

Emissions Test Report

EUT Name:Wireless Audio HeadsetModel No.:Ear Force Stealth 700XCFR 47 Part 15.247: 2017 and RSS 247 Issue 2, 2017

Prepared for:

Tim Blaney Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA Tel: (530) 277-3482

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date:	October 12, 2017
Job #	0000150094
Report Number:	31763010.001

Revisions

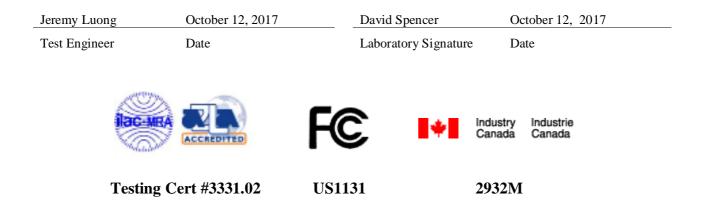
Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	09/22/2017	Original Document	N/A
1	10/12/2017	Remove RF Exposure Information	J. Luong

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer:	Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA (530) 277-3482
Requester / Applicant:	Tim Blaney
Name of Equipment:	Wireless Audio Headset
Model No.	Ear Force Stealth 700X (TB300-2770-01)
<i>Type of Equipment:</i>	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.247: 2017 and RSS 247 Issue 2, 2017
Test Dates:	June 6, 2017 to July 17, 2017

Guidance Documents:


Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v04

Test Methods:

Emissions: ANSI C63.10-2013, KDB 558074 D01 DTS Measurement Guidance v04

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

1 E.	Executive Summary	7
1.1	Scope	7
1.2	Purpose	7
1.3	Summary of Test Results	8
1.4	Special Accessories	8
1.5	Equipment Modifications	8
2 L	aboratory Information	9
2.1	Accreditations & Endorsements	9
	1.1 US Federal Communications Commission	9
	1.2 NIST / A2LA	9 9
	1.3 Canada – Industry Canada 1.4 Japan – VCCI	
	1.5 Acceptance by Mutual Recognition Arrangement	
2.2	Test Facilities	10
2.2	2.1 Emission Test Facility	10
2.2	2.2 Immunity Test Facility	10
2.3	Measurement Uncertainty	10
	3.1 Sample Calculation – radiated & conducted emissions	11
	3.2 Measurement Uncertainty	
2	3.3 Measurement Uncertainty Immunity	
2.4	Calibration Traceability	12
3 Pi	roduct Information	13
3.1	Product Description	13
3.2	Equipment Configuration	13
3.3	Operating Mode	13
3.4	Unique Antenna Connector	14
3.4	4.1 Results	
3.5	Duty Cycle	15
	5.1 Results	15
4 E	missions	19
4.1		
	Output Power Requirements	I) 19
	1.2 Results	
4.2	Occupied Bandwidth	
	2.1 Test Method	27
4.2	2.2 Results	27
4.3	Peak Power Spectral Density	38
4.3	3.1 Test Method	38
4.	3.2 Results	38

4.4	Out of Band Emissions	45
4.4.		45
4.4.	.2 Results	
4.5	Transmit Spurious Emissions	56
4.5.		
4.5.	.2 Transmitter Spurious Emission Limit	57
4.5.	.3 Test Results	57
4.5.	.4 Sample Calculation	86
4.6	AC Conducted Emissions	87
4.6.	.1 Test Methodology	
	.2 Test Results	
5.1	Equipment List	92
6 EM	AC Test Plan	93
6.1	Introduction	
6.2	Customer	
6.3	Equipment Under Test (EUT)	
6.4	Test Specifications	97

Index of Tables

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results	20
Table 3: Average Output Power at the Antenna Port – Reference Use Only	21
Table 4: Occupied Bandwidth – Test Results	
Table 5: Peak Power Spectral Density – Test Results	
Table 6: Emissions at the Band-Edge – Test Results	46
Table 7: Transmit Spurious Emission at Band-Edge Requirements	58
Table 8: AC Conducted Emissions – Test Results	87
Table 9: Customer Information	93
Table 10: Technical Contact Information	93
Table 11: EUT Specifications	94
Table 12: Antenna Information	95
Table 13: EUT Channel Power Specifications	95
Table 14: Interface Specifications	95
Table 15: Supported Equipment	96
Table 16: Description of Sample used for Testing	96
Table 17: Description of Test Configuration used for Radiated Measurement	96
Table 18: Test Specifications	97

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.247: 2017 and RSS 247 Issue 2, 2017 based on the results of testing performed on June 6, 2017 to July 17, 2017 on the Wireless Audio Headset Model Ear Force Stealth 700X manufactured by Voyetra Turtle Beach, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 2412 MHz to 2462 MHz frequency band for Wi-Fi is covered in this document.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Test Method ANSI C63.10:2013		Measured Value	Result
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.247 (d) RSS-GEN Sect.8.9, RSS 247 Sect. 6.2.1.2	Class B	-10.01 dB (Margin)	Complied
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect.8.10	Class B		Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	Class B	-2.76 dB (Margin)	Complied
Occupied Bandwidth	CFR47 15.247 (a1), RSS GEN Sect.6.6	\geq 500 kHz	10.078 MHz (DTS) 13.861 MHz (99%)	Complied
Maximum Output Power	CFR47 15.247 (b), RSS 247 Sect. 5.4.4, 6.2.4.1			Complied
Peak Power Spectral Density	CFR47 15.247 (e), RSS 247 Sect. 5.2.2	8 dBm/ 3 kHz	-24.45 dBm	Complied
Out of Band Emission CFR47 15.247 (d), RSS 247 Sect.5.5		-30 dBr	-11.04 dB (Margin)	Complied

Note: This test report covers 2400 MHz to 2483.5 MHz band.

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Laboratory Information 2

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab Code

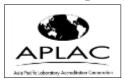
Testing Cert #3331.02). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test

facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI



The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from

Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0268

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

country.

Report Number: 31763010.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700X EMC / Rev 0.0

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	Ulab	Ucispr		
Radiated Disturbance @ 1	Radiated Disturbance @ 10 meters			
30 – 1,000 MHz	2.25 dB	4.51 dB		
Radiated Disturbance @ 3	3 meters			
30 – 1,000 MHz	2.26 dB	4.52 dB		
1 – 6 GHz	2.12 dB	4.25 dB		
6 – 18 GHz	2.47 dB	4.93 dB		
Conducted Disturbance @ Mains Terminals				
150 kHz – 30 MHz	1.09 dB	2.18 dB		
Disturbance Power				
30 MHz – 300 MHz	3.92 dB	4.3 dB		

Voltech PM6000A

	The estimated combined atom double containty for homeonic summation dilicitor measurements is ± 5.00	Per CISPR 16-4-2	Ĺ
The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Methods	l

٦

Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz	
The estimated combined standard uncertainty for carrier power measurements is ± 0.7 dB.	
The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.	
The estimated combined standard uncertainty for modulation frequency response measurements is ± 0.46 dB.	
The estimated combined standard uncertainty for transmitter conducted emission measurements is \pm 2.06 dB	

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Stealth 700X is a completely wireless Xbox One audio gaming headset. It wirelessly connects directly to the Xbox One console over either a 2.4 GHz or 5.0 GHz Wi-Fi link. The functionality in the headset consists of 50mm speaker drivers, a flip up non-removable microphone, microphone monitoring (adjustable via EFAH) and game/chat mix controls on the headset. Additional wireless functionality includes a Bluetooth radio that provides simultaneous connection to a Turtle Beach mobile application and device audio profile for communication with a mobile phone. Additionally, it has a ProSpecs alternative glasses relief ear pad design. With the Microsoft integrated radio module, this headset is also capable of working with compatible Windows PCs in the future.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

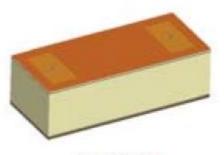
A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results


The Wireless Audio Headset uses a dual band Fractus chip antenna for the 2.4 GHz and 5150 MHz to 5850 MHz bands. The chip antenna is integrated onto the PCB. It has a peak gain of 1.8 dBi in the 2.4 GHz band and 4.9 dBi in the 5150 MHz to 5850 MHz bands.

There is an additional antenna specification available in the submittal package.

7.0 mm x 3.0 mm x 2.0 mm (image larger than real size)

TOP

BOTTOM

3.5 Duty Cycle

The Ear Force Stealth 700X, SN: PP1 was measured for the duty cycle

3.5.1 Results

Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)
802.11b	100	0	100	0
802.11g	100	0	100	0
802.11n HT20	100	0	100	0
Notes: EUT configured and measured for the duty cycle. All measurements use 100% duty				

cycle.

Spectrum									
Ref Level	-10.00 dBr	n	👄 F	RBW 100 kH	z				
Att	30 di	B 👄 SWT	100 ms 😑	/BW 300 kH	z				
∋1Pk Clrw									
					M	1[1]		43.93 dBn 10.0000 ms	
-20 dBm									.0.0000 ms
-30 dBm									
-40 dBm - 1		1							
0.50 dBm	und more a	heallowly	dharachdranningal	or approximate	n hilling and the second s	elen Arth Mallan	ally the flag and	mannaphran	lphilod prithlypp
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm									
CF 2.437 GH	Iz			1000) pts				10.0 ms/
					Mea	suring		1 /0	13:50:34

Date: 5.JUN.2017 13:50:34

Figure 1: Duty Cycle for 802.11b

Spectrum									
Ref Level 🕙				BW 100 kH:					
Att	30 di	B 😑 SWT :	100 ms 😑 V	' BW 300 kH:	z				
∋1Pk Clrw			1						
					м	1[1]	-45.29 dBn 10.0000 m		
-20 dBm									
-30 dBm									
-40 dBm1									
-50 dBm	nuumphihip	notrialipptilitypr	uhuhuhuhuhu	undulpertuilpente	aldhdardgahad pul	lynddrafdady	hiphographic between the	http://www.	home and the second second
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm									
CF 2.437 GH	z			1000	pts				10.0 ms/
) Mea	suring		4/0 0)5.06.2017 13:52:27

Date:5.JUN.2017 13:52:27

Figure 2: Duty Cycle for 802.11g

Spectrum	<u> </u>								
	-10.00 dBn			BW 100 kH:					
Att	30 dE	3 👄 SWT :	100 ms 😑 V	BW 300 kH:	z				
⊖1Pk Clrw									47.11 dBm
					M1[1] -47.1 10.00				
-20 dBm									
-30 dBm									
10 10									
-40 dBm	1	. I							
Mar Mar Mark	in the second	hiphhippingu	Hiphypelplatel	HAMMAN	almonth while	loobythath	allyphandurch	spp March	hima many
SO GBII									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
50 abiii									
-100 dBm—									
CF 2.437 G	Hz			1000	pts				10.0 ms/
][]				Mea	suring		4/1 0	5.06.2017 13:53:27

Date: 5.JUN .2017 13:53:27

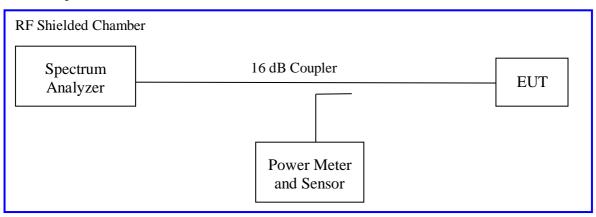
Figure 3: Duty Cycle for 802.11n HT20

4 **Emissions**

Testing was performed in accordance with CFR 47 Part 15.247: 2017 and RSS 247 Issue 2, 2017. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.


The maximum output power and harmonics shall not exceed CFR47 Part 15.247 (b):2017 and RSS 247: 2017 Sect. 5.4.4.

The maximum transmitted power in the band 2400-2483.5 MHz: 1 W

4.1.1 Test Method

The ANSI C63.10-2013 Section 11.9.2.2.2. Conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate / chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.247(b) and RSS 247 Sect. 5.4.4. The worst mode results indicated below.

Test Setup:

Method AVGSA-1 of "KDB 558074 – DTS Measurement Guidance v04" applies since the EUT continuously transmits with duty cycle greater than 98%. Sample detector was used.

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Condition	ns: Conducted]	Measurement	Date: July 17, 2017					
Antenna Type	: Chip		Power Setting: See test plan.					
Antenna Gain	: 1.8 dBi		Signal State:	Modulated at 100)%			
Ambient Tem	р.: 23 °С		Relative Hum	idity:38%				
		80	2.11b					
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412	+30.00	7.89			-22.11			
2437	+30.00	7.83			-22.17			
2462	+30.00	7.67			-22.33			
Note: The head	lset transmitted	at 100% duty cyc	ele.					
		80	2.11g					
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412	+30.00	7.61			-22.39			
2437	+30.00	7.51			-22.49			
2462	+30.00	7.85			-22.15			
Note: The head	lset transmitted	at 100% duty cyc	cle.					
		802.1	1n HT20					
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412	+30.00	7.59			-22.41			
2437	+30.00	7.94			-22.06			
2462	+30.00	7.82			-22.18			
Note: The head	lset transmitted	at 100% duty cyc	cle.					

Test Conditi	ons: Conduc	ted Measuremen	t Date: July 1	Date: July 17, 2017Power Setting: See test plan.				
Antenna Typ	be: Chip		Power Setti					
Antenna Gai	i n: 1.8 dBi		Signal State	: Modulated at 10	00%			
Ambient Ter	np.: 23 °C		Relative Hu	midity:38%				
		802	2.11b Mode					
Frequency	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412 MHz	N/A	7.18			N/A			
2437 MHz	N/A	7.03			N/A			
2462 MHz	N/A	6.87			N/A			
Note: The hig	ghest output	power was obser	ved at 1Mbps.	· · · · · ·				
		802	2.11g Mode					
Frequency	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412 MHz	N/A	6.81			N/A			
2437 MHz	N/A	7.10			N/A			
2462 MHz	N/A	7.06			N/A			
Note: The hig	ghest output	power was obser	ved at 6 Mbps.	·				
		802.111	n (HT20) Mode					
Frequency	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]			
2412 MHz	N/A	7.76			N/A			
2437 MHz	N/A	7.23			N/A			
2462 MHz	N/A	7.02			N/A			
	_		ved at MCS0, 6.5					

Table 3: Average Output Power at the Antenna Port – Reference Use Only

Figure 5: Maximum Transmitted Power, 2437 MHz at 11b 1Mbps

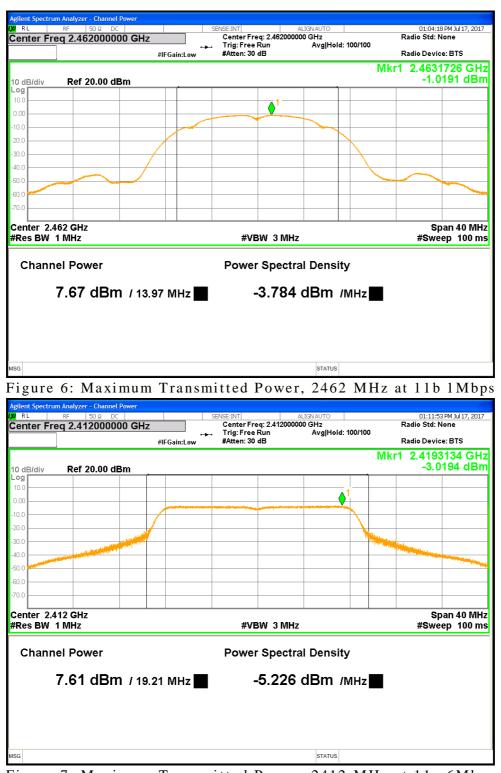


Figure 7: Maximum Transmitted Power, 2412 MHz at 11g 6Mbps

Page 23 of 97

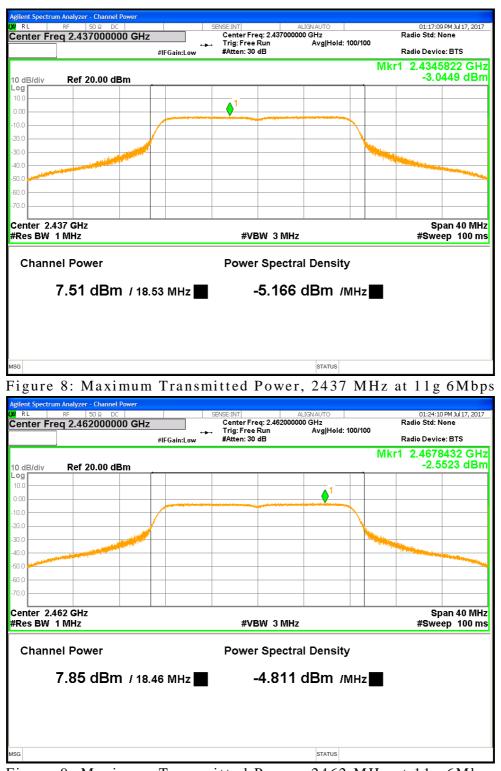


Figure 9: Maximum Transmitted Power, 2462 MHz at 11g 6Mbps

Page 24 of 97

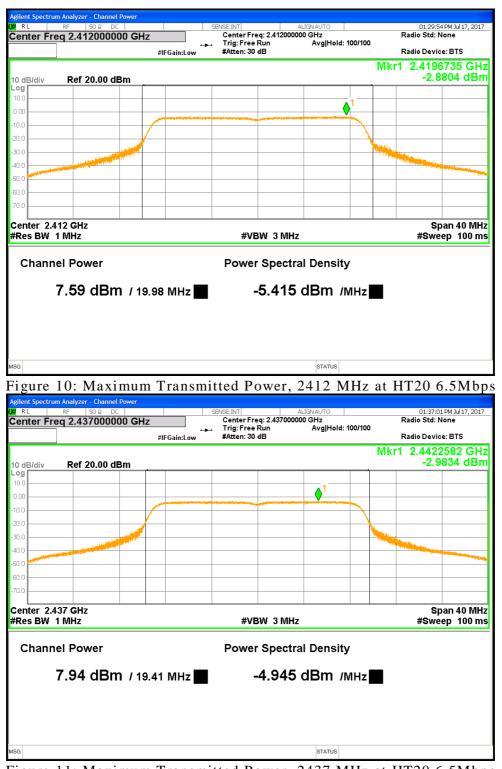


Figure 11: Maximum Transmitted Power, 2437 MHz at HT20 6.5Mbps

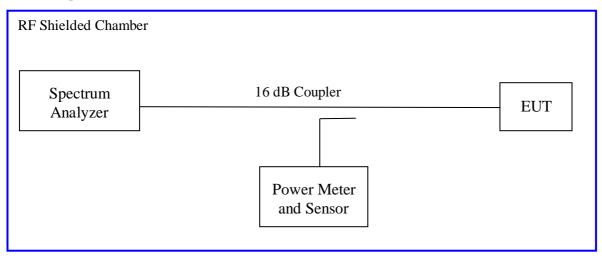
Page 25 of 97

Figure 12: Maximum Transmitted Power, 2462 MHz at HT20 6.5Mbps

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.


The 6dB bandwidth is defined the bandwidth of 6dBr from highest transmitted level of the fundamental frequency.

The minimum 6 dB bandwidth shall be at least 500 kHz per Section CFR47 15.247(a2) 2017 and RSS-247 Sect. 5.3(a) Issue 2, 2017.

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth according to ANSI C63.10:2013 Section 11.8. The measurement was performed with modulation per CFR47 15.247 (a) (2) 2016 and RSS Gen Sect. 6.6 2014. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range; 2400 MHz to 2483.5 MHz, a 6 dB bandwidth was used. The worst results indicated below.


Test Setup:

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

-	ndwidth – Test Resul				
Test Conditions: Co	onducted Measuremen	Date: July 17, 2017			
Antenna Type: Chip	0	Power Setting: See test plan.			
Antenna Gain: 1.8 c	1Bi	Signal Sta	te: Modulated at 10	0%	
Ambient Temp.: 23	°C	Relative H	Iumidity:38%		
	Band	width (M	Hz) for 802	.11b	
Frequency (MHz)	Limit (kHz)	99%	6 BW	6 dB BW	Results
2412	500	13	.947	10.089	Pass
2437	500	13	.861	10.078	Pass
2462	500	13	3.872 10.078		Pass
Note: The bandwidth	n was measured at 1 N	Abps for 8	02.11b mod	e.	
	Band	width (Ml	Hz) for 802	.11g	
Frequency (MHz)	Limit (kHz)	99% BW		6 dB BW	Results
2412	500	17	.366	16.573	Pass
2437	500	17.065		.065 16.555	
2462	500	17	.071	16.562	Pass
Note: The bandwidth	n was measured at 6 N	Abps for 8	02.11g mod	e.	
	Bandwid	th (MHz)	for 802.11	n HT20	
Frequency (MHz)	Limit (kHz)	99%	6 BW	6 dB BW	Results
2412	500	18	.405	17.822	Pass
2437	500	18	.137	17.796	Pass
2462	500	18	.139	17.788	Pass
Note: The bandwidth	n was observed at MC	CS0 6.5 Mt	ops mode.	1	1

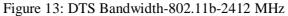
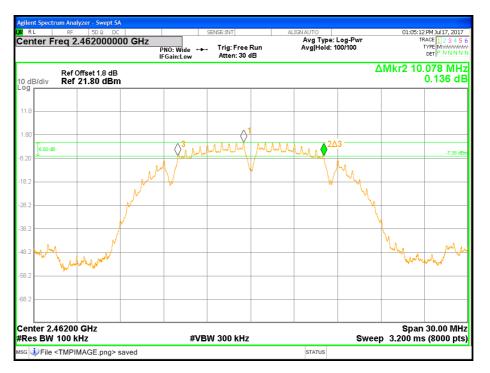



Figure 14: DTS Bandwidth-802.11b-2437 MHz

Figure 15: DTS Bandwidth-802.11b-2462 MHz

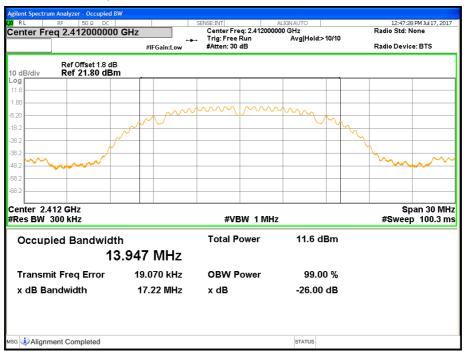


Figure 16: 99% Bandwidth-802.11b-2412 MHz

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

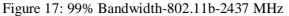


Figure 18: 99% Bandwidth-802.11b-2462 MHz

Figure 19: DTS Bandwidth-802.11g-2412 MHz

Figure 20: DTS Bandwidth-802.11g-2437 MHz

Figure 21: DTS Bandwidth-802.11g-2462 MHz

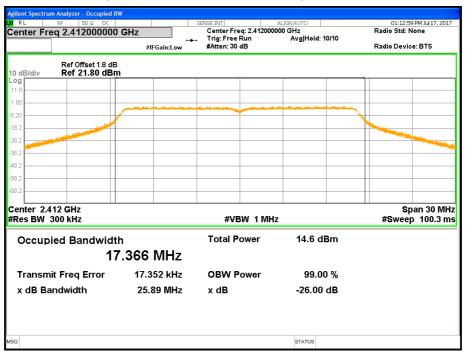
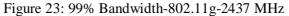



Figure 22: 99% Bandwidth-802.11g-2412 MHz

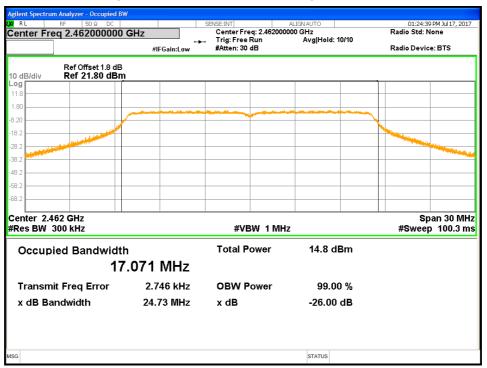


Figure 24: 99% Bandwidth-802.11g-2462 MHz

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

Figure 25: DTS Bandwidth-802.11n HT20-2412 MHz

Figure 26: DTS Bandwidth-802.11n HT20-2437 MHz

Report Number: 31763010.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700X EMC / Rev 0.0

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

Figure 27: DTS Bandwidth-802.11n HT20-2462 MHz

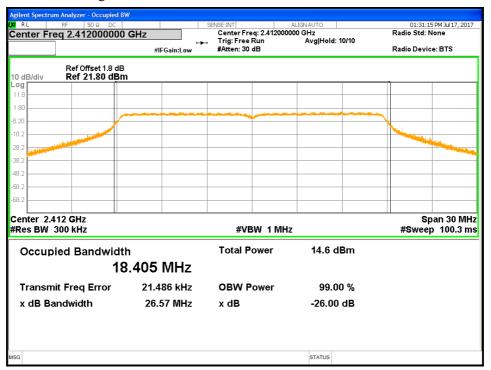
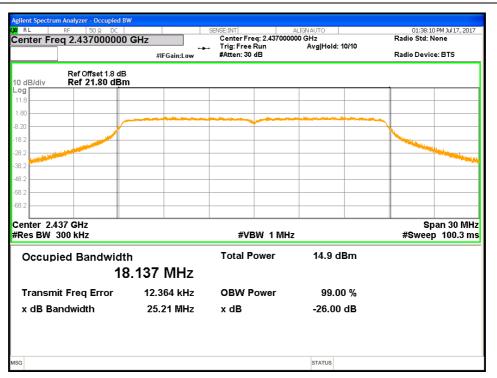



Figure 28: 99% Bandwidth-802.11n HT20-2412 MHz

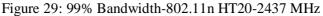
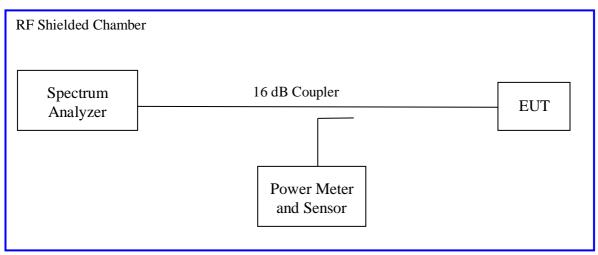


Figure 30: 99% Bandwidth-802.11n HT20-2462 MHz


4.3 Peak Power Spectral Density

According to the CFR47 Part 15.247 (e) and RSS 247 Sect.5.2 (b), the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 11.10.3. The measurement was performed with modulation per CFR47 Part 15.247 (e) and RSS 247 Sect.5.2 (b). The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range of 2400 MHz to 2483.5 MHz. The worst sample result indicated below.

Test Setup:

Method AVGSA-1 of "KDB 558074 – DTS Measurement Guidance v04" applies since the EUT continuously transmits with duty cycle greater than 98%. Sample detector was used.

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Condi	tions: Conduct	ed Measuremen	ıt	Date: July 17, 2017						
Antenna T	ype: Chip			Power Setting: See test plan.						
Antenna G	ain: 1.8 dBi		Signal State: Modulated at 100%							
Ambient T	emp.: 23 °C			Relat	ive Humidity:3	8%				
Peak Power Spectral Density										
Freq. (MHz)	Mode	Output [dBm]	C [d]		Max. PPSD [dBm]	Limit [dBm]	Margin [dB]			
2412	802.11b 1Mbps	-9.22	-15	.23	-24.45	8.00	-32.45			
2437	802.11b 1Mbps	-9.57	-15	-24.80		8.00	-32.80			
2462	802.11b 1Mbps	-9.49	-15	.23	-24.72	8.00	-32.72			
2412	802.11g 6Mbps	-12.16	-15	.23	-27.39	8.00	-35.39			
2437	802.11g 6Mbps	-12.03	-15	.23	-27.26	8.00	-35.26			
2462	802.11g 6Mbps	-11.81	-15	.23	-27.04	8.00	-35.04			
2412	HT20 6.5Mbps	-12.29	-15	.23	-27.52	8.00	-35.52			
2437	HT20 6.5Mbps	-11.59	-15	.23	-26.82	8.00	-34.82			
2462	HT20 6.5Mbps	-12.19	-15	.23	-27.42	8.00	-35.42			
The b	andwidth ratio	e measured RBV is 10*log (3kHz at 100% duty cy	z/100kH	z) or -	15.23 dB.					

Table 5: Peak Power Spectral Density – Test Results

Figure 31: Maximum Power Spectral Density-2412 MHz-11b-1 Mbps

Figure 32: Maximum Power Spectral Density-2437 MHz-11b-1 Mbps

Figure 33: Maximum Power Spectral Density-2462 MHz-11b-1 Mbps

Figure 34: Maximum Power Spectral Density-2412 MHz-11g-6 Mbps

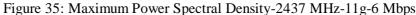
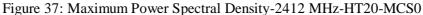
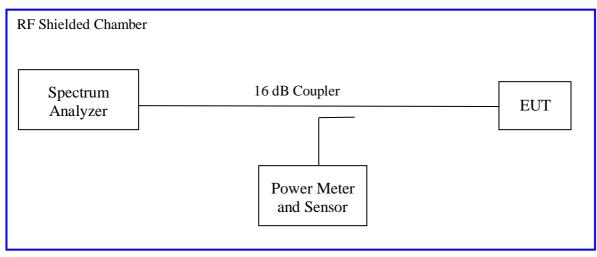



Figure 36: Maximum Power Spectral Density-2462 MHz-11g-6 Mbps



Figure 38: Maximum Power Spectral Density-2437 MHz-HT20-MCS0

Figure 39: Maximum Power Spectral Density-2462 MHz-HT20-MCS0


4.4 Out of Band Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmitting mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS-247 Sect. 5.5, RSS-GEN Sect. 8.9 and 8.10.

4.4.1 Test Method

The conducted method was used to measure the undesirable emission requirement. The measurement was performed with modulation. This test was conducted on 3 channels of Sample in each mode on Sample. The worst sample result indicated below.

Test Setup:

Measurement Procedure AVG2 of KDB 662911

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions:	Conducted Measurem	ent Date: Ju	Date: July 17, 2017				
Antenna Type: (Chip	Power S	Power Setting: See test plan.				
Antenna Gain: 1	.8 dBi	Signal S	State: Modulated at 100)%			
Ambient Temp.:	23 °C	Relativo	e Humidity:38%				
	Out of Band F	Results for Wireless	Audio Headset				
Frequency (MHz)	Mode	Out of Band Leve (dBm)	el 30 dBr Level (dBm)	Margin (dB)			
2412	802.11b, 1 Mbps	-48.51	-31.58	-16.93			
2437	802.11b, 1 Mbps	-48.58	-31.31	-17.27			
2462	802.11b, 1 Mbps	-48.42	-31.50	-16.92			
2412	802.11g, 6 Mbps	-48.01	-35.85	-12.16			
2437	802.11g, 6 Mbps	-48.29	-35.45	-12.84			
2462	802.11g, 6 Mbps	-48.48	-35.66	-12.82			
2412	HT20, MCS0	-47.61	-36.57	-11.04			
2437	HT20, MCS0	-48.51	-36.42	-12.09			
2462	HT20, MCS0	-47.89	-36.17	-11.72			
	dge level must be lowe ad-edge is compared to						



Figure 40: Conducted Band Edge-2412 MHz-11b-1 Mbps

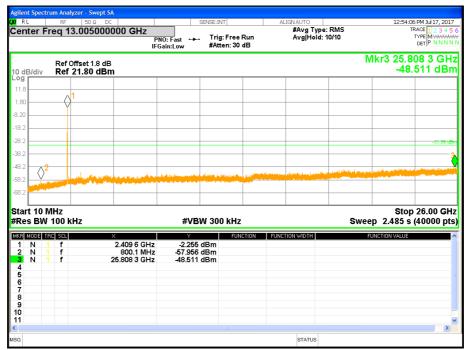


Figure 41: Out of band Emission-2412 MHz-11b-1 Mbps

Figure 42: Conducted Band Edge-2437 MHz-11b-1 Mbps

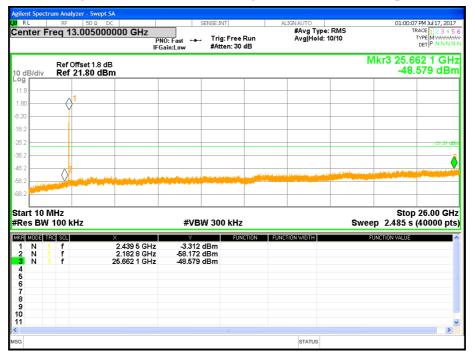


Figure 43: Out of band Emission-2437 MHz-11b-1 Mbps

Figure 44: Conducted Band Edge-2462 MHz-11b-1 Mbps

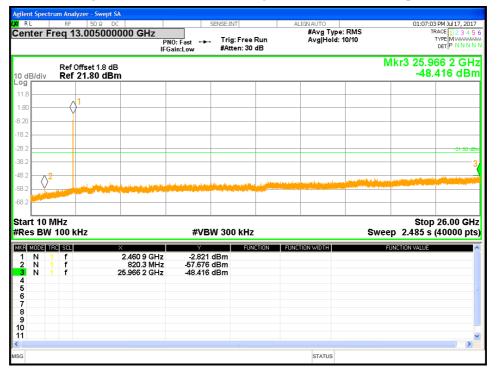


Figure 45: Out of band Emission-2462 MHz-11b-1 Mbps

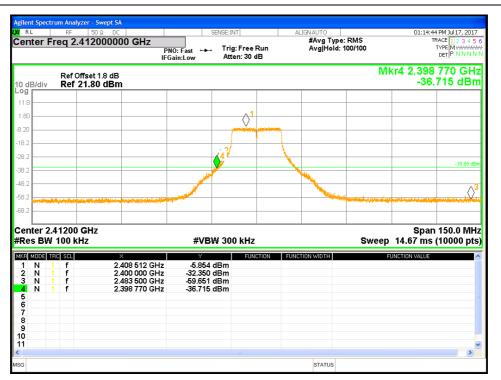


Figure 46: Conducted Band Edge-2412 MHz-11g-6 Mbps



Figure 47: Out of band Emission-2412 MHz-11g-6 Mbps

Figure 48: Conducted Band Edge-2437 MHz-11g-6 Mbps

Figure 49: Out of band Emission-2437 MHz-11g-6 Mbps

Figure 50: Conducted Band Edge-2462 MHz-11g-6 Mbps

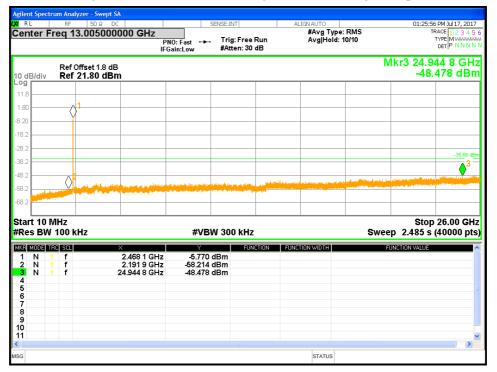


Figure 51: Out of band Emission-2462 MHz-11g-6 Mbps

Figure 52: Conducted Band Edge-2412 MHz-HT20-MCS0

Figure 53: Out of band Emission-2412 MHz-HT20-MCS0

Figure 54: Conducted Band Edge-2437 MHz-HT20-MCS0

Figure 55: Out of band Emission-2437 MHz-HT20-MCS0

Figure 56: Conducted Band Edge-2462 MHz-HT20-MCS0

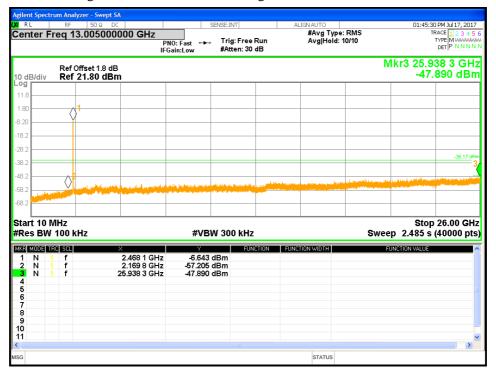


Figure 57: Out of band Emission-2462 MHz-HT20-MCS0

4.5 Transmit Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.247(d), RSS 247 Sect. 5.5, RSS-GEN Sect. 8.9 and 8.10.

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pre-scans were performed to determine the worst data rate / chains and EUT orientation.

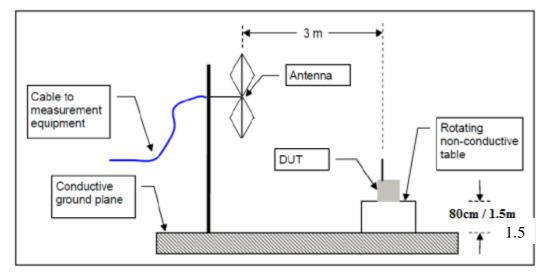
4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the worst axis, Y-Axis up, for three operating channels in each operating mode;

802.11b 1Mbps at 2412 MHz, 2437 MHz, and 2462 MHz


802.11g 6Mbps at 2412 MHz, 2437 MHz, and 2462 MHz

802.11n HT20 MCS0 at 2412 MHz, 2437 MHz, and 2462 MHz

4.5.1.3 Deviations

None.

Test Setup:

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2017 and RSS Gen Sect. 8.9 and 8.10: 2014.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

All harmonics and spurious emission which are outside of the restricted band shall be 20dB below the in-band emission.

4.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Cond	itions: Radiated Mea	surement		Dat	Date: June 6, 2017							
Antenna T	Г уре: Chip			Pov	Power Setting: See test plan.							
Antenna (Gain: 1.8 dBi			Sig	Signal State: Modulated at 100%							
Ambient 7	Гетр.: 23 °С	Rel	ative Hu	midity:40	%							
]	Band-	Edge R	esults							
Center		Edge										
Freq.	Mode	Freq.	Pol	Ant.	Table	Det.	Level	Limit	Margin			
NALL_		MII-			Der	D1-/A	dBuV/	dBuV/	ID			
MHz 2412	90211h 1Mhma	MHz 2390.0	V/H H	cm 139	Deg. 121	Pk/Avg Pk	m 54.84	m 74.00	dB -19.16			
	802.11b 1Mbps											
2412	802.11b 1Mbps	2390.0	H	139	121	Ave	42.04	54.00	-11.96			
2412	802.11b 1Mbps	2390.0	V	161	285	Pk	54.71	74.00	-19.29			
2412	802.11b 1Mbps	2390.0	V	161	285	Ave	41.97	54.00	-12.03			
2462	802.11b 1Mbps	2483.5	V	119	177	Pk	55.46	74.00	-18.54			
2462	802.11b 1Mbps	2483.5	V	119	177	Ave	41.22	54.00	-12.78			
2462	802.11b 1Mbps	2483.5	Н	99	177	Pk	53.49	74.00	-20.51			
2462	802.11b 1Mbps	2483.5	Н	99	177	Ave	41.44	54.00	-12.56			
2412	802.11g 6 Mbps	2390.0	Н	136	102	Pk	55.79	74.00	-18.21			
2412	802.11g 6 Mbps	2390.0	Н	136	102	Ave	43.26	54.00	-10.74			
2412	802.11g 6 Mbps	2390.0	V	307	126	Pk	55.55	74.00	-18.45			
2412	802.11g 6 Mbps	2390.0	V	307	126	Ave	42.19	54.00	-11.81			
2462	802.11g 6 Mbps	2483.5	V	119	253	Pk	54.23	74.00	-19.77			
2462	802.11g 6 Mbps	2483.5	V	119	253	Ave	41.63	54.00	-12.37			
2462	802.11g 6 Mbps	2483.5	Н	72	226	Pk	54.14	74.00	-19.86			
2462	802.11g 6 Mbps	2483.5	Н	72	226	Ave	41.34	54.00	-12.66			
2412	HT20 MCS0	2390.0	Н	134	115	Pk	56.09	74.00	-17.91			
2412	HT20 MCS0	2390.0	Н	134	115	Ave	43.99	54.00	-10.01			
2412	HT20 MCS0	2390.0	V	118	115	Pk	56.49	74.00	-17.51			
2412	HT20 MCS0	2390.0	V	118	115	Ave	43.03	54.00	-10.97			
2462	HT20 MCS0	2483.5	V	162	247	Pk	54.87	74.00	-19.13			
2462	HT20 MCS0	2483.5	V	162	247	Ave	41.73	54.00	-12.27			
2462	HT20 MCS0	2483.5	H	73	226	Pk	53.52	74.00	-20.48			
2462	HT20 MCS0	2483.5	Н	73	226	Ave	41.54	54.00	-12.46			

	T ''	n .	F · ·	$(\mathbf{D} + \mathbf{D})$	D '
anie 7•	Iransmit	Sourious	Hmission	at Rand-Edge	Requirements
I able 7.	ransiint	opullous	Linission	a Dana Dage	Requirements

Note: The emissions were measured at the adjacent restricted band of the fundamental signal. All the band-edge measurements met the restricted band requirements of CFR47 15.205

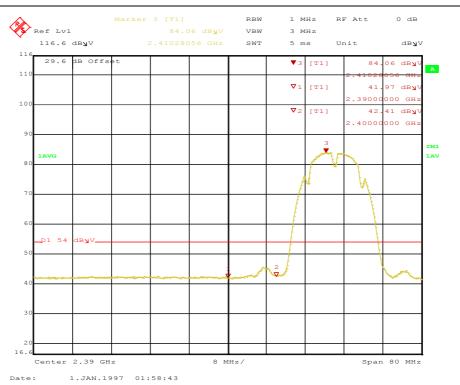


Figure 58: Radiated Emission at the Edge for 11b-2412 MHz-1 Mbps-V-Ave

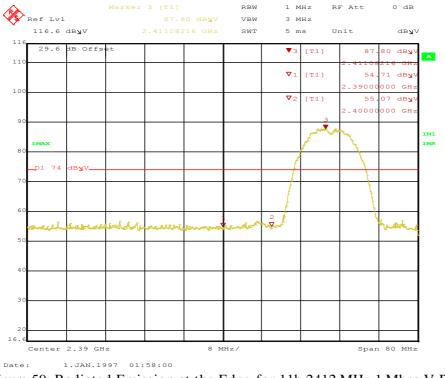


Figure 59: Radiated Emission at the Edge for 11b-2412 MHz-1 Mbps-V-Pk

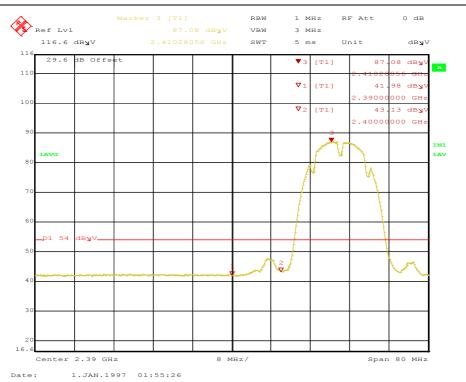


Figure 60: Radiated Emission at the Edge for 11b-2412 MHz-1 Mbps-H-Ave

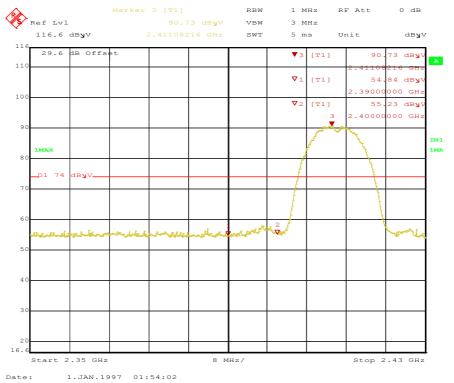
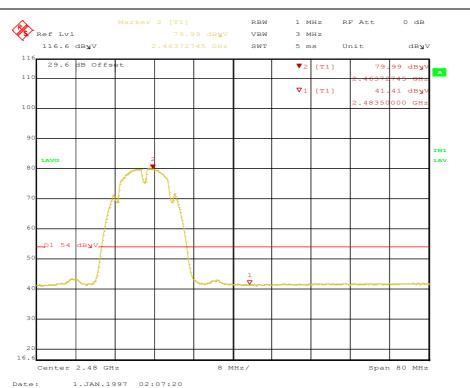
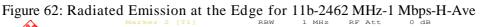




Figure 61: Radiated Emission at the Edge for 11b-2412 MHz-1 Mbps-H-Pk

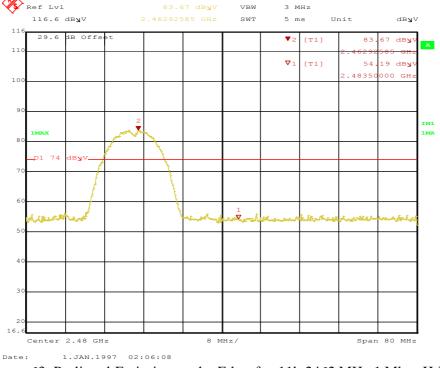


Figure 63: Radiated Emission at the Edge for 11b-2462 MHz-1 Mbps-H-Pk

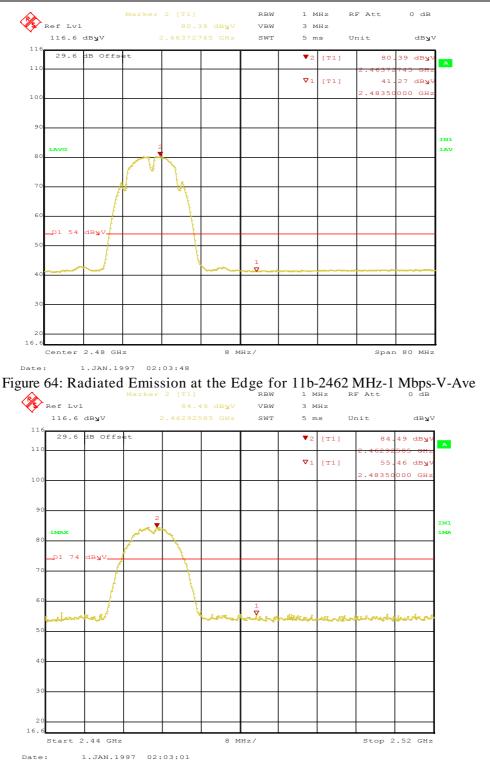


Figure 65: Radiated Emission at the Edge for 11b-2462 MHz-1 Mbps-V-Pk

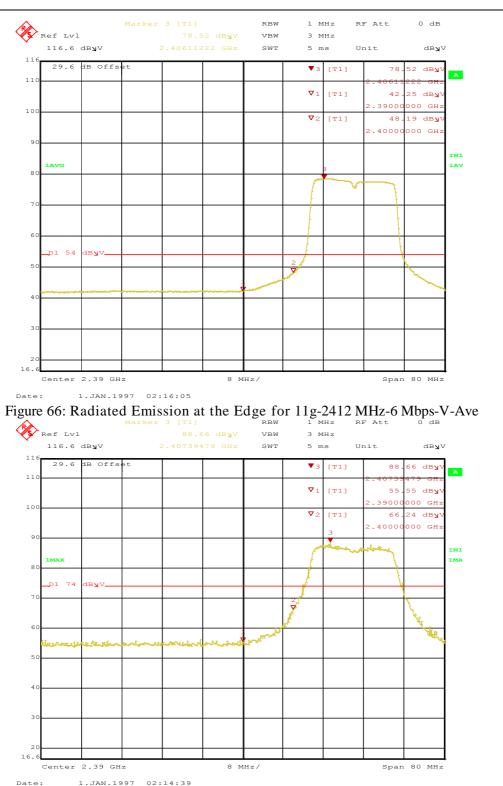


Figure 67: Radiated Emission at the Edge for 11g-2412 MHz-6 Mbps-V-Pk

Figure 69: Radiated Emission at the Edge for 11g-2412 MHz-6 Mbps-H-Pk

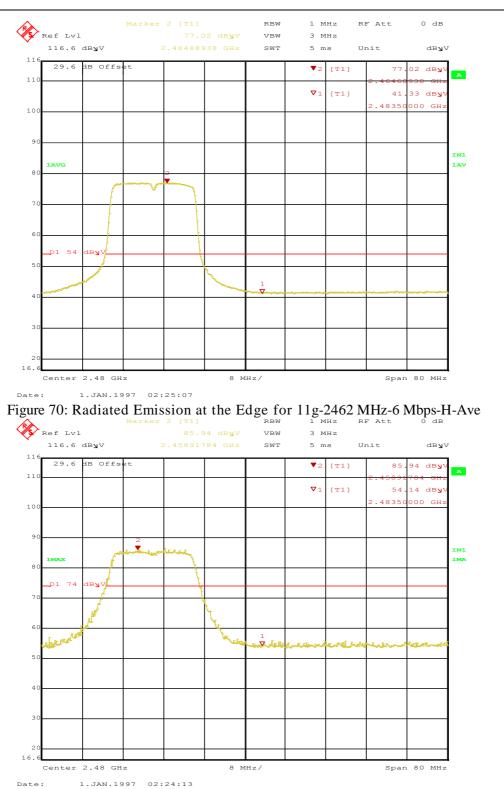


Figure 71: Radiated Emission at the Edge for 11g-2462 MHz-6 Mbps-H-Pk

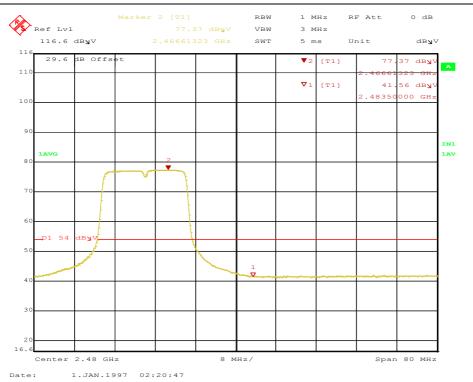


Figure 72: Radiated Emission at the Edge for 11g-2462 MHz-6 Mbps-V-Ave

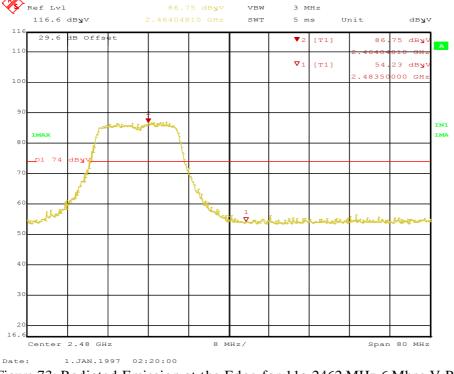


Figure 73: Radiated Emission at the Edge for 11g-2462 MHz-6 Mbps-V-Pk

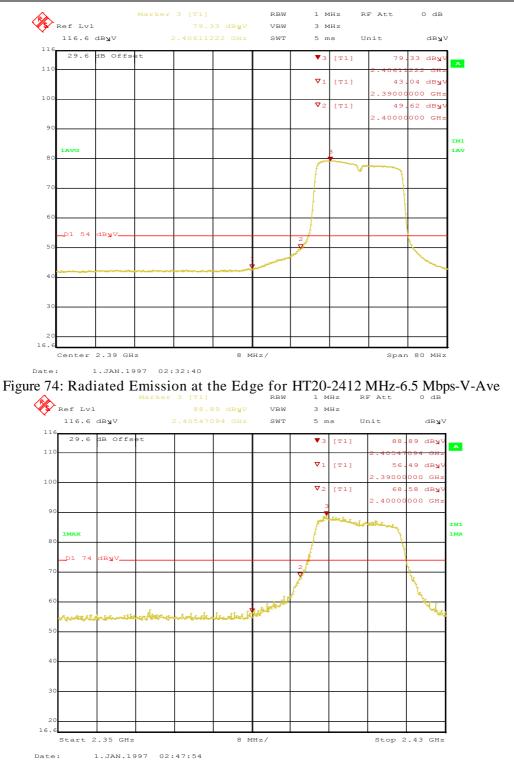


Figure 75: Radiated Emission at the Edge for HT20-2412 MHz-6.5 Mbps-V-Pk

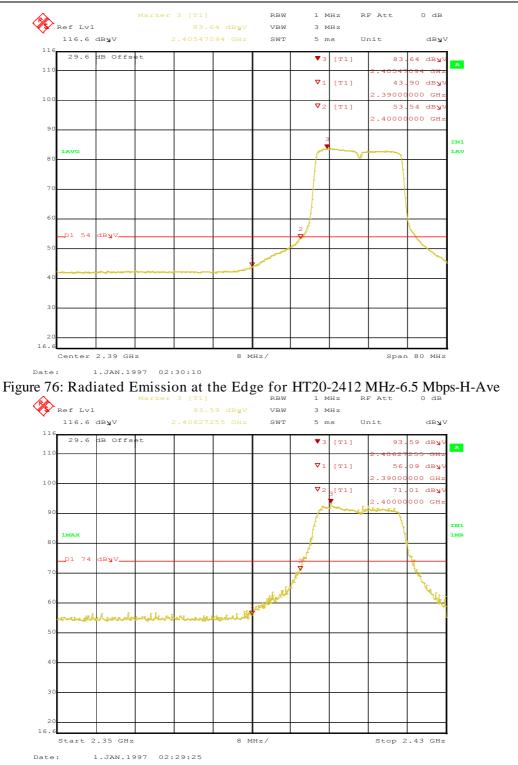


Figure 77: Radiated Emission at the Edge for HT20-2412 MHz-6.5 Mbps-H-Pk

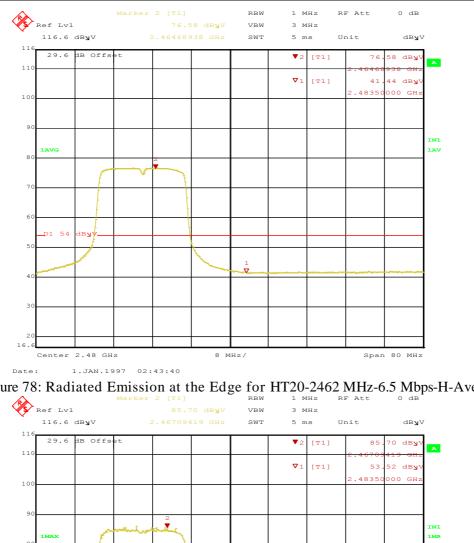


Figure 78: Radiated Emission at the Edge for HT20-2462 MHz-6.5 Mbps-H-Ave

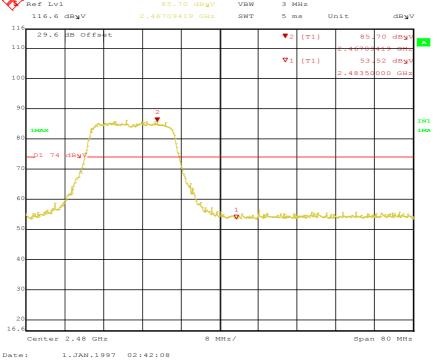
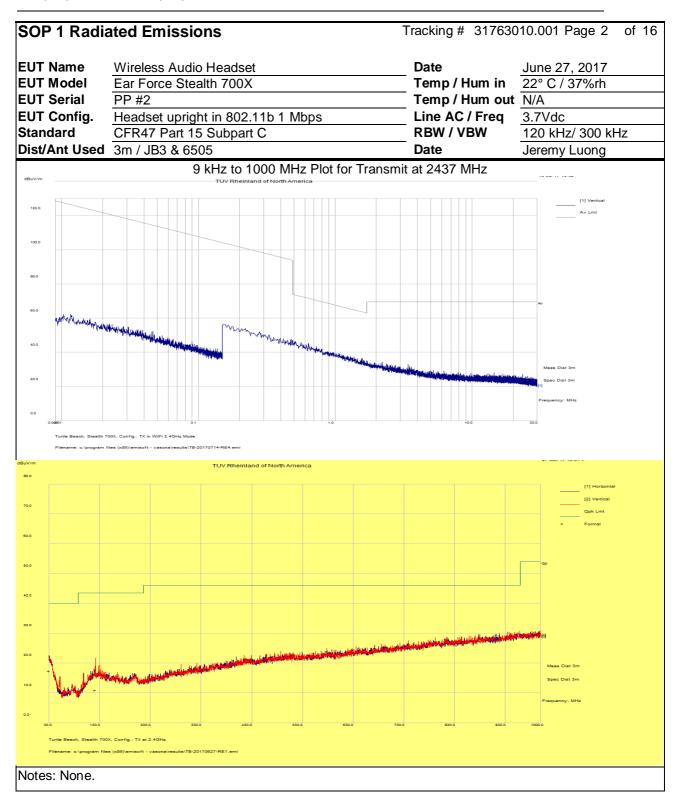
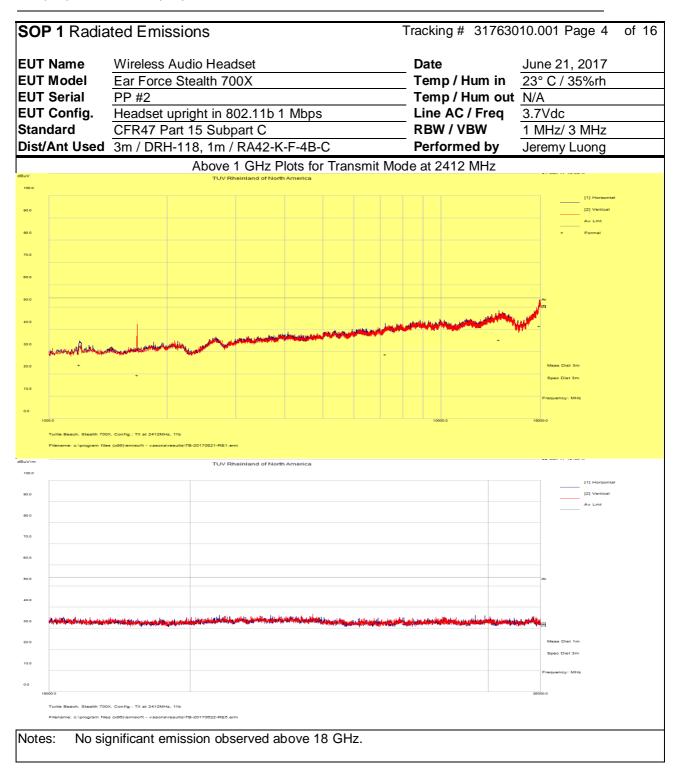
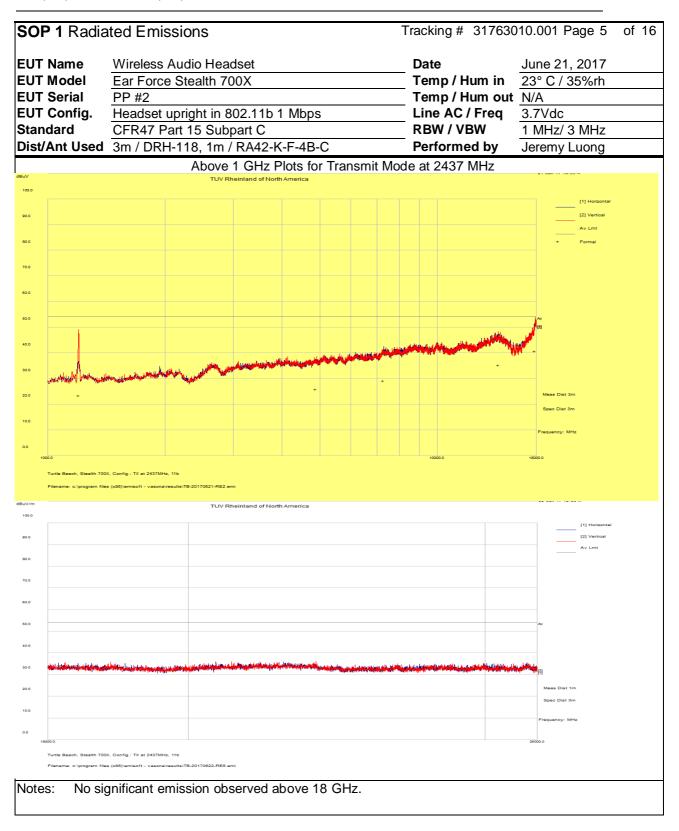



Figure 79: Radiated Emission at the Edge for HT20-2462 MHz-6.5 Mbps-H-Pk

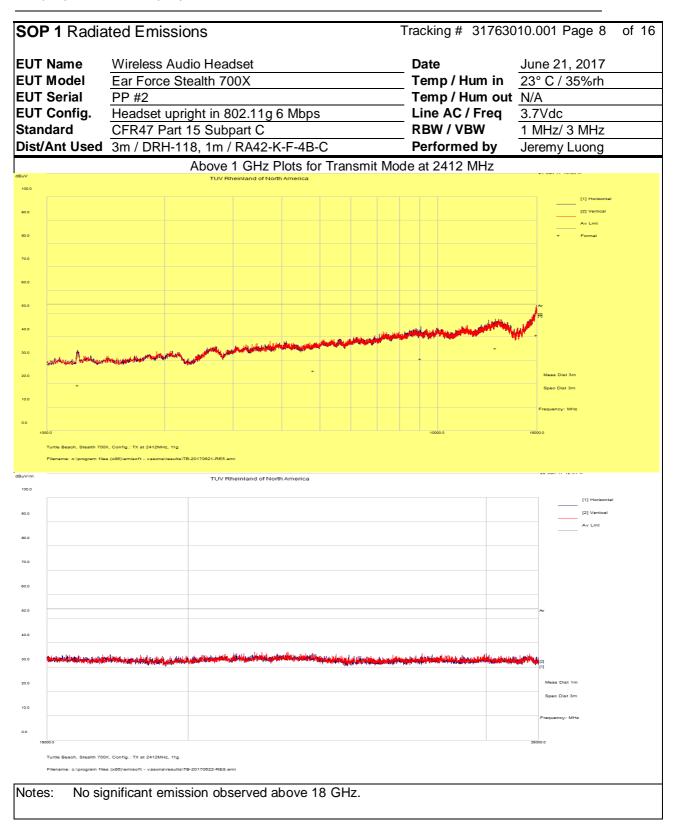
SOP 1 Ra	SOP 1 Radiated Emissions							Tracking # 31763010.001 Page 1 of 16					
EUT Name	Wire	less Audio He	eadset				Da	ate		June 27, 2017			
EUT Model	Ear Force Stealth 700X						Те	emp / Hu	ım in	22° C / 37%rh			
EUT Serial	PP #	2					Те	emp / Hu	ım out	N/A			
EUT Config	J. Head	lset upright ir	n 802.11	b 1 Mbps	;		Liı	ne AC /	Freq	3.7	√dc		
Standard	CFR	47 Part 15 Sι	ubpart C	, RSS-24	7, RSS-G	EN	RE	BW / VB	W	120	kHz/ 300 k	Hz	
Dist/Ant Used 3m / JB3							Ре	erformed	d by	Jere	emy Luong		
9 kHz – 1 GHz Transmit at 2437 MHz													
Frequency	Raw	Cable Loss	AF	Level	Detector	Pola	rity	rity Height Azimu		uth	Limit	Margin	
MHz	dBuV/m	dB	dB	dBuV/m		Η/\	V	cm	deg	I	dBuV/m	dB	
30.00	22.34	2.56	-7.44	17.46	QP	Н		133 160			40.00	-22.54	
121.48	22.20 3.18 -14.37 11.01 QP							178	123		43.50	-32.49	
98.18	98.18 27.03 3.05 -18.62 11.46 QP V 138 96 43.50 -32.04								-32.04				
Total CF= AF	Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= AF+ Cable Loss AF= Antenna factor + Preamp												
lote: 1. Worst case condition was observed on Mid channel of 802.11b in 1 Mbps mode.													

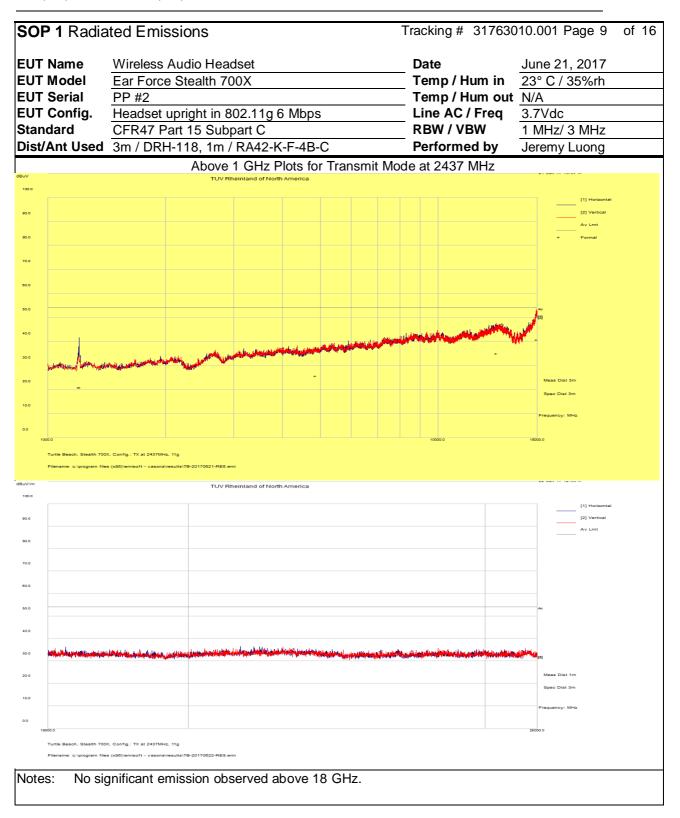

Modes tested were 802.11b, g and, HT20 (low, mid & high channel).
 No significant emission was observed below 30 MHz.

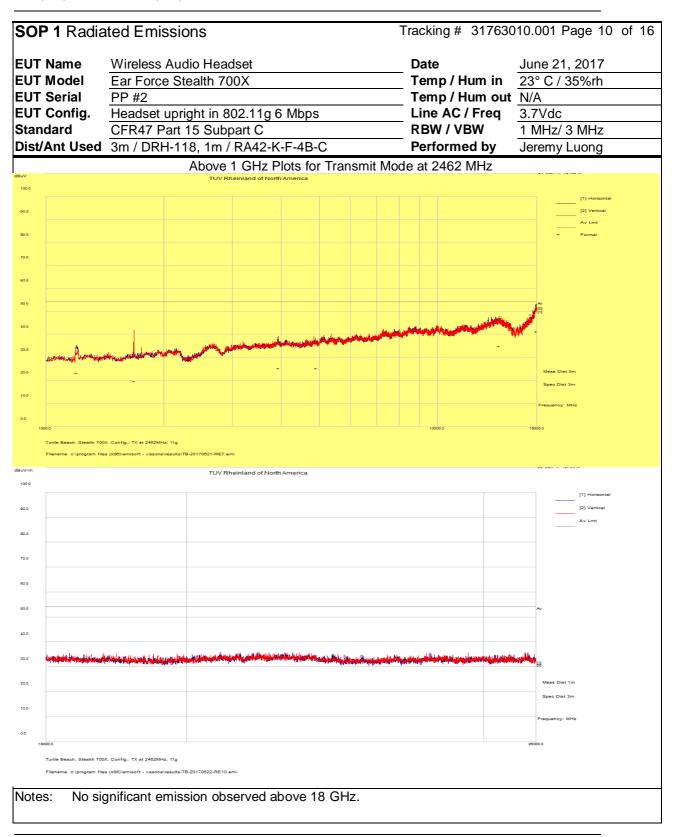



Page 71 of 97

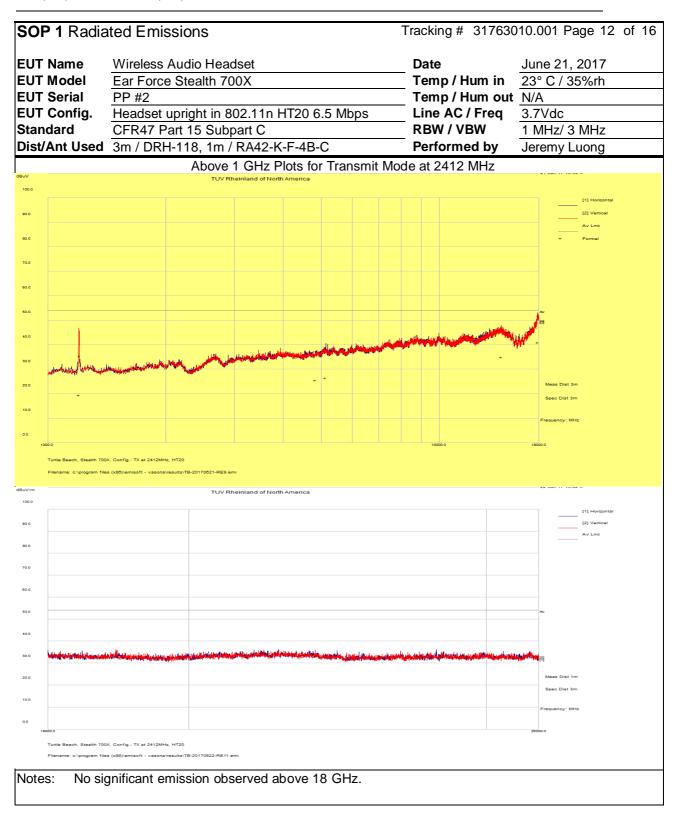
SOP 1 Radiated Emissions Tracking #									10.00	01 Page 3	of 16
EUT Name	Wire	less Audio He	eadset				Date		June	21, 2017	
EUT Model	Ear	Force Stealth	700X			ר	Гетр / Нւ	um in	23° (C / 35%rh	
EUT Serial	PP#						Гетр / Нւ	_	N/A		
EUT Config	·	1 5					Line AC / Freq 3.7Vdc				
Standard		47 Part 15 Sι			7, RSS-G		RBW / VB	_	1 M⊦	Hz/ 3 MHz	
Dist/Ant Us	ed 3m -	- EMCO3115	/ 1m – A	HA-840		F	Performe	d by	Jerer	my Luong	
	r	1 -	– 26 GH	z Transm	it at 2412	MHz (Low Char	nel)			
Frequency	Raw	Cable Loss	AF	Level	Detector	Polarit	y Height	Azimu	th	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg		dBuV/m	dB
1198.13	51.33	0.83	-28.08	24.08	Ave	Н	155	118		54.00	-29.92
14096.75	40.54	3.21	-8.52	35.22	Ave	Н	130	98		54.00	-18.78
1679.87	45.61	1.00	-27.09	19.53	Ave	V	102	126		54.00	-34.47
7230.18	42.91	2.21	-16.32	28.80	Ave	V	189	132		54.00	-25.20
17897.83	41.13	3.72	-3.38	41.47	Ave	V	196	266		54.00	-12.53
		1 - 26	6 GHz T	ransmit a	t 2437 M	Hz (Mi	ddle Char	nnel)			
1200.21	50.70	0.83	-28.08	23.44	Ave	V	160	76		54.00	-30.56
4874.02	44.24	1.77	-20.13	25.88	Ave	V	168	158		54.00	-28.12
7279.10	42.89	2.20	-15.91	29.18	Ave	V	185	116		54.00	-24.82
14370.16	40.50	3.19	-8.36	35.33	Ave	V	196	228		54.00	-18.67
17849.26	40.63	3.72	-3.66	40.69	Ave	V	208	0		54.00	-13.31
		1 - 2	6 GHz 🛛	Fransmit	at 2462 N	1Hz (H	igh Chanr	nel)			
1198.49	50.12	0.83	-28.08	22.86	Ave	H	141	98		54.00	-31.14
2182.70	45.32	1.14	-25.37	21.10	Ave	Н	234	236		54.00	-32.91
13800.36	40.89	3.22	-9.62	34.49	Ave	Н	167	360		54.00	-19.51
1680.08	46.00	1.00	-27.08	19.92	Ave	V	211	276		54.00	-34.08
5985.39	43.96	1.99	-18.82	27.13	Ave	V	202	262		54.00	-26.87
17918.03	40.85	3.72	-3.27	41.30	Ave	V	200	70		54.00	-12.71
Total CF= AF	+ Cable L	AVG - Limit, E oss AF= Anten	na factor	+ Preamp			Jncertainty				
	Note: Worst case condition was observed at 1 Mbps for 802.11b mode.										

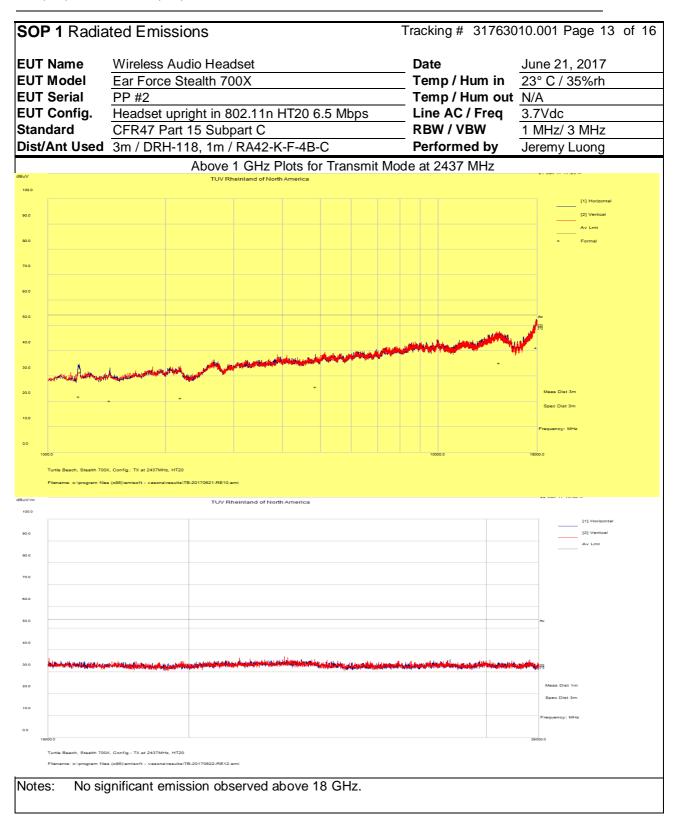

Headset intended to transmit less than 8dBm.



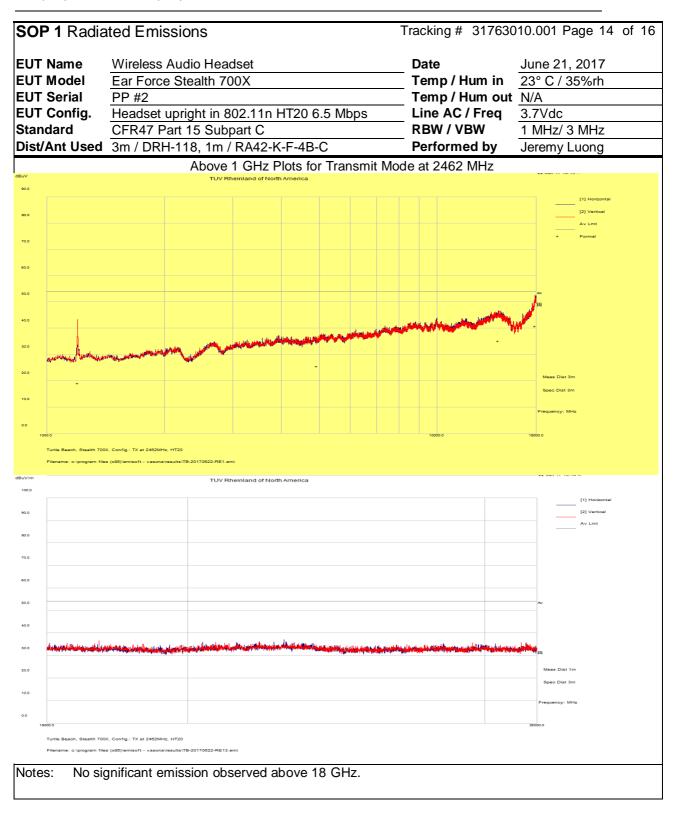


SOP 1 Radiated Emissions Tracking # 31763010.001 Page 7 of 16												
EUT Name	Wire	less Audio He	eadset			0	Date	Jun	e 21, 2017			
EUT Model	orce Stealth	Т	Temp / Hu	im in 23°	C / 35%rh							
EUT Serial	2	Т	Temp / Hu	Im out N/A	L .							
EUT Config	. Head	lset upright in	802.11	g 6 Mbps	i		ine AC /		Vdc			
Standard		47 Part 15 Sι			7, RSS-G		RBM / VB		Hz/ 3 MHz			
Dist/Ant Used 3m – EMCO3115 / 1m – AHA-840 Performed by Jeremy Luong												
1 – 26 GHz Transmit at 2412 MHz (Low Channel)												
Frequency	Raw	Cable Loss	AF	Level	Detector	Polarit	y Height	Azimuth	Limit	Margin		
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB		
14092.46	40.39	3.21	-8.54	35.06	Ave	Н	203	238	54.00	-18.94		
17943.26	40.10	3.75	-3.14	40.71	Ave	Н	102	70	54.00	-13.29		
1202.25	46.54	0.83	-28.08	19.29	Ave	V	167	0	54.00	-34.71		
4808.30	43.87	1.75	-20.11	25.50	Ave	V	145	224	54.00	-28.50		
9063.26	41.78	2.48	-13.56	30.71	Ave	V	144	24	54.00	-23.29		
		1 – 20	6 GHz T	'ransmit a	t 2437 M	Hz (Mi	ddle Char	nnel)				
1200.05	48.14	0.83	-28.08	20.89	Ave	Н	183	360	54.00	-33.11		
1208.74	48.11	0.84	-28.08	20.86	Ave	Н	101	102	54.00	-33.14		
4853.93	44.08	1.75	-20.13	25.70	Ave	V	190	236	54.00	-28.30		
14121.17	40.27	3.18	-8.45	34.99	Ave	V	169	19	54.00	-19.01		
17937.38	40.14	3.74	-3.17	40.71	Ave	V	159	76	54.00	-13.29		
		1 - 2	26 GHz '	Transmit	at 2462 N	/Hz (H	igh Chanr	nel)				
1198.18	50.51	0.83	-28.08	23.25	Ave	H	154	32	54.00	-30.75		
14410.78	40.08	3.26	-8.47	34.87	Ave	Н	140	322	54.00	-19.13		
17918.78	40.71	3.72	-3.27	41.16	Ave	Н	126	116	54.00	-12.84		
1679.97	45.64	1.00	-27.08	19.56	Ave	V	196	150	54.00	-34.45		
3931.56	44.22	1.55	-20.46	25.31	Ave	V	204	50	54.00	-28.69		
4912.77	43.70	1.76	-20.16	25.31	Ave	V	110	70	54.00	-28.70		
Total CF= AF	Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG+ Total CF ± Uncertainty Total CF= AF+ Cable Loss AF= Antenna factor + Preamp											
		tion was obser I to transmit les			U2.11g mo	de.						



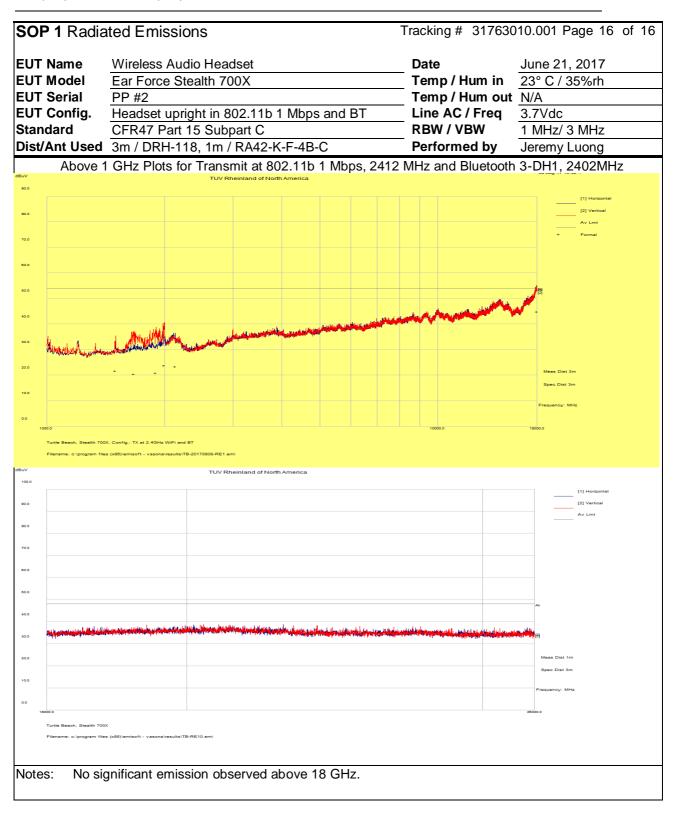

Page 79 of 97

EUT Name EUT Model EUT Serial EUT Config. Standard Dist/Ant Used											
EUT Serial EUT Config. Standard											
EUT Config. Standard											
Standard											
Dist/Ant Used											
1 – 26 GHz Transmit at 2412 MHz (Low Channel)											
Frequency											
MHz d											
5126.22											
14410.99											
17870.97											
1200.04											
4826.66											
1202.65											
17894.40											
1440.06											
2190.82											
4860.22											
14395.31											
i											
4921.27											
17868.17											
1199.97											
14375.54											
2190.82 45.59 1.15 -25.40 21.33 Ave V 174 180 54.00 -32.67 4860.22 44.03 1.76 -20.13 25.66 Ave V 165 132 54.00 -28.34 14395.31 40.26 3.23 -8.43 35.06 Ave V 166 348 54.00 -18.94 I - 26 GHz Transmit at 2462 MHz (High Channel) 4921.27 43.85 1.76 -20.16 25.45 Ave H 155 220 54.00 -28.55 17868.17 40.61 3.71 -3.55 40.78 Ave H 160 182 54.00 -13.22 1199.97 46.26 0.83 -28.08 19.00 Ave V 152 0 54.00 -35.00 14375.54 40.40 3.19 -8.37 35.22 Ave V 189 238 54.00 -18.78 Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG + Total CF ± Uncertainty V 189 238 54.00 -18.78											


Headset intended to transmit less than 8dBm.

Page 81 of 97

Page 82 of 97


Page 83 of 97

SOP 1 Ra	SOP 1 Radiated Emissions Tracking # 31763010.001 Page 15 of 16										
EUT Name	Wire	less Audio He				Date		Jun	e 21, 2017		
EUT Model	Ear F	orce Stealth	700X				Temp / H	um in	23°	C / 35%rh	
EUT Serial	PP#2	2					Temp / H	um out	N/A	1	
EUT Config	. Head	lset upright ir	802.11	b 1 Mbps	and BT		Line AC /	Freq	3.7	Vdc	
Standard	CFR	47 Part 15 Sι	ibpart C	, RSS-24	7, RSS-G	BEN	RBW / VE	3W	1 M	IHz/ 3 MHz	
Dist/Ant Us	ed 3m -	EMCO3115	/ 1m – A	AHA-840			Performe	d by	Jere	emy Luong	
	1 – 26 GHz Transmit at 802.11b 1 Mbps, 2412 MHz and Bluetooth 3-DH1, 2402 MHz										
Frequency	Raw	Cable Loss	AF	Level	Detector	Polar	ity Height	Azimu	th	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V	′ cm	deg		dBuV/m	dB
2131.79	28.43	1.20	-6.27	23.36	Ave	н	120	270		54.00	-30.64
1499.83	30.03	1.00	-9.26	21.77	Ave	V	193	268		54.00	-32.23
1670.83	28.00	1.10	-8.55	20.55	Ave	V	250	0		54.00	-33.45
1903.61	27.22	1.20	-7.43	20.99	Ave	V	157	214		54.00	-33.01
1998.15	29.47	1.20	-6.84	23.83	Ave	V	235	246		54.00	-30.17
17983.02	24.71	4.20	16.03	44.94	Ave	V	197	4		54.00	-9.06
		AVG - Limit, E				al CF ±	Uncertaint	y			

Total CF= AF+ Cable Loss AF= Antenna factor + Preamp

Note: Worst case condition was observed at 1Mbps for 802.11b mode and Bluetooth 3-DH1 Mode. Headset transmitted simultaneously in 2.4 GHz Wi-Fi and Bluetooth modes.

No emission was observed above 18 GHz.

Page 85 of 97

4.5.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: FIM = Field Intensity Meter (dB μ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{dB\mu V/m}{20}}$

4.6 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.10: 2013. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207 and RSS-GEN. Sect. 8.8.

4.6.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50μ H / 50Ω LISNs.

Testing is performed in Lab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

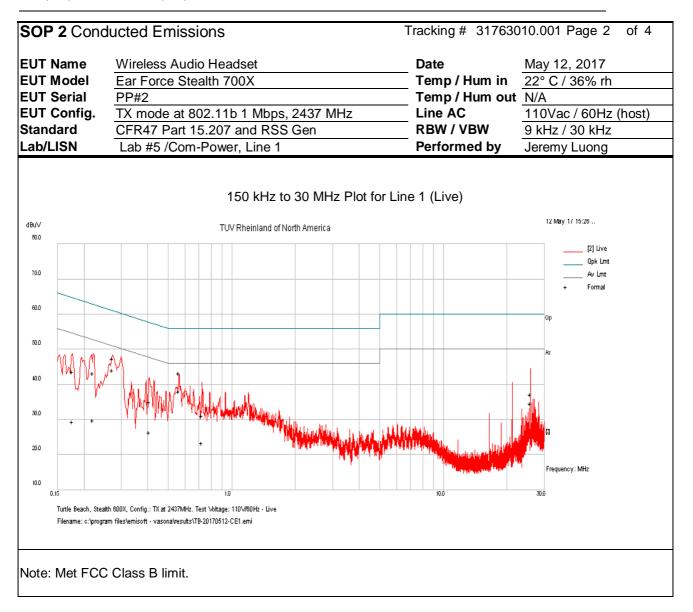
In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

Preliminary test were performed: 802.11b, g, 802.11n HT20.

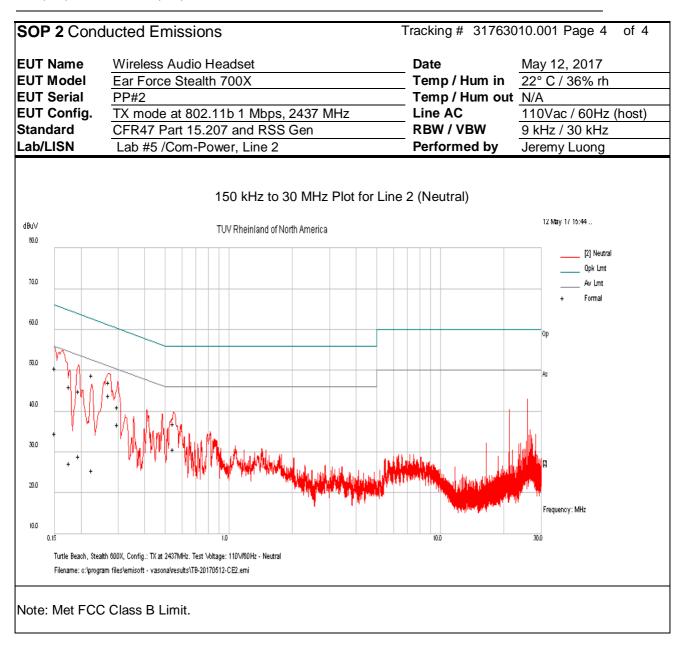
4.6.1.1 Deviations

There were no deviations from this test methodology.

4.6.2 Test Results


As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions: Conducted Measurement at Normal Conditions only							
Antenna Type: Chip		Power Level: See Test Plan					
AC Power: 110 Vac/60 Hz at ho	st device	Configuration: Tabletop					
Ambient Temperature: 23° C		Relative Humidity: 34% RH					
Configuration	Frequ	iency Range	Test Result				
Line 1 (Hot)	0.15 to 30 MHz		0.15 to 30 MHz		0.15 to 30 MHz		Pass
Line 2 (Neutral)	0.15	to 30 MHz	Pass				


Table 8: AC Conducted Emissions – Test Results

SOP 2 Conducted Emissions						king # 317	63010.001	Page 1	of 4	
EUT Name EUT Model		Audio Hea e Stealth 7				Date May 12, 2017 Temp / Hum in 22° C / 36% rh				
EUT Serial	PP#2		007			mp / Hum		/ 30% 11		
EUT Config.		e at 802.11	h 1 Mhns	2437 MHz		ne AC / Fre		ic / 60Hz (h	ost)	
Standard		Part 15.207				W / VBW		/ 30 kHz	030	
Lab/LISN		Com-Powe				rformed b		y Luong		
Frequency	Raw	Limiter	Ins. Loss	Level	Detector				Result	
MHz	dBuV	dB	dB	dBuV			dBuV	dB		
0.176	33.67	9.83	0.05	43.54	QP	Live	64.66	-21.12	Pass	
0.176	19.42	9.83	0.05	29.29	Ave	Live	54.66	-25.37	Pass	
0.221	33.26	9.83	0.04	43.13	QP	Live	62.78	-19.65	Pass	
0.221	20.04	9.83	0.04	29.91	Ave	Live	52.78	-22.87	Pass	
0.272	37.49	9.83	0.04	47.36	QP	Live	61.07	-13.71	Pass	
0.272	34.20	9.83	0.04	44.07	Ave	Live	51.07	-7.00	Pass	
0.406	25.20	9.84	0.03	35.07	QP	Live	57.73	-22.66	Pass	
0.406	16.61	9.84	0.03	26.48	Ave	Live	47.73	-21.25	Pass	
0.561	28.23	9.85	0.03	38.10	QP	Live	56.00	-17.90	Pass	
0.561	33.37	9.85	0.03	43.24	Ave	Live	46.00	-2.76	Pass	
0.722	21.13	9.86	0.03	31.02	QP	Live	56.00	-24.98	Pass	
0.722	13.43	9.86	0.03	23.32	Ave	Live	46.00	-22.68	Pass	
25.878	27.05	10.09	-0.06	37.08	QP	Live	60.00	-22.92	Pass	
25.878	24.51	10.09	-0.06	34.54	Ave	Live	50.00	-15.46	Pass	
Spec Margin =										
Combined Stand						()				
Notes: EUT	was setup	as table to	p equipme	nt and tran	smitted at 2	2437 MHz i	n 802.11b	at 1 Mbps	worse case	

condition).

SOP 2 Conc	ducted Er	nissions			Tra	cking # 31	763010.00	01 Page 3	of 4
EUT Name		Audio Hea				Date May 12, 2017 Temp / Hum in 22° C / 36% rh			
EUT Model		e Stealth 70	JUX			-		C / 36% rh	
EUT Serial	<u>PP#2</u>					emp / Hum			(1 - 4)
EUT Config.		e at 802.11k				ine AC / Fi		Vac / 60Hz	(host)
Standard		Part 15.207		Gen		BW / VBW		lz / 30 kHz	
Lab/LISN	Lab #5 /	Com-Powe	r, Line 2		P	erformed	by Jere	my Luong	
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result
MHz	dBuV	dB	dB	dBuV			dBuV	dB	
0.150	40.67	9.82	0.06	50.55	QP	Neutral	66.00	-15.45	Pass
0.150	24.69	9.82	0.06	34.57	Ave	Neutral	56.00	-21.43	Pass
0.176	36.13	9.83	0.05	46.00	QP	Neutral	64.66	-18.66	Pass
0.176	17.26	9.83	0.05	27.13	Ave	Neutral	54.66	-27.53	Pass
0.195	35.08	9.82	0.04	44.95	QP	Neutral	63.83	-18.88	Pass
0.195	19.18	9.82	0.04	29.05	Ave	Neutral	53.83	-24.78	Pass
0.225	38.86	9.83	0.04	48.73	QP	Neutral	62.64	-13.91	Pass
0.225	15.68	9.83	0.04	25.55	Ave	Neutral	52.64	-27.09	Pass
0.270	37.34	9.83	0.04	47.21	QP	Neutral	61.13	-13.92	Pass
0.270	33.92	9.83	0.04	43.79	Ave	Neutral	51.13	-7.34	Pass
0.298	31.10	9.83	0.03	40.96	QP	Neutral	60.31	-19.35	Pass
0.298	26.96	9.83	0.03	36.82	Ave	Neutral	50.31	-13.49	Pass
0.546	27.09	9.84	0.03	36.96	QP	Neutral	56.00	-19.04	Pass
0.546	20.74	9.84	0.03	30.61	Ave	Neutral	46.00	-15.39	Pass
Spec Margin = C			· · ·						
Combined Standa							or 95% confid		
Notes: EUT w	vas setup a	is table top	equipment	and transi	mitted at 24	42 MHz in	BLE at 1 M	/lbps (worse	e case
condition).									

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Bilog Antenna	Sunol Sciences	JB3	A102606	06/15/2016	06/15/2018
Horn Antenna	Sunol Science	DRH118	A040806	11/11/2016	11/11/2018
Horn Antenna	Com-Power	AHA-840	105005	05/26/2017	05/26/2019
Loop Antenna	EMCO	6502	9110-2683	07/20/2017	07/20/2019
Spectrum Analyzer	Rohde & Schwarz	FSL6	100169	01/13/2017	01/13/2018
Spectrum Analyzer	Agilent	N9038A	MY552260210	01/16/2017	01/16/2018
Spectrum Analyzer	Rohde Schwarz	ESIB40	832427/002	01/16/2017	01/16/2018
Spectrum Analyzer	Rohde Schwarz	FSV40	1321.3008K40	09/19/2017	09/19/2018
Amplifier	Sonoma Instruments	310	165516	01/19/2017	01/19/2018
Amplifier	Miteq	TTA1800-30-HG	2020728	11/12/2016	11/12/2017
Amplifier	Rohde & Schwarz	TS-PR26	100011	11/04/2017	11/04/2018
Amplifier	Rohde & Schwarz	TS-PR40	100012	08/02/2017	08/02/2018
Power Meter	Agilent	E4418B	MY45103902	01/11/2017	01/11/2018
Power Sensor	Hewlett Packard	8482A	1925A04647	01/01/2017	01/01/2018
Thermometer	Fluke	5211	88650033	11/04/2016	11/04/2017
Thermo Chamber	Espec	BTZ-133	0613436	06/01/2017	06/01/2018
Multimeter	Fluke	177	92780312	01/11/2017	01/11/2018
DC Power Supply	Agilent	E3634A	MY400004331	01/12/2017	01/12/2018
Notch Filter	Micro-Tronics	BRM50702	037	01/19/2017	01/19/2018
Signal Generator	Anritsu	MG3694A	42803	01/13/2017	01/13/2018
Signal Generator	Rohde & Schwarz	SMF100A	1167.0000K02	09/19/2017	09/19/2018
Signal Generator	Rohde & Schwarz	SMBV100A	1407.6004K02	09/19/2017	09/19/2018
Power Sensors	Rohde & Schwarz	OSP120	1520.9010.02	09/19/2017	09/19/2018

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

NCR = No Calibration Required

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 9: Customer Information							
Company Name	Voyetra Turtle Beach, Inc.						
Address 100 Summit Lake Drive, Suite 100							
City, State, Zip	Valhalla, New York 10595 USA						
Country	USA						
Phone	(530) 277-3482						

 Table 10: Technical Contact Information

Name Tim Blaney			
E-mail	tim@commcepts.net		
Phone	(530) 277-3482		

6.3 Equipment Under Test (EUT)

Table 11: EUT Specifications

	EUT Specifications
Dimensions	225mm (8.9") x 252mm (9.9") x 115mm (4.5")
DC Input	Headset Input Voltage: 3.7 Vdc (battery)
Environment	Indoor
Operating Temperature Range:	0 to 50 degrees C
Multiple Feeds:	☐ Yes and how many ⊠ No
Product Marketing Name (PMN)	Ear Force Stealth 700X
Hardware Version Identification Number (HVIN)	Stealth 700X
Firmware Version Identification Number (FVIN)	0.1.7
802.11-radio modules	
Operating Mode	802.11b, g, 802.11n HT20
Transmitter Frequency Band	2.4 GHz – 2.4835 GHz
Max. Rated Power Output	7.94 dBm
Power Setting @ Operating Channel	See Channel Planning Table.
Antenna Type	PCB Chip
Antenna Gain	+1.8 dBi at 2.4GHz
Modulation Type	☐ Thread (Zigbee) ☐ BLE ☐ DSSS ☐ OFDM ☐ Other describe: 16QAM
Data Rate	802.11b: 1, 2, 5.5, and 11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n HT20: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps
TX/RX Chain (s)	1
Directional Gain Type	Correlated Beam-Forming Other describe: No beam-forming or correlated.
Type of Equipment	☐ Table Top ☐ Wall-mount ☐ Floor standing cabinet
Note: The radio can only operate i	in one band and on one channel at a time.

Table 12: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
Antenna 1	Chip	Max. peak gain at 2.4 GHz	+1.8

Table 13: EUT Channel Power Specifications

	Frequency			Target Pow	er Level in AR	Γ2			
No.	(MHz)	802.11b	802.11g	802.11n HT20					
1	2412	6.0	6.0	5.5					
2	2417								
3	2422								
4	2427								
5	2432								
6	2437	5.5	5.5	5.5					
7	2442								
8	2447								
9	2452								
10	2457								
11	2462	5.5	5.5	5.5					
8dBm.	 Note: 1. The adjusted power target values are updated at the evaluated frequencies. 2. TX Pwr level in the ART2 software was set according to this table to obtain the maximum output power of 8dBm. 3. The power levels above are set and recorded from Stealth 700X S/N PP#1. 								

Table 14: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB	Laptop	Yes Xes	Metric:3m	M

Equipment	Manufacturer	Model	Serial	Used for
Laptop	Dell	Latitude	35521341769	Setup EUT operating channel
Note: None.				

Table 16: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.247
Ear Force Stealth 700X	PP#2	Radiated Sample	TX Emissions,
			AC Conducted Emission
	PP#1	Conducted Sample	Peak Transmit Power,
			Peak Power Spectral Density,
			Occupied Bandwidth
			Band-Edge
			Out-of-Band Emission
Note: AC conducted emissions were performed on the Stealth 600X; a similar model.			

Table 17: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Ear Force Stealth 700X	Chip (FR05-S1-NO-1-004)	Transmit	EUT laid flat	Normal usage. Up right.	On the side
Note: The Y-Axis setup configuration used for final testing.					

6.4 Test Specifications

 Table 18: Test Specifications

Emissions and Immunity		
Standard	Requirement	
CFR 47 Part 15.247: 2017	All	
RSS 247 Issue 2, 2017	All	

END OF REPORT