pre-Scan h between av Following co EUT Config EUT Config Following co EUT Config EUT Config Following co EUT Config Est Condition Applicat RE≥1	as been conv railable modu channel(s) wa gure Mode Conducted I acludes all tes vailable modu channel(s) wa gure Mode 	nission Test ducted to de lations, data is (were) sel Availa Measureme st value of ea ducted to de ilations, data is (were) sel Availa Environmen 25deg.	termine the warates and an ected for the ble Channel to 77 nt: ach mode, but termine the warates and ar ected for the and ar ected for the ble Channel 0 to 77 tal Conditions C, 68%RH	tenna ports final test as l Tes t only include vorst-case montenna ports final test as l Te l 120Vac, 120Vac,	ode from all poss (if EUT with ante isted below. ted Channel 0 es spectrum plot ode from all poss (if EUT with ante isted below. sted Channel 0, 38, 77 ut Power 60Hz (System)	GFSK Sible combinations nna diversity architecture Modulation Type GFSK of worst value of each Sible combinations enna diversity architectur Modulation Type GFSK GFSK GFSK

3.3 Duty Cycle of Test Signal

Duty cycle correction factor = 20 log(Duty cycle) = 20 log(0.047) = -26.6dB



3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	Lenovo	80WG	YD01YRC9	NA	Provided by Lab
ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
* LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2021/10/27	2022/10/26
Coupling/Dcoupling Network	CDNE-M2	00097	2022/6/1	2023/5/31
Schwarzbeck	CDNE-M3	00091	2022/6/1	2023/5/31
Pre_Amplifier EMCI	EMC001340	980269	2022/6/28	2023/6/27
Pre_Amplifier HP	8447D	2432A03504	2022/2/17	2023/2/16
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Band Pass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
High Pass Filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2022/5/26	2023/5/25
Horn Antenna	2445	00027024	2021/11/14	2022/11/13
ЕМСО	3115	00028257	2021/11/14	2022/11/13
Horn Antenna ETS-Lindgren	3117-PA	00215857	2021/11/14	2022/11/13
Horn Antenna Schwarzbeck	BBHA 9170	212	2021/10/13	2022/10/12
Notch Filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre-amplifier HP	8449B	3008A01201	2022/2/17	2023/2/16
Pre-amplifier (18GHz-40GHz) EMCI	EMC184045B	980175	2021/9/4	2022/9/3
Pre_Amplifier	EMC0126545	980076	2022/2/17	2023/2/16
EMCI	EMC184045B	980235	2022/2/17	2023/2/16
RF Coaxial Cable EM	EM102-KMKM-3.5+1M	EM102-KMKM- 3.5+1M-01	2021/7/8	2022/7/7
RF Coaxial Cable HUBER SUHNER	SF-104	Cable-CH6-01	2021/7/8	2022/7/7
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	Cable-CH10(3m)-04	2021/7/8	2022/7/7
RF Coaxial Cable WOKEN	WC01	Cable-CH10-03	2021/7/8	2022/7/7
Software BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Agilent	E4446A	MY51100009	2022/6/27	2023/6/26

			-	
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer KEYSIGHT	N9030A	MY54490260 2021/7/23 2022/7		
Spectrum Analyzer R&S	FSV40	101042	2021/9/9	2022/9/8
	F3V40	101544	2022/5/9	Until 2022/7/22 2022/9/8 2023/5/8 2023/4/7 2023/6/8 N/A
Test Receiver	N9038A	MY51210129	10129 2022/4/8 2023/4/7	
Agilent	IN9036A	MY51210137	2022/6/9	2023/6/8
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in Linkou 966 Chamber 6 (CH 6).
- 4. Tested Date: 2022/7/5 ~ 2022/7/6

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

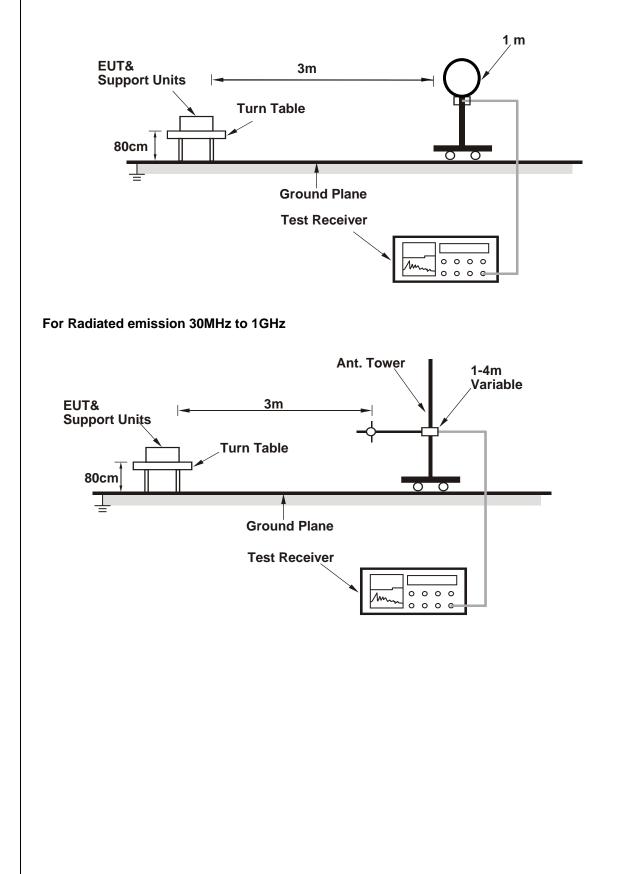
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

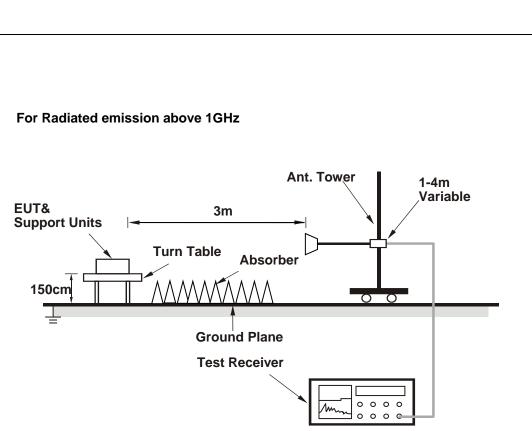
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty factor. The duty factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT to Notebook PC.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

		Ante	enna Polarity	/ & Test Dist	ance : Horiz	ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	51.8 PK	74.0	-22.2	1.68 H	219	54.1	-2.3
2	2390.00	42.7 AV	54.0	-11.3	1.68 H	219	45.0	-2.3
3	2400.00	42.8 PK	74.0	-31.2	1.68 H	219	45.1	-2.3
4	2400.00	16.2 AV	54.0	-37.8	1.68 H	219	18.5	-2.3
5	*2403.00	100.5 PK	114.0	-13.5	1.68 H	219	102.8	-2.3
6	*2403.00	73.9 AV	94.0	-20.1	1.68 H	219	76.2	-2.3
7	4806.00	45.3 PK	74.0	-28.7	1.44 H	186	39.8	5.5
8	4806.00	18.7 AV	54.0	-35.3	1.44 H	186	13.2	5.5

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	52.1 PK	74.0	-21.9	1.04 V	157	54.4	-2.3
2	2390.00	43.1 AV	54.0	-10.9	1.04 V	157	45.4	-2.3
3	2400.00	44.1 PK	74.0	-29.9	1.04 V	157	46.4	-2.3
4	2400.00	17.5 AV	54.0	-36.5	1.04 V	157	19.8	-2.3
5	*2403.00	102.2 PK	114.0	-11.8	1.04 V	157	104.5	-2.3
6	*2403.00	75.6 AV	94.0	-18.4	1.04 V	157	77.9	-2.3
7	4806.00	45.8 PK	74.0	-28.2	1.25 V	169	40.3	5.5
8	4806.00	19.2 AV	54.0	-34.8	1.25 V	169	13.7	5.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.047) = -26.6 dB

RF Mode	TX GFSK	Channel	CH 38:2441 MHz
Frequency Range	1 GHz ~ 25 GHz	& Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

		Ante	enna Polarity	/ & Test Dist	ance : Horiz	ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	99.8 PK	114.0	-14.2	1.66 H	220	102.0	-2.2
2	*2441.00	73.2 AV	94.0	-20.8	1.66 H	220	75.4	-2.2
3	4882.00	45.9 PK	74.0	-28.1	1.52 H	187	40.3	5.6
4	4882.00	19.3 AV	54.0	-34.7	1.52 H	187	13.7	5.6
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2441.00	101.9 PK	114.0	-12.1	1.02 V	156	104.1	-2.2
2	*2441.00	75.3 AV	94.0	-18.7	1.02 V	156	77.5	-2.2
3	4882.00	46.4 PK	74.0	-27.6	1.23 V	170	40.8	5.6
4	4882.00	19.8 AV	54.0	-34.2	1.23 V	170	14.2	5.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.047) = -26.6 dB

RF Mode	TX GFSK	Channel	CH 77:2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz (RMS)

Antenna Polarity & Test Distance : Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
*2480.00	98.6 PK	114.0	-15.4	1.24 H	230	100.7	-2.1	
*2480.00	72.0 AV	94.0	-22.0	1.24 H	230	74.1	-2.1	
2483.50	57.7 PK	74.0	-16.3	1.24 H	230	59.8	-2.1	
2483.50	31.1 AV	54.0	-22.9	1.24 H	230	33.2	-2.1	
4960.00	46.3 PK	74.0	-27.7	1.00 H	197	40.6	5.7	
4960.00	19.7 AV	54.0	-34.3	1.00 H	197	14.0	5.7	
	An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
*2480.00	100.3 PK	114.0	-13.7	1.01 V	158	102.4	-2.1	
*2480.00	73.7 AV	94.0	-20.3	1.01 V	158	75.8	-2.1	
2483.50	59.1 PK	74.0	-14.9	1.01 V	158	61.2	-2.1	
2483.50	32.5 AV	54.0	-21.5	1.01 V	158	34.6	-2.1	
4960.00	46.9 PK	74.0	-27.1	1.22 V	168	41.2	5.7	
4960.00	20.3 AV	54.0	-33.7	1.22 V	168	14.6	5.7	
	(MHz) *2480.00 *2483.50 2483.50 4960.00 4960.00 Frequency (MHz) *2480.00 *2480.00 2483.50 2483.50 4960.00	Emission Level (dBuV/m) *2480.00 98.6 PK *2480.00 72.0 AV 2483.50 57.7 PK 2483.50 31.1 AV 4960.00 46.3 PK 4960.00 19.7 AV Frequency (MHz) Emission Level (dBuV/m) *2480.00 100.3 PK *2480.00 73.7 AV 2483.50 59.1 PK 2483.50 32.5 AV 4960.00 46.9 PK	Emission Level (dBuV/m) Limit (dBuV/m) *2480.00 98.6 PK 114.0 *2480.00 72.0 AV 94.0 *2483.50 57.7 PK 74.0 2483.50 57.7 PK 74.0 2483.50 31.1 AV 54.0 4960.00 46.3 PK 74.0 4960.00 19.7 AV 54.0 4960.00 19.7 AV 54.0 4960.00 19.7 AV 54.0 4960.00 10.3 PK 114.0 *2480.00 100.3 PK 114.0 *2480.00 73.7 AV 94.0 2483.50 59.1 PK 74.0 2483.50 32.5 AV 54.0 4960.00 46.9 PK 74.0	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) *2480.00 98.6 PK 114.0 -15.4 *2480.00 72.0 AV 94.0 -22.0 2483.50 57.7 PK 74.0 -16.3 2483.50 31.1 AV 54.0 -22.9 4960.00 46.3 PK 74.0 -27.7 4960.00 19.7 AV 54.0 -27.7 4960.00 19.7 AV 54.0 -34.3 Emission Level (dBuV/m) Margin (dBuV/m) *2480.00 100.3 PK 114.0 -13.7 *2480.00 73.7 AV 94.0 -20.3 2483.50 59.1 PK 74.0 -14.9 2483.50 32.5 AV 54.0 -21.5 4960.00 46.9 PK 74.0 -21.5	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) *2480.00 98.6 PK 114.0 -15.4 1.24 H *2480.00 72.0 AV 94.0 -22.0 1.24 H 2483.50 57.7 PK 74.0 -16.3 1.24 H 2483.50 31.1 AV 54.0 -22.9 1.24 H 4960.00 46.3 PK 74.0 -27.7 1.00 H 4960.00 19.7 AV 54.0 -34.3 1.00 H 4960.00 19.7 AV 54.0 -31.3 1.00 H *2480.00 100.3 PK 114.0 -13.7 1.01 V *2480.00 73.7 AV 94.0 -20.3 1.01 V 2483.50 32.5 AV 54.0 -21.5 1.01 V 2483.50 32.5 A	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) Table Angle (Degree) *2480.00 98.6 PK 114.0 -15.4 1.24 H 230 *2480.00 72.0 AV 94.0 -22.0 1.24 H 230 2483.50 57.7 PK 74.0 -16.3 1.24 H 230 2483.50 31.1 AV 54.0 -22.9 1.24 H 230 4960.00 46.3 PK 74.0 -27.7 1.00 H 197 4960.00 19.7 AV 54.0 -34.3 1.00 H 197 4960.00 19.7 AV 54.0 -34.3 1.00 H 197 4960.00 19.7 AV 54.0 -34.3 1.00 H 197 4960.00 10.3 PK 74.0 -13.7 1.01 H 197 *2480.00 100.3 PK 114.0 -13.7 1.01 V 158 *2480.00 73.7 AV 94.0 -20.3 1.01 V 158 2483.50 32.5 AV	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) Table Angle (Degree) Raw Value (dBuV) *2480.00 98.6 PK 114.0 -15.4 1.24 H 230 100.7 *2480.00 72.0 AV 94.0 -22.0 1.24 H 230 74.1 2483.50 57.7 PK 74.0 -16.3 1.24 H 230 59.8 2483.50 31.1 AV 54.0 -22.9 1.24 H 230 33.2 4960.00 46.3 PK 74.0 -27.7 1.00 H 197 40.6 4960.00 19.7 AV 54.0 -34.3 1.00 H 197 14.0 4960.00 19.7 AV 54.0 -34.3 1.00 H 197 14.0 Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) Raw Value (dBuV) *2480.00 100.3 PK 114.0 -13.7 1.01 V 158 102.4 *2480.00 73.7 AV	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

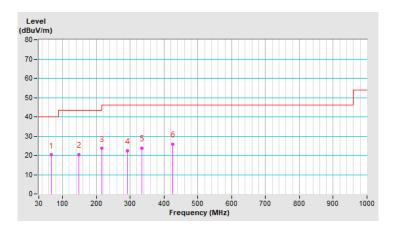
3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.047) = .26 6 dP

 $20 \log(\text{Duty cycle}) = 20 \log(0.047) = -26.6 \text{ dB}$


BELOW 1GHz WORST-CASE DATA

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	66.62	20.2 QP	40.0	-19.8	1.33 H	110	29.9	-9.7		
2	149.07	20.3 QP	43.5	-23.2	1.62 H	134	28.3	-8.0		
3	216.00	23.6 QP	43.5	-19.9	1.95 H	222	33.6	-10.0		
4	291.27	22.4 QP	46.0	-23.6	1.72 H	282	28.5	-6.1		
5	335.16	23.8 QP	46.0	-22.2	1.46 H	55	28.7	-4.9		
6	425.03	25.8 QP	46.0	-20.2	1.58 H	163	28.6	-2.8		

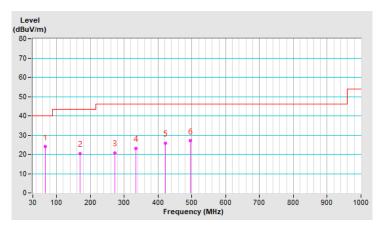
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	$9 \text{ kH} / \sim 1 (9 \text{ H} /$	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	66.42	23.9 QP	40.0	-16.1	1.79 V	360	33.6	-9.7		
2	169.44	20.4 QP	43.5	-23.1	1.54 V	195	28.6	-8.2		
3	273.28	20.7 QP	46.0	-25.3	1.88 V	0	27.1	-6.4		
4	334.29	23.1 QP	46.0	-22.9	1.63 V	45	27.9	-4.8		
5	421.25	25.8 QP	46.0	-20.2	1.42 V	346	28.7	-2.9		
6	496.42	27.0 QP	46.0	-19.0	1.25 V	247	28.4	-1.4		

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

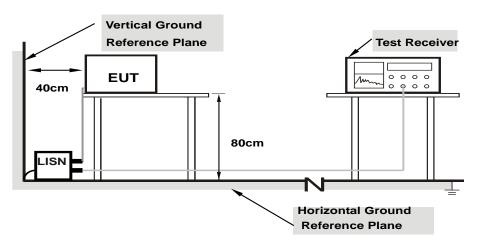
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal	0900510	E1-011285	2021/10/1	2022/9/30
LYNICS	0900510	E1-011286	2021/10/1	2022/9/30
50 Ohms Terminator LYNICS	0900510	E1-01-305	2022/2/9	2023/2/8
Attenuator STI	STI02-2200-10	NO.4	2021/9/3	2022/9/2
DC LISN	ESH3-Z6	100219	2021/7/25	2022/7/24
R&S	E3H3-20	844950/018	2021/7/25	2022/7/24
DC LISN Schwarzbeck	NNLK 8121	8121-808	2022/4/29	2023/4/28
High Voltage Probe Schwarzbeck	TK9420	00982	2021/12/24	2022/12/23
Isolation Transformer Erika Fiedler	D-65396		2021/9/9	2022/9/8
LISN	ENV216	101196	2022/5/24	2023/5/23
R&S	ESH3-Z5	100220	2021/11/25	2022/11/24
	NNLK 8121	8121-731	2022/5/26	2023/5/25
LISN	ININLK 0121	8121-00759	2021/8/17	2022/8/16
Schwarzbeck	NNLK8129	8129229	2022/6/8	2023/6/7
	NSLK 8128	8128-244	2021/11/11	2022/11/10
RF Coaxial Cable Commate	5D-FB	Cable-CO5-01	2022/1/28	2023/1/27
Software BVADT	Cond_V7.3.7.4	N/A	N/A	N/A
TEST RECEIVER R&S	ESCS 30	100276	2022/4/19	2023/4/18
Test Receiver R&S	ESR3	102412	2022/1/22	2023/1/21

Notes:

1. The test was performed in Linkou Conduction 5.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/7/6


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.

4.2.7 Test Results

RF Mode	TX GFSK	Channel	CH 0 : 2403 MHz
Frequency Range		Recollition	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value (dBuV)		0		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17344	9.90	28.94	14.64	38.84	24.54	64.79	54.79	-25.95	-30.25
2	0.27500	9.92	20.18	12.84	30.10	22.76	60.97	50.97	-30.87	-28.21
3	0.45469	9.93	23.61	20.17	33.54	30.10	56.79	46.79	-23.25	-16.69
4	0.73984	9.95	14.98	9.08	24.93	19.03	56.00	46.00	-31.07	-26.97
5	3.57813	10.12	22.72	14.33	32.84	24.45	56.00	46.00	-23.16	-21.55
6	8.56641	10.33	31.40	25.18	41.73	35.51	60.00	50.00	-18.27	-14.49

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX GFSK	Channel	CH 0:2403 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Reading Value Emission Level (dBuV) (dBuV)		5		U			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.91	32.38	16.54	42.29	26.45	65.38	55.38	-23.09	-28.93
2	0.23594	9.93	22.95	9.84	32.88	19.77	62.24	52.24	-29.36	-32.47
3	0.45078	9.95	22.31	16.64	32.26	26.59	56.86	46.86	-24.60	-20.27
4	0.73203	9.97	14.21	7.63	24.18	17.60	56.00	46.00	-31.82	-28.40
5	3.75391	10.14	23.85	13.81	33.99	23.95	56.00	46.00	-22.01	-22.05
6	8.77344	10.33	30.24	23.07	40.57	33.40	60.00	50.00	-19.43	-16.60

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Channel Bandwidth

4.3.1 Test Setup

4.3.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

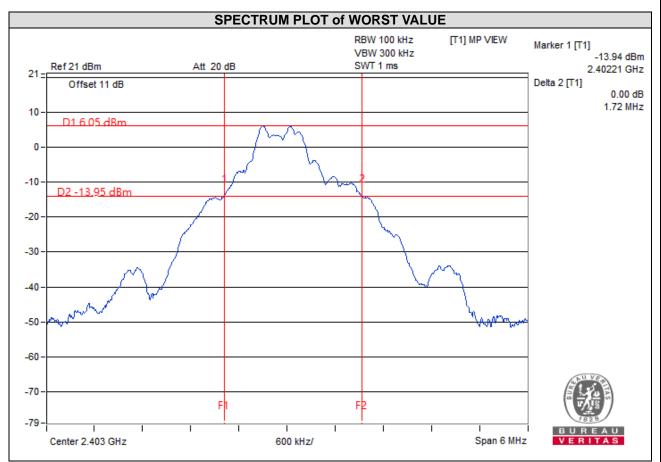
- 2. The test was performed in LK Oven
- 3. Tested Date: 2022/7/27

4.3.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.4 Deviation from Test Standard

No deviation.


4.3.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.6 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
0	2403	1.72
38	2441	1.71
77	2480	1.71

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ----