

Emissions Test Report

EUT Name:	Wireless Audio Headset
Model No.:	Ear Force Stealth 700P RX
CFR 47 Part 15	.407 2017 and RSS 247: 2017

Prepared for:

Tim Blaney Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA Tel: (530) 277-3482

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date:	October 16, 2017
Job #	0000150404
Report Number:	31763315.001

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	10/16/2017	Original Document	N/A

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer: Requester / Applicant:	Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA (530) 277-3482 Tim Blaney
Name of Equipment:	Wireless Audio Headset
Model No.	Ear Force Stealth 700P RX (TB300-3770-01)
Type of Equipment:	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.407 2017 and RSS 247: 2017
Test Dates:	August 22, 2017 to September 26, 2017

Guidance Documents:

Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Test Methods:

Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01r04

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Jeremy Luong	October 16, 2017		David S	Spencer	O	ctober 16, 2017
Test Engineer	Date		Laborat	tory Signator	y Da	ate
III CE MEA		F@		•	Industry Canada	Industrie Canada
Testing (Cert #3331.02	US11	31		2932M	ſ

1 E.	Executive Summary	7
1.1	Scope	7
1.2	Purpose	7
1.3	Summary of Test Results	8
1.4	Special Accessories	8
1.5	Equipment Modifications	
2 L	aboratory Information	
2.1	Accreditations & Endorsements	9
	1.1 US Federal Communications Commission	9
	1.2 NIST/A2LA	9
	1.3 Canada – Industry Canada 1.4 Japan – VCCI	0
	1.1.4 Japan – VCC1	
2.2	Test Facilities	10
	2.1 Emission Test Facility	10
2.1	2.2 Immunity Test Facility	10
2.3		10
	.3.1 Sample Calculation – radiated & conducted emissions	11
	.3.2 Measurement Uncertainty .3.3 Measurement Uncertainty Immunity	
2.4	5 5	
	Calibration Traceability	
3 P	roduct Information	13
3.1	Product Description	13
3.2	Equipment Configuration	13
3.3	Operating Mode	13
3.4	Unique Antenna Connector	
3.4	4.1 Results	
3.5	Duty Cycle	15
3.:	5.1 Results	15
4 E	Emissions	16
4.1	Output Power Requirements	
	1.1 Test Method	16
4.	.1.2 Results	
4.2	Occupied Bandwidth	20
	2.1 Test Method	20
4.	2.2 Results	20
4.3		24
	.3.1 Test Method	24
4.	3.2 Results	24

4.4 Undesirable Emission Limits	28
4.4.1 Test Method	28
4.4.2 Results	
4.5 Transmitter Spurious Emissions	34
4.5.1 Test Methodology	
4.5.2 Transmitter Spurious Emission Limit	35
4.5.3 Results	35
4.6 AC Conducted Emissions	52
4.6.1 Test Methodology	52
4.6.2 Test Results	52
4.7 Frequency Stability	58
4.7.1 Test Methodology	58
4.7.2 Manufacturer Declaration	
4.7.3 Limit	
4.7.4 Test results:	59
4.8 Voltage Variation	61
4.8.1 Test Methodology	61
4.8.2 Test results	61
5 Test Equipment List	63
5.1 Equipment List	63
6 EMC Test Plan	64
6.1 Introduction	
6.2 Customer	
6.3 Equipment Under Test (EUT)	65
6.4 Test Specifications	

Index of Tables

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results	17
Table 3: Occupied Bandwidth – Test Results	21
Table 4: Power Spectral Density – Test Results	25
Table 5: Undesired Emissions for 802.11a – Test Results	29
Table 6: Transmit Spurious Emission at Band-Edge Requirements	36
Table 7: AC Conducted Emissions – Test Results	52
Table 8: Frequency Stability – Test Results	59
Table 9: Voltage Variation – Test Results	61
Table 10: Customer Information	64
Table 11: Technical Contact Information	64
Table 12: EUT Specifications	65
Table 13: Antenna Information	66
Table 14: Interface Specifications	66
Table 15: Supported Equipment	66
Table 16: Description of Sample used for Testing	66
Table 17: Description of Test Configuration used for Radiated Measurement	66
Table 18: Final Test Mode for 5150 - 5250 Bands	67
Table 19: Test Specifications	68

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407 2017 and RSS 247: 2017 based on the results of testing performed on August 22, 2017 to September 26, 2017 on the Wireless Audio Headset Model Ear Force Stealth 700P RX manufactured by Voyetra Turtle Beach, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 5180 MHz - 5240 MHz frequency band is covered in this document.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.10:2013	Test Parameters	Measured Value	Result
Duty Cycle	Information Only	N/A	100%	N/A
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.407 (b) RSS-GEN Sect.8.9, RSS 247 Sect. 6.2.1.2	Class B	-7.38 dB Margin	Complied
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect.8.10	Class B		Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	Class B	-8.24 dB Margin	Complied
Occupied Bandwidth	CFR47 15.407 (a) RSS GEN Sect.6.6	N/A	99% BW: 17.488 MHz 26dB BW: 30.00 MHz	Complied
Maximum Output Power	CFR47 15.407 (a) RSS 247 Sect. 6.2	250mW	6.08 dBm/ 4.06mW	Complied
De els De suce Care etnel	CFR47 15.407 (a)	<11 dBm/MHz		Complied
Peak Power Spectral Density	RSS 247 Sect.6.2.1.1	< 10 dBm/MHz (e.i.r.p)	-4.59 dBm/ MHz	Complied
Conducted Emission – Antenna Port	CFR47 15.407 (b)(1) (2)(3) RSS 247 Sect.6.2.1 to 6.2.3	< -27 dBm/MHz	-14.25 dB Margin	Complied
Frequency Stability	CFR47 15.407 (g), RSS GEN Sect. 6.11	±20 ppm	18.03 ppm	Complied
Voltage Variation	CFR47 15.31(e)	±20 ppm	11.54 ppm	Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Laboratory Information 2

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab Code

Testing Cert #3331.02). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test

facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from

Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0268

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

country.

Report Number: 31763315.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700P RX EMC / Rev 0.0

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	Ulab	Ucispr		
Radiated Disturbance @ 1	0 meters			
30 – 1,000 MHz	2.25 dB	4.51 dB		
Radiated Disturbance @ 3	3 meters			
30 – 1,000 MHz	2.26 dB	4.52 dB		
1 – 6 GHz	2.12 dB	4.25 dB		
6 – 18 GHz	2.47 dB	4.93 dB		
Conducted Disturbance @ Mains Terminals				
150 kHz – 30 MHz	1.09 dB	2.18 dB		
Disturbance Power				
30 MHz – 300 MHz	3.92 dB	4.3 dB		

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Per CISPR 16-4-2
The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Methods

2.3.3 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz

The estimated combined standard uncertainty for carrier power measurements is ± 0.7 dB.

The estimated combined standard uncertainty for adjacent channel power measurements is ± 1.47 dB.

The estimated combined standard uncertainty for modulation frequency response measurements is \pm 0.46 dB.

The estimated combined standard uncertainty for transmitter conducted emission measurements is \pm 2.06 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Ear Force Stealth 700P Wireless Gaming System consists of two main communication modules, the Stealth 700P RX ("Headset") and the Stealth 700P TX ("Transmitter"). These two modules comprise a closed-loop wireless audio gaming system that utilize a proprietary 5.2 GHz communication technology to offer wireless streaming audio and chat/talkback capabilities. The devices are designed to operate with a PS4 gaming console or PC-based system.

The Stealth 700P RX has 50mm drivers, fixed omni-directional gooseneck microphone with flip up microphone mute and microphone monitoring. Additional advanced functionality includes a Bluetooth radio that provides simultaneous connection to a Turtle Beach mobile app and device for streaming audio. Other audio processing features and controls include Superhuman Hearing, Virtual Surround, a Master Volume Wheel, a Microphone Monitor Wheel and EQ Presets Button on the headset.

3.2 Equipment Configuration

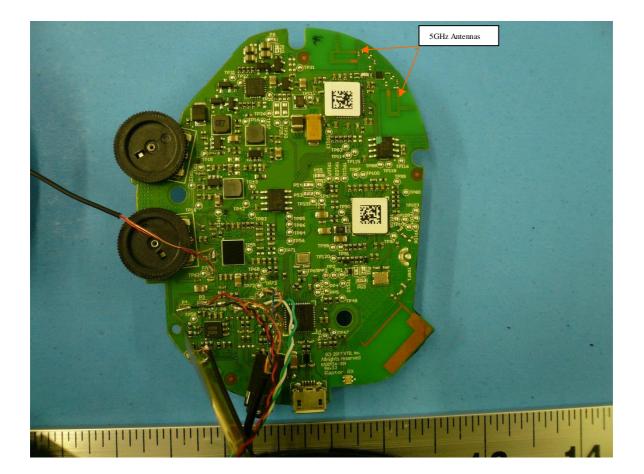
A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.


The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Wireless Audio Headset has permanently attached PCB trace antennas inside the device. See EUT Photo for details. There is no external antenna connection available.

3.5 Duty Cycle

The Ear Force Stealth 700P RX, SN: PP3 was measured for the duty cycle

3.5.1 Results

Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)				
802.11a	100	0	100	0				
Notes: EUT configured and measured for the duty cycle. All measurements use 100% duty cycle.								

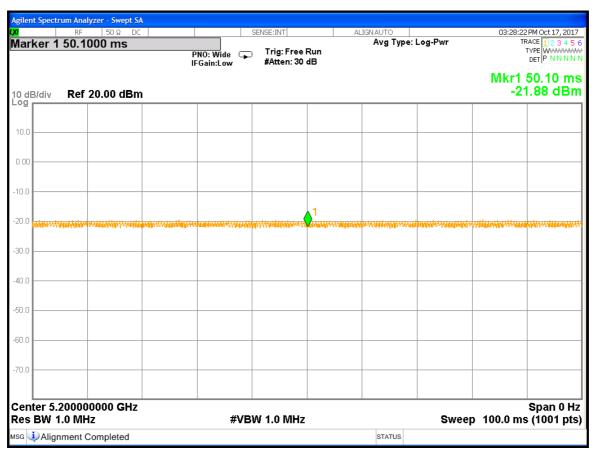


Figure 1: Duty Cycle for 802.11a

4 Emissions

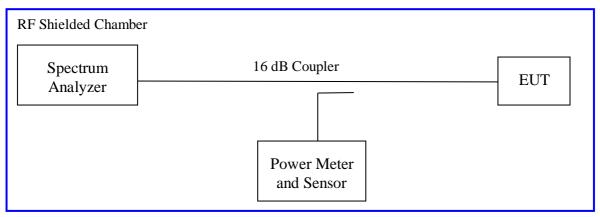
Testing was performed in accordance with CFR 47 Part 15.407: 2017 and RSS 247: 2017. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum transmitted power limits per CFR47 Part 15.407 and RSS-247 are

Part 15.407(a)(1)(iv) – Band 5150-5250 MHz:250 mW.


RSS 247 Sect. 6.2.1.1 – Band 5150-5250 MHz (e.i.r.p.): 200 mW or 10 + 10Log(B)

Note: B is the 99% emission bandwidth.

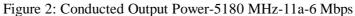
4.1.1 Test Method

The ANSI C63.10-2013 Section 12.3.2.2 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.407(a) and RSS 247 Sect. 6.2.1.1. The worst mode results indicated below.

Test Setup:

Method SA-1 of "KDB 789033 D02 – Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices" applies since the EUT continuously transmit; where duty cycle is greater than 98%. Sample detector was used.

4.1.2 Results


As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Condition	ns: Conducted I	Measurement	Date: Septem	Date: September 21, 2017			
Antenna Type	e: Integrated PC	В	Power Setting	Power Setting: Level 0			
Antenna Gain	: 1.3 dBi		Signal State:	Signal State: Modulated at 100%			
Ambient Tem	р.: 23 °С		Relative Hun	nidity:38%			
		802.11a at 6 M	(bps (FCC Limit)	I			
Frequency (MHz)	Limit [dBm]	Output [dBm]	∑ Power [dBm]	Margin [dB]			
5180	23.98	6.07			-17.91		
5200	23.98	5.78			-18.20		
5240 23.98 6.08				-17.90			
Ĺ		802.11a at 6 Mbj	ps (RSS-247 Limi	it)			
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]		
5180	21.70	6.07			-15.63		
5200	21.70	5.78			-15.92		
5240	21.70	6.08			-15.62		
Worst c		levice. as observed at 6 M RSS-247 Limit =	•	i = 18.10 dBm			

Table 2: RF Output Power at the Antenna Port – Test Results

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

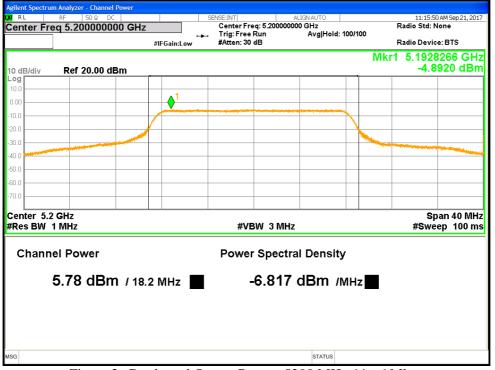


Figure 3: Conducted Output Power -5200 MHz-11a-6 Mbps

Report Number: 31763315.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700P RX EMC / Rev 0.0

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

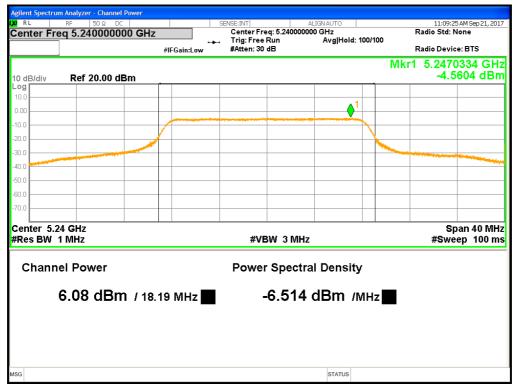
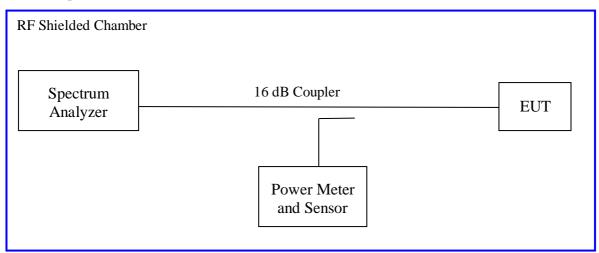


Figure 4: Conducted Output Power-5240 MHz-11a-6 Mbps

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.


The 26 dB bandwidth is defined the bandwidth of 26 dBr from highest transmitted level of the fundamental frequency.

There is no restriction limits for the bandwidth. The 26 dB bandwidth was used to determine the limit for maximum conducted output power per CFR47 Part 15.407(a).

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.407(a) & (e), RSS Gen Sect.6.6. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range. The worst results indicated below.

Test Setup:

4.2.2 Results

These occupied bandwidth measurements were taken for reference only.

РСВ		Power Sett	ing•Level()				
			1116 • Level 0				
	Antenna Gain: 1.3 dBi			Signal State: Modulated at 100%			
Ambient Temp.: 23 °CRelative Humidity:38%			umidity:38%				
Bandy	width (M	Hz) for 802.	11a				
mit (kHz)	99% BW		26 dB BW	Results			
NA	17.339		29.910	NA			
NA	17.376		30.000	NA			
NA	17	.488	30.000	NA			
	mit (kHz) NA NA NA neasured at 6 M	mit (kHz)99%NA17NA17NA17neasured at 6 Mbps for 86	Bandwidth (MHz) for 802. mit (kHz) 99% BW NA 17.339 NA 17.376 NA 17.488 neasured at 6 Mbps for 802.11a mode	Bandwidth (MHz) for 802.11a mit (kHz) 99% BW 26 dB BW NA 17.339 29.910 NA 17.376 30.000			

Table 3: Occupied Bandwidth – Test Results

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

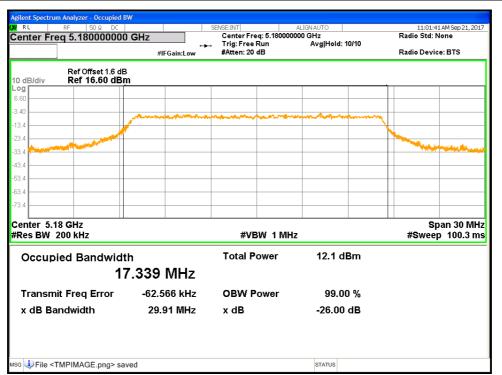


Figure 5: Occupied Bandwidth-5180 MHz-11a

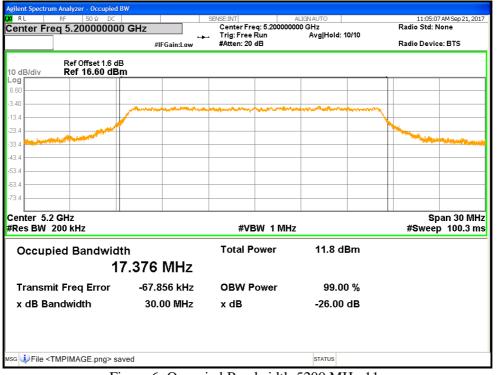


Figure 6: Occupied Bandwidth-5200 MHz-11a

Report Number: 31763315.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700P RX EMC / Rev 0.0

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

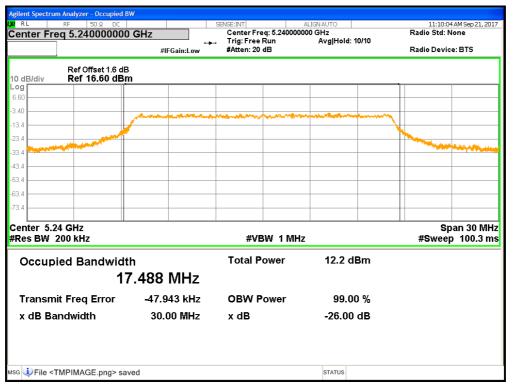


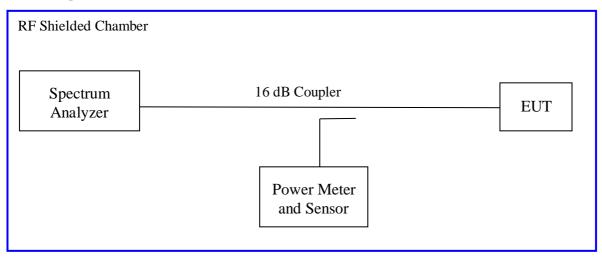
Figure 7: Occupied Bandwidth-5240 MHz-11a

4.3 Power Spectral Density

According to the CFR47 Part 15.407 (a) and RSS 247 Sect. 6.2, the spectral power density output of the antenna port shall be as followed listed below during any time interval of continuous transmission.

The power spectral density limits per CFR47 Part 15.407 (a):

Band 5150-5250 MHz, 5250-5350 MHz, and 5470-5725 MHz: 11 dBm in any 1 MHz band


The power spectral density limits per RSS-247 Section 6.2:

Band 5150-5250 MHz: 10 dBm in any 1 MHz band, E.I.R.P.

4.3.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 12.3.2.2. The measurement was performed with modulation per CFR47 Part 15.407 (a) and RSS 247 Sect. 6.2. The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range. The worst sample result indicated below.

Test Setup:

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

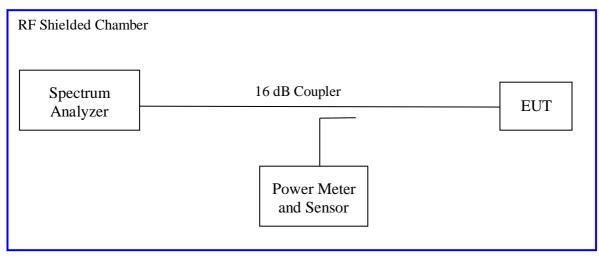
Table 4: Power S	pectral Density –	Test Results						
Test Conditions: Conducted Measurement			Date: September 21, 2017					
Antenna Type: Integrated PCB			Power Setting: Level 0.					
Antenna Gain: 1.3 dBi			Signal State: Modulated at 100%, 6 Mbps					
Ambient Temp.: 23 °C			Relative Humidit	y: 38%				
802.11a (FCC Limit)								
Freq. (MHz)	Output [dBm]	CF [dB]	Total PPD [dBm]	Limit [dBm]	Margin [dB]			
5180	-4.62			11.00	-15.62			
5200	-5.11			11.00	-16.11			
5240	-4.59			11.00	-15.59			
802.11a (RSS-247 Limit)								
5180	-4.62			8.70	-13.32			
5200	-5.11			8.70	-13.81			
5240	-4.59			8.70	-13.29			

Figure 9: FCC-PPSD-5 GHz-5200 MHz-11a-6 Mbps

Report Number: 31763315.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700P RX EMC / Rev 0.0

Figure 10: FCC-PPSD-5 GHz-5240 MHz-11a-6 Mbps

4.4 Undesirable Emission Limits


CFR47 15.407 (b) and RSS 247 Sect.6.2.1.2, 6.2.2.2, and 6.2.3.2: The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

4.4.1 Test Method

The conducted method was used to measure the undesirable emission requirement. The measurement was performed with modulation. This test was conducted on 3 channels of Sample in each mode on Sample. The worst sample result indicated below.

Test Setup:

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 5: Undesired Emissions for 802.11a – Test Results								
Test Condition	s: Conducted Me	easurement		Date: September 21, 2017				
Antenna Type:	Integrated PCB	8		Power Setting: Level 0.				
Antenna Gain:	1.3 dBi			Signal State: Modulated at 100%				
Ambient Temp	.: 23° C			Relative Humi	dity: 35%			
Undesired Emissions for 802.11a								
Frequency	Level	Det.	Port	Limit	Margin	Comments		
MHz	dBuV/m			cm	dB			
5336.95	-39.64	Pk	RF	30.00	-69.64	11a, 5180MHz, 6.0Mbps		
5505.52	-47.75	Pk	RF	-27.00	-20.75	11a, 5180MHz, 6.0Mbps		
5025.74	-44.68	Pk	RF	-27.00	-17.68	11a, 5180MHz, 6.0Mbps		
5661.86	-52.13	Pk	RF	-27.00	-25.13	11a, 5180MHz, 6.0Mbps		
10360.09	-46.29	Pk	RF	-27.00	-19.29	11a, 5180MHz, 6.0Mbps		
5043.86	-44.79	Pk	RF	-27.00	-17.79	11a, 5200MHz, 6.0Mbps		
5359.65	-41.25	Pk	RF	-27.00	-14.25	11a, 5200MHz, 6.0Mbps		
5521.94	-48.50	Pk	RF	-27.00	-21.50	11a, 5200MHz, 6.0Mbps		
5684.93	-53.11	Pk	RF	-27.00	-26.11	11a, 5200MHz, 6.0Mbps		
10400.29	-43.85	Pk	RF	-27.00	-16.85	11a, 5200MHz, 6.0Mbps		
5078.46	-44.88	Pk	RF	-27.00	-17.88	11a, 5240MHz, 6.0Mbps		
5399.63	-42.22	Pk	RF	-27.00	-15.22	11a, 5240MHz, 6.0Mbps		
5553.31	-49.05	Pk	RF	-27.00	-22.05	11a, 5240MHz, 6.0Mbps		
5724.10	-55.21	Pk	RF	-27.00	-28.21	11a, 5240MHz, 6.0Mbps		
6986.50	-52.69	Pk	RF	-27.00	-25.69	11a, 5240MHz, 6.0Mbps		
10480.49	-46.15	Pk	RF	-27.00	-19.15	11a, 5240MHz, 6.0Mbps		

Table 5. Under . . J D c 002 11 Test D -14

Note: 1. Worst case condition observed at 6.0 Mbps.

2. All out of band emissions are lower than the -27dBm level.

3. 99% OBW emission of 5240 MHz operating channel did not leak into 5250 MHz-5350 MHz band.

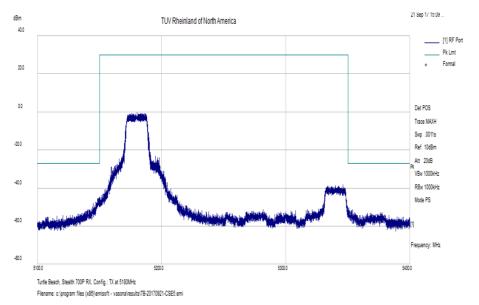


Figure 11: Measured Band-edge for 802.11a-6 Mbps at 5180 MHz

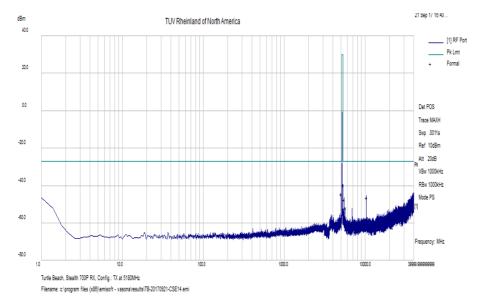


Figure 12: Undesirable Emission for 802.11a-6 Mbps at 5180 MHz

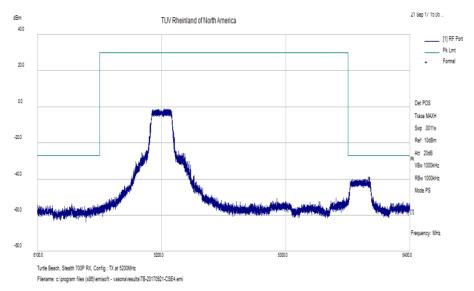


Figure 13: Measured Band-edge for 802.11a-6 Mbps at 5200 MHz

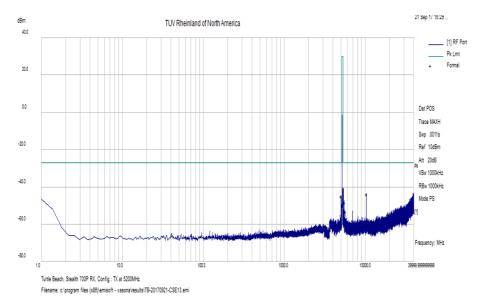


Figure 14: Undesirable Emission for 802.11a-6 Mbps at 5200 MHz

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

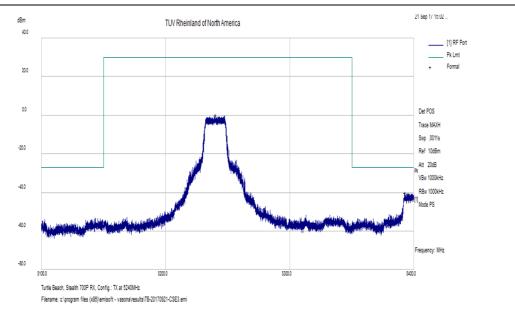


Figure 15: Measured In-Band Band-edge for 802.11a-6 Mbps at 5240 MHz

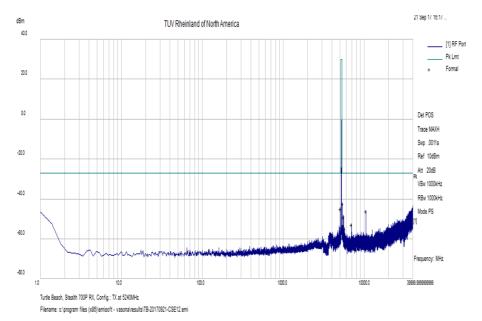


Figure 16: Measured In-Band Band-edge for 802.11a-6 Mbps at 5240 MHz

Figure 17: Measured Band-edge for 11a-6 Mbps at 5240 MHz

Note: The 99% bandwidth marker at 5240 MHz is below 5248.74. Since the 99% bandwidth emission did not cross over into the UNII2a band, DFS is not required for 5240 MHz operating channel.

4.5 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205:2017, 15.209:2017, 15.407(b:2017), RSS 247 Sect. 6:2017, RSS GEN Sect.8.9 and 8.10:2014

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

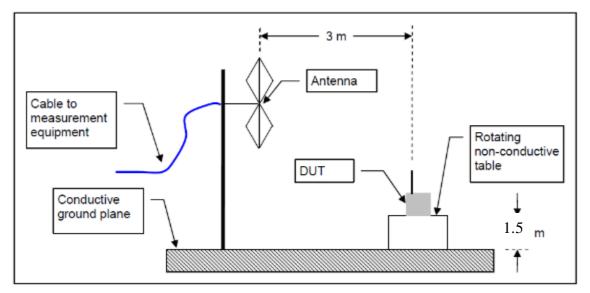
Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0 m x 1.5 m non-conductive table 80 cm (<1 GHz) and 150 cm (>1 GHz) above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pres-scans were performed to determine the worst, data rate/ chains for 802.11a.

4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.


Final results are:

802.11a at 6 Mbps on upright position.

4.5.1.3 Deviations

None.

Test Setup:

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209, RSS 247 Sect. 6, RSS GEN Sect. 8.9 and 8.10

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490 0.490-1.705 1.705-30.0 30-88	2400/F(kHz) 24000/F(kHz) 30 100 **	300 30 30 30 3
88-216. 216-960. Above 960.	150 ** 200 ** 500	3 3 3

According to CFR47 15.407 (b) and RSS 247 Sect. 6.2, all harmonics and spurious emissions which are outside the 5150 MHz - 5250 MHz, shall not exceed -27 dBm/MHz. This is equivalent to 68.2 dBuV/m at 3 meter distance.

4.5.3 Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

	ble 6: Transn				Edge l	Requireme	nts		
Test Conditions: Radiated Measurement, Normal Temperature and Voltage only						Date: August 22, 2017			
Antenna Type: Integrated PCB						Power Set	tting: Le	vel 0	
Max. Gain: + 1.3 dBi						Signal Sta	ate: Modu	lated at 100%.	
Ambient Temp.: 19° C						Relative H	Humidity	: 34 %RH	
			Band-Edg	e Results	for 5	150 MHz	to 5240N	ИНz	
Freq.	Level	Pol.	Limit	Margin	Det	Table	Tower	Note	
(MHz)	(dBuV/m)	(H/V)	(dBuV/m)	(dB)	Det	· Deg.	(cm)	Note	
5150.00	53.77	V	74.00	-20.23	Pk	49	146	700P RX - 5180 MHz - 6Mbps	
5150.00	43.70	V	54.00	-10.30	Ave	e 49	146	700P RX - 5180 MHz - 6Mbps	
5150.00	54.22	V	74.00	-19.78	Pk	49	146	700P RX - 5180 MHz - 6Mbps - 2Mhz Span	
5150.00	44.16	V	54.00	-9.84	Ave	e 49	146	700P RX - 5180 MHz - 6Mbps - 2Mhz Span	
5150.00	53.16	Н	74.00	-20.84	Pk	58	267	700P RX - 5180 MHz - 6Mbps	
5150.00	42.96	Н	54.00	-11.04	Ave	e 58	267	700P RX - 5180 MHz - 6Mbps	
5150.00	52.62	Н	74.00	-21.38	Pk	58	267	700P RX – 5180 MHz – 6Mbps – 2Mhz Span	
5150.00	43.22	Н	54.00	-10.78	Ave	e 58	267	700P RX - 5180 MHz - 6Mbps - 2Mhz Span	
5399.71	57.67	V	74.00	-16.33	Pk	344	195	700P RX - 5240 MHz - 6Mbps	
5393.38	48.18	V	54.00	-5.82	Ave	e 344	195	700P RX - 5240 MHz - 6Mbps	
5350.00	53.42	V	74.00	-20.58	Pk	344	195	700P RX - 5240 MHz - 6Mbps - 2MHz Span	
5350.00	42.70	V	54.00	-11.30	Ave	e 344	195	700P RX - 5240 MHz - 6Mbps - 2MHz Span	
5397.70	56.87	Н	74.00	-17.13	Pk	70	193	700P RX - 5240 MHz - 6Mbps	
5397.70	46.31	Н	54.00	-7.69	Ave	e 70	193	700P RX - 5240 MHz - 6Mbps	
5350.00	53.44	Н	74.00	-20.56	Pk		193	700P RX - 5240 MHz - 6Mbps - 2MHz Span	
5350.00	42.96	Н	54.00	-11.04	Ave	e 70	193	700P RX - 5240 MHz - 6Mbps - 2MHz Span	

Note: 1. Band-edge frequencies were taken at 5150 MHz and 5350 MHz since these band-edges are adjacent to the restricted bands.

2. All the band-edge measurements met the restricted band requirements of CFR47 15.205.

3. For 5250 MHz In-band-edge, refer to Section 4.4.2.

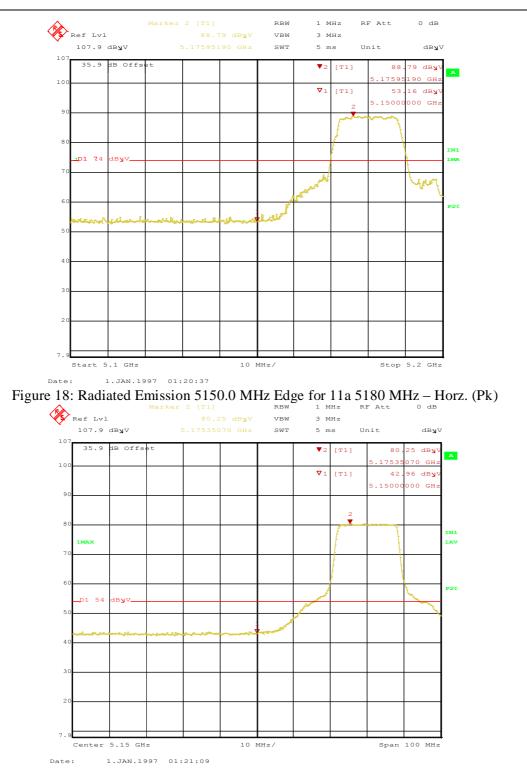
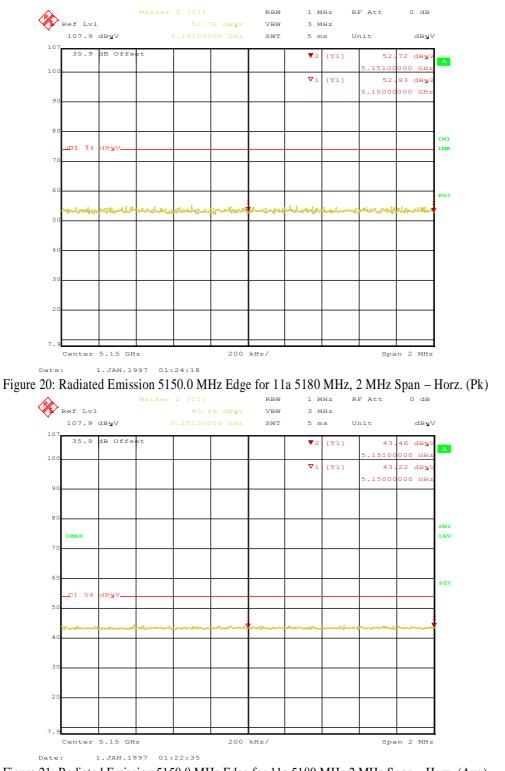
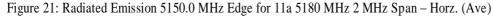




Figure 19: Radiated Emission 5150.0 MHz Edge for 11a 5180 MHz - Horz. (Ave)

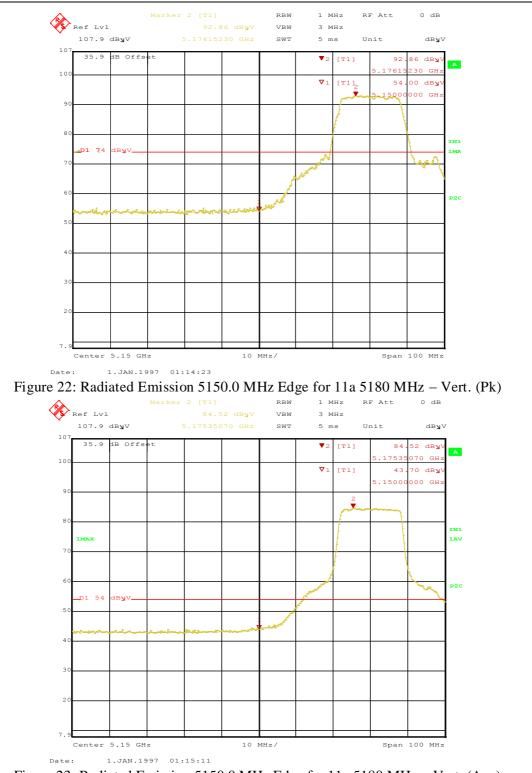
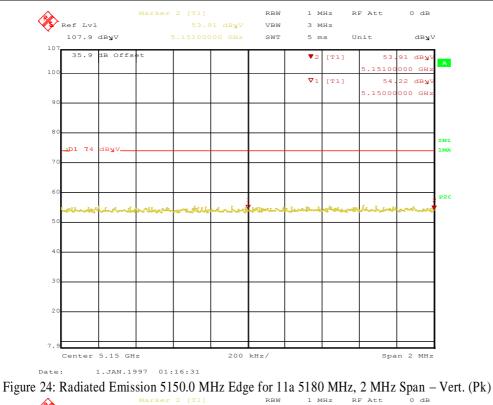



Figure 23: Radiated Emission 5150.0 MHz Edge for 11a 5180 MHz – Vert. (Ave)

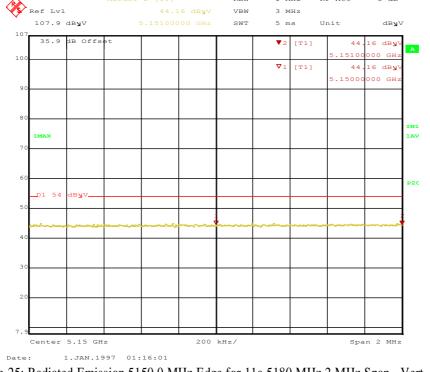


Figure 25: Radiated Emission 5150.0 MHz Edge for 11a 5180 MHz 2 MHz Span -Vert. (Ave)

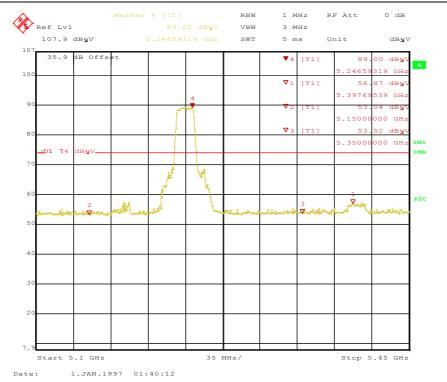


Figure 26: Radiated Emission 5350.0 MHz Edge for 11a 5240 MHz – Horz. (Pk)

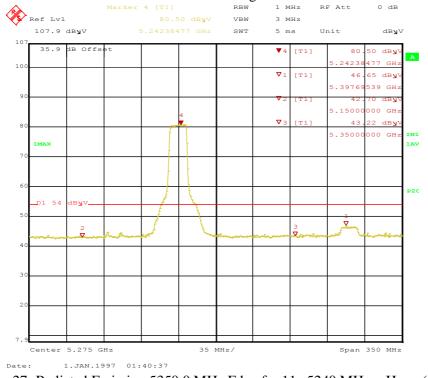
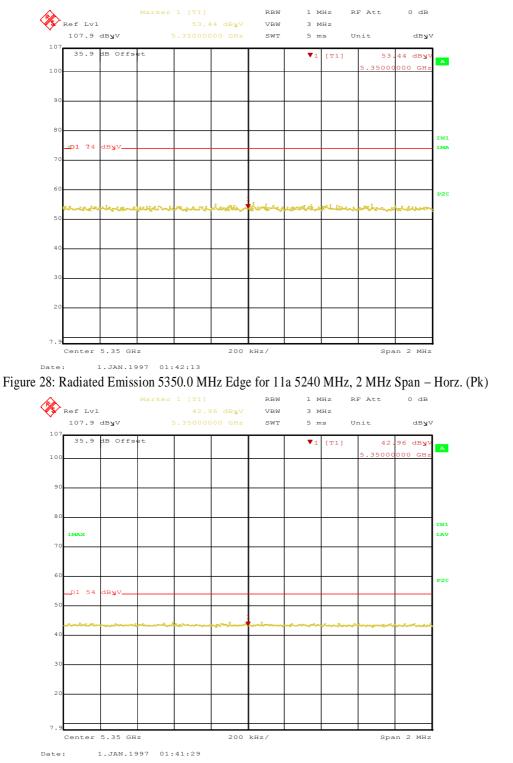
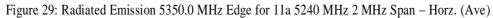




Figure 27: Radiated Emission 5350.0 MHz Edge for 11a 5240 MHz – Horz. (Ave)

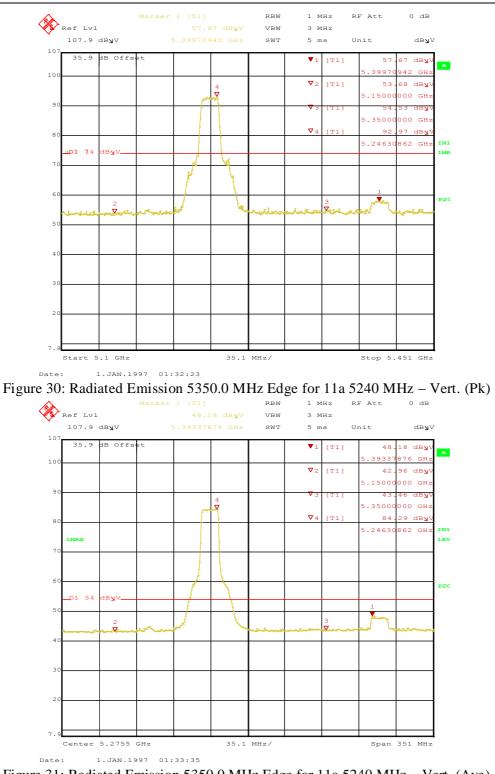


Figure 31: Radiated Emission 5350.0 MHz Edge for 11a 5240 MHz – Vert. (Ave)

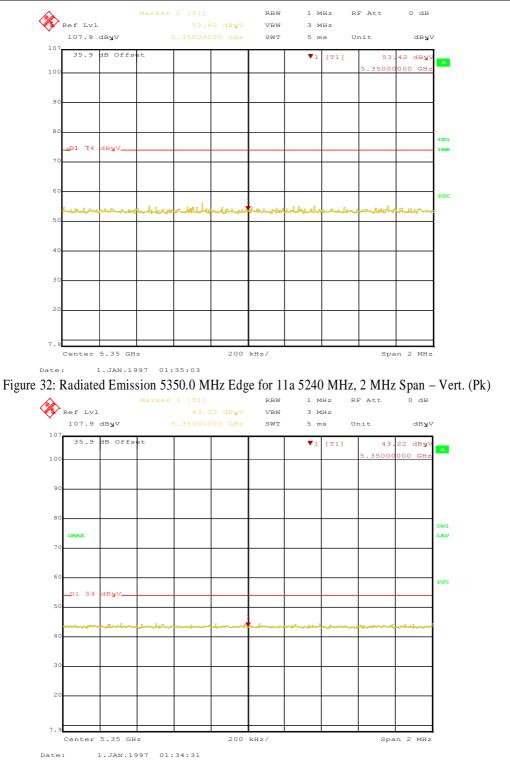
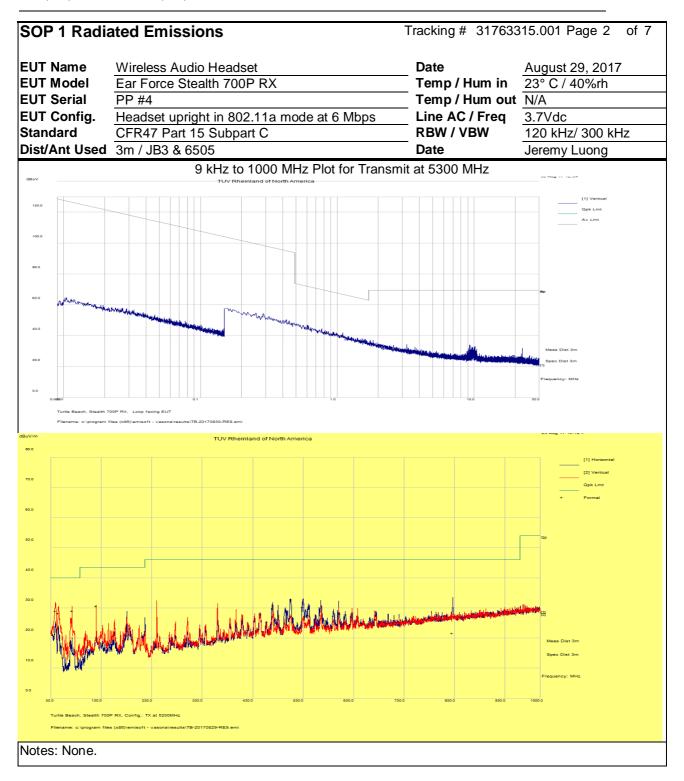
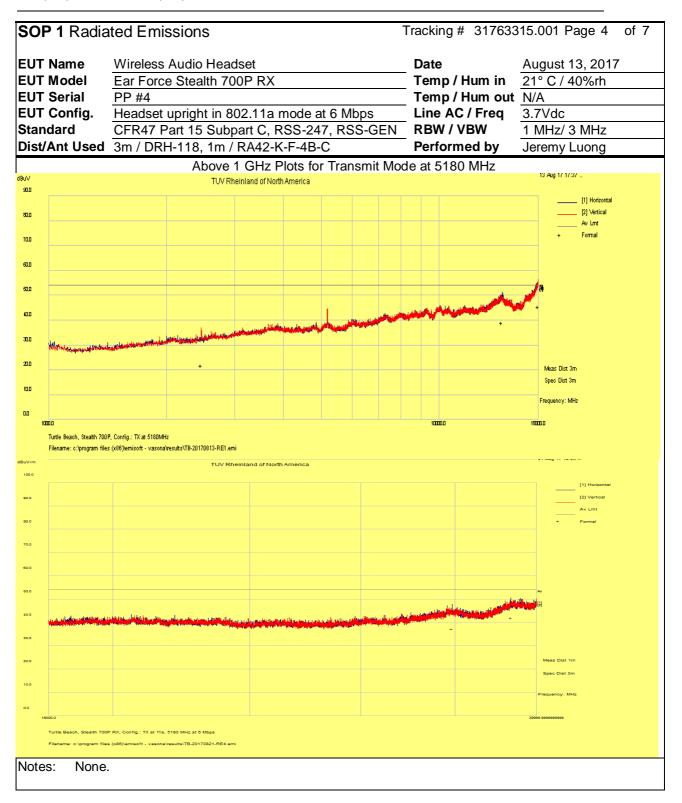
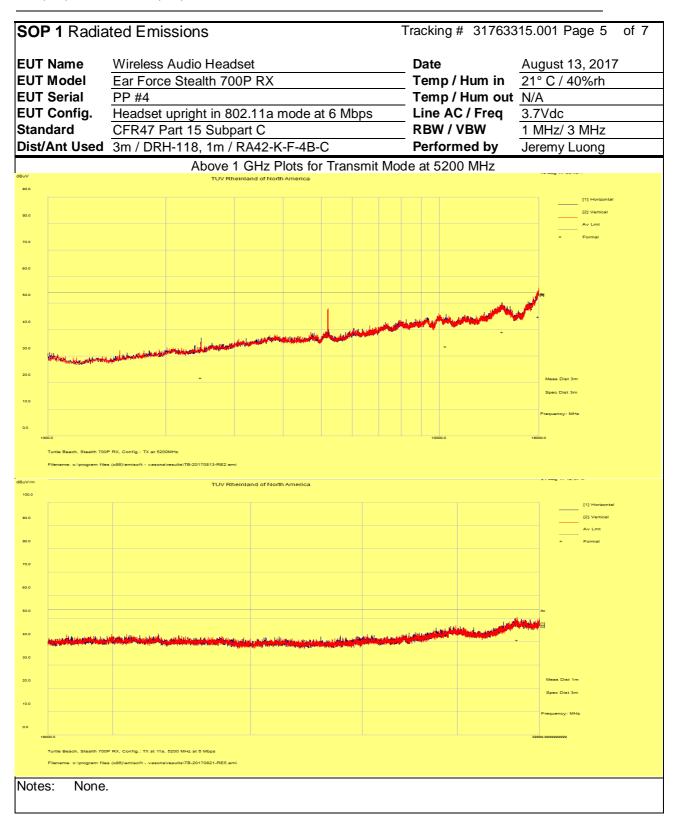



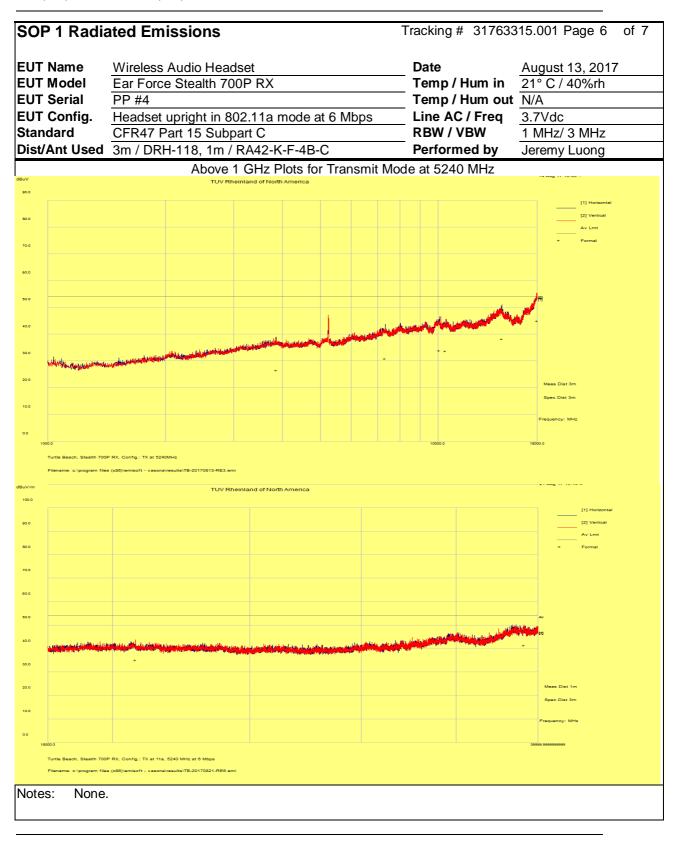
Figure 33: Radiated Emission 5350.0 MHz Edge for 11a 5240 MHz 2 MHz Span -Vert. (Ave)


SOP 1 Ra	diated E	missions				Trac	king #	317633	DP 1 Radiated Emissions Tracking # 31763315.001 Page 1 of 7							
EUT Name	Wire	less Audio He	eadset			Da	te		Auc	gust 29, 201	7					
EUT Model	Ear F	orce Stealth	700P R	Х		Те	mp / Hu	ım in	23°	C / 40%rh						
EUT Serial	UT Serial PP #4					Те	mp / Hu	ım out	N/A							
EUT Config	J. Head	lset upright ir	n 802.11	a mode a	t 6 Mbps	Lii	ne AC /	Freq	3.7	Vdc						
Standard	CFR	47 Part 15 Sι	ubpart C	, RSS-24	7, RSS-G	EN RE	3W / VB	W	120	kHz/ 300 k	Hz					
Dist/Ant Us	ed 3m /	JB3				Pe	rforme	d by	Jere	emy Luong						
			9 k⊢	lz – 1 G⊦	lz Transm	it at 5200) MHz									
Frequency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimu	ıth	Limit	Margin					
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg		dBuV/m	dB					
530.04	35.58	4.61	-9.81	30.39	QP	Н	176	103		46.00	-15.61					
826.31	21.59	5.35	-5.33	21.61	QP	Н	101	356		46.00	-24.39					
39.53	40.18	2.65	-13.71	29.12	QP	V	117	342		40.00	-10.88					
45.26	42.96	2.70	-17.49	28.18	QP	V	106	356		40.00	-11.83					
72.02	46.28	2.89	-20.11	29.07	QP	V	121	135		40.00	-10.94					
120.01	41.93	3.17	-14.47	30.64	QP	V	119	60		43.50	-12.86					
Total CF= AF	Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty otal CF= AF+ Cable Loss AF= Antenna factor + Preamp															
	ote: 1. Mode tested was 802.11a (low, mid & high channel).															

2. Worst case emission was observed at 6 Mbps for 802.11a mode.3. No significant emission was observed below 30 MHz



Page 46 of 68


SOP 1 Ra	diated E	missions				Tr	acking #	3176331	5.001 Page 3	of 7
EUT Name	Wirel	less Audio He	eadset			I	Date	A	August 13, 201	7
EUT Model	EUT Model Ear Force Stealth 700P RX								21° C / 40%rh	
EUT Serial	T Serial PP#4							um out N	N/A	
EUT Config		lset upright in					Line AC /		3.7Vdc	
Standard		47 Part 15 Sι			7, RSS-G		RBW / VB		MHz/ 3 MHz	
Dist/Ant Us	st/Ant Used 3m - EMCO3115 / 1m - AHA-840 Pe						Performe	dby J	leremy Luong	
1 – 40 GHz Transmit at 5180 MHz (Low Channel)										
Frequency	Raw	Cable Loss	AF	Level	Detector	Polari	ty Height	Azimutł	h Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
14540.54	23.98	3.58	11.45	39.01	Ave	Н	100	44	54.00	-15.00
2463.48	26.83	1.30	-6.26	21.88	Ave	V	151	294	54.00	-32.12
17984.49	25.23	4.20	16.04	45.47	Ave	V	126	82	54.00	-8.53
34824.73	40.10	9.70	-12.60	37.20	Ave	Н	158	220	54.00	-16.80
38357.32	43.40	10.40	-11.90	41.90	Ave	Н	158	298	54.00	-12.10
	1 – 40 GHz Transmit at 5200 MHz (Middle Channel)									
2464.29	26.92	1.30	-6.25	21.97	Ave	Н	117	248	54.00	-32.03
10407.74	24.02	3.04	6.57	33.64	Ave	Н	185	88	54.00	-20.36
14502.30	23.71	3.54	11.95	39.20	Ave	Н	117	0	54.00	-14.80
17964.25	24.83	4.20	15.93	44.96	Ave	V	109	360	54.00	-9.04
38550.80	42.40	10.40	-12.00	40.80	Ave	V	150	98	54.00	-13.20
		1-4	0 GHz 7	Fransmit	at 5240 N	1Hz (H	ligh Chanr	nel)		
3851.56	26.24	1.70	-1.33	26.62	Ave	Ĥ	105	232	54.00	-27.39
7331.98	24.95	2.30	3.64	30.89	Ave	Н	153	308	54.00	-23.11
10099.49	24.31	3.10	6.47	33.89	Ave	Н	196	304	54.00	-20.12
10479.80	24.06	3.00	6.76	33.81	Ave	Н	110	146	54.00	-20.19
14612.93	23.66	3.50	11.22	38.38	Ave	Н	209	230	54.00	-15.62
17990.52	24.75	4.20	16.08	45.03	Ave	Н	144	360	54.00	-8.98
20755.79	36.80	7.40	-9.00	35.20	Ave	V	163	0	54.00	-18.80
39098.62	43.70	10.70	-12.90	41.40	Ave	V	150	292	54.00	-12.60
		AVG - Limit, E oss AF= Anteni				ICF±	Uncertainty		I	
						de.				
	ote: Worst case emission was observed at 6 Mbps for 802.11a mode.									

Page 48 of 68

Page 49 of 68

Page 50 of 68

FCC ID: XGB-TB3770, IC: 3879-TB3770

SOP 1	SOP 1 Radiated Emissions, Simultaneous TX Tracking # 31763315.001 Page 7 of 7									
EUT Nar	ne Wirel	less Audio He	eadset			Da	ate	Sep	otember 12,	2017
EUT Mo	del Ear F	el Ear Force Stealth 700P RX Temp / Hum in 23							° C / 33%rh	
EUT Ser										
EUT Cor	· · · · · · · · · · · · · · · · · · ·	lset upright in					ne AC /	· · · · · · · · · · · · · · · · · · ·	Vdc	
Standar		47 Part 15 Su		-	7, RSS-G		BW / VB		1Hz/ 3 MHz	
		EMCO3115 /					erforme		emy Luong	
		Plots for Tran								
Frequen	-	Cable Loss	AF		Detector	Polarity	Height	Azimuth	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
1063.1	9 35.97	2.87	-10.03	28.81	Ave	Н	239	112	54.00	-25.19
10481.7	71 30.19	5.00	6.78	41.97	Ave	Н	248	54	54.00	-12.03
17930.4	48 24.60	6.20	15.83	46.62	Ave	V	175	188	54.00	-7.38
dBuV/m			TUV Rheinland	of North America						
90.0										
									[1] Horiz [2] Vertic	
80.0									Av Lmt	a
									+ Formal	
70.0										
60.0										
50.0		1							M	
									4	
40.0	. 1						and the second	WALL MADE		
	a kalena kala	cial line at	مار المارين ال	أفرغوينا والجاني والمالابين	North Street Street		+			
30.0	ANN ANN ANN	hind a start and the start of the								
	nonte librilia e e conse	1. Mar.								
20.0		•							Meas Dist 3m	
									Spec Dist 3m	
10.0									oper discom	
	Image: Constraint of the second sec									
0.0										
1000.0										
Turtle Beach, Stealth 700P, Config.: TX at 5180MHz and TX at 2402MHz										
Filena	Filename: otprogram files (x88)/emisoft - vasona/vesults/TB-20170912-RE1.emi									
	Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG+ Total CF ± Uncertainty									
	Total CF= AF+ Cable Loss AF= Antenna factor + Preamp									
NOLE: NO	ote: No significant emission observed above 18 GHz for simultaneous transmissions.									

Page 51 of 68

4.6 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.4: 2014. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207: 2017 and RSS GEN: 2014.

4.6.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50μ H / 50Ω LISNs.

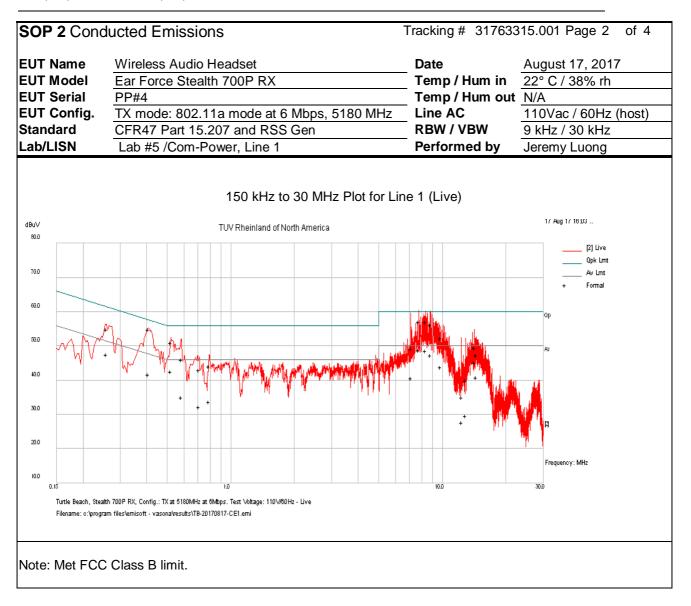
Testing is performed in Lab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

4.6.1.1 Deviations

There were no deviations from this test methodology.

4.6.2 Test Results

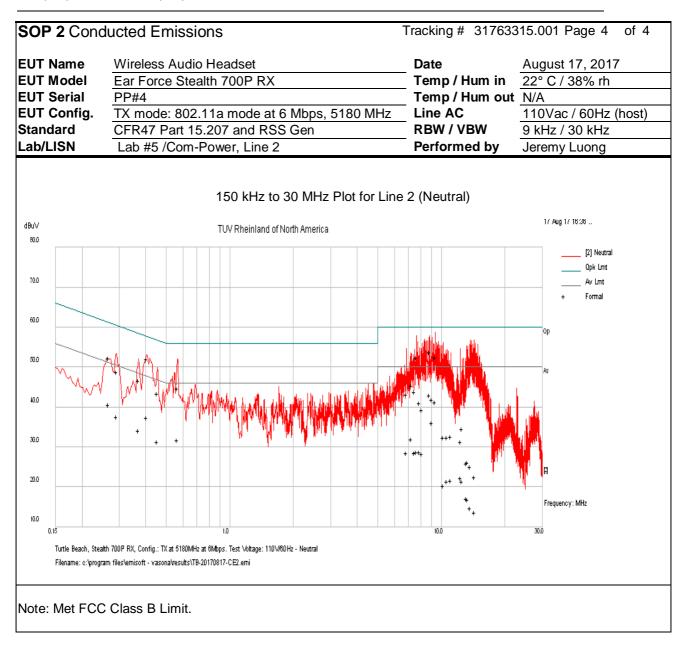

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions: Conducted Mea Normal Conditions only	asurement at	Date: August 17, 2017			
Antenna Type: Integrated PCB		Power Level: Level 0			
AC Power: 110 Vac/60 Hz at host	device	Configuration: Tabletop			
Ambient Temperature: 23° C		Relative Humidity: 38% RH			
Configuration	Frequ	ency Range	Test Result		
Line 1 (Hot) 0.15		to 30 MHz	Pass		
Line 2 (Neutral)	0.15	to 30 MHz	Pass		

Table 7: AC Conducted Emissions – Test Results

SOP 2 Con	ducted E	missions	i i		Trac	king # 317	63315.001	Page 1 o	of 4
EUT Name	Wireless	Audio Hea	dset		Da	te	Auaus	t 17, 2017	
EUT Model		Ear Force Stealth 700P RX					in 22° C		
EUT Serial	PP#4					mp / Hum			
EUT Config.	TX mode	e: 802.11a	mode at 6	Mbps, 518	0 MHz Lin	ne [`] AC / Fre	q 110Va	ic / 60Hz (h	ost)
Standard	CFR47 F	CFR47 Part 15.207 and RSS Gen RBW / VBW 9 kHz / 30 kHz							
Lab/LISN	Lab #5 /	Lab #5 /Com-Power, Line 1 Performed by Jeremy L						y Luong	
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result
MHz	dBuV	dB	dB	dBuV			dBuV	dB	
0.258	44.97	9.83	0.04	54.84	QP	Live	61.48	-6.65	Pass
0.258	37.71	9.83	0.04	47.58	Ave	Live	51.48	-3.90	Pass
0.408	45.08	9.84	0.03	54.95	QP	Live	57.69	-2.74	Pass
0.408	31.84	9.84	0.03	41.71	Ave	Live	47.69	-5.98	Pass
0.520	41.19	9.84	0.03	51.06	QP	Live	56.00	-4.94	Pass
0.520	32.59	9.84	0.03	42.46	Ave	Live	46.00	-3.54	Pass
0.584	36.13	9.85	0.03	46.01	QP	Live	56.00	-9.99	Pass
0.584	25.09	9.85	0.03	34.96	Ave	Live	46.00	-11.04	Pass
0.708	33.21	9.86	0.03	43.11	QP	Live	56.00	-12.89	Pass
0.708	22.33	9.86	0.03	32.22	Ave	Live	46.00	-13.78	Pass
0.790	34.25	9.87	0.03	44.15	QP	Live	56.00	-11.85	Pass
0.790	23.92	9.87	0.03	33.82	Ave	Live	46.00	-12.18	Pass
7.108	39.28	9.94	0.03	49.26	QP	Live	60.00	-10.74	Pass
7.108	30.67	9.94	0.03	40.64	Ave	Live	50.00	-9.36	Pass
7.759	47.06	9.96	0.03	57.05	QP	Live	60.00	-2.95	Pass
7.759	38.80	9.96	0.03	48.79	Ave	Live	50.00	-1.21	Pass
8.349	46.98	9.96	0.02	56.97	QP	Live	60.00	-3.03	Pass
8.349	38.63	9.96	0.02	48.62	Ave	Live	50.00	-1.38	Pass
8.787	46.25	9.97	0.02	56.24	QP	Live	60.00	-3.76	Pass
8.787	37.30	9.97	0.02	47.29	Ave	Live	50.00	-2.71	Pass
9.815	42.20	9.97	0.02	52.19	QP	Live	60.00	-7.81	Pass
9.815	33.86	9.97	0.02	43.85	Ave	Live	50.00	-6.15	Pass
12.342	25.08	10.00	0.01	35.09	QP	Live	60.00	-24.91	Pass
12.342	17.72	10.00	0.01	27.72	Ave	Live	50.00	-22.28	Pass
12.869	29.89	10.00	0.00	39.90	QP	Live	60.00	-20.10	Pass
12.869	19.63	10.00	0.00	29.64	Ave	Live	50.00	-20.36	Pass
14.204	39.40	10.01	0.00	49.40	QP	Live	60.00	-10.60	Pass
14.204	35.16	10.01	0.00	45.17	Ave	Live	50.00	-4.83	Pass
14.477	37.21	10.01	0.00	47.21	QP	Live	60.00	-12.79	Pass
14.477	30.93	10.01	0.00	40.93	Ave	Live	50.00	-9.07	Pass
Spec Margin =				1				1	
Combined Stand				anded Uncer	tainty <i>U</i> = ku	lc(y) = k = 2	for 95% cont	fidence	

Combined Standard Uncertainty $U_c(y) = \pm 1.2 \text{ dB}$ Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence Notes: EUT was setup as table top equipment and transmitted at 5180 MHz in 802.11a mode at 6 Mbps (worse case condition).


SOP 2 Cond	ducted Er	nissions			Tra	acking # 31	763315.0	01 Page 3	of 4		
EUT Name EUT Model		Audio Hea				Date Temp / Hum		ust 17, 2017 C / 38% rh	7		
EUT Serial	PP#4						Temp / Hum out N/A				
EUT Config.	TX mode	e: 802.11a r	mode at 6	Mbps, 518		Line AC / Fr		Vac / 60Hz	(host)		
Standard	CFR47 F	Part 15.207	and RSS	Gen	I	RBW / VBW		Hz / 30 kHz	```		
Lab/LISN	Lab #5 /	/Com-Powe	r, Line 2			Performed I	y Jere	emy Luong			
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result		
MHz	dBuV	dB	dB	dBuV			dBuV	dB			
0.267	42.41	9.83	0.04	52.28	QP	Neutral	61.21	-8.93	Pass		
0.267	30.79	9.83	0.04	40.66	Ave	Neutral	51.21	-10.55	Pass		
0.292	39.07	9.83	0.03	48.93	QP	Neutral	60.47	-11.54	Pass		
0.292	27.80	9.83	0.03	37.67	Ave	Neutral	50.47	-12.80	Pass		
0.371	36.78	9.84	0.03	46.65	QP	Neutral	58.48	-11.83	Pass		
0.371	24.18	9.84	0.03	34.05	Ave	Neutral	48.48	-14.43	Pass		
0.404	42.24	9.84	0.03	52.11	QP	Neutral	57.76	-5.65	Pass		
0.404	27.55	9.84	0.03	37.42	Ave	Neutral	47.76	-10.35	Pass		
0.453	33.60	9.84	0.03	43.47	QP	Neutral	56.82	-13.35	Pass		
0.453	21.47	9.84	0.03	31.34	Ave	Neutral	46.82	-15.48	Pass		
0.565	34.96	9.85	0.03	44.83	QP	Neutral	56.00	-11.17	Pass		
0.565	21.84	9.85	0.03	31.72	Ave	Neutral	46.00	-14.28	Pass		
6.852	33.31	9.94	0.03	43.27	QP	Neutral	60.00	-16.73	Pass		
6.852	18.60	9.94	0.03	28.57	Ave	Neutral	50.00	-21.43	Pass		
7.239	35.37	9.95	0.03	45.34	QP	Neutral	60.00	-14.66	Pass		
7.239	22.06	9.95	0.03	32.04	Ave	Neutral	50.00	-17.96	Pass		
7.474	33.87	9.95	0.03	43.85	QP	Neutral	60.00	-16.15	Pass		
7.474	18.48	9.95	0.03	28.46	Ave	Neutral	50.00	-21.54	Pass		
7.613	42.59	9.95	0.03	52.57	QP	Neutral	60.00	-7.43	Pass		
7.613	18.80	9.95	0.03	28.78	Ave	Neutral	50.00	-21.22	Pass		
7.886	31.08	9.96	0.03	41.07	QP	Neutral	60.00	-18.93	Pass		
7.886	18.69	9.96	0.03	28.68	Ave	Neutral	50.00	-21.32	Pass		
8.136	29.44	9.96	0.03	39.43	QP	Neutral	60.00	-20.57	Pass		
8.136	18.31	9.96	0.03	28.30	Ave	Neutral	50.00	-21.70	Pass		
8.790	43.75	9.97	0.02	53.73	QP	Neutral	60.00	-6.27	Pass		
8.790	32.92	9.97	0.02	42.91	Ave	Neutral	50.00	-7.09	Pass		
9.067	26.02	9.97	0.02	36.01	QP	Neutral	60.00	-23.99	Pass		
9.067	31.83	9.97	0.02	41.82	Ave	Neutral	50.00	-8.18	Pass		
9.385	42.55	9.97	0.02	52.54	QP	Neutral	60.00	-7.46	Pass		
9.385	31.18	9.97	0.02	41.17	Ave	Neutral	50.00	-8.83	Pass		
10.252	22.40	9.97	0.02	32.39	QP	Neutral	60.00	-27.61	Pass		
10.252	10.43	9.97	0.02	20.42	Ave	Neutral	50.00	-29.58	Pass		
10.693	22.44	9.98	0.01	32.43	QP	Neutral	60.00	-27.57	Pass		
10.693	11.47	9.98	0.01	21.46	Ave	Neutral	50.00	-28.54	Pass		
11.138	22.74	9.98	0.01	32.73	QP	Neutral	60.00	-27.27	Pass		

Page 55 of 68

11.138	11.59	9.98	0.01	21.58	Ave	Neutral	50.00	-28.42	Pass
12.341	21.28	10.00	0.01	31.28	QP	Neutral	60.00	-28.72	Pass
12.341	12.27	10.00	0.01	22.28	Ave	Neutral	50.00	-27.72	Pass
12.586	24.56	10.00	0.00	34.56	QP	Neutral	60.00	-25.44	Pass
12.586	11.46	10.00	0.00	21.46	Ave	Neutral	50.00	-28.54	Pass
13.189	16.02	10.00	0.00	26.02	QP	Neutral	60.00	-33.98	Pass
13.189	7.10	10.00	0.00	17.10	Ave	Neutral	50.00	-32.90	Pass
13.320	16.16	10.00	0.00	26.16	QP	Neutral	60.00	-33.84	Pass
13.320	6.90	10.00	0.00	16.90	Ave	Neutral	50.00	-33.10	Pass
13.762	15.10	10.01	0.00	25.10	QP	Neutral	60.00	-34.90	Pass
13.762	4.80	10.01	0.00	14.80	Ave	Neutral	50.00	-35.20	Pass
14.342	12.38	10.01	0.00	22.39	QP	Neutral	60.00	-37.61	Pass
14.342	3.68	10.01	0.00	13.68	Ave	Neutral	50.00	-36.32	Pass
Spec Margin = 0	Spec Margin = QP./Ave Limit, ± Uncertainty								
Combined Standa	ombined Standard Uncertainty $U_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = kU_c(y)$ $k = 2$ for 95% confidence								

Notes: EUT was setup as table top equipment and transmitted at 5180 MHz in 802.11a mode at 6 Mbps

(worse case condition).

4.7 Frequency Stability

In accordance with 47 CFR Part 15.407(g) and RSS GEN Sect. 6.11 the frequency stability of U-NII devices must be such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. The Manufacturer calls out operating temperature ranges of $+0^{\circ}$ to $+50^{\circ}$ C

4.7.1 Test Methodology

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions. This test performs according to ANSI C63.10-2013 Section 6.8

4.7.2 Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signal should have ± 20 ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

Worst case: 5.20 GHz ± 20 ppm/104 kHz

 ± 20 ppm at 5.20 GHz translates to a maximum frequency shift of ± 104 kHz. As the edge of the channels are at least one MHz from either of the band edges, ± 104 kHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the radio.

4.7.3 Limit

CFR47 Part 15.407(g) and RSS GEN Sect. 6.11 - Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

4.7.4 **Test results:**

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s) since the maximum frequency drift was 18.07 ppm.

Temperature	Time	PPM
	Start	9.38
0° C	2 Min.	11.18
0 C	5 Min	5.41
	10 min	7.57
	Start	9.38
10° C	2 Min.	5.41
10 C	5 Min	4.69
	10 min	3.61
	Start	9.01
20° C	2 Min.	11.18
20°C	5 Min	9.74
	10 min	18.07
	Start	3.61
30° C	2 Min.	17.67
50 C	5 Min	9.38
	10 min	9.38
	Start	17.67
40° C	2 Min.	1.80
40 C	5 Min	7.57
	10 min	0.36
	Start	2.16
50° C	2 Min.	2.52
50° C	5 Min	6.85
	10 min	7.21
Note: All frequency	drifts were less than ± 20 pp	om. The worst frequency drift was 18.07 ppm

 Table 8: Frequency Stability – Test Results

Figure 34: Frequency Stability – Worst Case

4.8 Voltage Variation

In accordance with 47 CFR Part 15.31 (e) intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.8.1 Test Methodology

The supply voltage was varied between 85% and 115% of the nominal rated supply voltage. The fundamental frequency was observed during the variation. The EUT was powered 3.7 Vdc by programmable power supply. The voltage was varied from 3.3 Vdc to 4.07 Vdc mean while the fundamental frequencies were observed and record for the maximum drift in ppm; part per millions.

4.8.2 Test results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s). The fundamental frequencies drifted less than ± 20 ppm.

Frequency	Nominal (3.7 Vdc)	Lo Voltage (3.3Vdc)	Hi Voltage (4.07Vdc)	Max Drift					
MHz	MHz	MHz	MHz	ppm					
5200	10.10	10.82	11.54	11.54					
Note: EUT has	Note: EUT has operating voltage of 3.3 Vdc to 4.07 Vdc.								

 Table 9: Voltage Variation – Test Results

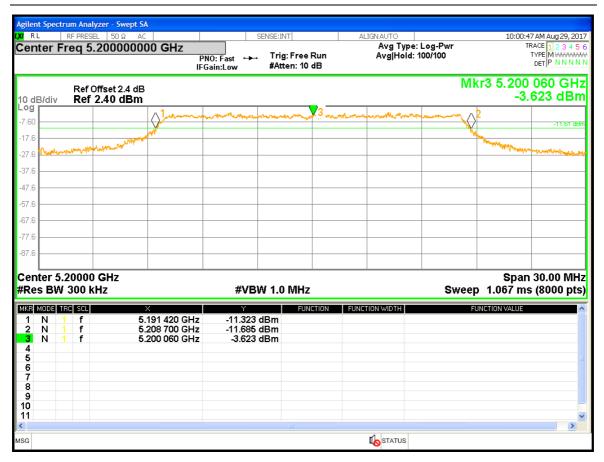


Figure 35: Voltage Variation - Worst Case Condition

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Bilog Antenna	Sunol Sciences	JB3	A102606	06/15/2016	06/15/2018
Horn Antenna	Sunol Sciences	3115	9710-5301	10/08/2015	10/08/2017
Antenna (18-40 GHz)	Com-Power	AHA-840	105005	05/26/2017	05/26/2019
Loop Antenna	ETS-Lindgren	6502	62531	06/08/2017	06/08/2018
Spectrum Analyzer	Rohde & Schwarz	FSL6	100169	01/13/2017	01/13/2018
Spectrum Analyzer	Agilent	N9038A	MY552260210	01/16/2017	01/16/2018
Spectrum Analyzer	Agilent	N9030A	US51350291	01/08/2017	01/08/2018
Spectrum Analyzer	Rohde Schwarz	ESIB40	832427/002	01/16/2017	01/16/2018
Spectrum Analyzer	Rohde Schwarz	FSV40	1321.3008K40	09/19/2017	09/19/2018
Amplifier	Sonoma Instruments	310	165516	01/19/2017	01/19/2018
Amplifier	Miteq	TTA1800-30-HG	2020728	11/12/2016	11/12/2017
Amplifier	Rohde & Schwarz	TS-PR26	100011	11/04/2017	11/04/2018
Amplifier	Rohde & Schwarz	TS-PR40	100012	08/02/2017	08/02/2018
Power Meter	Agilent	E4418B	MY45103902	01/11/2017	01/11/2018
Power Sensor	Hewlett Packard	8482A	1925A04647	01/01/2017	01/01/2018
Thermometer	Fluke	5211	88650033	11/04/2016	11/04/2017
Thermo Chamber	Espec	BTZ-133	0613436	NCR	NCR
Multimeter	Fluke	177	92780312	01/11/2017	01/11/2018
DC Power Supply	Agilent	E3634A	MY400004331	01/12/2017	01/12/2018
Notch Filter	Micro-Tronics	BRM50716	003	01/18/2017	01/18/2018
Signal Generator	Anritsu	MG3694A	42803	01/13/2017	01/13/2018
Signal Generator	Rohde & Schwarz	SMF100A	1167.0000K02	09/19/2017	09/19/2018
Signal Generator	Rohde & Schwarz	SMBV100A	1407.6004K02	09/19/2017	09/19/2018
Power Sensors	Rohde & Schwarz	OSP120	1520.9010.02	09/19/2017	09/19/2018

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 10: Customer Information					
Company Name Voyetra Turtle Beach, Inc.					
Address	100 Summit Lake Drive, Suite 100				
City, State, Zip	Valhalla, New York 10595 USA				
Country	USA				
Phone	(530) 277-3482				

 Table 11: Technical Contact Information

Name	Tim Blaney
E-mail	tim@commcepts.net
Phone	(530) 277-3482

6.3 Equipment Under Test (EUT)

Table 12: EUT Specifications

EUT Specifications				
Dimensions	225mm (8.9") x 252mm (9.9") x 115mm (4.5")			
DC Input	Headset Input Voltage: 3.7 Vdc (battery)			
Environment	Indoor			
Operating Temperature Range:	0 to 50 degrees C			
Multiple Feeds:	☐ Yes and how many ⊠ No			
Product Marketing Name (PMN)	Ear Force Stealth 700P RX			
Hardware Version Identification Number (HVIN)	Stealth 700P RX			
Firmware Version Identification Number (FVIN)	1.0.6			
802.11-radio modules				
Operating Mode	802.11a			
Transmitter Frequency Band	5.15 GHz – 5.25 GHz			
Max. Rated Power Output	6.08 dBm			
Power Setting @ Operating Channel	See Channel Planning Table.			
Antenna Type	Integrated PCB			
Max. Peak Antenna Gain	+1.3 dBi at 5 GHz			
Modulation Type	□ Thread (Zigbee) □ BLE □ DSSS □ OFDM ○ Other describe: 16QAM			
Data Rate	802.11a: 6, 9, 12, 18, 24, 36, 48, 54 Mbps			
TX/RX Chain (s)	1			
Directional Gain Type	Correlated Beam-Forming Other describe: No beam-forming or correlated.			
Type of Equipment	☐ Table Top ☐ Wall-mount ☐ Floor standing cabinet			
Note: This report is for operation	n the 5150 to 5250 MHz band only.			

Table 13: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
Antenna	Integrated PCB	Max. peak gain at 5 GHz	+1.3

Table 14: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB	Laptop	🖂 Yes	Metric:3m	\boxtimes M

Table 15: Supported Equipment

Equipment	Manufacturer	Model	Serial	Used for
Laptop	Dell	Latitude	35521341769	Setup EUT operating channel
Interface Board	Turtle Beach	N.A	N.A	Access 5GHz radio chipset
Note: None.				

Table 16: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.407
	PP#4	Radiated Sample	TX Emissions, Rad. Band-edge
	11π4	Radiated Sample	AC Conducted Emission
Ear Force Stealth	PP#7	Radiated Sample	Simultaneous TX Emissions
700P RX	PP#3	Conducted Sample	Output Power, Power Spectral Density,
			Occupied Bandwidth, Band-Edge
			Out-of-Band Emission, Frequency
			Stability, Voltage Variation
Note: None.			

Table 17: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Ear Force Stealth 700P RX	Integrated PCB	Transmit	EUT laid flat	Normal usage. Up right.	On the side
Note: The Y-Axis setup configuration used for final testing.					

Table 18: Final Test Mode for 5150 - 5250 Bands

Test	802.11a		
Occupied Bandwidth FCC Part 15.407(a), RSS-247 Sect.6.2.4.1	5180, 5200, 5240 MHz at 6Mbps		
Output Power FCC Part 15.407(a), RSS 247 Sect. 6.2	5180, 5200, 5240 MHz at 6Mbps		
Peak Power Spectral Density FCC Part 15.407(a), RSS 247 Sect. 6.2	5180, 5200, 5240 MHz at 6Mbps		
Band-Edge (Radiated) FCC Part 15.205, 15.209, 15.407(b)	5180, 5240 MHz at 6Mbps		
Transmitted Spurious Emission (Below 1GHz) FCC Part 15.205, 15.209, 15.407(b)	5200 MHz at 6 Mbps		
Transmitted Spurious Emission (Above 1GHz) FCC Part 15.205, 15.209, 15.407(b)	5180, 5200, 5240 MHz at 6Mbps		
Conducted Spurious Emission (antenna port). FCC Part 15.407 (b), RSS 247 Sect.6.2.1	According to CFR47 15.407 (b) EIPR shall not exceed -27 dBm/MHz. This is equivalent to the field strength of 68.2dBuV/m at 3 meter distance. The EUT is satisfied the requirement by meeting the limit under CFR47 Part 15.209.		
AC Conducted Emission FCC Part 15.207	EUT is powered via host PC USB Port.		
Frequency Stability FCC Part 15.407 (g)	5200 MHz at 6 Mbps		
Voltage Variation FCC Part 15.31 (e)	5200 MHz at 6 Mbps		
Dynamic Frequency Selection FCC Part 15.407 (h)	5150 – 5250 MHz band does not support DFS.		
Transmitted Spurious Emission (Above 1GHz) FCC Part 15.205, 15.209, 15.407(b)	Simultaneous Transmission on both radios. 2402, 2441, 2480 MHz at 2DH1 5180, 5220, 5240 MHz at 6Mbps Worst Case at Wi-Fi 5180 MHz 6 Mbps and Bluetooth 2402 MHz 2DH1		

2. All radiated emissions performed on Y-Axis.

3. All tests were pre-scanned for worst case configuration before final testing.

6.4 Test Specifications

Testing requirements

Table 19: Test Specifications

Emissions and Immunity		
Standard Requirement		
CFR 47 Part 15.407: 2017	All	
RSS 247 Issue 2, 2017	All	

END OF REPORT