Test of Ear Force i60 TX Wireless Audio Transmitter

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: COMM38-U5 Rev A

Test of Ear Force i60 TX Wireless Audio Transmitter

to To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: COMM38-U5 Rev A

<u>Note:</u> this report contains data with regard to the 5,150 to 5,250 MHz band for Turtle Beach, Ear Force i60 TX Wireless Audio Transmitter. 2.4 GHz test data are reported in MiCOM Labs test report COMM38-U3

This report supersedes None

Applicant: Voyetra Turtle Beach Inc 100 Summit Lake Drive, Suite 100 Valhalla New York, 10595, USA

Product Function: Wireless Audio Transmitter

Copy No: pdf Issue Date: 30th September 2013

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:3 of 64

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ear Force i60 TX Wireless Audio Transmitter To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: COMM38-U5 Rev A Issue Date: 30th September 2013 Page: 4 of 64

TABLE OF CONTENTS

AC	CREI	DITATION, LISTINGS & RECOGNITION	.5
	TES	FING ACCREDITATION	5
		OGNITION	
	PRO	DUCT CERTIFICATION	7
1.	TES	T RESULT SUMMARY	.9
CO	MPL	ANCE STATEMENT1	10
2.	REF	ERENCES AND MEASUREMENT UNCERTAINTY1	11
	2.1.	Normative References	11
	2.2.	Test and Uncertainty Procedures	12
3.	PRC	DUCT DETAILS AND TEST CONFIGURATIONS	13
	3.1.	Technical Details	13
	3.2.	Scope of Test Program	14
	3.3.	Equipment Model(s) and Serial Number(s)	17
	3.4.	Antenna Details	17
	3.5.	Cabling and I/O Ports	
	3.6.	Test Configurations	
	3.7.	Equipment Modifications	
	3.8.	Deviations from the Test Standard	
	3.9.		
4.		TING EQUIPMENT CONFIGURATION(S)2	
	4.1.	Conducted RF Emission Test Set-up	
	4.2.	Radiated Spurious Emission Test Set-up > 1 GHz	
	4.3.	Digital Emissions Test Set-up (0.03 – 1 GHz)	
_	4.4.	I	
5.		T SUMMARY	
6.	-	T RESULTS	-
	6.1.	Device Characteristics	
		6.1.1. Conducted Testing	
		6.1.2. Radiated Emission Testing	
_		6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
7.		TOGRAPHS	
		Conducted Test Setup	
8.		T EQUIPMENT DETAILS	
AP		DIX	
Α.		PORTING INFORMATION	
	A.1.	CONDUCTED TEST PLOTS	
		A.1.1. 26 dB & 99% Bandwidth	
		A.1.2. Peak Power Spectral Density	
		A.1.3. Peak Excursion Ratio	53

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:5 of 64

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:6 of 64

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A - Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:7 of 64

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:8 of 64

DOCUMENT HISTORY

	Document History						
Revision	Date	Comments					
Draft							
Rev A	30 th September 2013	Initial release.					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:9 of 64

1. TEST RESULT SUMMARY

Applicant:	Voyetra Turtle Beach Inc 100 Summit Lake Drive, Suite 100 Valhalla New York, 10595, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton
EUT:	Wireless Audio Transmitter	Tel:	California, 94566, USA +1 925 462 0304
Model: S/N:	Ear Force i60 TX (TB300-7021-01) N/A	Fax:	+1 925 462 0306
Test Date(s):	20th to 29th August '13	Website:	www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

Gordon Hurst President & CEO MiCOM Labs, Inc.

TESTING CERTIFICATE #2381.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:10 of 64

COMPLIANCE STATEMENT

Applicant:	Voyetra Turtle Beach Inc 100 Summit Lake Drive, Suite 100 Valhalla, New York, 10595, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566 USA
Product:	Wireless Audio Transmitter	Telephone: Fax:	+1 925 462 0304 +1 925 462 0306
Model No.:	Ear Force i60 TX (TB300-7021-01)	Website:	www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210

MiCOM Labs attests that the above noted models meet the requirements set forth in the above standard(s) based on testing of samples as noted in the Test Result Summary and the manufacturer's declaration of similarity.

Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. The different model numbers identified are declared as being electrically identical by the manufacturer.
- 2. The manufacturer declared that the only difference between the models is cosmetic; the different models are marketed under separate brands.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:11 of 64

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title	
(i)	FCC 47 CFR Part 15.407	2012	Code of Federal Regulations	
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order	
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band	
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment	
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment	
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment	
(viii)	M 3003	Edition 2 Jan. 2007	Expression of Uncertainty and Confidence in Measurements	
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing	
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics	
(xi)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy	
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:12 of 64

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:13 of 64

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details	
Details	Description
Purpose:	Test of the Ear Force i60 TX Wireless Audio Transmitter
- F	in the frequency range 5,150 to 5,250 MHz to FCC Part
	15.407 and Industry Canada RSS-210 regulations.
Applicant:	Voyetra Turtle Beach Inc
	100 Summit Lake Drive, Suite 100
	Valhalla
	New York, 10595, USA
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	COMM38-U5 Rev A
Date EUT received:	20 th August 2013
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	20th to 29th August '13
No of Units Tested:	Тwo
Type of Equipment:	Wireless Audio Transmitter
Applicants Trade Name:	Ear Force
Model(s):	Ear Force i60 TX (TB300-7021-01)
Location for use:	Indoor only
Declared Frequency Range(s):	5,150 – 5,250 MHz
Hardware Rev	PP
Software Rev	None
Type of Modulation:	Per 802.11 – OFDM
Declared Nominal Output Power:	802.11a: Legacy +10.36 dBm
(Average Power)	
EUT Modes of Operation:	Legacy 802.11a
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	EUT has no capability for antenna beam forming
Rated Input Voltage and Current:	5 Vdc (USB)
Operating Temperature Range:	Declared range 0° to +50°C at 95% humidity non condensing
ITU Emission Designator:	802.11a 16M8D1D
Equipment Dimensions:	4.125 x 4.125 x 1.5 inches
Weight:	0.4 lb
Primary function of equipment:	Wireless Audio Transmitter

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:14 of 64

3.2. Scope of Test Program

Ear Force i60 TX Wireless Audio Transmitter RF Testing

The scope of the test program was to test the Ear Force i60 TX Wireless Audio Transmitter, in the frequency range 5,150 to 5,250 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

Ear Force i60 TX Wireless Audio Transmitter

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:15 of 64

Ear Force i60 TX Wireless Audio Transmitter- WiFi Board

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ear Force i60 TX Wireless Audio Transmitter To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: COMM38-U5 Rev A Issue Date: 30th September 2013 Page: 16 of 64

Ear Force i60 TX Wireless Audio Transmitter- WiFi PCB Board - Top

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:17 of 64

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless Audio Transmitter	Voyetra Turtle Beach	Ear Force i60 TX	N/A
Support	Laptop PC	Apple	MacBook Air	None

3.4. Antenna Details

	Manufacturer	Antenna Gain (dE		Gain (dBi
Antenna Type	Manufacturer	woder Number	2.4 GHz	5 GHz
Integral Folded F	Turtle Beach	РСВ	2.8	
(Bluetooth)				
Chip (Wi-Fi)	Fractus	FR05-S1-NO-1-004	-1.5	
Chip (Wi-Fi)	Fractus	FR05-S1-NO-1-004		3.3

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x USB (power only)

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:18 of 64

3.6. <u>Test Configurations</u>

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Operational Mode(s)	Variant	Data Rates with Highest	Frequencies
(802.11)		Power	(MHz)
а	Legacy	6 MBit/s	5,180/5,200/5,240

Spurious Emission and Band-Edge Test Strategy

Bands 5,150 – 5,250 11a SE 5180 SE 5200 SE 5240 BE 5350 KEY:-

SE – Spurious Emissions

BE – Band-Edge

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:19 of 64

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

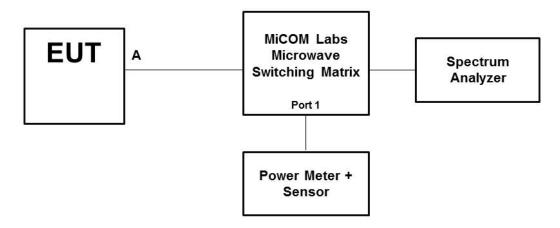
1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:20 of 64

4. TESTING EQUIPMENT CONFIGURATION(S)


4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

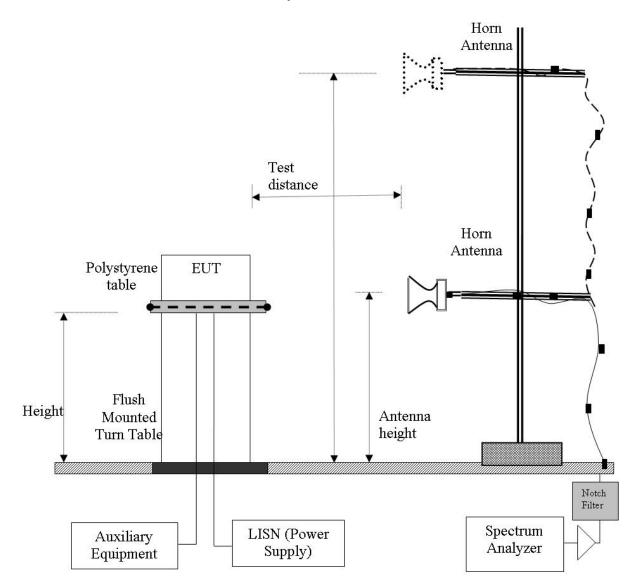
- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density
- 4. Section 6.1.1.4. Peak Excursion Ratio

Conducted Test Set-Up Pictorial Representation

Test Measurement set up

Conducted Test Measurement Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



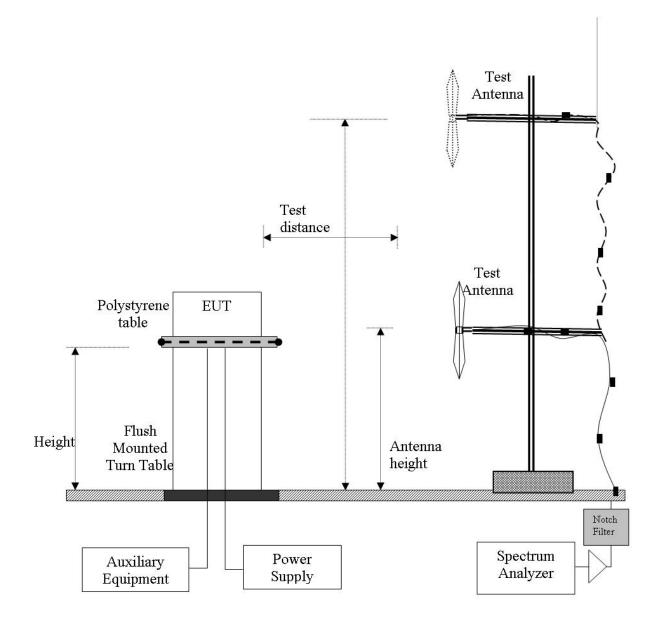
Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:21 of 64

4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:22 of 64

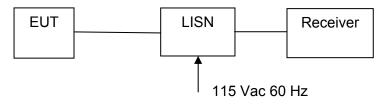
4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.4. Digital Emissions

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:23 of 64

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Measurement set up for ac Wireline Conducted Emissions Test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:24 of 64

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	6.1.1.1 A.1.1
15.407(a) A9.2(2) 4.6	Maximum Conducted Output Power	Power Measurement	Conducted	Complies	6.1.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	6.1.1.3 A.1.2
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	6.1.1.4 A.1.3
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	6.1.1.5

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:25 of 64

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated		6.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	
	Radiated Band Edge	Band edge results		Complies	
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	6.1.2.1
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is Battery Powered	6.1.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:26 of 64

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 26 dB and 99 % Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.407	CC CFR 47:15.407 Ambient Temp. (°C): 2				
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars): 999 - 1001				
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:27 of 64

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11a	Duty Cycle (%):	100				
Data Rate:	6 Mbit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	JMH				
Engineering Test Notes:							

Test	Mea	Measured 26 dB Bandwidth (MHz)				width (MHz)	
Frequency		Port	t(s)		20 ub banu		
MHz	a b c			d	Highest	Lowest	
5180.0	<u>35.972</u>				35.972	35.972	
5200.0	<u>35.671</u>				35.671	35.671	
5240.0	<u>34.870</u>				34.870	34.870	
Г							
	Measured 99% Bandwidth (MHz)						
Test	in c		•	-	— 99% Bandy	vidth (MHz)	
	ine.	Port	t(s)	-	99% Bandv	vidth (MHz)	
	a		t(s) c	d	99% Bandv Highest	Lowest	
Frequency		Por	. ,	d			
Frequency MHz	а	Por	. ,	d	Highest	Lowest	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:28 of 64

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2

Band 5150-5250 MHz

Note: LE-LAN devices are restricted to indoor operation only in the band 5150–5250 MHz.

Power limits

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Out-of-band emission limits

Emissions outside the band 5150–5250 MHz shall not exceed -27 dBm/MHz e.i.r.p.

Band 5250–5350 MHz

Power limits

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Out-of-band emission limits

Emissions outside the band 5250–5350 MHz shall not exceed -27 dBm/MHz e.i.r.p

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:29 of 64

6.1.1.2. Maximum Conducted Output Power

Conducted Test Conditions for Maximum Conducted Output Power						
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars):				
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:30 of 64

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

Bands 5150 – 5250 MHz

FCC Limits

Conducted Power Limit lesser of: 50 mW or 4 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Minimum 26 dB Bandwidth (MHz)	4 + 10 Log (B) (dBm)	Limit (dBm)
а	5150 – 5250	34.870	+19.43	+17

Industry Canada Limits

EIRP Limit 5150 – 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm. B is the 99% emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Minimum 99 % Bandwidth (MHz)	10 + 10 Log (B) (dBm)	EIRP Limit (dBm)
а	5150 – 5250	18.136	+22.77	+23

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:31 of 64

Measurement Results for Maximum Conducted Output Power

Equipment Configuration for Peak Transmit Power							
Variant:	802.11a	Duty Cycle (%):	100				
Data Rate:	6 Mbit/s	Antenna Gain (dBi):	3.30				
Modulation:	OFDM	Beam Forming Gain (Y):	N/A				
TPC:	Not Applicable	Tested By:	JMH				
Engineering Test Notes:							

Test Measu	Test Measurement Results									
Test	Measure	d Conducted	Output Pow	ver (dBm)	Calculated	Minimum				
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power Setting	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting	
5180.0	10.36				10.36	35.972	17	-6.64	SPW 0	
5200.0	9.60				9.60	35.671	17	-7.40	SPW 0	
5240.0	9.50				9.50	34.870	17	-7.50	SPW 0	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:32 of 64

Specification Limits

FCC, Part 15 §15.407 (a)(1), (a)(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2

Band 5150–5250 MHz

Note: LE-LAN devices are restricted to indoor operation only in the band 5150–5250 MHz.

Power limits

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Out-of-band emission limits

Emissions outside the band 5150–5250 MHz shall not exceed -27 dBm/MHz e.i.r.p.

Band 5250–5350 MHz

Power limits

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Out-of-band emission limits

Emissions outside the band 5250–5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:33 of 64

6.1.1.3. Peak Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a) Pressure (mBars): 999 - 1001					
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

<u>Measure and sum the spectra across the outputs</u>. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = $A + 10 \log (1/x) dBm$

A = Total Power Spectral Density [10 Log10 (10a/10 + 10 b/10 + 10c/10 + 10d/10)]

x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:34 of 64

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11a	Duty Cycle (%):	100			
Data Rate:	6 Mbit/s	Antenna Gain (dBi):	3.30			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	JMH			
Engineering Test Notes:						

Test Measurem	ent Results						
	Γ	Measured Power	Spectral Densit	Calculated			
Test Frequency		Port(s) (c	IBm/MHz)		Power Spectral Density Σ Port(s)	Limit	Margin
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5180.0	<u>-1.158</u>				-1.158	4.0	-5.2
5200.0	<u>-2.047</u>				-2.047	4.0	-6.0
5240.0	<u>-2.372</u>				-2.372	4.0	-6.4

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Click on the links above to see the plot

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:35 of 64

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)

5150 – 5250 MHz

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

5250 – 5350 MHz & 5470 – 5725 MHz

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2

Band 5150–5250 MHz

Note: LE-LAN devices are restricted to indoor operation only in the band 5150–5250 MHz.

Power limits

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Out-of-band emission limits

Emissions outside the band 5150–5250 MHz shall not exceed -27 dBm/MHz e.i.r.p.

Band 5250–5350 MHz

Power limits

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Out-of-band emission limits

Emissions outside the band 5250–5350 MHz shall not exceed -27 dBm/MHz e.i.r.p

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:36 of 64

6.1.1.4. Peak Excursion Ratio

Conducted Test Conditions for Peak Excursion Ratio			
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Peak Excursion Ratio	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a)(6)	Pressure (mBars):	999 - 1001
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01		

Test Procedure for Peak Excursion Ratio

<u>Compliance with the peak excursion requirement is demonstrated by confirming the ratio of the maximum of the peak-hold spectrum</u> <u>to the maximum of the average spectrum</u> during continuous transmission. Section F) of KDB 789033 was used in order to prove compliance. This is a conducted measurement using a spectrum analyzer using dual traces. Peak Excursion Ratio is the difference in amplitude (dB) between both traces; The following identifies two spectrum traces on the same plot. <u>Trace 1</u> is the max hold Peak detector, and <u>Trace 2</u> is the recalled trace data from Peak Power Spectral Density measurements. Each frequency and operational mode is recalled in order to prove compliance.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:37 of 64

Equipment Configuration for Peak Excursion Ratio								
Variant:	802.11a	Duty Cycle (%):	100					
Data Rate:	6 Mbit/s	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	JMH					
Engineering Test Notes:								

Test Measurement Results										
Test	N	leasured Peak	Excursion (d	3)	Patio	(dB)	Limit	Lowest		
Frequency		Poi	rt(s)		Katio	(ub)	Linin	Margin		
MHz	а	b	С	d	Highest	Lowest	dB	MHz		
5180.0	<u>8.11</u>				8.11	8.11	13.0	-4.89		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:38 of 64

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:39 of 64

6.1.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g)

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 \pm 20ppm at 5.250 GHz translates to a maximum frequency shift of \pm 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:40 of 64

6.1.2. Radiated Emission Testing

FCC, Part 15 Subpart E §15.407(b), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.2

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dBµV/m (or dBµV) and µV/m (or µV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:41 of 64

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:42 of 64

Specification

Radiated Spurious Emissions

15.407 (b). All emissions outside of the 5,150-5,350MHz, 5,470-5,725MHz band shall not exceed an EIRP of -27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.2 For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.9 Transmitter Unwanted Emissions.

RSS-Gen §6.1 Receiver Spurious Emission Standard.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:43 of 64

Table 1: FCC 15.209 Spurious Emissions Limits

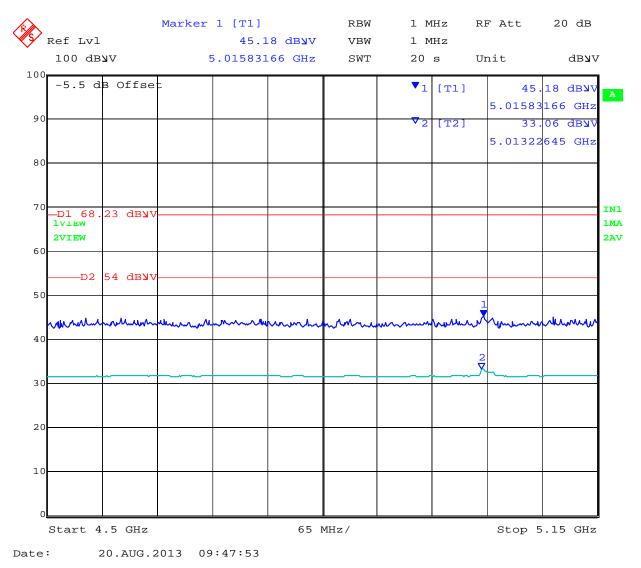
Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

Traceability:

Test Equipment Used
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

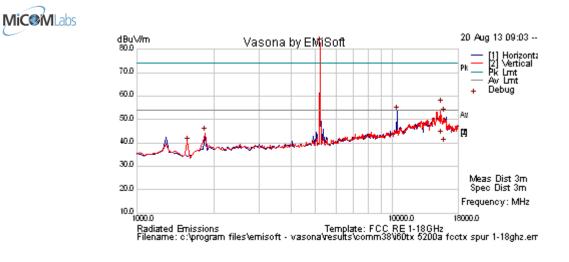
Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:44 of 64


	st Freq.	5180 M	Hz						Engineer	JMH		
	Variant	802.11a	; 6 Mbs				Temp (°C) 25					
Freq.	Range	1000 M	Hz - 1800	0 MHz		Rel. Hum.(%) 32						
Power	Setting	SPW 0	PW 0					Press.	. (mBars)	1002		
Α	ntenna	Chip 3.3	3 dBi					Duty 0	Cycle (%)	100		
Test N	Notes 1	i60 TX										
Test N	lotes 2											
MiCOMLa	bs	dBu√/m 80.0 70.0 60.0 50.0 40.0 30.0	~~~^	J.	Vasona by EMi	Soft			+ + AW + + AW + 4A+ + AW	Aug 13 08: - [1] Horiz - [2] Verti - [2]	cal	
			liated Emi: name: c:\ç		Vemisoft - vasonav	Templat results v	te: FCC comm38	10000.0 RE 1-18 SV6Dtx 5	5 Fre 18000	ipec Dist 3r quency: Mi 0	m Hz	
Formally m	neasur Raw dBuV	10.0 1000 <i>)</i> Rac File	liated Emi: name: c:\ç		Vemisoft - vasonav	Templat results v	te: FCC comm3t		5 Fre 18000	ipec Dist 3r quency: Mi 0	m Hz	Comments
Frequency	Raw	10.0 1000) Rac File	iated Emi name: c:\ç ission AF	Deaks	Measurement Type		Hgt	RE 1-18 3160tx 5	S Fre 18000 3 GHz 180a footx s Limit	ipec Dist 3r quency: Ml pur 1-18gh: Margin	n Hz z.err Pass	Comments
Frequency MHz	Raw dBuV	ed emi	iated Emi name: c:\r SSION AF dB	Deaks Level dBuV/m	Measurement		Hgt	RE 1-18 3160tx 5	S Fre 18000 3 GHz 180a footx s Limit	ipec Dist 3r quency: Ml pur 1-18gh: Margin	n Hz z.err Pass	
Frequency MHz 5192.758	Raw dBuV 73.6	ed emi Cable Loss	ission (AF dB -9.9	Ceaks	Measurement Type Peak [Scan]	Pol	Hgt cm	RE 1-18 SV6Dtx 5 Azt Deg	S Fre 18000 3GHz 180a footx s Limit dBuV/m	ipec Dist 3r quency: Ml pur 1-18gh Margin dB	n Hz z.err Pass /Fail	FUND
Frequency MHz 5192.758 15383.143	Raw dBuV 73.6 35.2	ed emi Cable Loss 4.8 8.7	ission AF dB -9.9 -0.7	Ceaks	Measurement Type Peak [Scan] Average.	Pol V	Hgt cm 123	Azt Deg	Limit dBuV/m	pec Dist 3r quency: Ml pur 1-18gh Margin dB -10.7	m Hz z.err /Fail Pass	FUND
Frequency MHz 5192.758 15383.143 15383.143	Raw dBuV 73.6 35.2 48.6	10.0 1000 1000 1000 1000 Randon	AF dB -9.9 -0.7 -0.7	Level dBuV/m 68.5 43.3 56.6	Measurement Type Peak [Scan] Average. Peak	Pol V V	Hgt cm 123 123	RE 1-18 SV6Dtx 5 Azt Deg 4 4	S Fre 18000 3GHz 18Da foctx s Limit dBuV/m 54.0 74	pec Dist 3r quency: Ml pur 1-18gh: Margin dB -10.7 -17.4	n Hz z.err Pass /Fail Pass Pass	FUND RB RB
Frequency MHz 5192.758 15383.143 15383.143 15832.123	Raw dBuV 73.6 35.2 48.6 44.1	ed emi Cable Loss 4.8 8.7 8.7 8.9	AF dB -9.9 -0.7 -0.7 -0.3	Level dBuV/m 68.5 43.3 56.6 52.8	Measurement Type Peak [Scan] Average. Peak Peak Max	Pol V V H	Hgt cm 123 123 99	Azt Deg 4 163	S Fre 18000 3GHz 1800a footx s Limit dBuV/m 54.0 74 74	pec Dist 3r quency: MI pur 1-18gh Margin dB -10.7 -17.4 -21.2	m Hz z.err Pass /Fail Pass Pass Pass	FUND RB RB RB
Frequency MHz 5192.758 15383.143 15383.143 15383.143 15832.123 15832.123	Raw dBuV 73.6 35.2 48.6 44.1 31.2 54.0	ed emi Cable Loss 4.8 8.7 8.7 8.9 8.9 2.8	AF dB -9.9 -0.7 -0.7 -0.3 -0.3 -12.4	Level dBuV/m 68.5 43.3 56.6 52.8 39.9 44.4	Measurement Type Peak [Scan] Average. Peak Peak Max Average Max	Pol V V H H	Hgt cm 123 123 99 99	Azt Deg 4 163 163	S Fre 18000 3GHz 1800a footx s Limit dBuV/m 54.0 74 74 74 54	pec Dist 3r quency: MI pur 1-18gh margin dB -10.7 -17.4 -21.2 -14.2	m Hz z.err /Fail Pass Pass Pass Pass Pass	FUND RB RB RB RB NRB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:45 of 64

802.11a 5150 Restricted Band-edge


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:46 of 64

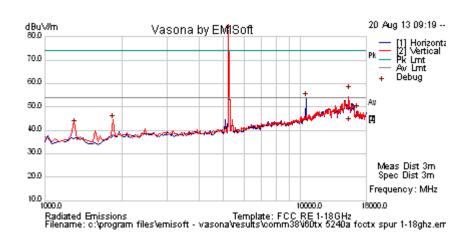
Mid Channel

Test Freq.	5200 MHz	Engineer	JMH
Variant	802.11a; 6 Mbs	Temp (°C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	32
Power Setting	SPW 0	Press. (mBars)	1002
Antenna	Chip 3.3 dBi	Duty Cycle (%)	100
Test Notes 1	i60 TX		
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1577.797	53.0	2.5	-15.2	40.3	Peak [Scan]	V	99	0	54.0	-13.7	Pass	RB
1851.39	53.9	2.8	-12.4	44.3	Peak [Scan]	V						NRB
5190.381	87.8	4.8	-9.9	82.7	Peak [Scan]							FUND
10402.806	48.9	7.1	-2.5	53.5	Peak [Scan]	Н						NRB
15381.644	35.0	8.7	-0.7	43.0	Average Max	V	136	0	54	-11.0	Pass	RB
15381.644	48.3	8.7	-0.7	56.4	Peak Max	V	136	0	74	-17.7	Pass	RB
15898.357	30.9	9.0	-0.2	39.8	Average Max	Н	126	41	54	-14.3	Pass	RB
15898.357	43.8	9.0	-0.2	52.6	Peak Max	Н	126	41	74	-21.4	Pass	RB
Legend:	TX = T	ransmitte	er Emissi	ons; DIG =	Digital Emissions	; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Res	stricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits p	per 15.205		

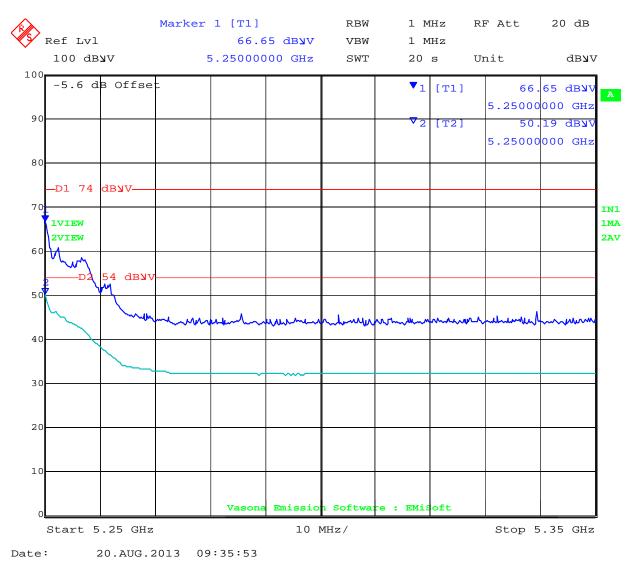
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:47 of 64

High Channel

Test Freq.	5240 MHz	Engineer	JMH
Variant	802.11a; 6 Mbs	Temp (°C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	32
Power Setting	SPW 0	Press. (mBars)	1002
Antenna	Chip 3.3 dBi	Duty Cycle (%)	100
Test Notes 1	i60 TX		
Test Notes 2			


Formally r	neasui	red emi	ssion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1314.084	53.8	2.3	-13.6	42.4	Peak [Scan]	V	98	0	54.0	-11.6	Pass	RB
1850.858	53.9	2.8	-12.4	44.3	Peak [Scan]	V						NRB
5224.449	87.7	4.8	-9.8	82.7	Peak [Scan]							FUND
10470.942	49.4	6.9	-2.5	53.9	Peak [Scan]	Н						NRB
15381.483	49.0	8.7	-0.7	57.0	Peak Max	V	109	0	74	-17.0	Pass	RB
15381.483	35.2	8.7	-0.7	43.2	Average Max	V	109	0	54	-10.8	Pass	RB
16603.206	38.7	9.2	0.6	48.5	Peak [Scan]	V						NRB
Legend:	TX = T	ransmitte	er Emissie	ons; DIG =	Digital Emissions	; FUN	D = Fu	ndamei	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Res	stricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bar	nd. Limits p	per 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:48 of 64

802.11a 5250 Restricted Band-edge

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:49 of 64

6.1.2.1. Digital Emissions (0.03 - 1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-Gen §7.2.5

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

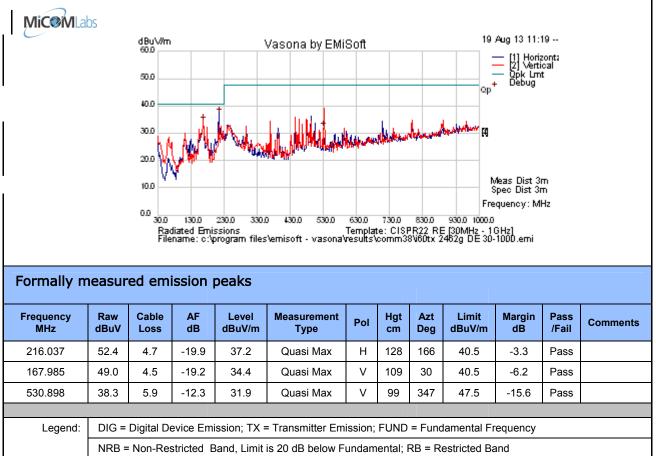
For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))


40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:50 of 64

Test Freq.	NA	Engineer	JMH
Variant	Digital Emissions	Temp (°C)	25
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	32
Power Setting		Press. (mBars)	1002
Antenna			
Test Notes 1	i60 TX		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:51 of 64

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and Industry Canada RSS-Gen §7.2.5 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	1	+5.6/ -4.5 dB
-------------------------	---	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:52 of 64

6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.4

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Not required - EUT is host powered only.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:53 of 64

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.4

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The more stringent limit applies at the frequency range boundaries. The conducted emissions shall be measured with a 50 ohm/50 microhenry line impedance stabilization network (LISN).

§15.207 (a) and RSS-Gen §7.2.4 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:54 of 64

7. PHOTOGRAPHS

7.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:55 of 64

8. TEST EQUIPMENT DETAILS

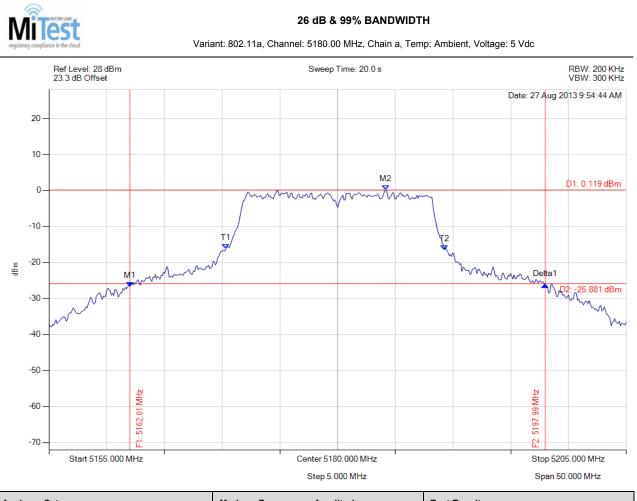
Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 13
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 13
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 13
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 13
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 13
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 13
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 13
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 13
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 13
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
	EMC Test Software	EMISoft	Vasona	5.0051	N/A
	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
	RF Conducted Test Software	MiCOM Labs ATS		Version 1.5	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:56 of 64

APPENDIX

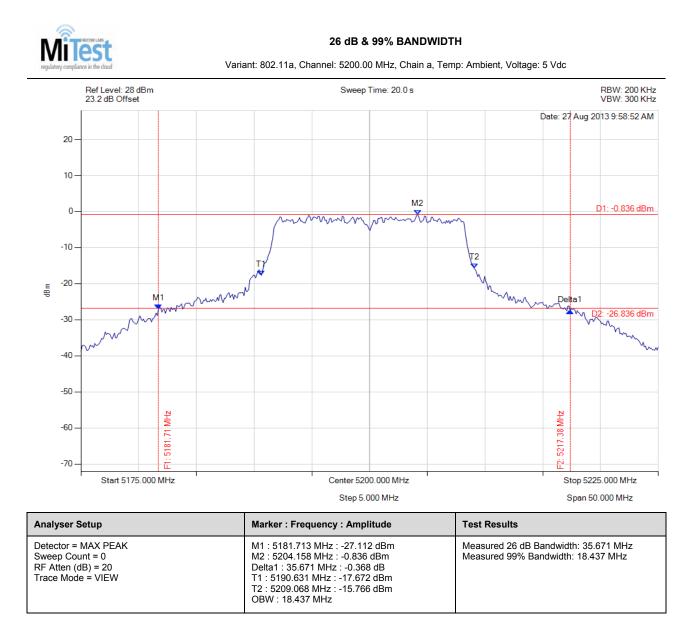
A. SUPPORTING INFORMATION


A.1. CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:57 of 64

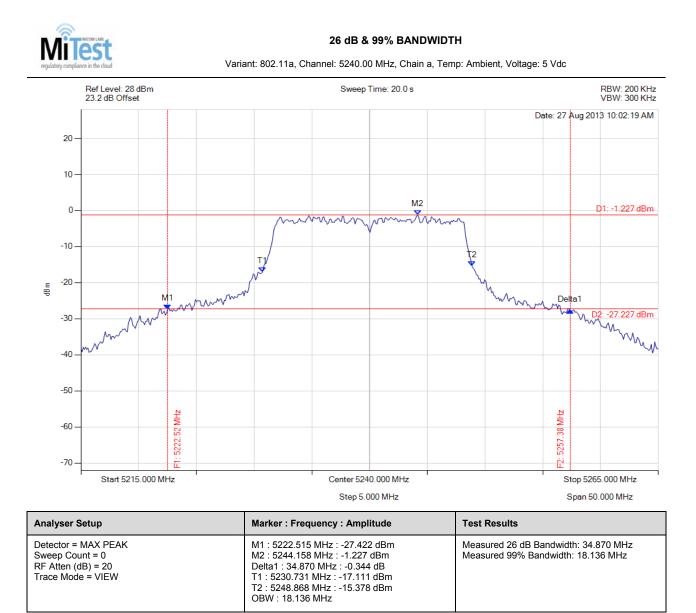
A.1.1. 26 dB & 99% Bandwidth


Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5162.014 MHz : -26.685 dBm M2 : 5184.158 MHz : 0.119 dBm Delta1 : 35.972 MHz : 0.464 dB T1 : 5170.331 MHz : -16.144 dBm T2 : 5189.269 MHz : -16.476 dBm OBW : 18.938 MHz	Measured 26 dB Bandwidth: 35.972 MHz Measured 99% Bandwidth: 18.938 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

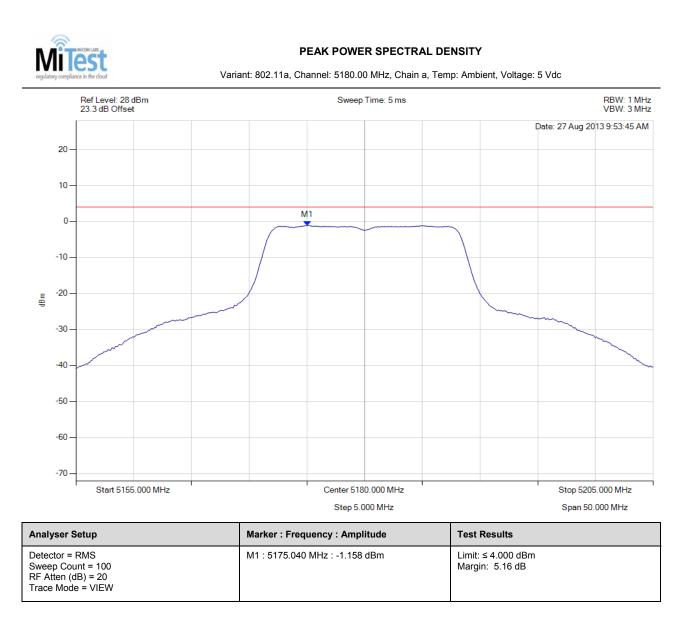
Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:58 of 64



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:59 of 64


Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:60 of 64

A.1.2. Peak Power Spectral Density



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:61 of 64

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Ear Force i60 TX Wireless Audio TransmitterTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:COMM38-U5 Rev AIssue Date:30th September 2013Page:62 of 64

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Ear Force i60 TX Wireless Audio Transmitter To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: COMM38-U5 Rev A Issue Date: 30th September 2013 Page: 63 of 64

A.1.3. Peak Excursion Ratio

đB

PEAK EXCURSION RATIO Variant: 802.11a, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc Ref Level: 28 dBm 23.3 dB Offset Sweep Time: 1.0 s RBW: 1 MHz VBW: 3 MHz Date: 26 Aug 2013 12:23:34 PM 20 M1 10 Delta1 0--10 --20 -30 -40 -**50** --60 -70 Start 5155.000 MHz Center 5180.000 MHz Stop 5205.000 MHz Step 5.000 MHz Span 50.000 MHz **Test Results** Analyser Setup Marker : Frequency : Amplitude

Sweep Count = 0	M1 : 5182.956 MHz : 7.593 dBm	Measured Excursion Ratio: 8.28 dB
RF Atten (dB) = 20	Delta1 : -8016032 Hz : -8.278 dB	Limit: 13.0 dB
TRACE 1:		Margin: -4.72 dB
Detector = MAX PEAK		
Trace Mode = VIEW		
TRACE 2:		
Detector = RMS		
Trace Mode = VIEW		

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com