

Emissions Test Report

EUT Name:Wireless Audio HeadsetModel No.:Stealth 700P Gen 2 RXCFR 47 Part 15.247: 2020 and RSS 247 Issue 2, 2017

Prepared for:

Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date:	July 30, 2020
Revision Number	0
Project Number:	234157758
Report Number:	32063270.001

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	07/30/2020	Original Document	N/A

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer:	Voyetra Turtle Beach, Inc.
	100 Summit Lake Drive, Suite 100
	Valhalla, New York 10595 USA
Requester / Applicant:	Tim Blaney
	(530) 277-3482
Name of Equipment:	Wireless Audio Headset
Model No.	Stealth 700P Gen 2 RX (TB300-3780-01)
Type of Equipment:	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.247: 2020 and RSS 247 Issue 2, 2017
Test Dates:	July 8, 2020 to July 29, 2020

Guidance Documents:

Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v05r02,

Test Methods:

Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v05r02,

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Jeremy Luong	Jeremy		_Kerwinn Corp	JZ	
Test Engineer	Date July 30,	2020	Reviewer Sign	atory Da	ate July 30, 2020
IDC.MEA		F©	*	Government of Canada	Gouvernement du Canada
Testing C	ert #3331.02	US1131		2932M	

1 Ex	xecutive Summary	7
1.1	Scope	7
1.2	Purpose	
1.3	Summary of Test Results	8
1.4	Special Accessories	
1.5	Equipment Modifications	
2 La	uboratory Information	
2.1 2.1 2.1 2.1 2.1 2.1	Accreditations & Endorsements	9 9 9 9 9 9
2.2 2.2 2.2	· · · · · · · · · · · · · · · · · · ·	10
2.3 2.3 2.3	· · · · · · · · · · · · · · · · · · ·	11
2.4	Calibration Traceability	12
3 Pr	oduct Information	13
3.1	Product Description	13
3.2	Equipment Configuration	13
3.3	Operating Mode	13
3.4 3.4	Unique Antenna Connector	
3.5 3.5	Duty Cycle	15 15
4 En	nissions	16
4.1 4.1 4.1		16
4.2 4.2 4.2	Occupied Bandwidth	20 20
4.2 4.3 4.3 4.3	Peak Power Spectral Density 3.1 Test Method	25 25
4.4 4.4	Out of Band Emissions	29

4.4	.2 Results	30
4.5	Transmit Spurious Emissions	34
	.1 Test Methodology	34
	.2 Transmitter Spurious Emission Limit	
4.5	.3 Test Results	35
4.5	5.4 Sample Calculation	49
4.6	AC Conducted Emissions	50
4.6	.1 Test Methodology	50
4.6	5.2 Test Results	50
5 Te	st Equipment List	55
5.1	Equipment List	55
6 EN	MC Test Plan	56
6.1	Introduction	56
6.2	Customer	56
6.3	Equipment Under Test (EUT)	57
6.4	Test Specifications	60

Index of Tables

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results	17
Table 3: Occupied Bandwidth – Test Results	21
Table 4: Peak Power Spectral Density – Test Results	
Table 5: Out of Band Emissions – Test Results	
Table 6: Transmit Spurious Emission at Band-Edge Requirements	
Table 7: AC Conducted Emissions – Test Results	
Table 8: Customer Information	
Table 9: Technical Contact Information	
Table 10: EUT Specifications	57
Table 11: Interface Specifications	
Table 12: Supported Equipment	
Table 13: Description of Sample used for Testing	
Table 14: Description of Test Configuration used for Radiated Measurement.	58
Table 15: Final Test Mode for 2402 MHz to 2480MHz Band	59
Table 16: Test Specifications	60

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.247: 2020 and RSS 247 Issue 2, 2017 based on the results of testing performed on July 8, 2020 to July 29, 2020 on the Wireless Audio Headset Model Stealth 700P Gen 2 RX manufactured by Voyetra Turtle Beach, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 2402 MHz to 2480 MHz frequency band is covered in this document.

1.3 Summary of Test Results

Table 1:	Summary	of Test	Results
----------	---------	---------	---------

Test	Test Method ANSI C63.10:2013	Test Parameters	Measured Value	Result
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.247 (d) RSS-GEN Sect. 8.9	Class B	-3.59 dB (Margin)	Complied
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect. 8.10	Class B	-3.39 dB (Margin)	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect. 8.8	Class B	-6.30 dB (Margin)	Complied
Occupied Bandwidth	CFR47 15.247 (a2), RSS-GEN Sect.6.7, RSS 247 Sect.5.2 (a)	≥ 500 kHz	0.705 MHz (DTS) 1.025 MHz (99%)	Complied
Maximum Output Power	CFR47 15.247 (b), RSS 247 Sect. 5.4 (d)	30 dBm w/ 6 dBi antenna	+4.41 dBm	Complied
Peak Power Spectral Density	CFR47 15.247 (e), RSS 247 Sect. 5.2 (d)	8 dBm/ 3 kHz	-17.30 dBm	Complied
Out of Band Emission	CFR47 15.247 (d), RSS 247 Sect.5.5	-30 dBr	-19.20 dB (Margin)	Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

2 Laboratory Information

Accreditations & Endorsements 2.1

US Federal Communications Commission 2.1.1

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes:

Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

NIST / A2LA 2.1.2

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2017 and ISO 9002 (Lab Code Testing Cert #3331.02).

The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for

the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from

Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0326

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope

of the laboratory NIST / A2LA accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction (dB μ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	U _{lab}	Ucispr			
Radiated Disturbance @ 1	Radiated Disturbance @ 10 meters				
30 – 1,000 MHz	2.25 dB	4.51 dB			
Radiated Disturbance @ 3	3 meters				
30 – 1,000 MHz	2.26 dB	4.52 dB			
1 – 6 GHz	2.12 dB	4.25 dB			
6 – 40 GHz	2.47 dB	4.93 dB			
Conducted Disturbance @	Conducted Disturbance @ Mains Terminals				
150 kHz – 30 MHz	1.09 dB	2.18 dB			
Disturbance Power					
30 MHz – 300 MHz	3.92 dB	4.3 dB			

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is \pm	Per CISPR 16-4-2
5.0%.	Methods

Measurement Uncertainty - EMC Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is \pm 2.9%.	Per IEC 61000-4-8
The estimated combined standard uncertainty for EFT fast transient immunity measurements is \pm 2.6%.	Per IEC 61000-4-4
The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.	Per IEC 61000-4-5
The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.	Per IEC 61000-4-11

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz
The estimated combined standard uncertainty for carrier power measurements is ± 0.70 dB.
The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.
The estimated combined standard uncertainty for modulation frequency response measurements is ± 0.46 dB.
The estimated combined standard uncertainty for transmitter conducted emission measurements is ± 2.06 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2017. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Stealth 700P Gen 2 Wireless Gaming System consists of two main communication modules, the Stealth 700P Gen 2 RX ("Headset") and the Stealth 700P Gen 2 TX ("Transmitter"). These two modules comprise a closed-loop wireless audio gaming system that utilize a proprietary 2.4 GHz communication technology to offer wireless streaming audio and chat/talkback capabilities. The devices are designed to operate with a PS4 gaming console or PC-based system.

The Stealth 700P RX has 50mm drivers, fixed omni-directional gooseneck microphone with flip up microphone mute and microphone monitoring. Additional advanced functionality includes a Bluetooth radio that provides simultaneous connection to a Turtle Beach mobile app and device for streaming audio. Other audio processing features and controls include Superhuman Hearing, variable Mic Monitoring and a glasses friendly ProSpecsTM ear cup design.

3.2 Equipment Configuration

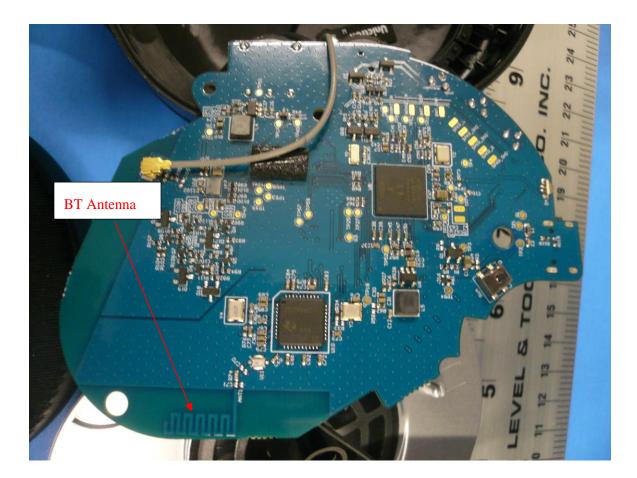
A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.


The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Stealth 700P Gen 2 RX uses the permanently attached PCB trace antenna inside the device for Bluetooth connectivity. See EUT Photo for details.

3.5 Duty Cycle

The Stealth 700P Gen 2 RX, SN: PP1 was measured.

3.5.1 Results

Mode	On Time	Period	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
Standard	100	0	100	0

Notes: EUT configured and measured for the duty cycle. All measurements use 100% duty cycle.

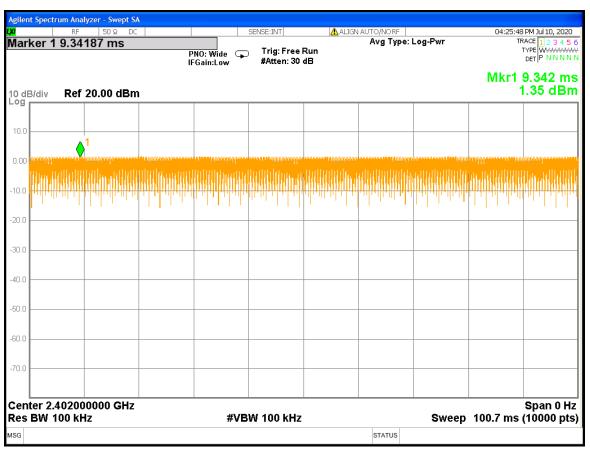


Figure 1: Duty Cycle

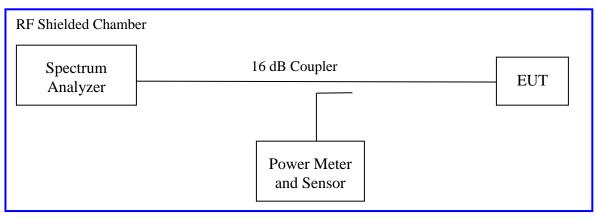
4 Emissions

Testing was performed in accordance with CFR 47 Part 15.247: 2020 and RSS 247: 2017. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.247 (b):2020 and RSS 247: 2017 Sect. 5.4 (d).


The maximum transmitted powers are

Band 2400-2483.5 MHz: 1 W

4.1.1 Test Method

The ANSI C63.10-2013 Section 11.9.2.2.2 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.247(b): 2020 and RSS 247 Sect. 5.4 (d). This test was conducted on 3 channels of Sample, S/N PP #1. The worst mode result indicated below.

Test Setup:

Method AVGSA-1 of "KDB 558074 – DTS Measurement Guidance v05r02" applies since the EUT continuously transmits with duty cycle greater than 98%. Sample detector was used.

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

		at the Antenna			, ,				
Test Date: J	uly 20, 2020		Test By: Jeremy Luong						
Test Method	l: Conducted	l Measurements	Power Setting: Fixed at 4 dBm						
Antenna Ty	pe: Integrate	ed PCB	Max. An	tenna Gain: 3.1 d	dBi				
Operating N	Iode: Uncor	related		Signal St	ate: Modulated ir	n BLE Mode			
Ambient Te	mp.: 22 °C			Relative	Humidity: 37%				
		Wire	less Audio	Headset					
Frequency	Limit	Output	Duty	Cycle	\sum Power	Margin			
(MHz)	[dBm]	[dBm]	[d	B]	[dBm]	[dB]			
2402	+30.00	4.03				-25.97			
2442	+30.00	4.40				-25.60			
2480	2480 +30.00 4.41 -25.59								
Note: The he	eadset transn	nitted at 100% d	uty cycle.						

Table 2: RF O	utput Power at the	Antenna Port –	Test Results
---------------	--------------------	----------------	--------------

Figure 2: Maximum Transmitted Power, 2402 MHz- Headset

Figure 3: Maximum Conducted Output Power at 2442 MHz - Headset

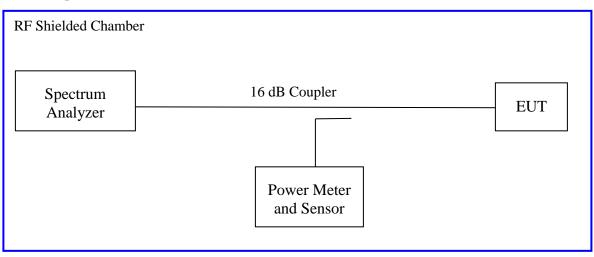


Figure 4: Maximum Conducted Output Power at 2480 MHz - Headset

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.


The minimum 6 dB bandwidth shall be at least 500 kHz.

The bandwidth shall be at least 500 kHz per Section CFR47 15.247(a2) 2020 and RSS 247 Sect.5.2 (a): 2017

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth according to ANSI C63.10:2013 Section 11.8.1. The measurement was performed with modulation per CFR47 15.247(a) (2) 2020 and RSS Gen Sect. 6.7 2019. The preliminary investigation was performed to find the narrowest 6 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range; 2400 MHz to 2483.5 MHz. This test was conducted on 3 channels in each mode of Sample S/N PP #1. The worst sample result indicated below.

Test Setup:

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Date: July 20, 2	2020		Test By: Jeremy Luong				
Test Method: Cond	ucted Measurements		Power Setting: Fixed at 4 dBm				
Antenna Type: Inte	grated PCB		Max. Antenna Gain: 3.1 dBi				
Operating Mode: U	Incorrelated		Signal Sta	te: Modulated in BLE	Mode		
Ambient Temp.: 22	°C		Relative F	Humidity: 37%			
	Bandwidth (N	(IHz) for	Wireless Au	udio Headset			
Frequency (MHz)	Limit (kHz)	99% B	andwidth	6 dB Bandwidth	Results		
2402	500	1.	029	0.715	Pass		
2442	500	1.	025	0.705	Pass		
2480	500	1.	027	0.717	Pass		
Note: The narrower	bandwidth was measu	red at 100	0% duty cyc	le			

Table 3: Occupied Bandwidth – Test Results

Figure 5: DTS Bandwidth-Headset -2402 MHz

Figure 6: DTS Bandwidth-Headset -2442 MHz

Figure 7: DTS Bandwidth-Headset -2480 MHz

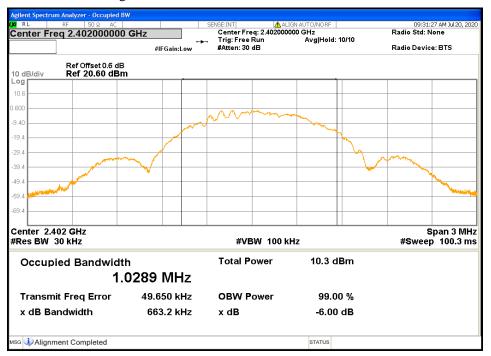
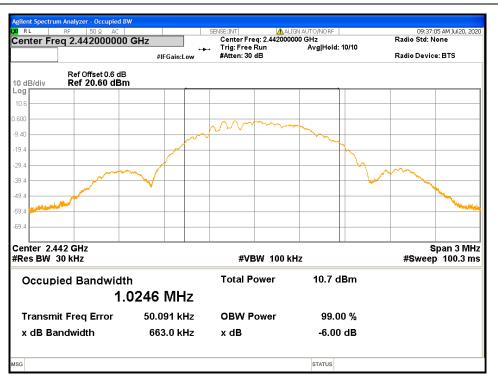



Figure 8: 99% Bandwidth-Headset -2402 MHz

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

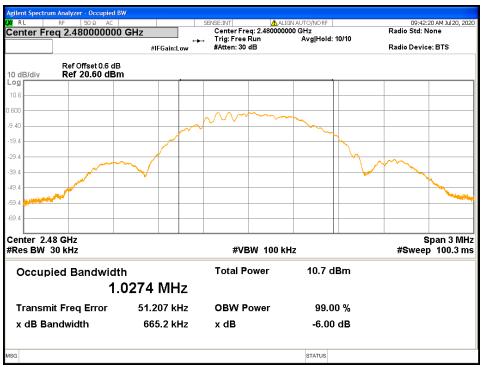
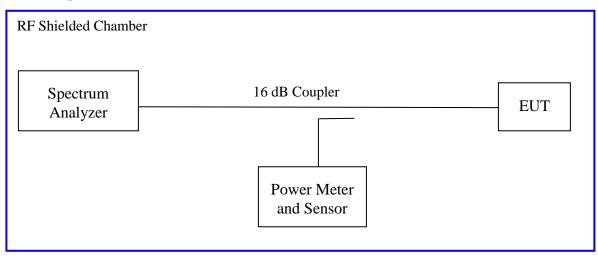


Figure 10: 99% Bandwidth-Headset -2480 MHz


4.3 Peak Power Spectral Density

According to the CFR47 Part 15.247 (e) and RSS 247 Sect.5.2 (b), the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 11.10.3. The measurement was performed with modulation per CFR47 Part 15.247 (e) and RSS 247 Sect.5.2 (b). The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range of 2400 MHz to 2483.5 MHz. This test was conducted on 3 channels of Sample SN PP #1. The worst sample result indicated below.

Test Setup:

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Date:	July 20, 2020			Test By: Jeremy Luong				
Test Method: Conducted Measurements Power Setting: Fixed at 4 dBm								
Antenna Ty	ype: Integrated	PCB		Max.	Antenna Gain	: 3.1 dBi		
Operating 2	Mode: Uncorre	lated		Signa	State: Modula	ated in BLE Mo	ode	
Ambient T	emp.: 22 °C		Relative Humidity: 37%					
		Peak Po	ower Sj	pectral	Density			
Freq.	C B	Output	C	F	Max. PPSD	Limit	Margin	

Table 1. Deal De S1 stral D ncita Test P 11+

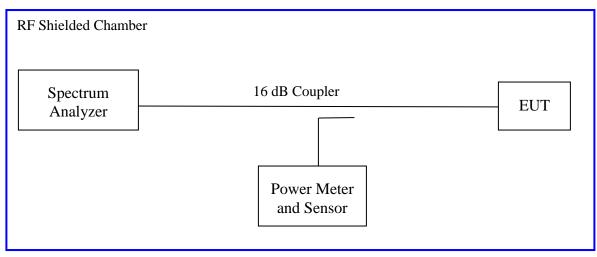
	Book Bowen Spectral Density											
	Peak Power Spectral Density											
Freq. (MHz)	Config.	Output [dBm]	CF [dB]	Max. PPSD [dBm]	Limit [dBm]	Margin [dB]						
2402	Headset	-2.69	-15.23	-17.94	8.00	-25.94						
2442	Headset	-2.28	-15.23	-17.30	8.00	-25.30						
2480	Headset	-2.69	-15.23	-17.51	8.00	-25.51						
The b	counted for the andwidth ratio vireless headset	is 10*log (3kHz	z/100kHz) or -									

Figure 11: Maximum Power Spectral Density-2402 MHz-Headset

Figure 12: Maximum Power Spectral Density-2442 MHz-Headset

Figure 13: Maximum Power Spectral Density-2480 MHz-Headset

Out of Band Emissions 4.4


The setup was identical to RF output power measurement. Intentional radiators operating under the alternative provisions to the general emission limits, must be designed to ensure that the 20 dB or 30 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If the frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Since the transmitter complies with the conducted power limits base on the use of RMS averaging per CFR47 Part 15.247(b)(3), any frequency outside the band of 2400MHz to 2483.5MHz, the power output level must be below 30db from the in-band transmitting signal; CFR 47 Part 15.215, 15.247(d) and RSS-247 Sect.5.5..

4.4.1 Test Method

The conducted method was used to measure the out-of-band emission requirement. The measurement was performed with modulation per CFR47 15.247(4) (d) 2020 and RSS-247 Sect.5.5: 2017. This test was conducted on 3 channels of Sample S/N PP #1. The worst sample result indicated below.

Test Setup:

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 5: Out of Band Emissions – Test	Results
--	---------

Test Date: July 20, 2020		Test By: Jeremy Luong			
Test Method: Conducted	Measurements	Power Setting: Fixed at 4 dBm			
Antenna Type: Integrate	d PCB	Max. Antenna Gain: 3.1 d	lBi		
Operating Mode: Uncor	related	Signal State: Modulated ir	BLE Mode		
Ambient Temp.: 22 °C		Relative Humidity: 37%			
	Out of Band Results for	Wireless Audio Headset			
Operating Channel	Out of Band Level (dBm)	30 dBc Level (dBm)	Margin (dB)		
2402 MHz	-47.38	-26.83	-20.55		
2442 MHz	-46.99	-26.35	-20.64		
2480 MHz	-45.65	-26.45 -19.20			
Note: dBc is defined as th	e level below the main ca	arrier.			

The band-edge level must be lower than the 30dBc level.

The maximum out of band emission on each individual output is at least 30 dB below the maximum in-band PSD on that output.

(*) The band-edge is compared to the highest -30dBc level of the test mode.

RL		L 50Ω A			SENSE:INT	🔥 ALIGN	NAUTO/NORF	540		.:58 AM Jul 20, 20
enter	Freq 2.	4020000		PNO: Fast ↔ FGain:Low	⊢ Trig: Free Ru Atten: 30 dB		#Avg Type Avg Hold:	: RMS 100/100	1	TRACE 1 2 3 4 5 TYPE M MANANA DET P N N N N
dB/div		ffset 0.6 dB 2 0.60 dB r							Mkr4 2.40 -28	0 95 GH .297 dBr
0.6						1				
					¥ ¥					:
40										
.4					4					
.4										-26.83 dE
.4										
.4										
.4		and the back of the	and the second state of th	Augent Mary Market Law Con	and the second	handwork	M. Marrie			- Andrei Autor al alma
								ware all the of the service	- had a strate of the	
.4	and the second	on the state of the state of the						and a second of the second sec	- Autor Marting Con	
								and an and a second second		
enter 2	2.40200 N 100 ki	GHz		#VI	BW 300 kHz			Swe	Spar ep 14.4 m	n 150.0 MH
enter 2 Res Bl	2.40200	GHz Iz	×	Y	FUNCTI	ON FUNC	TION WIDTH		Spar eep 14.4 m	n 150.0 MH
enter 2 tes Bl B MODE N 2 N	2.40200 N 100 ki 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz	3.16 -56.23	9 dBm 8 dBm	ON FUNC	TION WIDTH		ep 14.4 m	n 150.0 MH
enter 2 tes Bi E 1009 N N N N N	2.40200 N 100 ki TRC SCL	GHz Hz	2.402 23 GHz	3.16 -56.23	FUNCTI 9 dBm	ON FUNC	TION WIDTH		ep 14.4 m	n 150.0 MH
enter 2 Res Bl I N I N 2 N 3 N I N 5	2.40200 N 100 ki 1 f 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz 2.483 50 GHz	3.16 -56.23	9 dBm 8 dBm dBm	ON FUNC	TIONWIDTH		ep 14.4 m	n 150.0 MH
enter 2 Res Bl N N N N N N N N N N	2.40200 N 100 ki 1 f 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz 2.483 50 GHz	3.16 -56.23	9 dBm 8 dBm dBm	ON FUNC	TION WIDTH		ep 14.4 m	n 150.0 MH
enter 2 Res Bu I N 2 N 3 N 5 5 7 8	2.40200 N 100 ki 1 f 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz 2.483 50 GHz	3.16 -56.23	9 dBm 8 dBm dBm	ON FUNC	TION WIDTH		ep 14.4 m	n 150.0 MH
enter 2 tes Bl N N N N N N S S S S S	2.40200 N 100 ki 1 f 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz 2.483 50 GHz	3.16 -56.23	9 dBm 8 dBm dBm		TION WIDTH		ep 14.4 m	n 150.0 MH
Res B1 1 N 2 N 3 N	2.40200 N 100 ki 1 f 1 f 1 f	GHz Hz	2.402 23 GHz 2.400 00 GHz 2.483 50 GHz	3.16 -56.23	9 dBm 8 dBm dBm		TION WIDTH		ep 14.4 m	n 150.0 M

Figure 14: Conducted Band Edge at 2402 MHz-Headset

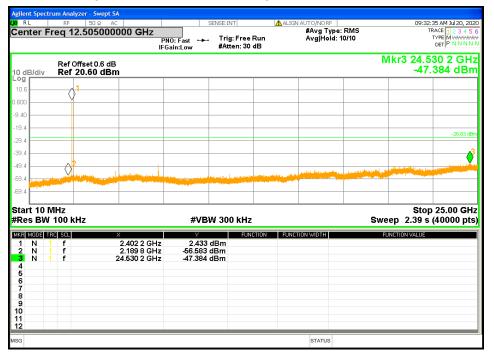


Figure 15: Out of band Emission at 2402 MHz-Headset

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

X/RL								
Center F	RF PRES	EL 50 Ω AC 2.442000000 GH		SENSE:INT	ALIGN AUTO/NORF #Avg Typ	e: RMS		4 AM Jul 20, 2020 ACE 1 2 3 4 5 6
Senter I	109 2		PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 30 dB	AvgjHold		Т	YPE MWWWWW DET PINNNN
10 dB/div		Offset 0.6 dB 20.60 dBm				М	kr4 2.443 -27.8	8 05 GHz 390 dBm
-og 10.6				1				
.600				Y				
-9.40								
19.4				4-				
-29.4				/				-26.35 dBm
-39.4								
-49.4		^2						
-59.4	مر. اور المراد المريد مراجع المراد المريد	- where a sub-	and have a star warden and the	trate the second second	and a second and the second	monten	nhamerry and have	mentalenante
-69.4								
Center 2 #Res BW			#VB	W 300 kHz		Swee	Span p 14.4 ms	150.0 MHz (1000 pts)
MKR MODE 1 1 N	TRC SCL	× 2.442.2	3 GHz 3.655	FUNCTION	FUNCTION WIDTH	FUI	NCTION VALUE	
2 N 3 N	1 f 1 f	2.400 0 2.483 5						
4 N	1 f	2.443 0						
6								
5 6 7 8 9								
9 10								
11 12								
1Z ISG					STATUS			

Figure 16: Conducted Band Edge at 2442 MHz-Headset

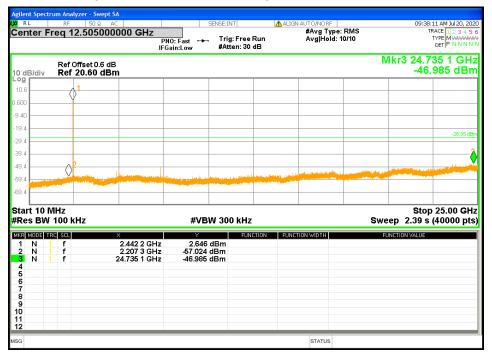


Figure 17: Out of band Emission at 2442 MHz-Headset

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

				yzer - Swept SA								
KI RI			PRES				SENSE:INT	4	ALIGN AUTO/NO		09:4	3:58 AM Jul 20, 2020
Cen	ter	Fre	q 2	.48000000		PNO: Fast 🔸 FGain:Low	. Trig: Fre Atten: 30		#Avg Avg H	Гуре: RMS old: 100/100		TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
	3/div			offset 0.6 dB 20.60 dBm								81 05 GHz 7.685 dBm
-0g 10.6								1				
	2							∇				
0.600	←											
-9.40												
-19.4	\vdash							₩ 4—				-26.45 dBm
-29.4			_					//Y				
-39.4	<u> </u>											
-49.4								1103				
-59.4				S. Income Alexandre Proved	antrastran arthological Da	t the barry of the	Mayney M	$ \chi \rangle$				
-69.4	u genter	· · · · · ·	-Van	Ord have and the second se	anger the standard of the stand of the	Well's an and a subscreen				and the formation of the second se	ney when the second	and de la la la constante de digende
-00.4												
	ter : s B\			GHz Hz		#VB	W 300 kH	z		Sv		n 150.0 MHz ns (1000 pts)
	MODE	TRC		×		Y		NCTION	FUNCTION WIDTH		FUNCTION VALUE	
1	N N		f		.480 23 GHz .400 00 GHz		dBm dBm					
2 3	N		f	2	.483 50 GHz	-58.951	dBm					
4	Ν		f	2	.481 05 GHz	-27.685	dBm					
ĕ												
5 6 7 8 9												
10 11												
12												

Figure 18: Conducted Band Edge at 2480 MHz-Headset

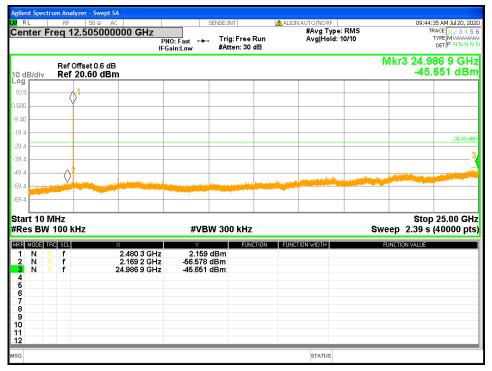


Figure 19: Out of band Emission at 2480 MHz-Headset

4.5 Transmit Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS-Gen Sect. 8.9.

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

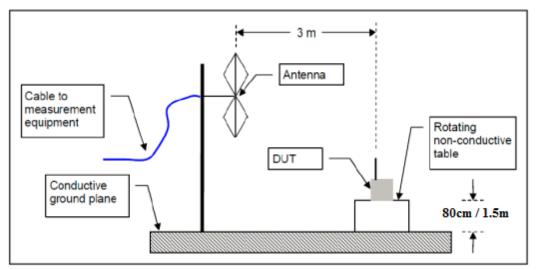
Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pres-scans were performed to determine the worst case configuration for data rate.

4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.


The final scans performed on the worst axis, Y-Axis up, for three operating channels in each operating mode;

2402 MHz, 2442 MHz, and 2480 MHz

4.5.1.3 Deviations

None.

Test Setup:

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2020 and RSS Gen Sect. 8.10: 2019.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz) 24000/F(kHz)	300 30
1.705-30.0 30-88	30 100 **	30 3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

All harmonics and spurious emission which are outside of the restricted band shall be 20dB below the in-band emission.

4.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 6: Transmit Spurious Emission at Band-Edge Requirements										
Test Date: July 8, 2020						Test By: Jeremy Luong				
Test Method: Radiated Measurements				Power Setting: Fixed at 4 dBm						
Antenna Type: Integrated PCB				Max. Antenna Gain: 3.1 dBi						
Operating Mode: Uncorrelated				Signal State: Modulated in BLE Mode						
Ambient Temp.: 22 °C						Relative Humidity: 35%				
Band-Edge Results										
Freq.	Edge Freq.	Pol	Ant.	Tbl.	Det.	Level	Limit	Margin	Note	
MHz	MHz	V/H	cm	Deg	Pk/Avg	dBuV/m	dBuV/m	dB		
2402	2390.0	V	225	278	Pk	55.47	74.00	-18.53	Upright	
2402	2390.0	V	225	278	Ave	42.10	54.00	-11.90	Upright	
2402	2390.0	Н	269	88	Pk	55.33	74.00	-18.67	Upright	
2402	2390.0	Η	269	88	Ave	42.08	54.00	-11.92	Upright	
2480	2483.5	Н	232	88	Pk	55.39	74.00	-18.61	Upright	
2480	2483.5	Н	232	88	Ave	42.79	54.00	-11.21	Upright	
2480	2483.5	V	183	289	Pk	55.05	74.00	-18.95	Upright	
2480	2483.5	V	183	289	Ave	42.69	54.00	-11.31	Upright	
Note: The emissions were measured at the adjacent restricted band of the fundamental signal. All the band-edge measurements met the restricted band requirements of CFR47 15.205 Band-edge measurement plots use a wider span than 2 MHz to evaluate additional spectrum bands										
for in-band leakage and spurious emissions.										

Table 6: Transmit Spurious Emission at Band-Edge Requirements

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

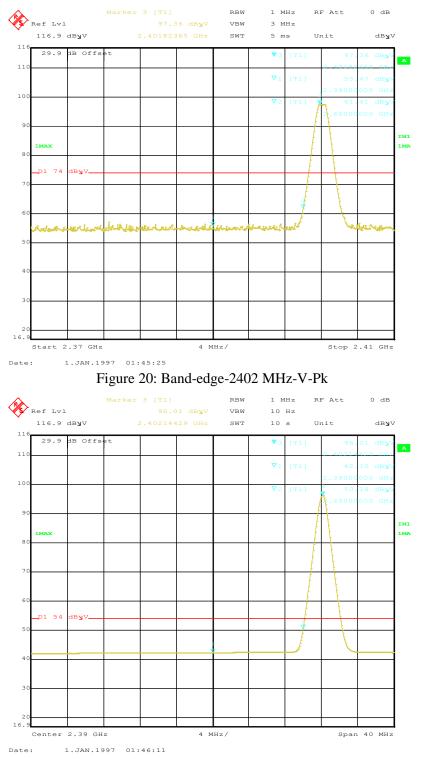
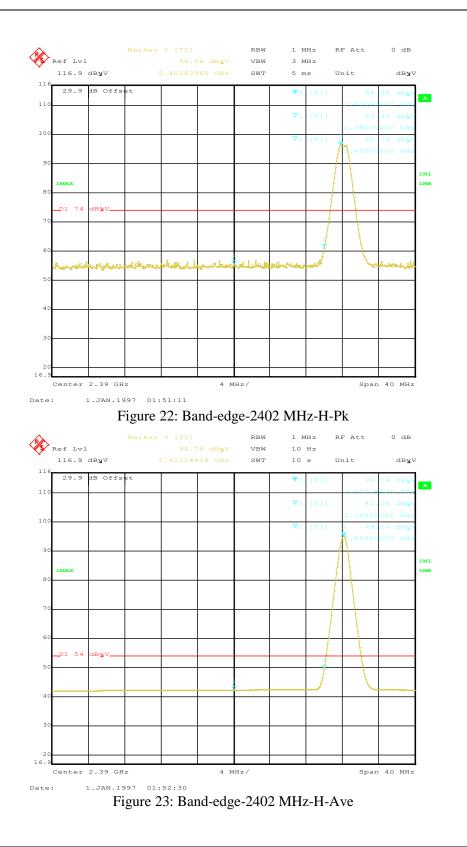



Figure 21: Band-edge-2402 MHz-V-Ave

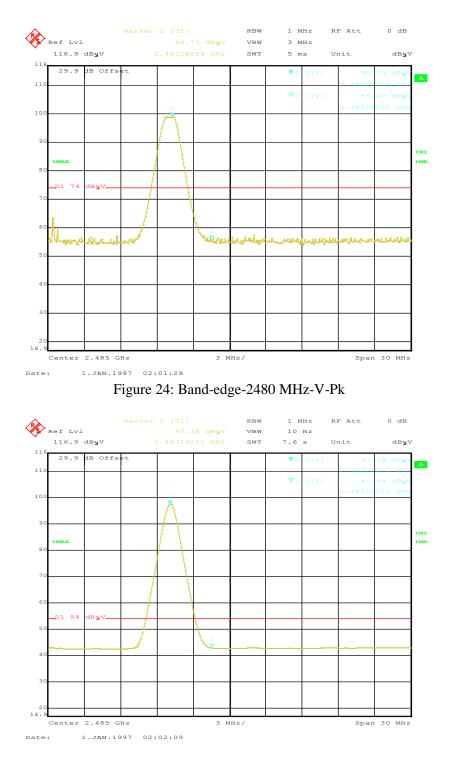
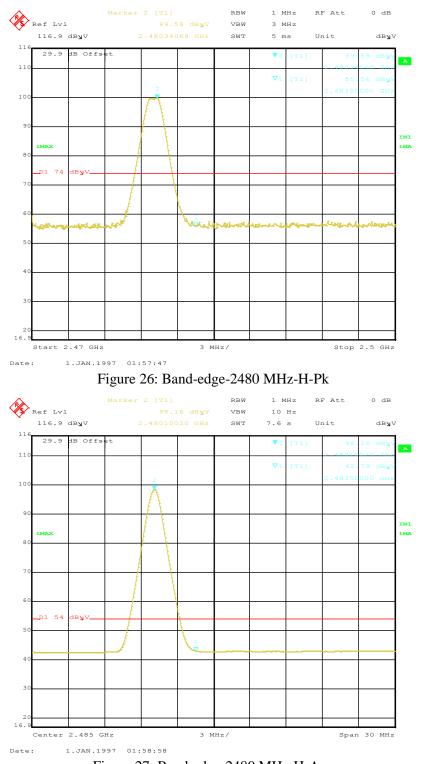
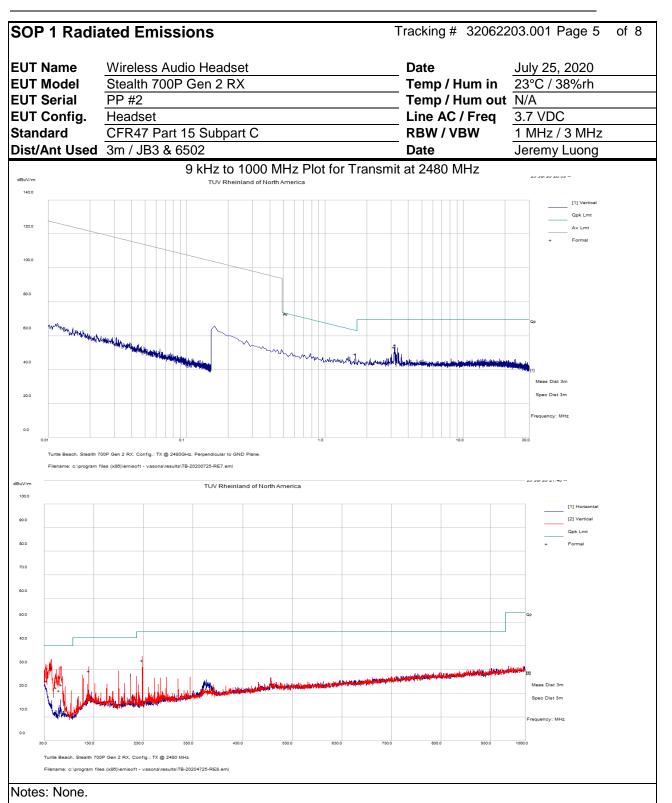



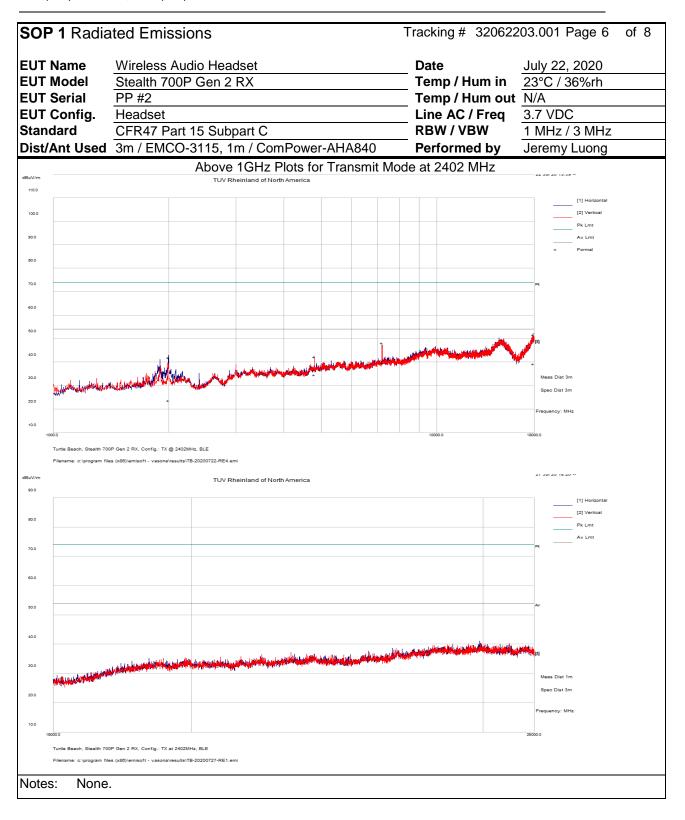
Figure 25: Band-edge-2480 MHz-V-Ave

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

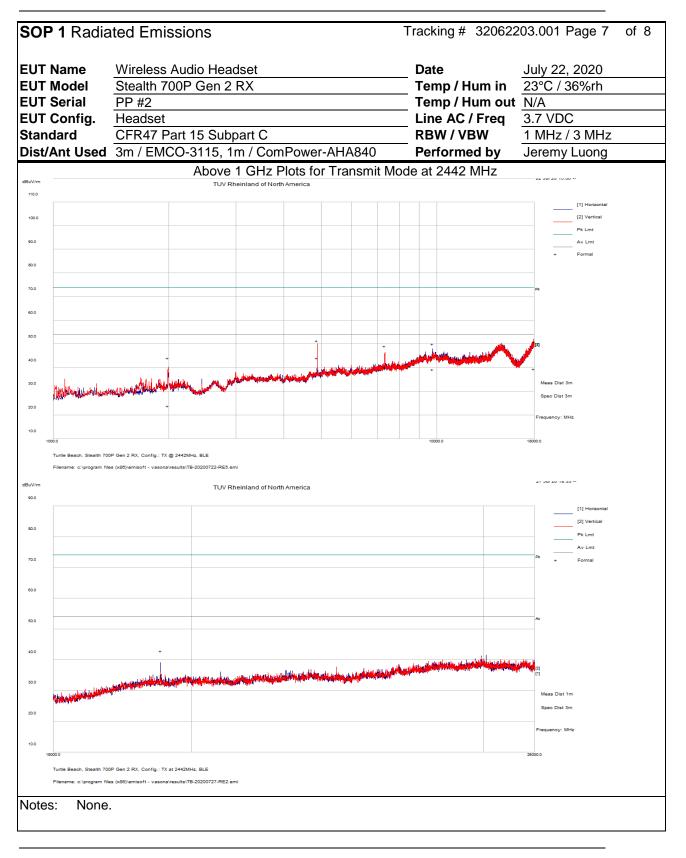


SOP 1 F	Radiated	l Emissi	ons				Track	ing #	32062203.	001 Page	1 of 8	
EUT Nam	-		dio Heads				Dat	-		ly 27, 2020		
EUT Mod			⁻ Gen 2 R	Х			Temp / Hum in 23°C / 38%rh					
EUT Seria		#2							um out <u>N/</u>			
EUT Config. Headset upright Line AC / Freq 3.7 VDC												
Standard			15 Subpa	art C				N / VB		0 kHz/ 300		
Dist/Ant l	Jsed 3m	i / JB3 & (6502				Per	forme	d by Je	remy Luon	g	
Freq.	Raw	Cbl	AF	Level	Det.	Pol.	Hght.	Azt	Limit	Margin	Result	
MHz	dBuV/n	n dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB		
	ſ		9 kHz (to 1 GHz, T	ransmi	tted Da	ata at 24	80 MF	łz	1 1		
1.65	36.37	2.33	10.60	49.30	Pk	v	100	279	63.23	-13.93	Pass	
3.17	40.18	2.36	10.62	53.16	Pk	v	100	46	69.50	-16.34	Pass	
3.21	41.70	2.36	10.62	54.69	Pk	v	100	91	69.50	-14.81	Pass	
33.19	31.32	2.49	-8.57	25.25	QP	v	143	312	40.00	-14.75	Pass	
33.19	31.32	2.49	-8.57	25.25	QP	v	143	312	40.00	-14.75	Pass	
44.70	45.48	2.59	-17.22	30.84	QP	v	116	38	40.00	-9.16	Pass	
54.12	40.30	2.66	-20.60	22.36	QP	v	139	248	40.00	-17.64	Pass	
60.22	39.11	2.68	-20.67	21.12	QP	v	158	360	40.00	-18.88	Pass	
64.65	41.23	2.71	-20.32	23.62	QP	v	164	360	40.00	-16.38	Pass	
119.98	40.73	2.98	-14.34	29.37	QP	v	106	172	43.50	-14.13	Pass	
Spec Marg CF= Amp (evel = Raw	∕+ Cbl+ CF ±	Uncerta	ainty						
Combined S	tandard Un	certainty Uc	$(y) = \pm 3.2$	dB Expande	d Uncert	ainty <i>U</i>	$=\overline{ku_c(y)}$	<i>k</i> = 1	2 for 95% cor	nfidence		
Note: The	worst cas	e emissic	on was obs	served on C	Channe	12480	MHz.					

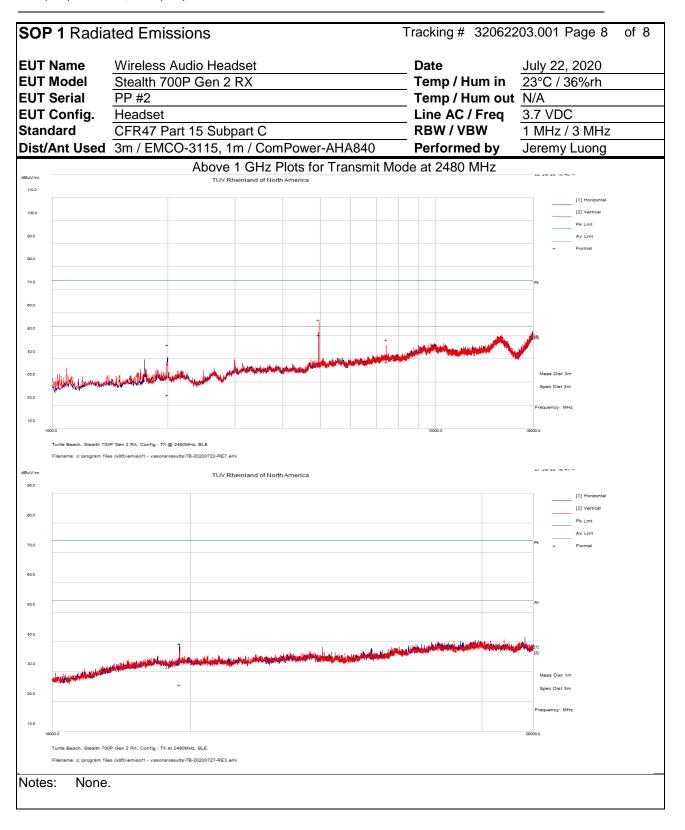
SOP 1 Ra	diated I	Emissi	ions				Track	ing #	320622	03.001 Pa	ge 2 of 8
EUT Name	Wire	less Au	idio Head	set			Date	е		July 22, 2020	
EUT Model	Stea	lth 700	P Gen 2 I	٦X			Ten	Temp / Hum in 23°C / 36%rh			%rh
EUT Serial	PP #	±2					Temp / Hum out <u>N/A</u>				
EUT Config							Line AC / Freq 3.7 VDC				
Standard CFR47 Part 15 Subpart C							RB\	N / VB	W	1 MHz / 3	MHz
Dist/Ant Us	ed 3m /	EMCO	-3115, 1r	n / ComP	ower-AHA8	40	Per	forme	d by	Jeremy Lu	iong
Freq	Raw	Cbl	AF	Level	Det	Pol	Hght	Azt	Limit	Margin	Comment
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
Transmitted Data at 2402 MHz											
1996.09	70.64	0.89	-29.58	41.96	Pk	Н	237	300	74.00	-32.04	Spurious
1996.09	52.24	0.89	-29.58	23.55	Ave	Н	237	300	54.00	-30.45	Spurious
4803.99	64.00	1.90	-23.60	42.30	Pk	Н	133	56	74.00	-31.70	Harmonics
4803.99	56.30	1.90	-23.60	34.60	Ave	Н	133	56	54.00	-19.40	Harmonics
17853.91	55.36	4.08	-7.83	51.62	Pk	Н	121	2	74.00	-22.38	Spurious
17853.91	42.89	4.08	-7.83	39.14	Ave	Н	121	2	54.00	-14.86	Spurious
7206.89	65.84	2.40	-20.04	48.20	Pk	V	249	158	74.00	-25.80	Harmonics
7206.89	57.30	2.40	-20.04	39.67	Ave	V	249	158	54.00	-14.34	Harmonics
CF= Amp Gai	Spec Margin = Level - Limit, Level = Raw+ Cbl+ CF ± Uncertainty CF= Amp Gain + ANT Factor										
Combined Stan							= ku _c (y)	k = 2	2 for 95%	confidence	
		•	ed the sp and emis		nission limit.						


SOP 1 Ra	diated E	Emissi	ons				Track	ing #	320622	03.001 Pa	ge 3 of 8
EUT Name	Wire	less Au	dio Head	set			Date	е		July 22, 20	020
EUT Model			P Gen 2 F				Ten	np / Hu	um in	23°C / 369	
EUT Serial	PP #	2					Temp / Hum out N/A				
EUT Config	. Head	dset					Line	Line AC / Freq 3.7 VDC			
Standard										1 MHz / 3	MHz
Dist/Ant Used 3m / EMCO-3115, 1m / ComPower-AHA840								forme	d by	Jeremy Lu	iong
Freq	Raw	Cbl	AF	Level	Det	Pol	Hght	Azt	Limit	Margin	Comment
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
	Transmitted Data at 2442 MHz										
4884.61	72.57	1.90	-23.13	51.35	Pk	Н	136	150	74.00	-22.65	Harmonics
4884.61	65.22	1.90	-23.13	44.00	Ave	Н	136	150	54.00	-10.00	Harmonics
9769.20	62.91	2.86	-15.74	50.04	Pk	Н	123	166	74.00	-23.96	Harmonics
9769.20	52.10	2.86	-15.74	39.22	Ave	Н	123	166	54.00	-14.78	Harmonics
1992.60	72.76	0.89	-29.57	44.07	Pk	V	171	312	74.00	-29.93	Spurious
1992.60	52.59	0.89	-29.57	23.90	Ave	V	171	312	54.00	-30.10	Spurious
7326.85	66.23	2.51	-19.62	49.11	Pk	V	164	160	74.00	-24.89	Harmonics
7326.85	57.32	2.51	-19.62	40.20	Ave	V	164	160	54.00	-13.80	Harmonics
17914.56	54.54	4.11	-7.95	50.70	Pk	V	125	244	74.00	-23.31	Spurious
17914.56	43.25	4.11	-7.95	39.41	Ave	V	125	244	54.00	-14.59	Spurious
19538.34	44.22	7.22	-8.65	42.80	Pk	Н	169	68	74.00	-31.20	Harmonics
19538.34	33.53	7.22	-8.65	32.10	Ave	Н	169	68	54.00	-21.90	Harmonics
Spec Margin = CF= Amp Gai	in + ANT I	Factor									
Combined Star							= ku _c (y)	k = 2	2 for 95%	confidence	
			ed the spi and emis		hission limit.	•					

SOP 1 Ra	diated I	Emissi	ons				Track	ing #	320622	03.001 Pa	ge 4 of 8
EUT Name EUT Model EUT Serial	EUT ModelStealth 700P Gen 2 RXEUT SerialPP #2								um in um out	<u>July 22, 20</u> 23°C / 36% N/A	
EUT Config	. Head	dset				Line AC / Freq 3.7 VDC					
Standard	StandardCFR47 Part 15 Subpart CDist/Ant Used3m / EMCO-3115, 1m / ComPower-AHA840								W	1 MHz / 3	
								forme	-	Jeremy Lu	
Freq	Raw	Cbl	AF	Level	Det	Pol	Hght	Azt	Limit	Margin	Comment
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
Transmitted Data at 2480 MHz											
1998.35	74.70	0.90	-29.58	46.02	Pk	Н	184	294	74.00	-27.99	Spurious
1998.35	53.08	0.90	-29.58	24.39	Ave	Н	184	294	54.00	-29.61	Spurious
4960.62	78.30	1.85	-23.10	57.05	Pk	V	201	54	74.00	-16.95	Harmonics
4960.62	71.66	1.85	-23.10	50.41	Ave	V	201	54	54.00	-3.59	Harmonics
7440.95	65.31	2.46	-19.54	48.23	Pk	V	168	70	74.00	-25.77	Harmonics
7440.95	55.77	2.46	-19.54	38.70	Ave	V	168	70	54.00	-15.31	Harmonics
19838.44	40.70	7.30	-8.60	39.40	Pk	Н	192	86	74.00	-34.60	Harmonics
19838.44	26.90	7.30	-8.56	25.64	Ave	Н	192	86	54.00	-28.36	Harmonics
Spec Margin : CF= Amp Gai			evel = Rav	w+ Cbl+ C	F ± Uncertai	nty					
	emission	s passe		urious err	nded Uncertair Nission limit.		= ku _c (y)	<i>k</i> = 2	2 for 95%	confidence	


Report Number: 32063270.001 EUT: Wireless Audio Headset. Model: Stealth 700P Gen 2 RX Date: July 30, 2020. EMC / Rev 0 **Transmit Spurious Emissions**

FCC ID: XGB-TB3780, IC: 3879A-3780



Report Number: 32063270.001 EUT: Wireless Audio Headset. Model: Stealth 700P Gen 2 RX Date: July 30, 2020. EMC / Rev 0 Page 46 of 60

FCC ID: XGB-TB3780, IC: 3879A-3780

Page 47 of 60

Report Number: 32063270.001 EUT: Wireless Audio Headset. Model: Stealth 700P Gen 2 RX Date: July 30, 2020. EMC / Rev 0 Page 48 of 60

FCC ID: XGB-TB3780, IC: 3879A-3780

4.5.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength (dB μ V/m) = FIM - AMP + CBL + ACF Where: FIM = Field Intensity Meter (dB μ V) AMP = Amplifier Gain (dB) CBL = Cable Loss (dB) ACF = Antenna Correction Factor (dB/m) μ V/m = $10^{\frac{dB\mu V/m}{20}}$

4.6 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.10: 2013. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207: 2020 and RSS Gen: 2019 Sect. 8.8.

4.6.1 Test Methodology

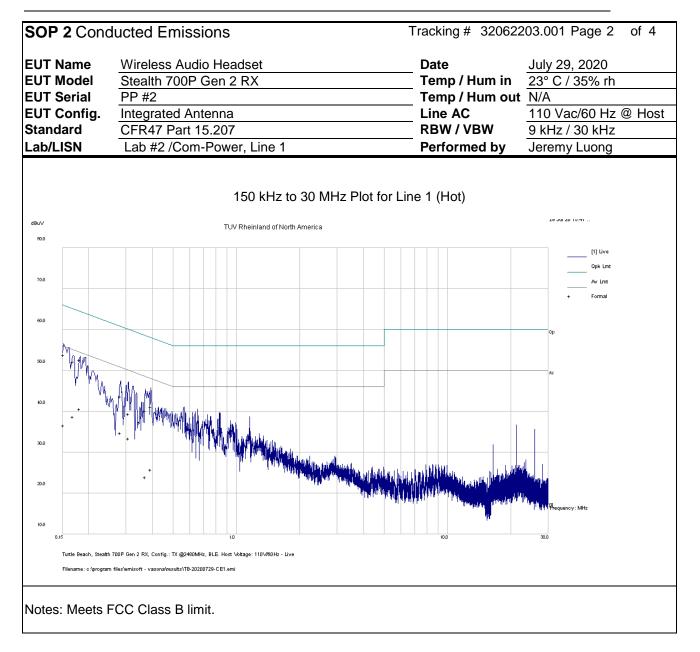
A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into subranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50μ H / 50Ω LISNs.

Testing is performed in Lab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

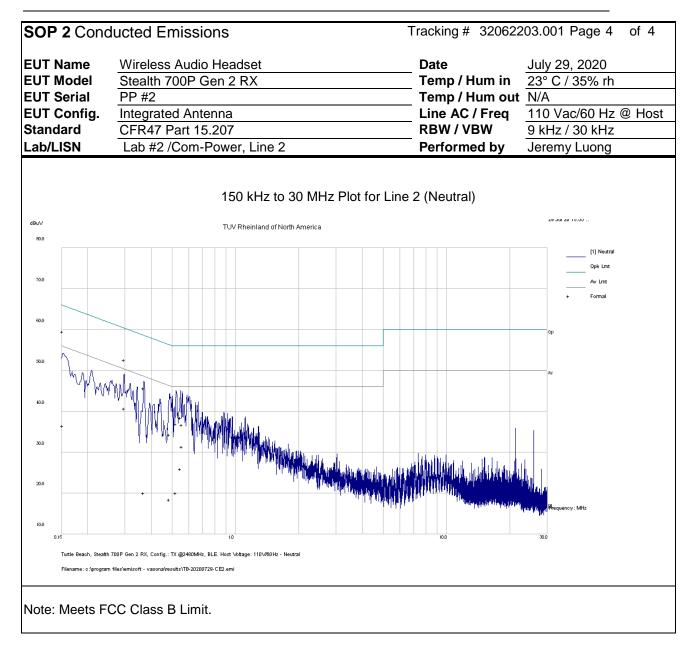
4.6.1.1 Deviations

There were no deviations from this test methodology.


4.6.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions: Conducted Mea	surement	Test Date: July 29, 2020			
Antenna Type: Integrated PCB		Power Level: See Test Plan			
AC Power: Host DC Power Suppl	ly	Configuration: Ta	bletop		
Ambient Temperature: 23° C		Relative Humidity: 38% RH			
Configuration	Frequ	ency Range	Test Result		
Line 1 (Hot)	0.15	to 30 MHz	Pass		
Line 2 (Neutral)	0.15	to 30 MHz	Pass		


Table 7: AC Conducted Emissions – Test Results

JT Name	Wireles	s Audio He	adset		[Date	July	29, 2020	
UT Model	Stealth	700P Gen	2 RX		1	Гетр / Hu	m in 23°	C / 35% rh	
UT Serial	PP #2				1	Гетр / Hu	m out N/A		
UT Config.	Integrat	ed Antenna	a		L	_ine AC / F		Vac/60 Hz Supply	: @ Host
tandard	CER47	Part 15.20	7		F	RBW / VBN			
ab/LISN		/Com-Pow				Performed		emy Luong	
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	1	Limit	Margin	Result
MHz	dBuV	dB	dB	dBuV		Line	dBuV	dB	
0.152	43.76	9.95	0.10	53.81	QP	Live	65.90	-12.08	Pass
0.152	26.58	9.95	0.10	36.63	Ave	Live	55.90	-19.27	Pass
0.169	42.13	9.95	0.08	52.16	QP	Live	65.02	-12.86	Pass
0.169	28.62	9.95	0.08	38.65	Ave	Live	55.02	-16.37	Pass
0.182	42.52	9.95	0.08	52.55	QP	Live	64.40	-11.85	Pass
0.182	30.61	9.95	0.08	40.64	Ave	Live	54.40	-13.76	Pass
0.283	33.70	9.96	0.05	43.71	QP	Live	60.73	-17.02	Pass
0.283	24.69	9.96	0.05	34.70	Ave	Live	50.73	-16.04	Pass
0.309	29.40	9.96	0.05	39.41	QP	Live	60.00	-20.59	Pass
0.309	23.40	9.96	0.05	33.41	Ave	Live	50.00	-16.59	Pass
0.371	30.18	9.97	0.05	40.20	QP	Live	58.49	-18.29	Pass
0.371	13.88	9.97	0.05	23.90	Ave	Live	48.49	-24.59	Pass
0.393	31.09	9.97	0.04	41.10	QP	Live	58.00	-16.90	Pass
0.393 Spec Margin =	15.71 OP /Ave -	9.97 Limit + Un	0.04	25.72	Ave	Live	48.00	-22.27	Pass
Combined Stand				panded Unce	tainty $U = kl$	$J_c(v) = k =$	2 for 95% con	fidence	

SOP 2 Con	ducted E	missions			Tra	acking # 32	2062203.00	1 Page 3	of 4		
EUT Name		Audio Hea				Date		29, 2020			
EUT Model		00P Gen 2	RX			emp / Hum		C / 35% rh			
EUT Serial	PP #2					Temp / Hum out <u>N/A</u>					
EUT Config.		d Antenna				ine AC / Fr		Vac/60 Hz	@ Host		
Standard		Part 15.207				RBW / VBW 9 kHz / 30 kHz					
Lab/LISN		Com-Powe		1	I	Performed I		my Luong	1		
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result		
MHz	dBuV	dB	dB	dBuV		Line	dBuV	dB			
0.152	49.60	10.00	0.10	59.60	QP	Neutral	65.90	-6.30	Pass		
0.152	26.41	9.95	0.10	36.46	Ave	Neutral	55.90	-19.44	Pass		
0.298	42.66	9.96	0.05	52.67	QP	Neutral	60.31	-7.64	Pass		
0.298	30.75	9.96	0.05	40.76	Ave	Neutral	50.31	-9.55	Pass		
0.369	35.67	9.97	0.05	45.68	QP	Neutral	58.53	-12.85	Pass		
0.369	9.98	9.97	0.05	20.00	Ave	Neutral	48.53	-28.53	Pass		
0.488	24.30	9.98	0.04	34.32	QP	Neutral	56.19	-21.88	Pass		
0.488	8.40	9.98	0.04	18.41	Ave	Neutral	46.19	-27.78	Pass		
0.524	26.98	9.98	0.04	37.00	QP	Neutral	56.00	-19.00	Pass		
0.524	9.98	9.98	0.04	20.00	Ave	Neutral	46.00	-26.00	Pass		
0.548	28.41	9.98	0.04	38.43	QP	Neutral	56.00	-17.57	Pass		
0.548	15.93	9.98	0.04	25.95	Ave	Neutral	46.00	-20.05	Pass		
0.559	26.65	9.98	0.04	36.67	QP	Neutral	56.00	-19.33	Pass		
0.559	21.30	9.98	0.04	31.32	Ave	Neutral	46.00	-14.68	Pass		
Spec Margin =								<i></i>			
Combined Stand							2 tor 95% con	fidence			

Notes: EUT was setup as table top equipment and transmitted at 2480 MHz

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Loop Antenna	EMCO	6502	62531	07/01/2019	07/01/2021
Bilog Antenna	Sunol Sciences	JB3	A102606	08/01/2018	08/01/2020
Horn Ant. (1-18GHz)	Sunol Sciences	3115	9211-3969	06/20/2019	06/20/2021
Horn Ant. w/ Pre-Amp	Com-Power	AHA-840	105005	08/26/2019	08/26/2020
EMI Receiver	Agilent	N9038A	MY52260210	02/15/2020	02/15/2021
Spectrum Analyzer	Agilent	N9030A	MY52350885	10/26/2019	10/26/2020
EMI Receiver	Rohde & Schwarz	ESIB40	100180	09/20/2019	09/20/2020
Transient Limiter	HP	11947A	3107A038612	02/11/2020	02/11/2021
LISN	Com-Power	LI-215	12100	02/12/2020	02/12/2021
Preamplifier	Sonoma Inst.	310	185516	02/12/2020	02/12/2021
Preamplifier	Miteq	TTA1800-30-HG	184252	02/12/2020	02/12/2021
RF Power Meter	Agilent	E4418A	MY45103902	02/13/2020	02/13/2021
Power Sensor	Agilent	8481A	US37295801	02/13/2020	02/13/2021
Thermometer	Extech Instruments	SD700	A095319	03/18/2020	03/18/2021
Thermo Chamber	Espec	BTZ-133	0613436	12/20/2019	12/20/2020
DC Power Supply	Agilent	E3634A	MY400004331	02/15/2020	02/15/2021
Signal Generator	Anritsu	MG3694A	042803	02/13/2020	02/13/2021
Notch Filter	Micro-Tronics	BRM50702	37	VBU	VBU

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

 Table 8: Customer Information

Company Name	Voyetra Turtle Beach, Inc.			
Address	100 Summit Lake Drive, Suite 100			
City, State, Zip	Valhalla, New York 10595 USA			
Country	USA			

 Table 9: Technical Contact Information

Name	Tim Blaney
E-mail	tim@commcepts.net
Phone	(530) 277-3482

6.3 Equipment Under Test (EUT)

Table 10: EUT Specifications

	EUT Specification
Package Dimensions	215.8 mm (8.4") x 243 mm (9.5") x 111.5 mm (4.3")
Power Input	Headset Input Voltage: 3.7 Vdc (battery)
Environment	Indoor
Operating Temperature Range:	0 to 50 degrees C
Multiple Feeds:	☐ Yes and how many ⊠ No
Product Marketing Name (PMN)	Stealth 700P Gen 2 RX
Hardware Version Identification Number (HVIN)	700P Gen 2 RX
Firmware Version Identification Number (FVIN)	0.0.1
Operating Mode	AVBootUI 1.15
Transmitter Frequency Band	2402 MHz to 2480 MHz
Max. Measured Power Output	+4.41 dBm
Power Setting @ Operating Channel	+4.0 dBm
Antenna Type	PCB Attached on board (+3.1 dBi)
Modulation Type	AM FM DSSS OFDM OFDM OFDK, 8DPSK
Date Rates	1, 2 Mbps
TX/RX Chain (s)	1
Directional Gain Type	 ☑ Uncorrelated ☑ Other describe: ☑ Other describe:
Type of Equipment	☐ Table Top ☐ Wall-mount ☐ Floor standing cabinet
Note: None.	

Table 11: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB	Terminated	🛛 Yes	Metric:0.6 m	\boxtimes M

Table 12: Supported Equipment

Equipn	nent	Manufacturer	Model	Serial	Used for
Laptop		Lenovo	T430	PB-8HBRR	Set test mode

Table 13: Description of Sample used for Testing

Device	Serial Number	Configuration	Used For		
Stealth 700P Gen 2 RX	PP #2	Radiated Sample	Radiated Emissions.		
Stealth 700P Gen 2 RX	PP #1	Conducted Sample	Output Power, Occupied Bandwidth, Conducted Spurious Emissions, Peak Power Spectral Density		
Note: None					

Table 14: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Description			
Stealth 700P Gen 2 RX	Integrated	Transmit & Receive	Stealth 700P Gen 2 RX positioned vertically, normal usage.			
Note: This is the final setup configuration used for testing						

Note: This is the final setup configuration used for testing.

Test	Stealth 700P Gen 2 RX	
Occupied Bandwidth	2402, 2442, 2480 MHz @ BLE	
Output Power	2402, 2442, 2480 MHz @ BLE	
Peak Power Spectral Density	2402, 2442, 2480 MHz @ BLE	
Out-of-Band (-30 dBr)	2402, 2442, 2480 MHz @ BLE	
Band-Edge (Radiated)	2402, 2480 MHz @ BLE	
Transmitted Spurious Emission	2402, 2442, 2480 MHz @ BLE	
AC Conducted Emission	2402 MHz @ BLE	
Note: EUT transmits at 100% duty cycle.		

Table 15: Final Test Mode for 2402 MHz to 2480MHz Band

6.4 Test Specifications

Table 16: Test Specifications

Emissions and Immunity			
Rules & Regulations / Standard	Requirement		
CFR 47 Part 15.247: 2020	All		
RSS 247 Issue 2, 2017	All		

END OF REPORT