

Emissions Test Report

EUT Name:	Wireless Audio Headset
Model No.:	Ear Force Stealth 700X
CFR 47 Part 15	.407 2017 and RSS 247: 2017

Prepared for:

Tim Blaney Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA Tel: (530) 277-3482

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date:	October 12, 2017
Job #	0000150094
Report Number:	31763105.001

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	09/22/2017	Original Document	N/A
1	10/12/2017	Remove RF Exposure Information	J. Luong

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer: Requester / Applicant:	Voyetra Turtle Beach, Inc. 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595 USA (530) 277-3482 Tim Blaney
Name of Equipment:	Wireless Audio Headset
Model No.	Ear Force Stealth 700X (TB300-2770-01)
Type of Equipment:	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.407 2017 and RSS 247: 2017
Test Dates:	May 22, 2017 to August 8, 2017

Guidance Documents:

Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01r04

Test Methods:

Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01r04

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Jeremy Luong	October 12, 2017		David S	pencer	O	ctober 12, 2017
Test Engineer	Date		Laborate	ory Signator	y Da	ate
Testing (Cert #3331.02	FC US11	31	•	Industry Canada 2932M	Industrie Canada

1 E.	Executive Summary	7
1.1	Scope	7
1.2	Purpose	7
1.3	Summary of Test Results	8
1.4	Special Accessories	8
1.5	Equipment Modifications	8
2 L	aboratory Information	9
2.1	Accreditations & Endorsements	9
	.1.1 US Federal Communications Commission	9
	1.2 NIST / A2LA	9
	.1.3 Canada – Industry Canada .1.4 Japan – VCCI	0
	.1.4 Japan – VCC1	
2.2	Test Facilities	10
2.1	.2.1 Emission Test Facility	10
2.	.2.2 Immunity Test Facility	10
2.3	Measurement Uncertainty	10
	.3.1 Sample Calculation – radiated & conducted emissions	11
	.3.2 Measurement Uncertainty	
	.3.3 Measurement Uncertainty Immunity	
2.4	Calibration Traceability	12
3 P	Product Information	13
3.1	Product Description	13
3.2	Equipment Configuration	13
3.3	Operating Mode	13
3.4	Unique Antenna Connector	14
3.4	.4.1 Results	
3.5	Duty Cycle	15
	.5.1 Results	15
4 E	Emissions	18
4.1	Output Power Requirements	
	.1.1 Test Method	18 18
	1.2 Results	
4.2	Occupied Bandwidth	35
4.	.2.1 Test Method	35
4.	.2.2 Results	35
4.3		50
	.3.1 Test Method	50
4.	.3.2 Results	50

4.4 Undesirable Emission Limits	65
4.4.1 Test Method	65
4.4.2 Results	
4.5 Transmitter Spurious Emissions	93
4.5.1 Test Methodology	
4.5.2 Transmitter Spurious Emission Limit	
4.5.3 Results	94
4.6 AC Conducted Emissions	156
4.6.1 Test Methodology	156
4.6.2 Test Results	156
4.7 Frequency Stability	161
4.7.1 Test Methodology	
4.7.2 Manufacturer Declaration	
4.7.3 Limit	
4.7.4 Test results:	162
4.8 Voltage Variation	164
4.8.1 Test Methodology	
4.8.2 Test results	164
5 Test Equipment List	166
5.1 Equipment List	166
6 EMC Test Plan	167
6.1 Introduction	
6.2 Customer	
6.3 Equipment Under Test (EUT)	168
6.4 Test Specifications	171

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results per FCC	19
Table 3: RF Output Power at the Antenna Port – Test Results per RSS-247	21
Table 4: Occupied Bandwidth – Test Results	36
Table 5: Power Spectral Density – Test Results for 802.11a	51
Table 6: Power Spectral Density – Test Results for 802.11n HT20	52
Table 7: Undesired Emissions for 802.11a – Test Results	66
Table 8: Undesired Emissions for 802.11n HT20 – Test Results	67
Table 9: Transmit Spurious Emission at Band-Edge Requirements	95
Table 10: Transmit Spurious Emission at Band-Edge Requirements Continued	96
Table 11: Transmit Spurious Emission at Band-Edge Requirements Continued	97
Table 12: AC Conducted Emissions – Test Results	156
Table 13: Frequency Stability – Test Results	162
Table 14: Voltage Variation – Test Results	164
Table 15: Customer Information	167
Table 16: Technical Contact Information	167
Table 17: EUT Specifications	168
Table 18: Antenna Information	169
Table 19: EUT Channel Power Specifications	169
Table 20: Interface Specifications	170
Table 21: Supported Equipment	170
Table 22: Description of Sample used for Testing	170
Table 23: Description of Test Configuration used for Radiated Measurement	170
Table 24: Test Specifications	171

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407 2017 and RSS 247: 2017 based on the results of testing performed on May 22, 2017 to August 8, 2017 on the Wireless Audio Headset Model Ear Force Stealth 700X manufactured by Voyetra Turtle Beach, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 5180 MHz – 5320 MHz, 5500 MHz – 5700 MHz, and 5745 MHz – 5825 MHz frequency bands are covered in this document.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.10:2013	Test Parameters	Measured Value	Result
Duty Cycle	Information Only	N/A	100%	N/A
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.407 (b) RSS-GEN Sect.8.9, RSS 247 Sect. 6.2.1.2	Class B	-7.80 dB Margin	Complied
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect.8.10	Class B		Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	Class B	-8.24 dB Margin	Complied
Occupied Bandwidth	CFR47 15.407 (a) & (e), RSS GEN Sect.6.6, RSS-247 Sect.6.2.4.1	$DTS \ge 500 \text{ kHz}$	99% BW: 16.83 MHz 26dB BW: 23.13 MHz DTS BW: 16.32 MHz	Complied
Maximum Output Power	CFR47 15.407 (a) RSS 247 Sect. 6.2	UNII1: 250mW UNII2a: 250mW UNII2c: 250mW UNII3: 1W	UNII1: 7.87dBm/ 6.12mW UNII2a: 7.95dBm/ 6.24mW UNII2c: 7.84dBm/ 6.08mW UNII3: 7.91dBm/ 6.18mW	Complied
Peak Power Spectral Density	CFR47 15.407 (a) RSS 247 Sect. 6.2 (UNII2a, UNII2c & UNII3)	< 11 dBm/MHz < 30 dBm/ 500 kHz	UNII1: -2.57 dBm/ MHz UNII2a: -2.30 dBm/ MHz UNII2c: -2.48 dBm/ MHz UNII3: -5.46 dBm/ 500kHz	Complied
	RSS 247 Sect.6.2.1.1	< 10 dBm/MHz (e.i.r.p)	UNII1: -2.57 dBm/ MHz	Complied
Conducted Emission –	CFR47 15.407 (b)(1) (2)(3) RSS 247 Sect.6.2.1 to 6.2.3	< -27 dBm/MHz	-10.22 dB Margin	Complied
Antenna Port	CFR47 15.407 (b)(4) RSS 247 Sect.6.2.4	Spectrum Mask	-2.37 dB Margin	Complied
Frequency Stability	CFR47 15.407 (g), RSS GEN Sect. 6.11	±20 ppm	7.89 ppm	Complied
Voltage Variation	CFR47 15.31(e)	±20 ppm	3.40 ppm	Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Laboratory Information 2

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab Code

Testing Cert #3331.02). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test

facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from

Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0268

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	Ulab	Ucispr			
Radiated Disturbance @ 1	Radiated Disturbance @ 10 meters				
30 – 1,000 MHz	2.25 dB	4.51 dB			
Radiated Disturbance @ 3	3 meters				
30 – 1,000 MHz	2.26 dB	4.52 dB			
1 – 6 GHz	2.12 dB	4.25 dB			
6 – 18 GHz	2.47 dB	4.93 dB			
Conducted Disturbance @ Mains Terminals					
150 kHz – 30 MHz	1.09 dB	2.18 dB			
Disturbance Power					
30 MHz – 300 MHz	3.92 dB	4.3 dB			

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Per CISPR 16-4-2	
The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 3.0\%$.	Methods	

2.3.3 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz

The estimated combined standard uncertainty for carrier power measurements is \pm 1.59 dB.

The estimated combined standard uncertainty for adjacent channel power measurements is ± 1.47 dB.

The estimated combined standard uncertainty for modulation frequency response measurements is \pm 0.46 dB.

The estimated combined standard uncertainty for transmitter conducted emission measurements is \pm 4.01 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Stealth 700X is a completely wireless Xbox One audio gaming headset. It wirelessly connects directly to the Xbox One console over either a 2.4 GHz or 5.0 GHz Wi-Fi link. The functionality in the headset consists of 50mm speaker drivers, a flip up non-removable microphone, microphone monitoring (adjustable via EFAH) and game/chat mix controls on the headset. Additional wireless functionality includes a Bluetooth radio that provides simultaneous connection to a Turtle Beach mobile application and device audio profile for communication with a mobile phone. Additionally, it has a ProSpecs alternative glasses relief ear pad design. With the Microsoft integrated radio module, this headset is also capable of working with compatible Windows PCs in the future.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

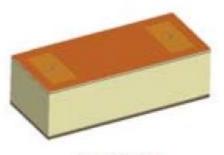
A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results


The Wireless Audio Headset uses a dual band Fractus chip antenna for operation in the 2.4 GHz and 5150 MHz to 5850 MHz bands. The chip antenna is integrated on the PCB. It has a peak gain of 1.8 dBi in the 2.4 GHz band and 4.9 dBi in the 5150 MHz to 5850 MHz band.

There is an additional antenna specification available in the submittal package.

7.0 mm x 3.0 mm x 2.0 mm (image larger than real size)

TOP

BOTTOM

3.5 Duty Cycle

The Ear Force Stealth 700X, SN: PP1 was measured for the duty cycle

3.5.1 Results

Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)		
802.11a	100	0	100	0		
802.11n HT20	100	0	100	0		
Notes: EUT configured and measured for the duty cycle. All measurements use 100% duty cycle.						

RL	RF 50 Ω DC		SENSE:INT	AL	.IGN AUTO		02:10:58	PM Jul 20, 2017
arker 1	86.3440 ms	PNO: Wide G	Tuin Face B	un	#Avg Type:	RMS	TR	ACE 1 2 3 4 5 YPE WWWWWW DET P N N N N
dB/div	Ref Offset 1.8 dB Ref 21.80 dBm						Mkr1 -16	86.34 m 6.70 dB
.8								
30								
0								
2 2 1/10/1/1	aphological and a start of the	and the state of t	ywdd Wy ydd yn yr yn	munit	whyliphyliphyliphyl	panle of the left	where the	Allen Allen Allen
2								1.
2								
2								
2								
2								
nter 5.5 s BW 1	500000000 GHz 00 kHz	#V	BW 300 kHz			Sweep) 100.3 ms	Span 0 H (1000 pt
					STATUS			

Figure 1: Duty Cycle for 802.11a

RL RF 50Ω DC	SENSE:INT	ALIGN AUTO	02:09:55 PM Jul 20, 2017
pints 1000	PNO: Wide Trig: Free IFGain:Low #Atten: 30	#Avg Type: RMS Run	TRACE 1 2 3 4 5 TYPE WWWWWW DET P N N N
Ref Offset 1.8 dB dB/div Ref 21.80 dBm			Mkr1 40.26 m -14.65 dBi
30			
20			
2 And un Angelin All All Angel Angel	when the many many many and the second	and man or high and a graph of the house	Weephon and a start and a st
.2			
.2			
.2			
2			
.2			
enter 5.500000000 GHz			0
inter 5.500000000 GHZ	#VBW 300 kHz		Span 0 H weep 100.3 ms (1000 pt

Figure 2: Duty Cycle for 802.11n HT20

4 **Emissions**

Testing was performed in accordance with CFR 47 Part 15.407: 2017 and RSS 247: 2017. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum transmitted power limits per CFR47 Part 15.407 and RSS-247 are

Part 15.407(a)(1)(iv) – Band 5150-5250 MHz:250 mW.

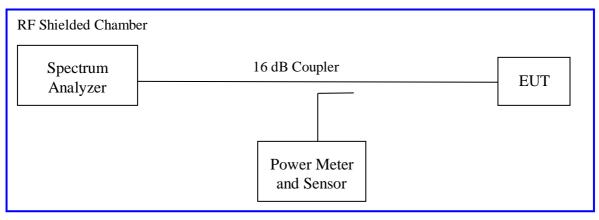
Part 15.407(a)(2) – Band 5250-5350 MHz, 5470-5725 MHz:250 mW or 11 dBm + 10Log B.

Part 15.407(a)(3) – Band 5725-5825 MHz:1 W

RSS 247 Sect. 6.2.1.1 – Band 5150-5250 MHz (e.i.r.p.): 200 mW or 10 + 10Log(B)

RSS 247 Sect. 6.2.2.1 – Band 5250-5350 MHz, 5470-5725 MHz: 250 mW or 11 dBm + 10Log B

RSS 247 Sect. 6.2.2.1, 6.2.3.1 – Band 5250-5350 MHz, 5470-5725 MHz: 250 mW or 11 dBm + 10Log B.


RSS 247 Sect. 6.242.1 – Band 5725-5850 MHz: 1 W

Note: B is the 99% emission bandwidth.

4.1.1 Test Method

The ANSI C63.10-2013 Section 12.3.2.2 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.407(a) and RSS 247 Sect. 6.2.1.1. The worst mode results indicated below.

Test Setup:

Method SA-1 of "KDB 789033 D02 – Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices" applies since the EUT continuously transmit; where duty cycle is greater than 98%. Sample detector was used.

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions: Conducted Measurement		Date: July 17,	Date: July 17, 2017			
Antenna Type: Chip			Power Setting	Power Setting: See test plan.		
Antenna Gain	: 4.9 dBi		Signal State:	Modulated at 100)%	
Ambient Tem	р.: 23 °С		Relative Hum	idity:38%		
		802.11a at 6 N	Abps (FCC Limit)			
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]	
5180	23.98	7.65			-16.33	
5200	23.98	7.79			-16.19	
5240	23.98	7.62			-16.36	
5260	23.98	7.64			-16.34	
5300	23.98	7.58			-16.40	
5320	23.98	7.81			-16.17	
5500	23.98	7.84			-16.14	
5580	23.98	7.76			-16.22	
5700	23.98	7.61			-16.37	
5745	30.00	7.63			-22.37	
5785	30.00	7.91			-22.09	
5825	30.00	7.85			-22.15	
Note: The head Worst ca		levice. vas observed at 6	Mbps.		1	

Table 2: RF Output Power at the Antenna Port – Test Results per FCC

802.11n HT20 at 6.5 Mbps (FCC Limit)							
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]		
5180	23.98	7.70			-16.28		
5200	23.98	7.60			-16.38		
5240	23.98	7.87			-16.11		
5260	23.98	7.56			-16.42		
5300	23.98	7.95			-16.03		
5320	23.98	7.68			-16.30		
5500	23.98	7.73			-16.25		
5580	23.98	7.63			-16.35		
5700	23.98	7.51			-16.47		
5745	30.00	7.61			-22.39		
5785	30.00	7.82			-22.18		
5825	30.00	7.73			-22.27		
	dset is a client d ase condition w	levice. as observed at 6.5	Mbps.				

Fable 3: RF Out	tput Power at th	e Antenna Port – 7	Fest Results per R	RSS-247		
Test Conditions: Conducted Measurement			Date: July 17, 2017			
Antenna Type: Chip			Power Setting	g: See test plan.		
Antenna Gain	: 4.9 dBi		Signal State:	Modulated at 100)%	
Ambient Tem	mbient Temp.: 23 °C Relative Humidity: 38%					
802.11a at 6 Mbps (RSS-247 Limit)						
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]	
5180	18.10	7.65			-10.45	
5200	18.10	7.79			-10.31	
5240	18.10	7.62			-10.48	
5260	23.98	7.64			-16.34	
5300	23.98	7.58			-16.40	
5320	23.98	7.81			-16.17	
5500	23.98	7.84			-16.14	
5580	23.98	7.76			-16.22	
5700	23.98	7.61			-16.37	
5745	30.00	7.63			-22.37	
5785	30.00	7.91			-22.09	
5825	30.00	7.85			-22.15	
Worst o	50 – 5250 MHz,	as observed at 6 M RSS-247 Limit =	23 dBm – 4.9 dB			
-		11n HT20 at 6.5				
Frequency (MHz)	Limit [dBm]	Output [dBm]	Duty Cycle [dB]	∑ Power [dBm]	Margin [dB]	
5180	18.10	7.70			-10.40	
5200	18.10	7.60			-10.50	
5240	18.10	7.87			-10.23	
5260	23.98	7.56			-16.42	
5300	23.98	7.95			-16.03	
5320	23.98	7.68			-16.30	

5500	23.98	7.73		-16.25		
5580	23.98	7.63		-16.35		
5700	23.98	7.51		-16.47		
5745	30.00	7.61		-22.39		
5785	30.00	7.82		-22.18		
5825	30.00	7.73		-22.27		
Note: The headset is a client device.						
Worst case condition was observed at 6.5 Mbps.						
			23 dBm - 4.9 dBi =	18.10 dBm		

Figure 4: Conducted Output Power -5200 MHz-11a-6 Mbps

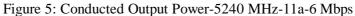


Figure 6: Conducted Output Power-5260 MHz-11a-6 Mbps



Figure 7: Conducted Output Power-5300 MHz-11a-6 Mbps

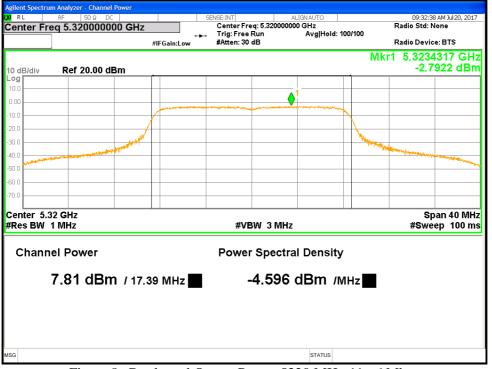
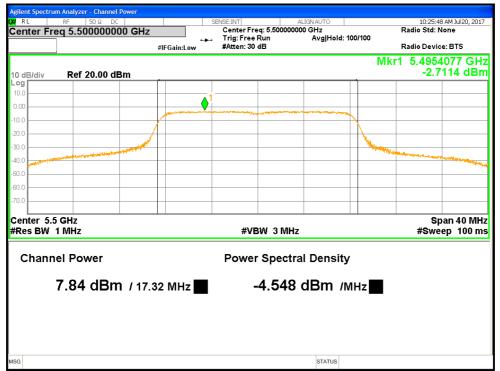



Figure 8: Conducted Output Power-5320 MHz-11a-6 Mbps

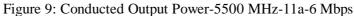


Figure 10: Conducted Output Power-5580 MHz-11a-6 Mbps

Figure 11: Conducted Output Power-5700 MHz-11a-6 Mbps

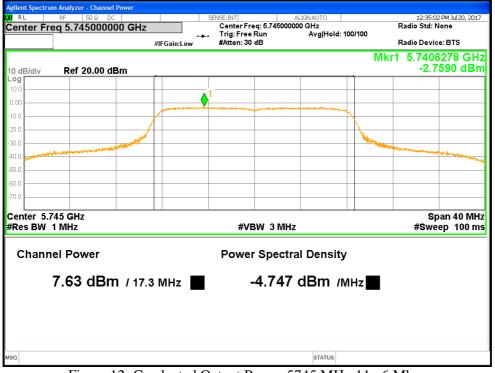


Figure 12: Conducted Output Power-5745 MHz-11a-6 Mbps

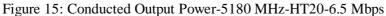


Figure 13: Conducted Output Power-5785 MHz-11a-6 Mbps

Figure 14: Conducted Output Power-5825 MHz-11a-6 Mbps

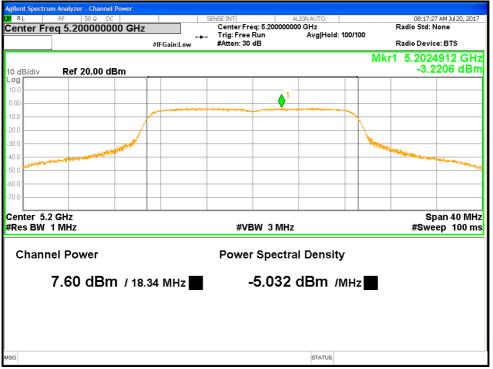
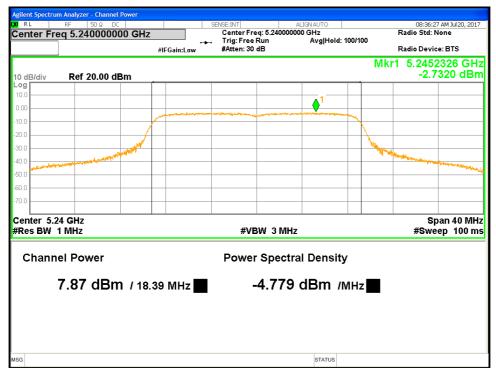



Figure 16: Conducted Output Power -5200 MHz-HT20-6.5 Mbps

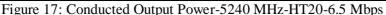


Figure 18: Conducted Output Power-5260 MHz-HT20-6.5 Mbps

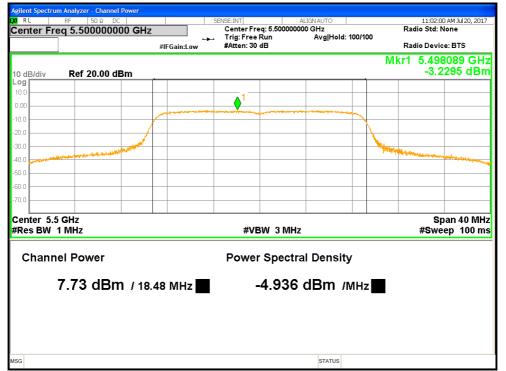
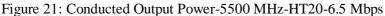




Figure 20: Conducted Output Power-5320 MHz-HT20-6.5 Mbps

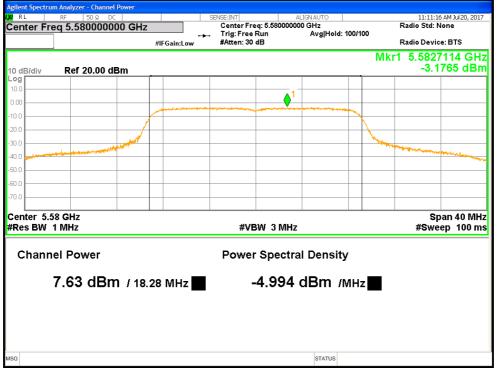


Figure 22: Conducted Output Power-5580 MHz-HT20-6.5 Mbps

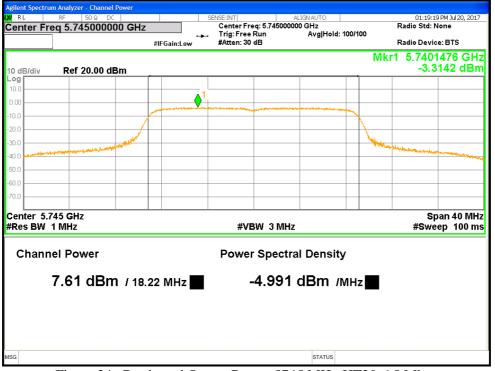


Figure 24: Conducted Output Power-5745 MHz-HT20-6.5 Mbps

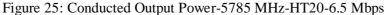


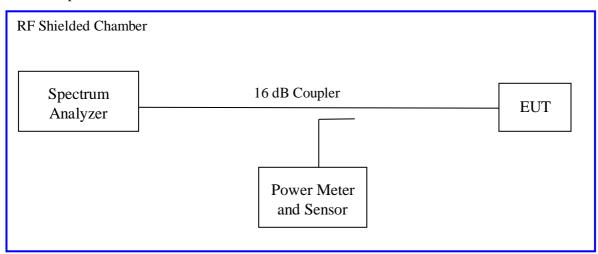
Figure 26: Conducted Output Power-5825 MHz-HT20-6.5 Mbps

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.

The 26 dB bandwidth is defined the bandwidth of 26 dBr from highest transmitted level of the fundamental frequency.


The minimum 6 *dB bandwidth shall be at least* 500 *kHz per Section CFR47* 15.407(*e*) 2017 *and RSS* 247 *Sect.*6.2.4.1: 2017

There is no restriction limits for the bandwidth. The 26 dB bandwidth was used to determine the limit for maximum conducted output power per CFR47 Part 15.407(a).

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.407(a) & (e), RSS Gen Sect.6.6 and RSS-247 Sect.6.2.4.1. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range. The worst results indicated below.

Test Setup:

4.2.2 Results

These occupied bandwidth measurements were taken for reference only.

Table 4: Occupied Bandwidth – Test Results				
Test Conditions: Conducted Massurement	Data			

Test Conditions: Conducted Measurement			Date: July 17, 2017			
Antenna Type: Chip		Power Se	Power Setting: See test plan.Signal State: Modulated at 100%			
Antenna Gain: 4.9 d	Bi	Signal Sta				
Ambient Temp.: 23	°C	Relative l	Humidity:38%			
	Band	width (MHz) for 802	2.11a			
Frequency (MHz)	Limit (kHz)	99% BW	26 dB BW	Results		
5180	NA	16.851	23.130	NA		
5200	NA	16.847	23.760	NA		
5240	NA	16.841	23.410	NA		
5260	NA	16.840	23.600	NA		
5300	NA	16.839	23.33	NA		
5320	NA	16.835	23.130	NA		
5500	NA	16.849	24.050	NA		
5580	NA	16.866	23.890	NA		
5700	NA	16.874	24.300	NA		
Frequency (MHz)	Limit (kHz)	99% BW	6 dB BW	Results		
5745	500	16.865	16.340	Pass		
5785	500	16.854	16.320	Pass		
5825	500	16.859	16.410	Pass		

Note: The bandwidth was measured at 6 Mbps for 802.11a mode.

The 99% bandwidth measurements are informative, and 26 dB bandwidths are used to determine the output power limits.

Bandwidth (MHz) for 802.11n HT20

Frequency (MHz)	Limit (kHz)	99% BW	26 dB BW	Results		
5180	NA	17.936	23.890	NA		
5200	NA	17.916	24.110	NA		
5240	NA	17.923	24.220	NA		
5260	NA	17.913	23.910	NA		

Report Number: 31763105.001 EUT: Wireless Audio Headset Model: Ear Force Stealth 700X EMC / Rev 1.0

5300	NA	17.914	24.340	NA				
5320	NA	17.921	24.460	NA				
5500	NA	17.937	24.210	NA				
5580	NA	17.933	25.420	NA				
5700	NA	17.933	25.080	NA				
Frequency (MHz)	Limit (kHz)	99% BW	6 dB BW	Results				
5745	500	17.954	17.480	Pass				
5785	500	17.932	17.530	Pass				
5825	500	17.939	17.490	Pass				
Note: The bandwidth	Note: The bandwidth was observed at MCS0, 6.5 Mbps mode.							
The 99% band	lwidth measurements	are informative, and 2	6 dB bandwidths are	used to determine				
the output pov	wer limits.							

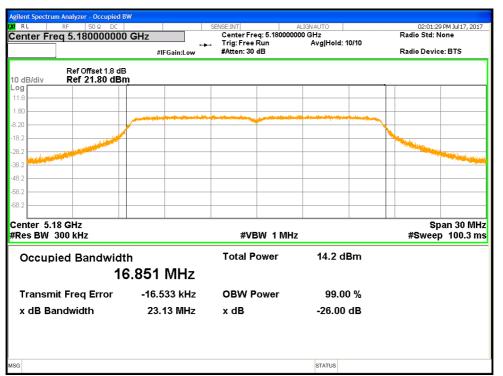


Figure 27: Occupied Bandwidth-5180 MHz-11a

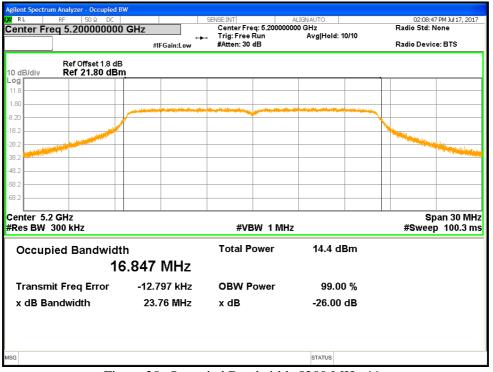
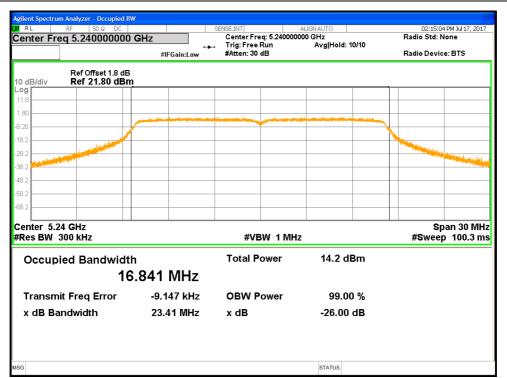



Figure 28: Occupied Bandwidth-5200 MHz-11a

Figure 29: Occupied Bandwidth-5240 MHz-11a

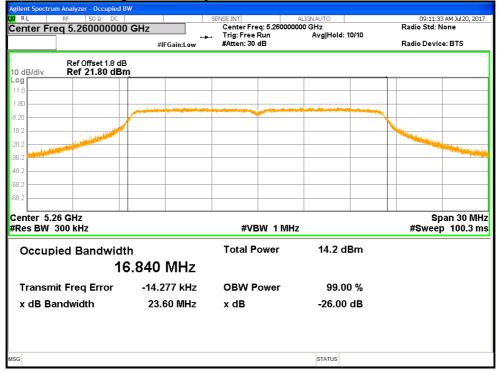


Figure 30: Occupied Bandwidth-5260 MHz-11a

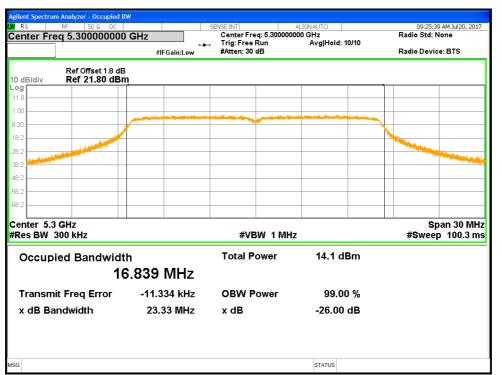
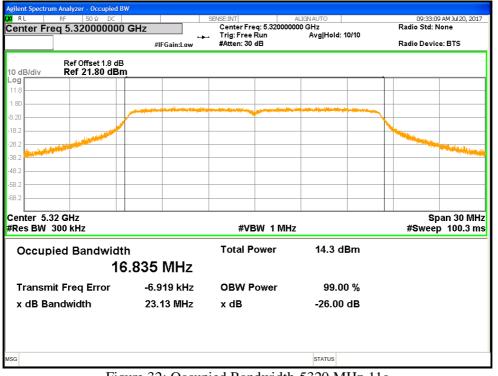


Figure 31: Occupied Bandwidth-5300 MHz-11a



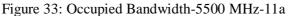


Figure 32: Occupied Bandwidth-5320 MHz-11a

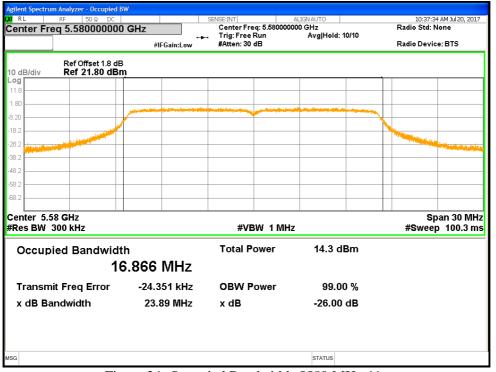
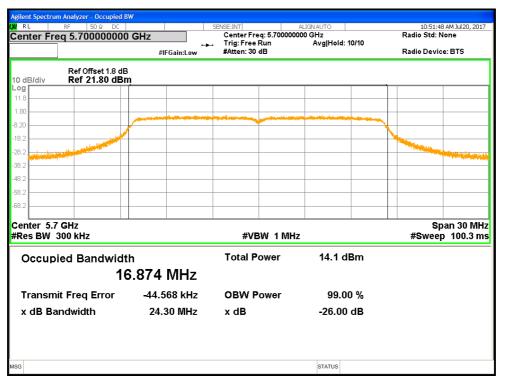
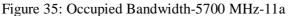




Figure 34: Occupied Bandwidth-5580 MHz-11a

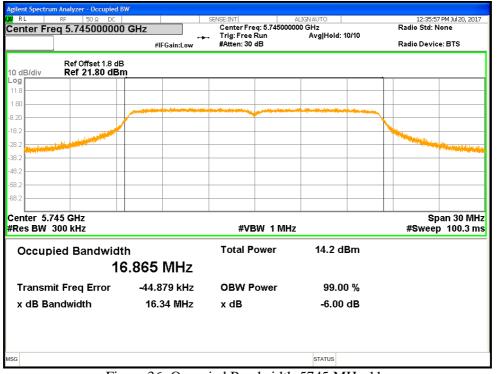
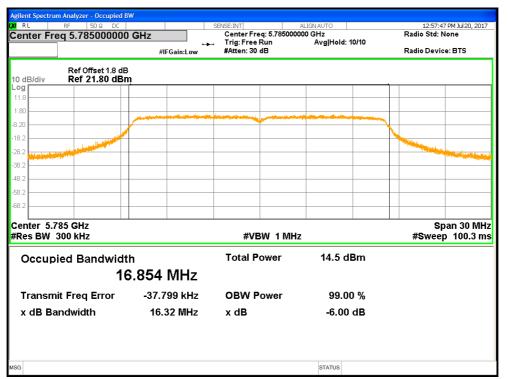
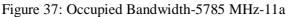




Figure 36: Occupied Bandwidth-5745 MHz-11a

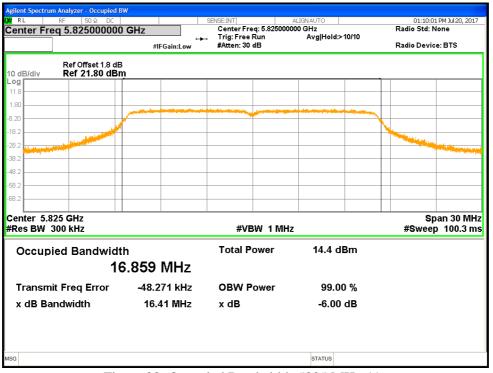
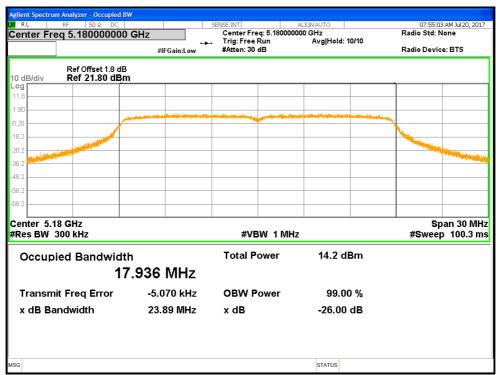
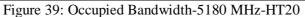




Figure 38: Occupied Bandwidth-5825 MHz-11a

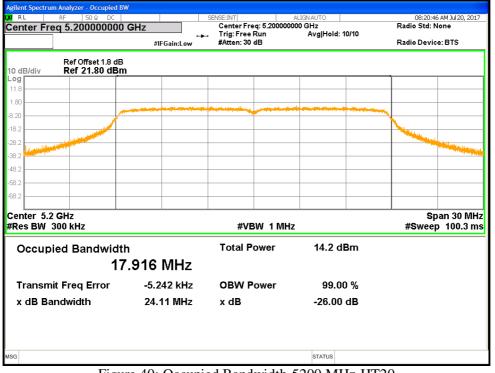
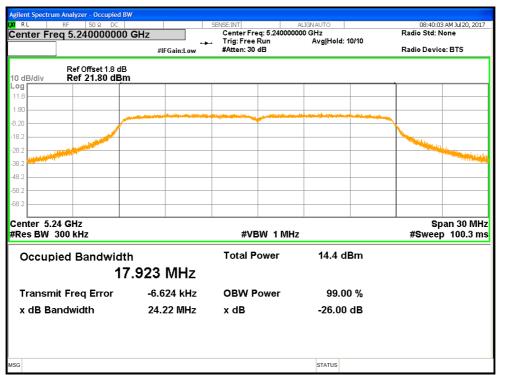
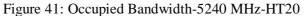




Figure 40: Occupied Bandwidth-5200 MHz-HT20

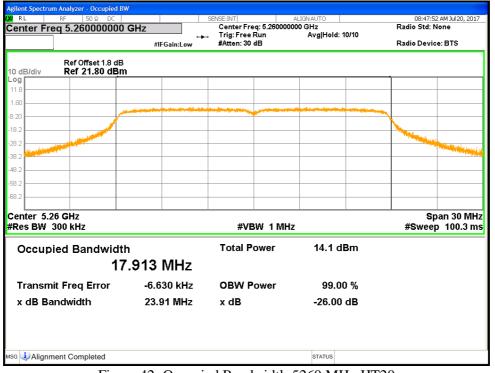
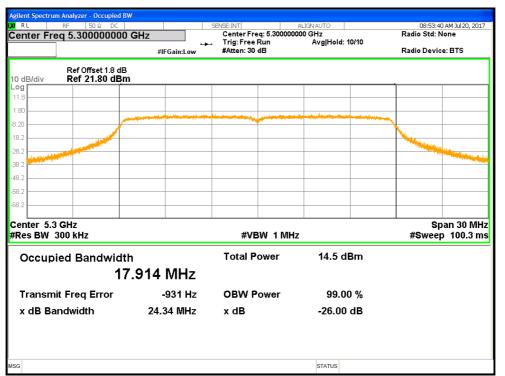



Figure 42: Occupied Bandwidth-5260 MHz-HT20

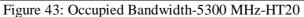
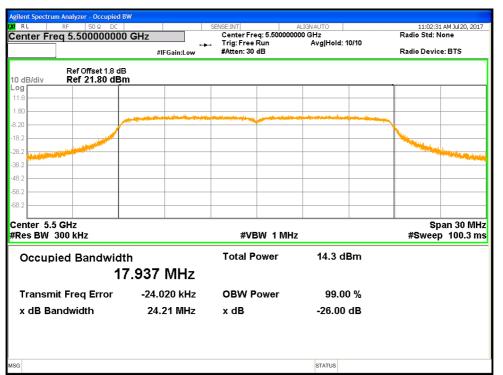
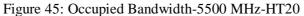




Figure 44: Occupied Bandwidth-5320 MHz-HT20

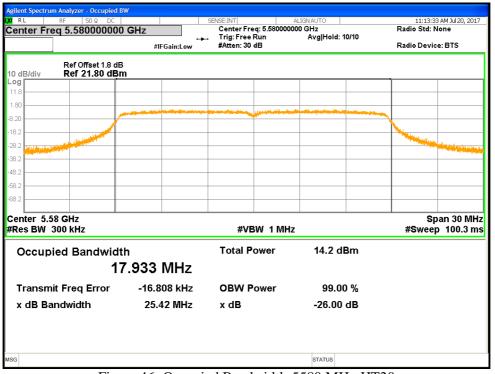


Figure 46: Occupied Bandwidth-5580 MHz-HT20

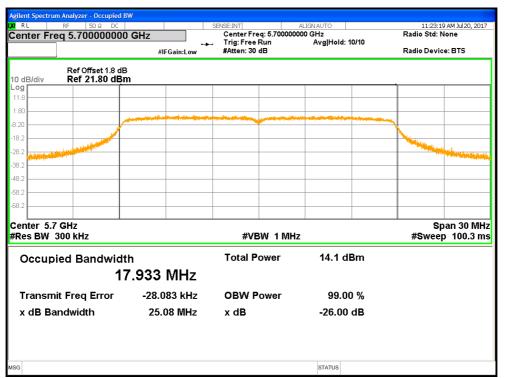


Figure 47: Occupied Bandwidth-5700 MHz-HT20

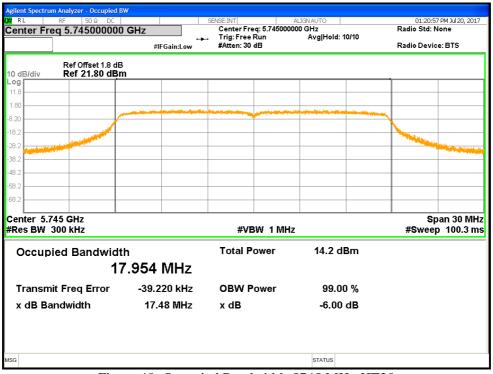
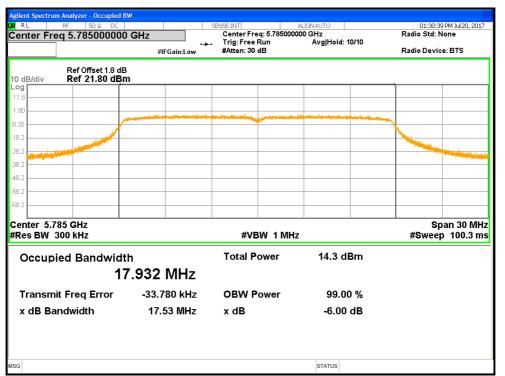



Figure 48: Occupied Bandwidth-5745 MHz-HT20

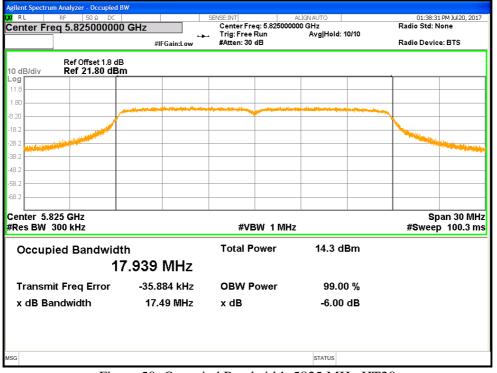


Figure 50: Occupied Bandwidth-5825 MHz-HT20

4.3 Power Spectral Density

According to the CFR47 Part 15.407 (a) and RSS 247 Sect. 6.2, the spectral power density output of the antenna port shall be as followed listed below during any time interval of continuous transmission.

The power spectral density limits per CFR47 Part 15.407 (a):

Band 5150-5250 MHz, 5250-5350 MHz, and 5470-5725 MHz: 11 dBm in any 1 MHz band Band 5725-5850 MHz: 30 dBm in any 500 kHz band.

The power spectral density limits per RSS-247 Section 6.2:

Band 5150-5250 MHz: 10 dBm in any 1 MHz band, E.I.R.P. Band 5250-5350 MHz, and 5470-5725 MHz: 11 dBm in any 1 MHz band Band 5725-5850 MHz: 30 dBm in any 500 kHz band

4.3.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 12.3.2.2. The measurement was performed with modulation per CFR47 Part 15.407 (a) and RSS 247 Sect. 6.2. The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range. The worst sample result indicated below.

Test Setup:

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Conducted Mea	surement	Date: July 20, 201	.7			
Chip		Power Setting: See test plan.				
4.9 dBi		Signal State: Modulated at 100%, 6 Mbps				
: 23 °C		Relative Humidity:35%				
	802	.11a				
Output [dBm]	CF [dB]	Total PPD [dBm]	Limit [dBm]	Margin [dB]		
-2.82			11.00*	-13.82		
-2.70			11.00*	-13.70		
-2.77			11.00*	-13.77		
-2.79			11.00	-13.79		
-2.95			11.00	-13.95		
-2.81			11.00	-13.81		
-2.48			11.00	-13.48		
-2.76			11.00	-13.76		
-2.80			11.00	-13.80		
-2.45	-3.01	-5.46	30.00	-35.46		
-2.57	-3.01	-5.58	30.00	-35.58		
-2.49	-3.01	-5.50	30.00	-35.50		
	802.11a (RS	S-247 Limit)				
-2.82			5.10	-7.92		
-2.70			5.10	-7.80		
-2.77			5.10	-7.87		
1	$\begin{array}{c} -2.82 \\ -2.70 \\ -2.70 \\ -2.77 \\ -2.79 \\ -2.95 \\ -2.81 \\ -2.48 \\ -2.76 \\ -2.80 \\ -2.45 \\ -2.57 \\ -2.49 \\ \end{array}$	Image: Point of the second state in	Chip Power Setting: Set $.9 dBi$ Signal State: Mod $23 °C$ Relative Humidit 802.111 Output [dBm] CF [dB] Total PPD [dBm] -2.82 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.70 70 70 -2.79 70 70 -2.81 70 70 -2.80 70 70 -2.48 70 70 -2.49 -3.01 -5.58 -2.49 -3.01 -5.50 802.11a (RSS-247 Limit) 7.70	Chip Power Setting: See test plan. 1.9 dBi Signal State: Modulated at 100% 2.3 °C Relative Humidity:35% 802.11a Output [dBm] CF [dB] Total PPD [dBm] Limit [dBm] -2.82 11.00* 11.00* -2.70 11.00 11.00* -2.77 11.00 11.00 -2.79 11.00 11.00 -2.81 11.00 11.00 -2.48 11.00 11.00 -2.80 11.00 11.00 -2.81 -3.01 -5.46 30.00 -2.45 -3.01 -5.58 30.00 -2.45 -3.01 -5.50 30.00 -2.49 -3.01 -5.50 30.00 -2.49 -3.01 5.10 5.10		

 Table 5: Power Spectral Density – Test Results for 802.11a

Table 6: Power Spectral Density – Test Results for 802.11n HT20

Test Conditions: Conducted Measurement	Date: July 20, 2017
Antenna Type: Chip	Power Setting: See test plan.
Antenna Gain: 4.9 dBi	Signal State: Modulated at 100%, 6.5 Mbps
Ambient Temp.: 23 °C	Relative Humidity:35%

	802.11n HT20								
Freq. (MHz)	Output [dBm]	CF [dB]	Total PPD [dBm]	Limit [dBm]	Margin [dB]				
5180	-3.09			11.00	-14.09				
5200	-3.04			11.00	-14.04				
5240	-2.57			11.00	-13.57				
5260	-3.27			11.00	-14.27				
5300	-2.30			11.00	-13.30				
5320	-3.04			11.00	-14.04				
5500	-2.87			11.00	-13.87				
5580	-3.06			11.00	-14.06				
5700	-3.18			11.00	-14.18				
5745	-3.08	-3.01	-6.09	30.00	-36.09				
5785	-2.63	-3.01	-5.64	30.00	-35.64				
5825	-2.85	-3.01	-5.86	30.00	-35.86				
	8	802.11n HT20 (RSS-247 Limit)						

5180	-3.09	5.10	-8.19
5200	-3.04	5.10	-8.14
5240	-2.57	5.10	-7.67

Note: (*) FCC limit only, 5150-5250 MHz.

RSS-247 and CFR47 Part 15.407 have same PPD limit in 5250-5350 MHz, 5470-5725 MHz, and 5725-5850 MHz bands.

CF accounted for the measured RBW; 10*log (500kHz/1000kHz) or -3.01 dB.

RSS-247 Limit at 5150-5250 MHz is eirp; 10dBm - 4.9dBi = 5.1 dBm

Figure 52: FCC-PPSD-5 GHz-5200 MHz-11a-6 Mbps

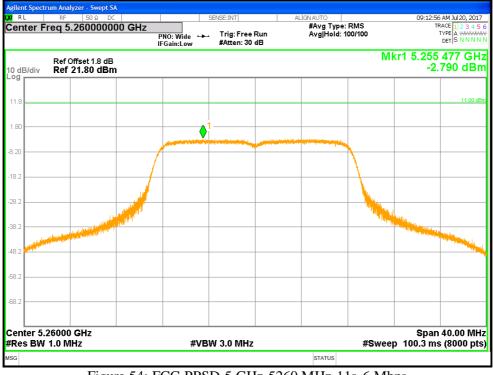


Figure 54: FCC-PPSD-5 GHz-5260 MHz-11a-6 Mbps

Figure 55: FCC-PPSD-5 GHz-5300 MHz-11a-6 Mbps

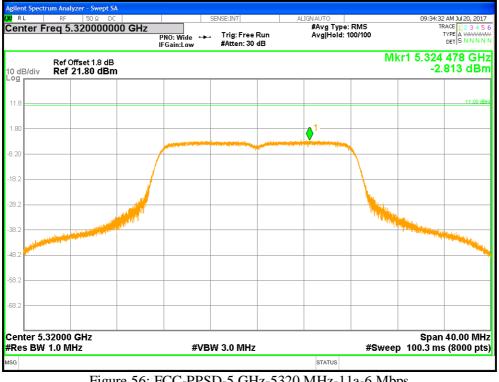


Figure 56: FCC-PPSD-5 GHz-5320 MHz-11a-6 Mbps

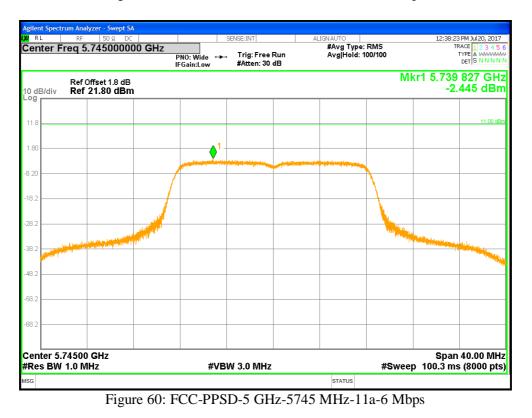


Figure 58: FCC-PPSD-5 GHz-5580 MHz-11a-6 Mbps

Figure 59: FCC-PPSD-5 GHz-5700 MHz-11a-6 Mbps

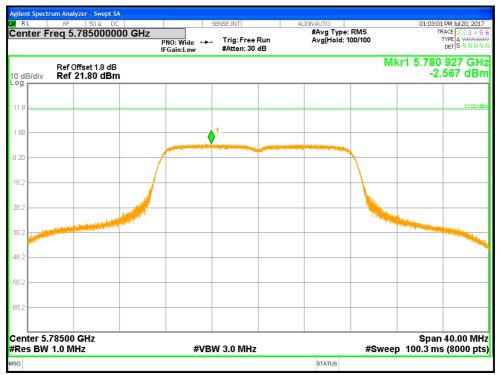


Figure 61: FCC-PPSD-5 GHz-5785 MHz-11a-6 Mbps

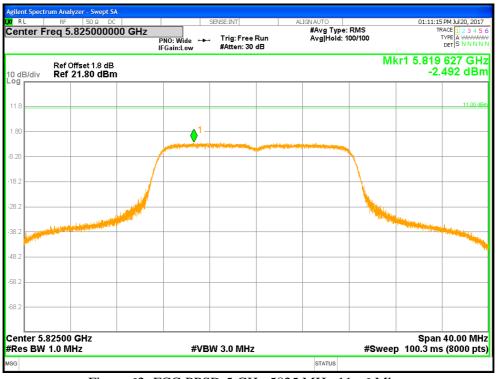


Figure 62: FCC-PPSD-5 GHz-5825 MHz-11a-6 Mbps

Figure 63: FCC-PPSD-5 GHz-5180 MHz-HT20-6.5 Mbps

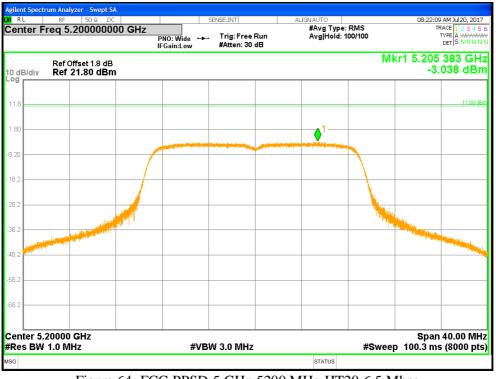


Figure 64: FCC-PPSD-5 GHz-5200 MHz-HT20-6.5 Mbps

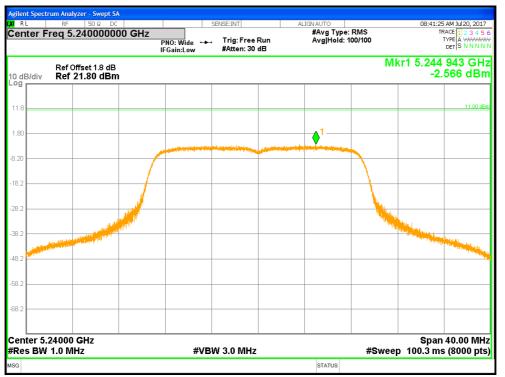


Figure 65: FCC-PPSD-5 GHz-5240 MHz-HT20-6.5 Mbps

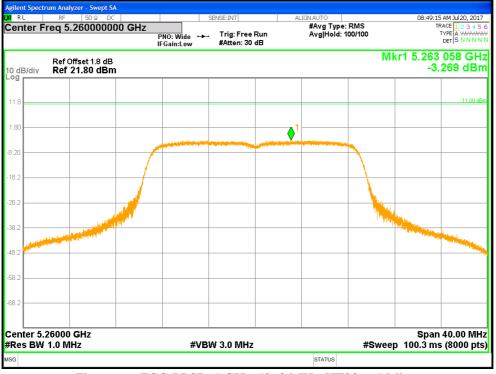


Figure 66: FCC-PPSD-5 GHz-5260 MHz-HT20-6.5 Mbps

Figure 67: FCC-PPSD-5 GHz-5300 MHz-HT20-6.5 Mbps

Figure 68: FCC-PPSD-5 GHz-5320 MHz-HT20-6.5 Mbps

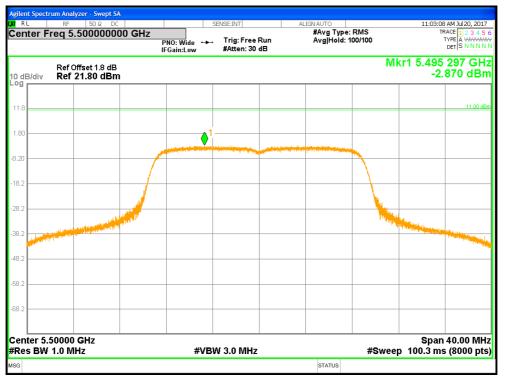


Figure 69: FCC-PPSD-5 GHz-5500 MHz-HT20-6.5 Mbps

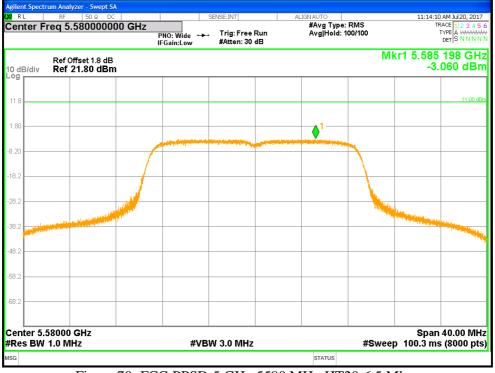


Figure 70: FCC-PPSD-5 GHz-5580 MHz-HT20-6.5 Mbps

Figure 71: FCC-PPSD-5 GHz-5700 MHz-HT20-6.5 Mbps

Figure 72: FCC-PPSD-5 GHz-5745 MHz-HT20-6.5 Mbps

Figure 73: FCC-PPSD-5 GHz-5785 MHz-HT20-6.5 Mbps



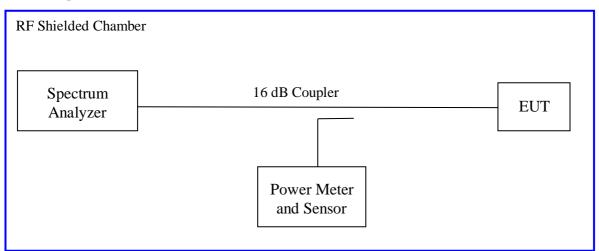
Figure 74: FCC-PPSD-5 GHz-5825 MHz-HT20-6.5 Mbps

4.4 Undesirable Emission Limits

CFR47 15.407 (*b*) and *RSS* 247 Sect.6.2.1.2, 6.2.2.2, and 6.2.3.2: The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.4.1 Test Method

The conducted method was used to measure the undesirable emission requirement. The measurement was performed with modulation. This test was conducted on 3 channels of Sample in each mode on Sample. The worst sample result indicated below.

Test Setup:

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions	Conducted Me	asurement		Date: July 20, 2017 Power Setting: See test plan.					
Antenna Type:	Chip								
Antenna Gain:	4.9 dBi			Signal State: Modulated at 100%					
Ambient Temp.	:: 23° C		Relative Humi	dity: 35%					
Undesired Emissions for 802.11a									
Frequency	Level	Det.	Port	Limit	Margin	Comments			
MHz	dBuV/m			cm	dB				
1732.60	-43.46	Pk	RF	-27.00	-16.46	11a, 5180MHz, 6.0Mbps			
36963.70	-38.85	Pk	RF	-27.00	-11.85	11a, 5180MHz, 6.0Mbps			
1738.60	-43.61	Pk	RF	-27.00	-16.61	11a, 5200MHz, 6.0Mbps			
37217.60	-38.69	Pk	RF	-27.00	-11.69	11a, 5200MHz, 6.0Mbps			
1743.60	-42.28	Pk	RF	-27.00	-15.28	11a, 5240MHz, 6.0Mbps			
37026.70	-38.42	Pk	RF	-27.00	-11.42	11a, 5240MHz, 6.0Mbps			
1755.60	-42.39	Pk	RF	-27.00	-15.39	11a, 5260MHz, 6.0Mbps			
37012.70	-39.12	Pk	RF	-27.00	-12.12	11a, 5260MHz, 6.0Mbps			
1761.60	-40.8	Pk	RF	-27.00	-13.80	11a, 5300MHz, 6.0Mbps			
36394.80	-39.5	Pk	RF	-27.00	-12.50	11a, 5300MHz, 6.0Mbps			
1773.60	-39.93	Pk	RF	-27.00	-12.93	11a, 5320MHz, 6.0Mbps			
36969.70	-38.84	Pk	RF	-27.00	-11.84	11a, 5320MHz, 6.0Mbps			
1837.60	-38.57	Pk	RF	-27.00	-11.57	11a, 5500MHz, 6.0Mbps			
36438.80	-38.57	Pk	RF	-27.00	-11.57	11a, 5500MHz, 6.0Mbps			
3720.20	-41.38	Pk	RF	-27.00	-14.38	11a, 5580MHz, 6.0Mbps			
36043.90	-39.35	Pk	RF	-27.00	-12.35	11a, 5580MHz, 6.0Mbps			
3800.10	-37.22	Pk	RF	-27.00	-10.22	11a, 5700MHz, 6.0Mbps			
37018.70	-38.59	Pk	RF	-27.00	-11.59	11a, 5700MHz, 6.0Mbps			
3830.10	-36.95	Pk	RF	-27.00	-9.95	11a, 5745MHz, 6.0Mbps			
36595.80	-39.45	Pk	RF	-27.00	-12.45	11a, 5745MHz, 6.0Mbps			
3856.10	-39.52	Pk	RF	-27.00	-12.52	11a, 5785MHz, 6.0Mbps			
36980.70	-38.95	Pk	RF	-27.00	-11.95	11a, 5785MHz, 6.0Mbps			
4846.90	-38.41	Pk	RF	-27.00	-11.41	11a, 5825MHz, 6.0Mbps			
38810.30	-39.13	Pk	RF	-27.00	-12.13	11a, 5825MHz, 6.0Mbps			

Note: 1. Worst case condition observed at 6.0 Mbps.

2. All out of band emissions are lower than the -27dBm level.

3. 99% OBW emission of 5240 MHz operating channel did not leak into 5250 MHz-5350 MHz band. See Fig. 123.

4. Emissions of UNII3 channels met the band-edge spectrum mask.

Fest Conditions	Conducted Mea	surement		Date: July 17, 2017Power Setting: See test plan.						
Antenna Type: (Chip									
Antenna Gain: 4	4.9 dBi			Signal State: Modulated at 100%						
Ambient Temp.:	: 23° C		Relative Hum	nidity: 35%						
Undesired Emissions for 802.11n HT20										
Frequency	Level	Det.	Port	Limit	Margin	Comments				
MHz	dBuV/m			cm	dB					
1743.60	-42.46	Pk	RF	-27.00	-15.46	HT20, 5180MHz, 6.5Mbps				
39821.00	-39.39	Pk	RF	-27.00	-12.39	HT20, 5180MHz, 6.5Mbps				
1736.60	-42.31	Pk	RF	-27.00	-15.31	HT20, 5200MHz, 6.5Mbps				
37012.70	-38.12	Pk	RF	-27.00	-11.12	HT20, 5200MHz, 6.5Mbps				
1748.60	-41.60	Pk	RF	-27.00	-14.60	HT20, 5240MHz, 6.5Mbps				
39740.10	-39.17	Pk	RF	-27.00	-12.17	HT20, 5240MHz, 6.5Mbps				
1747.60	-42.39	Pk	RF	-27.00	-15.39	HT20, 5260MHz, 6.5Mbps				
36990.70	-38.79	Pk	RF	-27.00	-11.79	HT20, 5260MHz, 6.5Mbps				
1771.60	-40.26	Pk	RF	-27.00	-13.26	HT20, 5300MHz, 6.5Mbps				
37129.70	-39.50	Pk	RF	-27.00	-12.50	HT20, 5300MHz, 6.5Mbps				
1778.60	-39.99	Pk	RF	-27.00	-12.99	HT20, 5320MHz, 6.5Mbps				
36529.80	-39.29	Pk	RF	-27.00	-12.29	HT20, 5320MHz, 6.5Mbps				
1826.60	-37.99	Pk	RF	-27.00	-10.99	HT20, 5500MHz, 6.5Mbps				
36707.70	-39.13	Pk	RF	-27.00	-12.13	HT20, 5500MHz, 6.5Mbps				
3720.20	-42.07	Pk	RF	-27.00	-15.07	HT20, 5580MHz, 6.5Mbps				
36806.70	-39.90	Pk	RF	-27.00	-12.90	HT20, 5580MHz, 6.5Mbps				
3800.10	-38.14	Pk	RF	-27.00	-11.14	HT20, 5700MHz, 6.5Mbps				
36606.80	-39.21	Pk	RF	-27.00	-12.21	HT20, 5700MHz, 6.5Mbps				
3830.10	-37.65	Pk	RF	-27.00	-10.65	HT20, 5745MHz, 6.5Mbps				
37194.60	-37.63	Pk	RF	-27.00	-10.63	HT20, 5745MHz, 6.5Mbps				
3856.10	-37.75	Pk	RF	-27.00	-10.75	HT20, 5785MHz, 6.5Mbps				
37012.70	-38.88	Pk	RF	-27.00	-11.88	HT20, 5785MHz, 6.5Mbps				
3887.94	-33.39	Pk	RF	-27.00	-6.39	HT20, 5825MHz, 6.5Mbps				
4846.29	-29.37	Pk	RF	-27.00	-2.37	HT20, 5825MHz, 6.5Mbps				

Note: 1. Worst case condition observed at 6.5 Mbps.

2. All out of band emissions are lower than the -27dBm level.

3. 99% OBW emission of 5240 MHz operating channel did not leak into 5250 MHz-5350 MHz band. See Fig. 124.

4. Emissions of UNII3 channels met the band-edge spectrum mask.

	RF 50 S		SENSE:INT	ALIGNAUTO	02:04:13 PM Jul 17, 20
enter F	req 5.1800	Ph	IO: Fast ↔→ Trig: Free F ain:Low Atten: 30 d		
dB/div	Ref Offset 6 Ref 26.70				Mkr4 5.167 715 G -23.130 dE
.7					
ro 					
30					
3			4		
3					-27.00
3			2		
	ingen in statement frida	and vice the here the factor was the			in the state of the state of the second state of t
3					
3					
nter 5.	.18000 GHz			· · · ·	Span 150.0 N
			#VBW 3.0 MHz		Sweep 1.333 ms (10000 p
	1.0 MHz				
MODE T		× 5.175 267 GHz		CTION FUNCTION WIDTH	FUNCTION VALUE
MODE T N N	RC SCL 1 f 1 f	5.175 267 GHz 5.150 000 GHz	Y FUND 8.869 dBm -43.262 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE
Mode T N N N	RC SCL	5.175 267 GHz	Y FUND 8.869 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE
N N N N N	RC SCL 1 f 1 f 1 f	5.175 267 GHz 5.150 000 GHz 5.250 000 GHz	Y FUND 8.869 dBm -43.262 dBm -44.513 dBm	FUNCTION WIDTH	FUNCTION VALUE
MODE T N N	RC SCL 1 f 1 f 1 f	5.175 267 GHz 5.150 000 GHz 5.250 000 GHz	Y FUND 8.869 dBm -43.262 dBm -44.513 dBm	FUNCTION WIDTH	FUNCTION VALUE
MODE T N N	RC SCL 1 f 1 f 1 f	5.175 267 GHz 5.150 000 GHz 5.250 000 GHz	Y FUND 8.869 dBm -43.262 dBm -44.513 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE
MODE T N N	RC SCL 1 f 1 f 1 f	5.175 267 GHz 5.150 000 GHz 5.250 000 GHz	Y FUND 8.869 dBm -43.262 dBm -44.513 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE

Figure 75: Measured Band-edge for 802.11a-6 Mbps at 5180 MHz

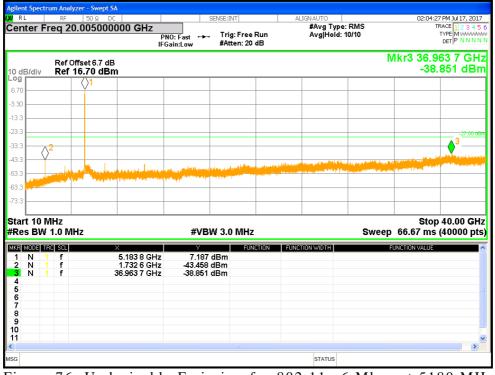


Figure 76: Undesirable Emission for 802.11a-6 Mbps at 5180 MHz

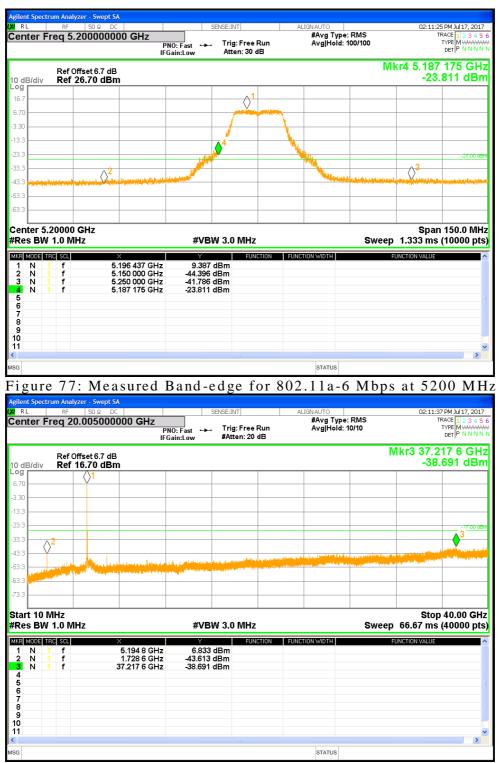
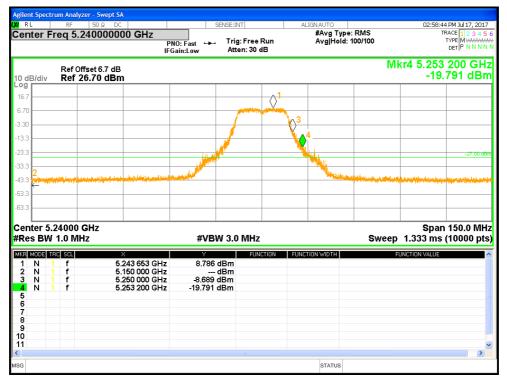
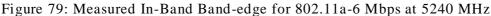




Figure 78: Undesirable Emission for 802.11a-6 Mbps at 5200 MHz

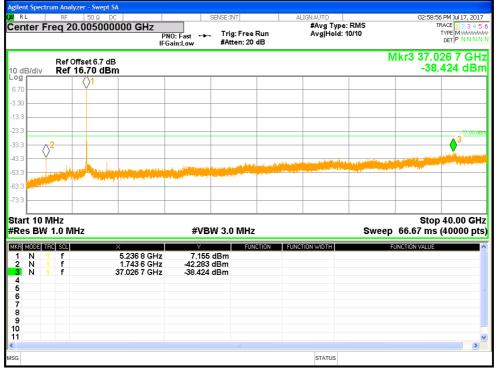


Figure 80: Measured In-Band Band-edge for 802.11a-6 Mbps at 5240 MHz

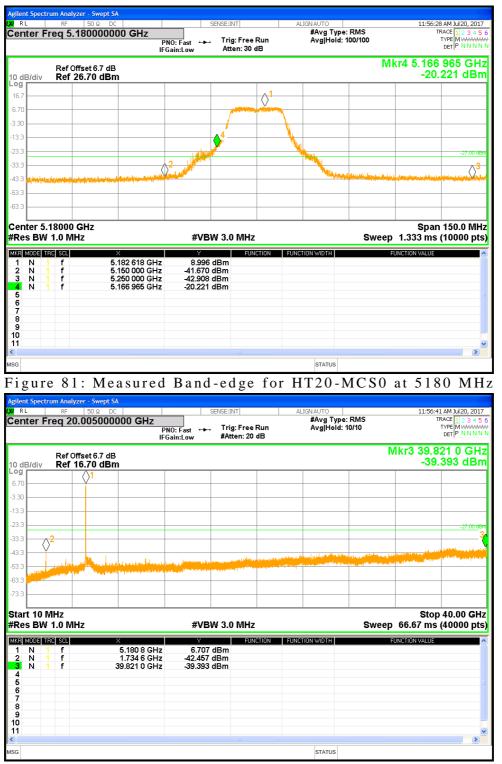


Figure 82: Undesirable Emission for HT20-MCS0 at 5180 MHz

<mark>ilent Spectr</mark> R L	um Analyzer - RF 5	Swept SA IO Ω DC		SENSE:INT	A	LIGN AUTO		11:58:3	2 AM Jul 20, 2011
enter Fi	req 5.200	0000000 GHz	PNO: Fast ++-	Trig: Free Atten: 30		#Avg Type: Rf Avg Hold: 100		Т	RACE 1 2 3 4 5 TYPE M MAAAAA DET P N N N N
) dB/div	Ref Offsel Ref 26.7						Mk		660 GH 663 dBr
6.7					1				
70									
.3				1		4			
.3				.					-27.00 d
.3			- Julia	-				A 3	-27.00 G
.3 6.	Male and a state of the same	den al fragma de la desta d				No. 10 August	Second second second		ويتحاجبهما والإجرائي
.3									
.3									
	20000 GH 1.0 MHz	z	#VB	W 3.0 MHz			Sweep	Span 1.333 ms	150.0 MH (10000 pt
r mode tr	RC SCL f	× 5,205 078 GH	Y Iz 8.981		ICTION FUNC	TION WIDTH	FUI	NCTION VALUE	
N 1	f	5.150 000 GH	lz -44.596	dBm					
N 1	f	5.212 660 GH							
1									
1									
									>
						STATUS			

Figure 83: Measured In-Band Band-edge for HT20-MCS0 at 5200 MHz

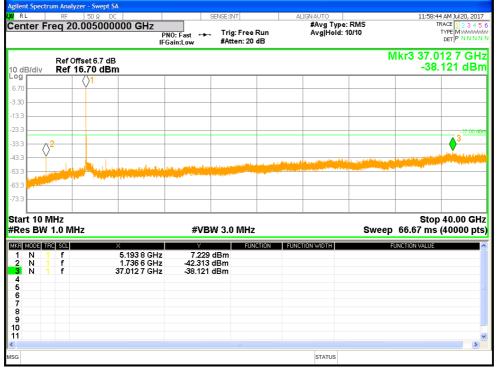


Figure 84: Measured In-Band Band-edge for HT20-MCS0 at 5200 MHz

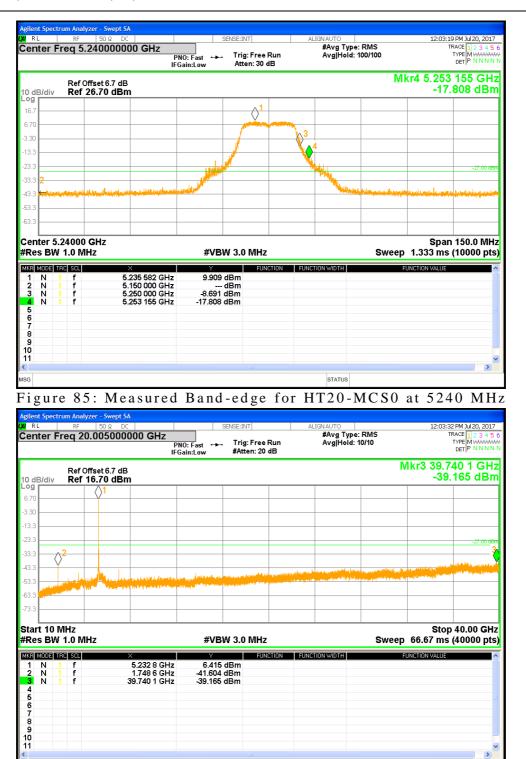


Figure 86: Undesirable Emission for HT20-MCS0 at 5240 MHz

STATUS

sg 🤹 Alignment Completed

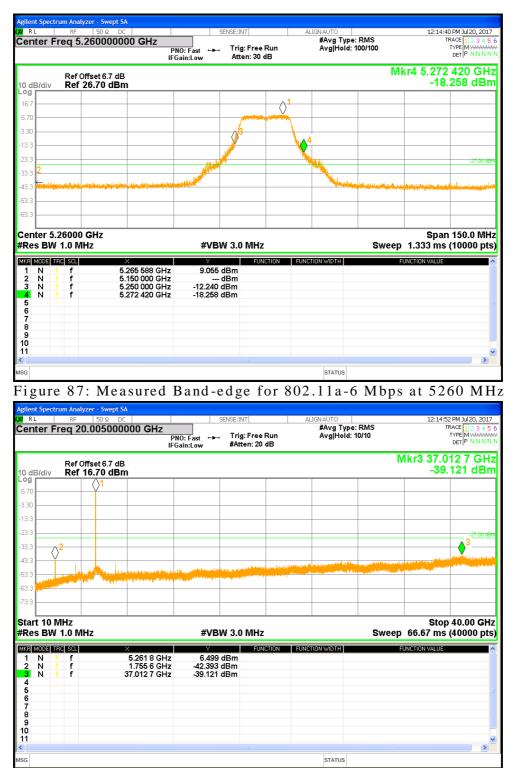


Figure 88: Undesirable Emission for 802.11a-6 Mbps at 5260 MHz

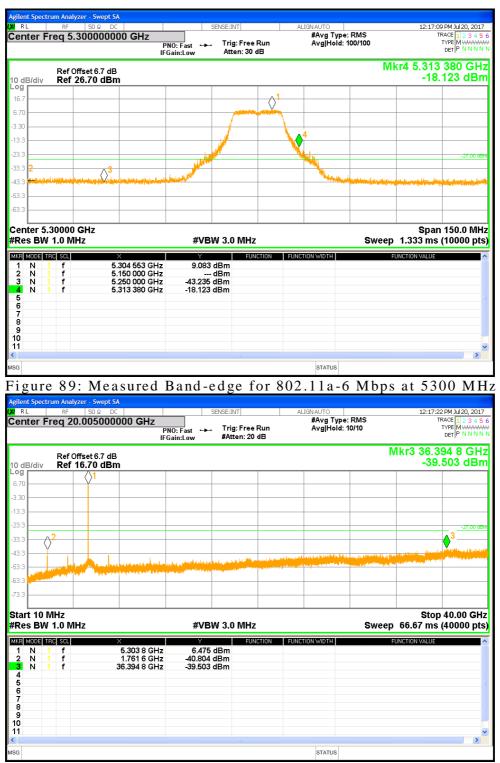


Figure 90: Undesirable Emission for 802.11a-6 Mbps at 5300 MHz

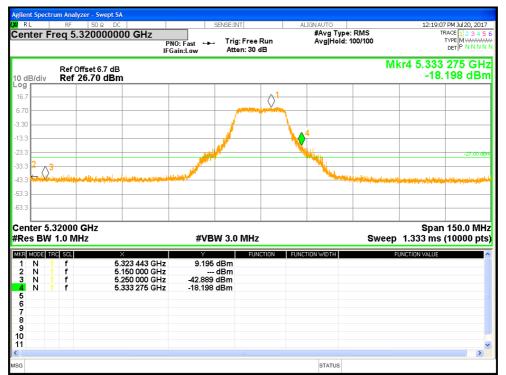


Figure 91: Measured In-Band Band-edge for 802.11a-6 Mbps at 5320 MHz

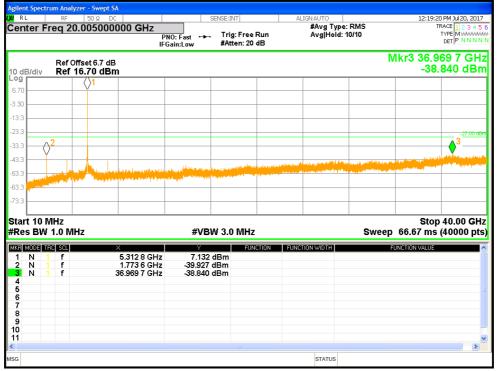


Figure 92: Measured In-Band Band-edge for 802.11a-6 Mbps at 5320 MHz

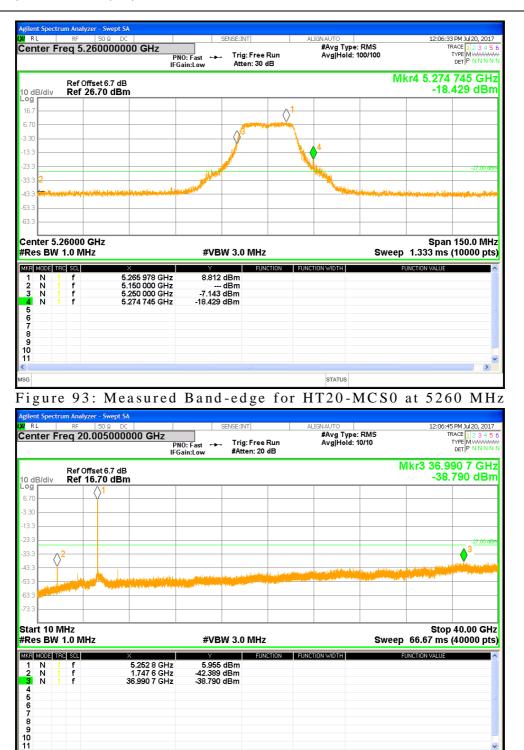


Figure 94: Undesirable Emission for HT20-MCS0 at 5260 MHz

STATUS

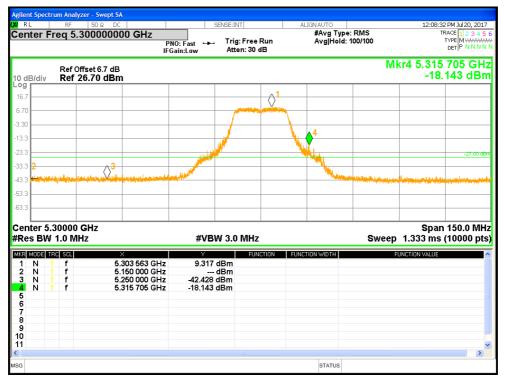


Figure 95: Measured In-Band Band-edge for HT20-MCS0 at 5300 MHz

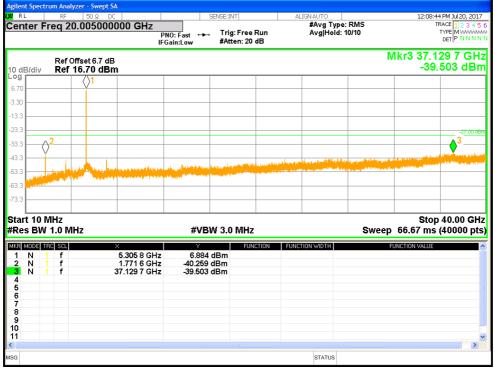


Figure 96: Measured In-Band Band-edge for HT20-MCS0 at 5300 MHz

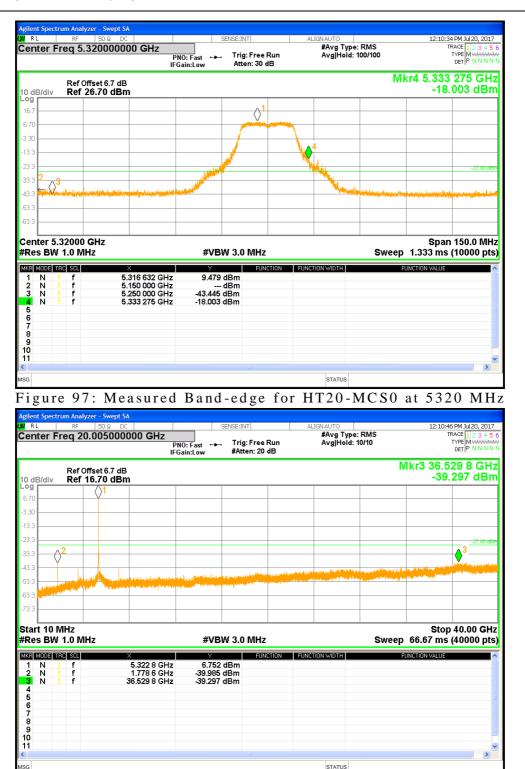


Figure 98: Undesirable Emission for HT20-MCS0 at 5320 MHz



Figure 100: Undesirable Emission for 802.11a-6 Mbps at 5550 MHz

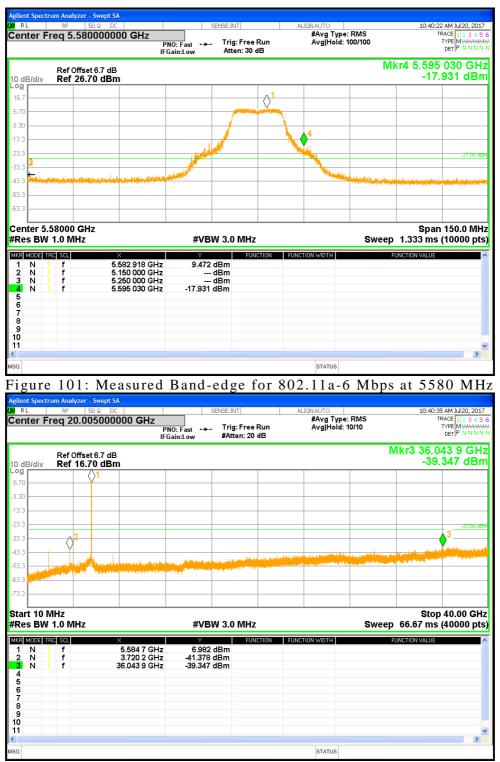


Figure 102: Undesirable Emission for 802.11a-6 Mbps at 5580 MHz

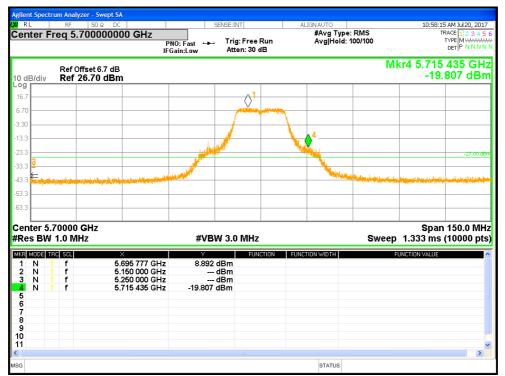


Figure 103: Measured In-Band Band-edge for 802.11a-6 Mbps at 5700 MHz

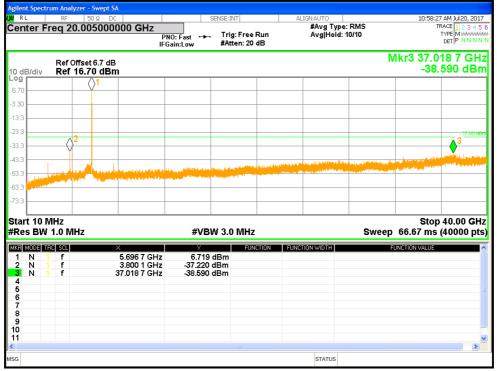


Figure 104: Measured In-Band Band-edge for 802.11a-6 Mbps at 5700 MHz

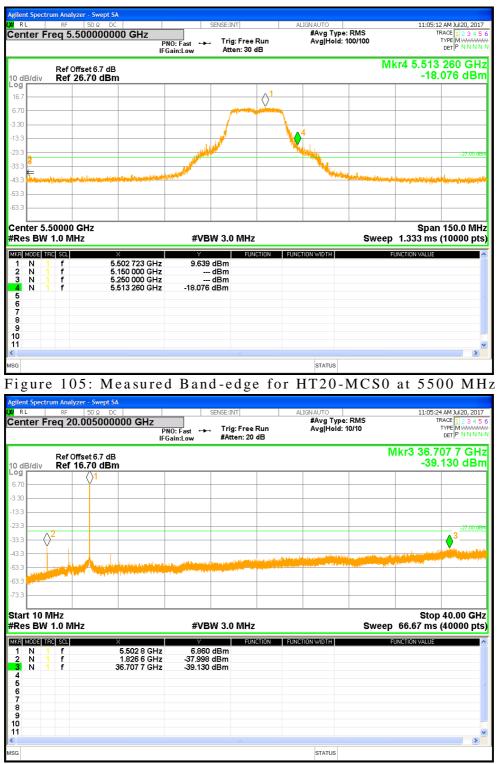


Figure 106: Undesirable Emission for HT20-MCS0 at 5500 MHz

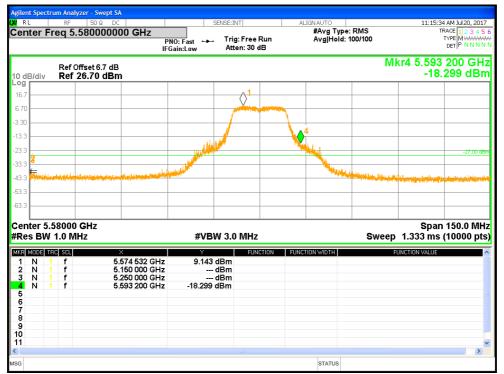


Figure 107: Measured In-Band Band-edge for HT20-MCS0 at 5580 MHz

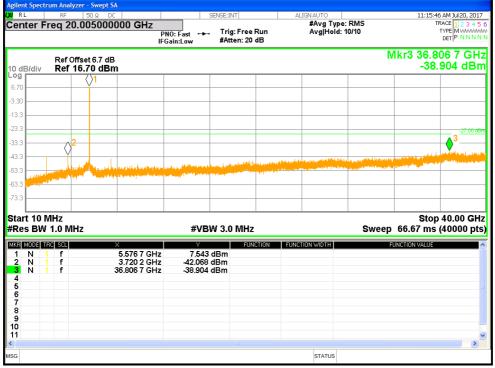


Figure 108: Measured In-Band Band-edge for HT20-MCS0 at 5580 MHz

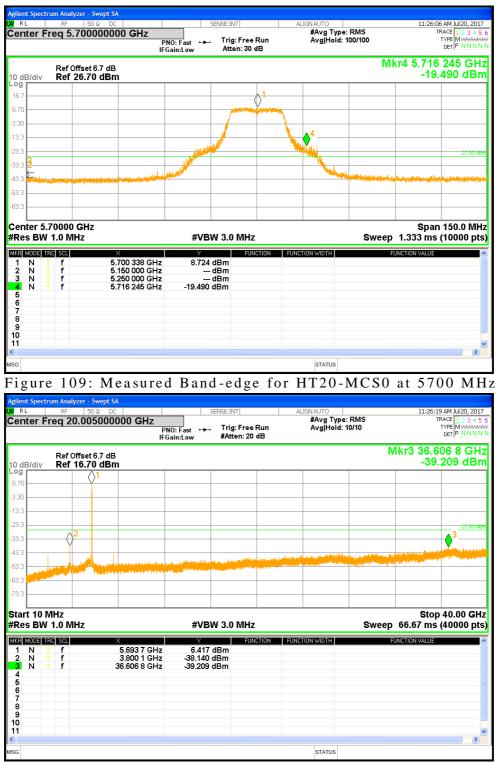


Figure 110: Undesirable Emission for HT20-MCS0 at 5700 MHz

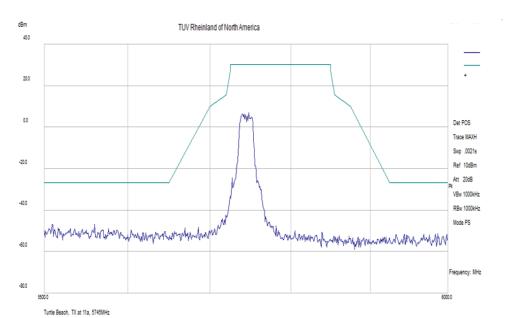


Figure 111: Measured Band-edge for 802.11a-6 Mbps at 5745 MHz

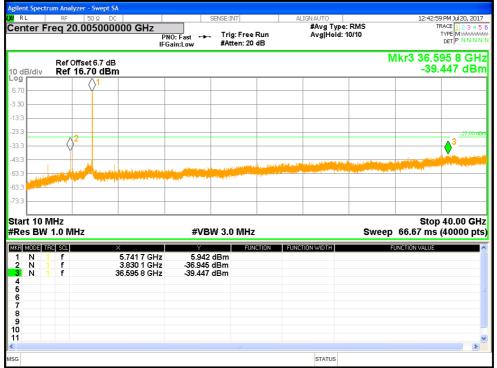


Figure 112: Undesirable Emission for 802.11a-6 Mbps at 5745 MHz

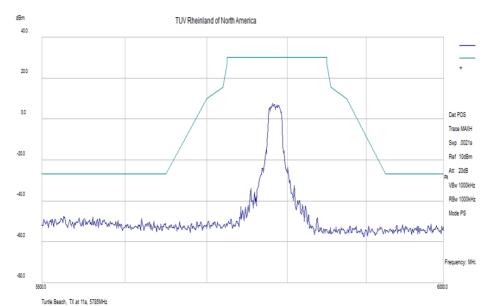


Figure 113: Measured Band-edge for 802.11a-6 Mbps at 5785 MHz

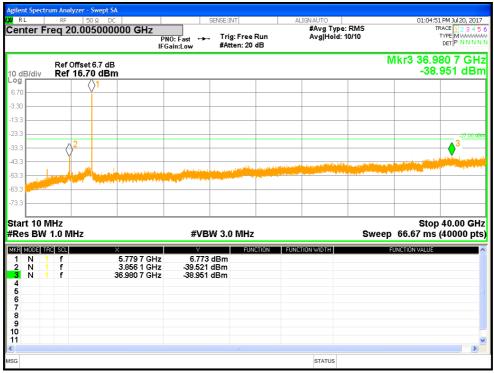


Figure 114: Undesirable Emission for 802.11a-6 Mbps at 5785 MHz

TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

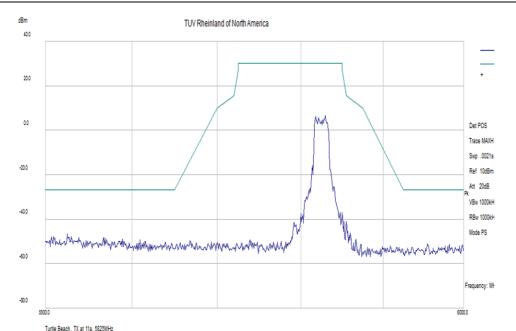


Figure 115: Measured In-Band Band-edge for 802.11a-6 Mbps at 5825 MHz

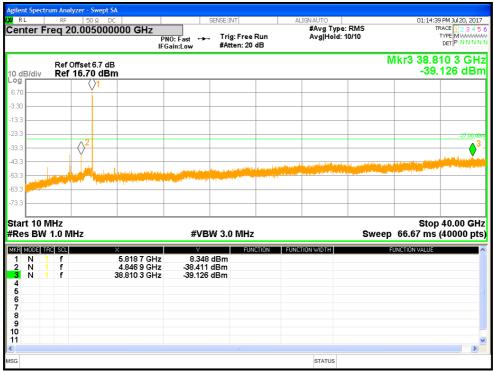


Figure 116: Measured In-Band Band-edge for 802.11a-6 Mbps at 5825 MHz

Figure 117: Measured Band-edge for HT20-MCS0 at 5745 MHz

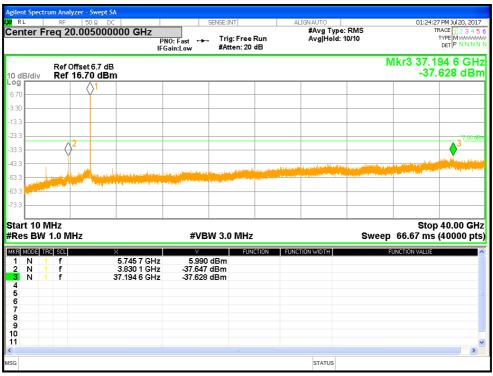


Figure 118: Undesirable Emission for HT20-MCS0 at 5745 MHz

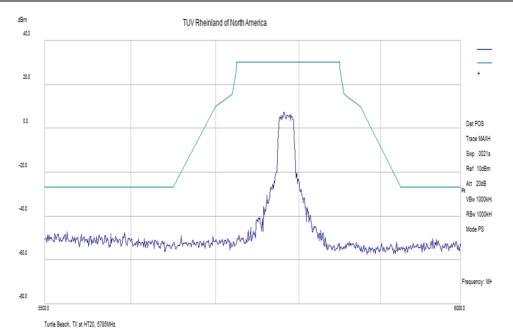


Figure 119: Measured In-Band Band-edge for HT20-MCS0 at 5785 MHz

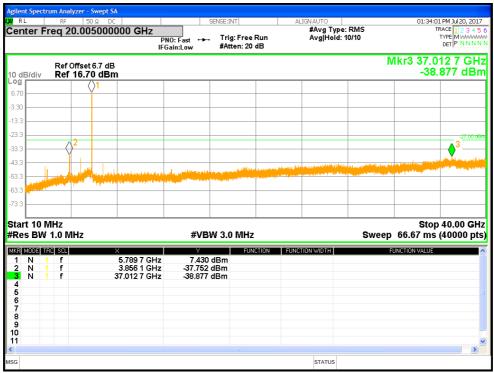


Figure 120: Measured In-Band Band-edge for HT20-MCS0 at 5785 MHz

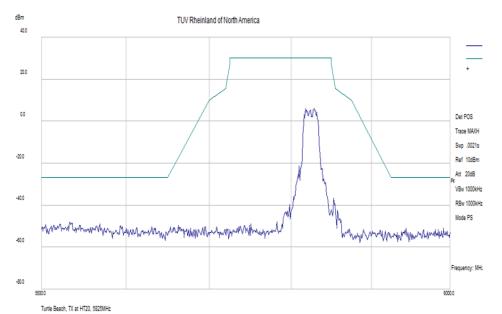


Figure 121: Measured Band-edge for HT20-MCS0 at 5825 MHz

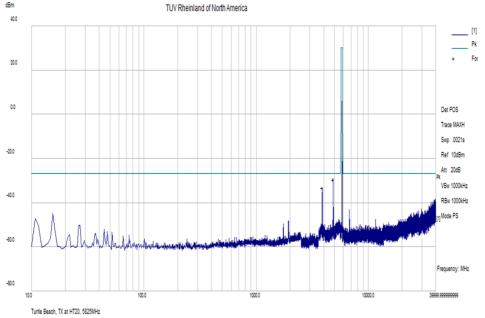


Figure 122: Undesirable Emission for HT20-MCS0 at 5825 MHz

TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

gilent Spectrum Analyzer - Occupied BW	1			
RLS RF 50 Ω DC		Center Freq: 5.2400000		09:54:53 AM May 08, 20 Radio Std: None
	#IFGain:Low	, Trig: Free Run #Atten: 30 dB	Avg Hold: 10/10	Radio Device: BTS
Ref Offset 1.6 dB Mkr1 5.2485623 GH 0 dB/div Ref 21.60 dBm -7.4869 dBr				
29				
60	man mar man man	where we have a subscription of the subscripti	an and an and the second and the second and	1
0				
4				
4				
4				
.4				
enter 5.24 GHz				Span 30 Mł
Res BW 200 kHz		#VBW 1 MHz		#Sweep 100.3 n
Occupied Bandwidth	1	Total Power	20.8 dBm	
16	.887 MHz			
Transmit Freq Error	86.690 kHz	OBW Power	99.00 %	
x dB Bandwidth	29.98 MHz	x dB	-26.00 dB	
			STATUS	

Figure 123: Measured Band-edge for 11a-6 Mbps at 5240 MHz

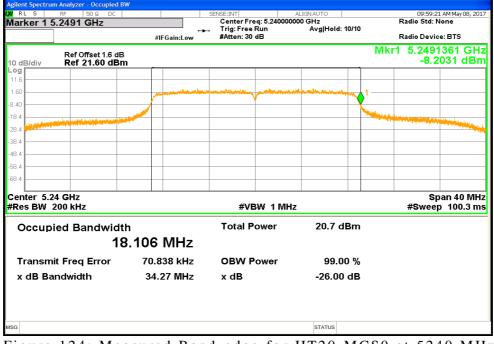


Figure 124: Measured Band-edge for HT20-MCS0 at 5240 MHz

Note: Since the 99% bandwidth emission did not cross over into the UNII2a band, DFS is not required for 5240 MHz operating channel.