

Prüfbericht-Nr.: CN22NAWE (P15C-BT) Auftrags-Nr.: Seite 1 von 29 238542896 Order no.: Page 1 of 29 001 Test report no.: Kunden-Referenz-Nr.: Auftragsdatum: N/A 2022-04-29 Order date: Client reference no.: Auftraggeber: Voyetra Turtle Beach, Inc. Client: 44 South Broadway, 4th Floor, White Plains, New York 10601, U.S.A. Prüfgegenstand: Recon Air Chat Communicator Wireless Test item: Bezeichnung / Typ-Nr.: Recon Air Wireless Chat P-RX & Recon Air Wireless Chat X-RX Identification / Type no.: Auftrags-Inhalt: FCC Part 15C Test report (BT) Order content. Prüfgrundlage: Test specification: FCC 47CFR Part 15: Subpart C Section 15.247 Wareneingangsdatum: 2021-10-15 Date of sample receipt: Prüfmuster-Nr.: A003145666-010 Test sample no: A003162952-039 Prüfzeitraum: 2021-10-18 - 2021-11-19 Testing period: Ort der Prüfung: **EMC/RF** Taipei Testing Place of testing: Site Prüflaboratorium: Taipei Testing Laboratories Testing laboratory: Prüfergebnis*: **Pass** Test result*: überprüft von: genehmigt von: compiled by: authorized by: Ausstellungsdatum: Datum: Date: 2022-05-10 Issue date: 2022-05-10 Ryan Chen Brenda Chen Senior Project Manager **Stellung** / Position: Stellung / Position: Senior Project Manager **Sonstiges** / Other: This report is mainly changed the product name and model name, and added FCC ID. The test results are all referred to the original report no.: CN21RLOD (P15C-BT) 001. Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Condition of the test item at delivery: Test item complete and undamaged * Legende: 1 = sehr gut 3 = befriedigend 4 = ausreichend 2 = qut5 = mangelhaft P(ass) = entspricht o.g. Prüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/T = nicht getestet N/A = nicht anwendbar * Legend: 1 = very good 2 = good3 = satisfactory 4 = sufficient 5 = poorP(ass) = passed a.m. test specification(s) F(ail) = failed a.m. test specification(s) N/T = not testedDieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 2 von 29 Page 2 of 29

Test Report No.

TEST SUMMARY

Report Section	FCC Clause	Test Item	Result
5.1.1	15.247(b) & 15.203	Antenna Requirement	Pass
5.1.2	15.247(b)(1)	Peak Output Power	Pass
5.1.3	15.247(a)(1)	20 dB Bandwidth	Pass
5.1.3	2.1049	99% Occupied Bandwidth	Pass
5.1.4	15.247(d)	Conducted Spurious Emission and Band Edges	Pass
5.1.5	15.247(d) & 15.205 & 15.209	Radiated Spurious Emissions and Band Edges	Pass
5.1.6	15.247(a)(1)	Hopping Channel Separation	Pass
5.1.7	15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass
5.1.8	15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass
5.2.1	15.207	Mains Conducted Emission	Pass

Note:

- 1. If the Frequency Hopping Systems operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 3 von 29 Page 3 of 29

Test Report No.

Contents

5.1.	,, e , , , , , , , , , , , , , , , , ,	
5.1. 5.1.	6 Hopping Channel Separation	
5.1. 5.1.	Bandwidth	
5.1.	3 20 dB Bandwidth and 99% Occupied Bandwidth	
5.1. 5.1.		
5.1 <i>5.1</i> .	TRANSMITTER REQUIREMENT & TEST SUITES	
5.	TEST RESULTS	
4.5	TEST SETUP DIAGRAM	
4.4	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	
4.3	TEST OPERATION AND TEST SOFTWARE	
4.2	CARRIER FREQUENCY AND CHANNEL	
4.1	PRINCIPLE OF CONFIGURATION SELECTION	
4.	TEST SET-UP AND OPERATION MODES	
3.4	SUBMITTED DOCUMENTS	
3.3	NOISE GENERATING AND NOISE SUPPRESSING PARTS	
3.2	SYSTEM DETAILS AND RATINGS	
3.1	PRODUCT FUNCTION AND INTENDED USE	
3.	GENERAL PRODUCT INFORMATION	
2.5	MEASUREMENT UNCERTAINTY	
2.4	CALIBRATION	
2.3	TRACEABILITY	
2.2	TEST FACILITY	
2.1	TEST LABORATORY	
2.	Test Sites	
1.2	DECISION RULE OF CONFORMITY	
1.1	COMPLEMENTARY MATERIALS	
1.	GENERAL REMARKS	

Prüfbericht - Nr.: Test Report No.	CN22NAWE (P15C-BT) 001	Seite 4 von 29 Page 4 of 29
Appendix A - Test R	ESULT OF CONDUCTED & MAINS CONDUCTED EMISSION	
APPENDIX B - TEST RE	SULT OF RADIATED EMISSIONS	
APPENDIX SP - PHOTO	GRAPHS TEST SETUP	
APPENDIX EP - PHOTO	GRAPHS OF EUT	

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 5 von 29 Page 5 of 29

Test Report No.

HISTORY OF THIS TEST REPORT

Report No.	Description	Date Issued	ì
CN22NAWE (P15C-BT) 001	Original Release	2022-05-10	Ì

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 6 von 29 Page 6 of 29

Test Report No.

1. General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A - Test Result of Conducted & Mains Conducted Emission

Appendix B - Test Result of Radiated Emissions

Appendix SP - Photographs Test Setup

Appendix EP - Photographs of EUT

Applied Standard and Test Levels

Radio

FCC 47CFR Part 15: Subpart C Section 15.247 FCC 47CFR Part 2: Subpart J Section 2.1049 ANSI C63.10:2013 KDB 558074 D01 15.247 Meas Guidance v05r02

1.2 Decision Rule of Conformity

The decision rule of conformity of this test report is following the requirements of the requested standard in the quotation, and agreed among testing laboratory and manufacturer (applicant) to exclude the consideration of Measurement Uncertainty, unless it is required by the specific standard.

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001
Test Report No.

Seite 7 von 29 Page 7 of 29

2. Test Sites

2.1 Test Laboratory

Taipei Testing Laboratories

11F. No.758, Sec. 4, Bade Rd., Songshan Dist. Taipei City 105
Taiwan (R.O.C.)

2.2 Test Facility

Taipei Testing Laboratories

No.458-18, Sec. 2, Fenliao Rd., Linkou Dist.,

New Taipei City 244 Taiwan (R.O.C.)

FCC Registration No.: 226631 ISED Registration No.: 25563

Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

Seite 8 von 29 Page 8 of 29

Test Report No.

2.3 Traceability

All measurement equipment calibrations are traceable to NML(Taiwan)/NIST(USA) or where calibration is performed outside Taiwan, to equivalent nationally recognized standards organizations.

2.4 Calibration

Equipment requiring calibration is calibrated periodically in a suitably accredited Calibration Lab. Additionally all equipment is verified for proper performance on a regular basics using in house standards or comparisons.

2.5 Measurement Uncertainty

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence.

Emission Measurement Uncertainty

Parameter	Uncertainty
Radiated Emission (9 kHz ~ 30 MHz)	± 1.15 dB
Radiated Emission (30 MHz ~ 200 MHz)	± 1.30 dB
Radiated Emission (200 MHz ~ 1 GHz)	± 1.30 dB
Radiated Emission (1 GHz ~ 18 GHz)	± 1.54 dB
Radiated Emission (18 GHz ~ 40 GHz)	± 2.52 dB
Mains Conducted Emission	± 1.65 dB

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 9 von 29 Page 9 of 29

Test Report No.

3. General Product Information

3.1 Product Function and Intended Use

The EUT is a Recon Air Chat Communicator Wireless. It contains a Bluetooth compatible module enabling the user to communicate data through a Wireless interface. For details refer to the User Guide, Data Sheet and Circuit Diagram.

3.2 System Details and Ratings

Basic Information of EUT

Item	EUT information
Kind of Equipment/Test Item	Recon Air Chat Communicator Wireless
Type Identification	Recon Air Wireless Chat P-RX & Recon Air Wireless Chat X-RX
FCC ID	XGB-3347RX
1 66 15	XGB-2412RX

Note:

1. All models are listed as below.

Models	FCC ID	Difference
Recon Air Wireless Chat P-RX	XGB-3347RX	Different models and FCC ID are for
Recon Air Wireless Chat X-RX	XGB-2412RX	marketing purpose.

Technical Specification of EUT

Item	EUT information
Operating Frequency	2402 MHz ~ 2480 MHz
Channel Number	79
Operation Voltage	USB: 5 Vdc Battery: 3.7 Vdc
Modulation	GFSK, π/4-DQPSK, 8DPSK
Maximum Output Power (mW)	1.95
Antenna Information	Refer to 5.1.1
Accessory Device	Refer to 4.4

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 10 von 29 *Page 10 of 29*

Test Report No.

3.3 Noise Generating and Noise Suppressing Parts

Refer to the Circuit Diagram.

3.4 Submitted Documents

- Circuit Diagram
- Instruction Manual
- Rating Label
- Technical Description

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 11 von 29Page 11 of 29

Test Report No.

4. Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The test modes were adapted accordingly in reference to the instructions for use.

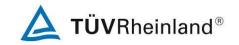

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output expected by the customer and is going to be fixed on the firmware of the final end product.

Table for Parameters of Test Software Setting

Fraguenov (MHz)	Power Setting			
Frequency (MHz)	GFSK	π/4-DQPSK	8DPSK	
2402	0x07	0x07	0x07	
2441	0x07	0x07	0x07	
2480	0x07	0x07	0x07	

4.2 Carrier Frequency and Channel

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

Seite 12 von 29 Page 12 of 29

Test Report No.

4.3 Test Operation and Test Software

Setup for testing: Test samples are provided with an UART interface which makes it possible to control them through a test software installed on a notebook computer.

This software was running on the laptop computer connected to the EUT. It was used to enable the operation modes listed as below.

Test Software	AWRDLABV2.exe
1 Cot Cortware	7.001.0012.000

The samples were used as follows:

A003145666-010

A003162952-039

Full test was applied on all test modes, but only worst case was shown.

EUT Configure Mode	Antenna Port Conducted Measurement	Radiated Spurious Emissions above 1 GHz	Radiated Spurious Emissions below 1 GHz	Mains Conducted Emission	Description
-	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	-

Note:

- For Radiated emission test, pre-tested GFSK, π/4-DQPSK, 8DPSK modulation type and found 8DPSK was the worse, therefore chosen for the final test and presented in the test report.
- 2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when position on **Z-plane**.
- 3. "-" means no effect.

Antenna Port Conducted Measurement

- Pre-Scan full test was applied on all test modes, but only worst case was shown.
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Frequency (MHz)	Tested Frequency (MHz)	Modulation Type	Packet Type
-	2402 to 2480	2402, 2441, 2480	GFSK	1DH5
-	2402 to 2480	2402, 2441, 2480	8DPSK	3DH5

Radiated Spurious Emissions (Above 1 GHz)

Pre-Scan full test was applied on all test modes, but only worst case was shown.

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Frequency (MHz)	Tested Frequency (MHz)	Modulation Type	Packet Type
=	2402 to 2480	2402, 2441, 2480	GFSK	1DH5
-	2402 to 2480	2402, 2441, 2480	8DPSK	3DH5

Radiated Spurious Emissions (Below 1 GHz)

Pre-Scan full test was applied on all test modes, but only worst case was shown.

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Frequency (MHz)	Tested Frequency (MHz)	Modulation Type	Packet Type
-	2402 to 2480	2480	8DPSK	3DH5

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 13 von 29Page 13 of 29

Test Report No.

Mains Conducted Emission

Pre-Scan full test was applied on all test modes, but only worst case was shown.

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Frequency (MHz)	Tested Frequency (MHz)	Modulation Type	Packet Type
-	2402 to 2480	2480	8DPSK	3DH5

Test Condition

Test Item	Ambient Temperature	Relative Humidity	Tested by
Conducted Measurement	23.1 °C	60 %	Stanislas Charles
Radiated Spurious Emissions above 1 GHz	24.1-25.5 °C	53-54 %	Ivan Chiang
Radiated Spurious Emissions below 1 GHz	24.1-25.5 °C	53-54 %	Ivan Chiang
Mains Conducted Emission	23.6-24.1 °C	49-52 %	Ray Huang

4.4 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories:

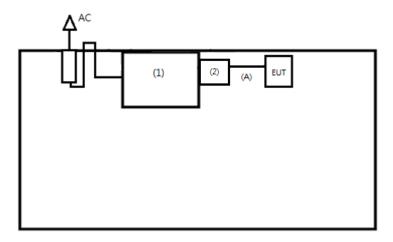
Accessory of EUT

No.	Product	Brand	Model	Description
-	USB-C Charging Cable	Turtle Beach	Recon Air Cable	-

Support Unit

	Support Unit							
No	Description	Brand	Model	S/N	Shielded	Ferrite Core (Qty)	Length (cm)	Remark
Α	DC Cable	Ampacs	N/A	N/A	NO	0	9	
1	UART	TUV	CP2102	N/A	-	-	-	
2	USB Cable	TUV	TUV-001	N/A	YES	NO	300	Radiated
3	Type C Cable	TUV	TUV-006	N/A	YES	NO	95	Radiated
4	USB Cable	TUV	TUV-003	N/A	YES	NO	175	
5	Notebook	HP	15-DA1046TX	CND911MY2	-	-	-	
Α	DC Cable	Ampacs	N/A	N/A	NO	0	9	Maine
1	Notebook	Lenovo	TP00094A	SL10Q37402	-	-	-	Mains Conducted
2	UART	TUV	CP2102	N/A	-	-	-	Oorlaactea

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001
Test Report No.


Seite 14 von 29Page 14 of 29

4.5 Test Setup Diagram

<Radiated Spurious Emissions mode>

<Mains Conducted Emission mode>

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 15 von 29Page 15 of 29

Test Report No.

5. Test Results

5.1 Transmitter Requirement & Test Suites

5.1.1 Antenna Requirement

Requirement Use of approved antennas only

According to the manufacturer declaration, the EUT has an antenna with a directional gain of 1.9 dBi. The antenna is a chip antenna with no possibility of replacement with a non-approved antenna by the end-user. Therefore, the EUT is considered to comply with this provision. Refer to EUT photo for details.

Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

Seite 16 von 29Page 16 of 29

Test Report No.

5.1.2 Peak Output Power

Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Kind of Test Site

Shielded room

Test Setup

Test Instruments

Kind of	Manufacturer	Type	S/N	Calibration	Calibration	Test	Date
Equipment	Manufacturer	Type	3/14	Date	Due Date	From	Until
Power Meter	Anritsu	ML2495A	1901008	2021/3/24	2022/3/23	2021/10/18	2021/10/18
Power Sensor	Anritsu	MA2411B	1725269	2021/3/24	2022/3/23	2021/10/18	2021/10/18

Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 17 von 29Page 17 of 29

Test Report No.

Test Result

Peak Output Power

<GFSK>

Channel	Channel Frequency	Peak Output Power		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low Channel	2402	-0.02	0.995	125
Middle Channel	2441	-0.10	0.977	125
High Channel	2480	-0.18	0.959	125

<8DPSK>

Channel	Channel Frequency	Peak Output Power		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low Channel	2402	2.47	1.766	125
Middle Channel	2441	2.40	1.738	125
High Channel	2480	2.90	1.950	125

Average Power

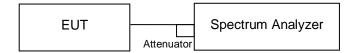
<GFSK>

Channel	Channel Frequency	Average Power	
	(MHz)	(dBm)	(mW)
Low Channel	2402	-0.09	0.979
Middle Channel	2441	-0.16	0.964
High Channel	2480	-0.25	0.944

<8DPSK>

Channel	Channel Frequency	Average Power		
	(MHz)	(dBm)	(mW)	
Low Channel	2402	-0.16	0.964	
Middle Channel	2441	-0.23	0.948	
High Channel	2480	-0.31	0.931	

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001


Seite 18 von 29Page 18 of 29

Test Report No.

5.1.3 20 dB Bandwidth and 99% Occupied Bandwidth

Kind of Test Site Shielded room

Test Setup

Test Instruments

Kind of	Manufacturer	Tuno	S/N	Calibration	Calibration	Test	Date
Equipment	Manufacturer	Type	3/IV	Date	Due Date	From	Until
Spectrum Analyzer	R&S	FSV40	101512	2021/1/29	2022/1/28	2021/10/18	2021/10/18

Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.
- e. The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

Test Results

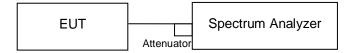
Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

Seite 19 von 29Page 19 of 29

Test Report No.

5.1.4 Conducted Spurious Emissions and Frequency Band Edges Measured in 100kHz Bandwidth


Limit

20dB (below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.)

Kind of Test Site

Shielded room

Test Setup

Test Instruments

Kind of	Manufacturer Type	/pe S/N C		Calibration	Test	Date	
Equipment	Mariuracturer	Type	3/11	Date	Due Date	From	Until
Spectrum Analyzer	R&S	FSV40	101512	2021/1/29	2022/1/28	2021/10/18	2021/10/18

Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

Test Results

Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

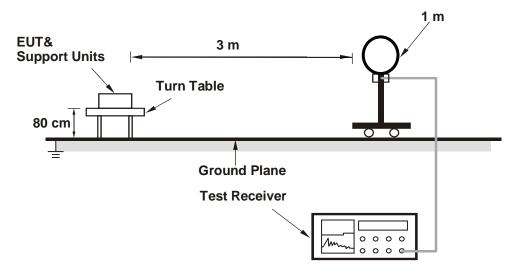
Seite 20 von 29 Page 20 of 29

Test Report No.

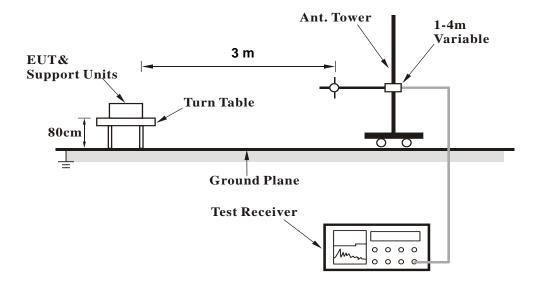
5.1.5 Radiated Spurious Emissions and Band Edges

Limit

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).


Emissions radiated outside the restricted and authorized frequency bands must either comply with the radiated emission limits specified for the restricted bands or in §15.247(d).

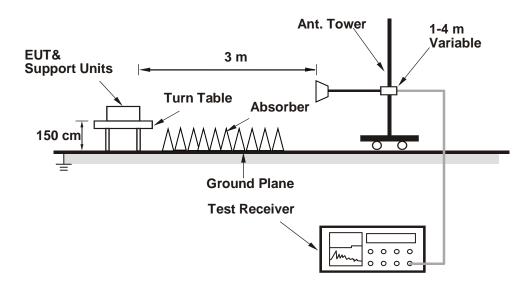
Kind of Test Site


3m Semi-Anechoic Chamber

Test Setup

<Radiated Emissions below 30 MHz>

<Radiated Emissions 30 MHz to 1 GHz>



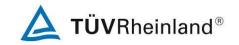
Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 21 von 29 Page 21 of 29

Test Report No.

<Radiated Emissions above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).


Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 22 von 29 Page 22 of 29

Test Report No.

Test Instruments

Kind of Equipment	Manufacturer	Туре	S/N	Calibration Date	Calibration Due Date
Signal Analyzer	R&S	FSV40	101508	2021/3/16	2022/3/15
Receiver	R&S	ESR7	102109	2021/3/16	2022/3/15
Bilog Antenna	SCHWARZBECK	VULB-9168	00951	2021/2/18	2022/2/17
Horn Antenna	ETS-Lindgren	3117	00218930	2020/12/1	2021/11/30
LF-AMP	Agilent	8447D	2944A10772	2021/2/18	2022/2/17
HF-AMP + AC source	EMCI	EMC051845SE	980633	2021/2/9	2022/2/8
HF-AMP + AC source	EMCI	EMC184045SE	980657	2021/2/1	2022/1/31
Horn Antenna	SCHWARZBECK	BBHA 9170	00887	2021/4/8	2022/4/7
Microwave Cable	HUBER+SUHNER	SUCOFLEX 104EA	800056/4EA	2021/3/17	2022/3/16
Microwave Cable	HUBER+SUHNER	SUCOFLEX 104	804680/4	2021/3/17	2022/3/16
Microwave Cable	HUBER+SUHNER	SUCOFLEX 104	MY37202/4	2021/3/17	2022/3/16
Microwave Cable	HUBER+SUHNER	SUCOFLEX 102EA	800898/2EA	2021/4/16	2022/4/15
Microwave Cable	HUBER+SUHNER	SUCOFLEX 102EA	800901/2EA	2021/4/16	2022/4/15
Microwave Cable	HUBER+SUHNER	SUCOFLEX 102EA	801027/2EA	2021/4/16	2022/4/15
Loop Antenna	SCHWARZBECK	FNZB1519B	00215	2021/9/17	2022/9/16

Prüfbericht - Nr.:

CN22NAWE (P15C-BT) 001

Seite 23 von 29 Page 23 of 29

Test Report No.

Test Procedures

For Radiated Emissions below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel (OPEN), perpendicular (CLOSE), and ground-parallel (GROUND) orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated Emissions above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 4. For fundamental frequency: The average value is "Average = Peak value + 20log(Duty cycle)
 Where the duty factor is calculated from following formula for DH5 packet type which has worst duty
 factor:
 - 20log (Duty cycle) = 20log (dwell time / 100ms) = 20log (3.125 / 100) = -30.1 dB
- 5. All modes of operation were investigated and the worst-case emissions are reported.

Prüfbericht - Nr.:	CN22NAWE (P15C-BT) 001
Test Report No.	,

worst-case Axis orientation is recorded in this test report.

Seite 24 von 29 Page 24 of 29

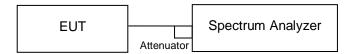
6. The Radiated Emissions testing was performed in the X(E1), Y(H) and Z(E2) axis orientation. The

Test Results

Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) Level (dBuV/m) = Reading (dBuV) + Factor (dB/m)

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 25 von 29Page 25 of 29


Test Report No.

5.1.6 Hopping Channel Separation

Limit ≥ 25 kHz or 2/3 of 20 dB bandwidth, whichever is greater

Kind of Test Site Shielded room

Test Setup

Test Instruments

Kind of	Manufacturer	Type	S/N	Calibration	Calibration	Test	Date
Equipment	Manufacturer	Type	3/IV	Date	Due Date	From	Until
Spectrum Analyzer	R&S	FSV40	101512	2021/1/29	2022/1/28	2021/10/18	2021/10/18

Test Procedure

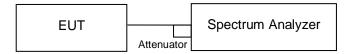
Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

Test Results

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 26 von 29 Page 26 of 29


Test Report No.

5.1.7 Number of Hopping Frequency

Limit ≥15 non-overlapping channels

Kind of Test Site Shielded room

Test Setup

Test Instruments

Kind of	Manufacturer Type	Type S/N		Calibration	Test	Date	
Equipment	iviariuraciurei	Type S/	3/11	Date	Due Date	From	Until
Spectrum Analyzer	R&S	FSV40	101512	2021/1/29	2022/1/28	2021/10/18	2021/10/18

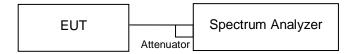
Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

Test Results

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001

Seite 27 von 29 Page 27 of 29


Test Report No.

5.1.8 Dwell Time

Limit 0.4s

Kind of Test Site Shielded room

Test Setup

Test Instruments

ſ	Kind of	Manufacturer	Type	C/NI	Calibration	Calibration	Test	Date
	Equipment	Manufacturer	туре	Type S/N	Date	Due Date	From	Until
	Spectrum Analyzer	R&S	FSV40	101512	2021/1/29	2022/1/28	2021/10/18	2021/10/18

Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

Test Results

Prüfbericht - Nr.:

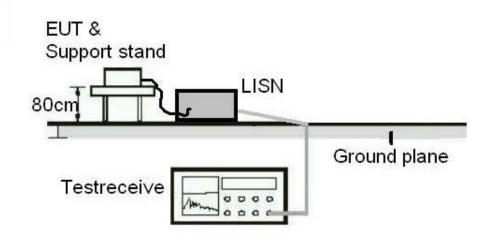
CN22NAWE (P15C-BT) 001

Seite 28 von 29 Page 28 of 29

Test Report No.

5.2 Mains Emission

5.2.1 Mains Conducted Emission


Limit

Mains Conducted Emission as defined in §15.207 must comply with the mains conducted emission limits.

Kind of Test Site

Shielded room

Test Setup

Test Instruments

Kind of Equipment	Manufacturer	Туре	S/N	Calibration Date	Calibration Due Date
RF Cable	N/A	N/A	EMC-003	2021/3/16	2022/3/15
Two-Line V- Network	Rohde & Schwarz	ENV216	101938	2021/9/23	2022/9/22
EMI Test Receiver	R&S	ESCI	1816063	2021/11/15	2022/11/14

Prüfbericht - Nr.: CN22NAWE (P15C-BT) 001
Test Report No.

Seite 29 von 29Page 29 of 29

Test Procedures

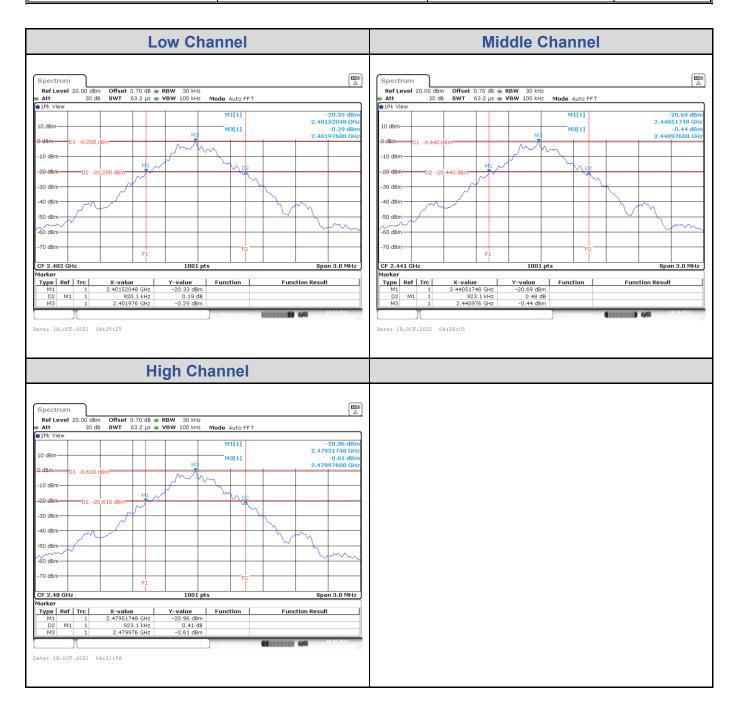
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz – 30 MHz.

Test Results

Prüfbericht - Nr.: Test Report No.

CN22NAWE (P15C-BT) 001

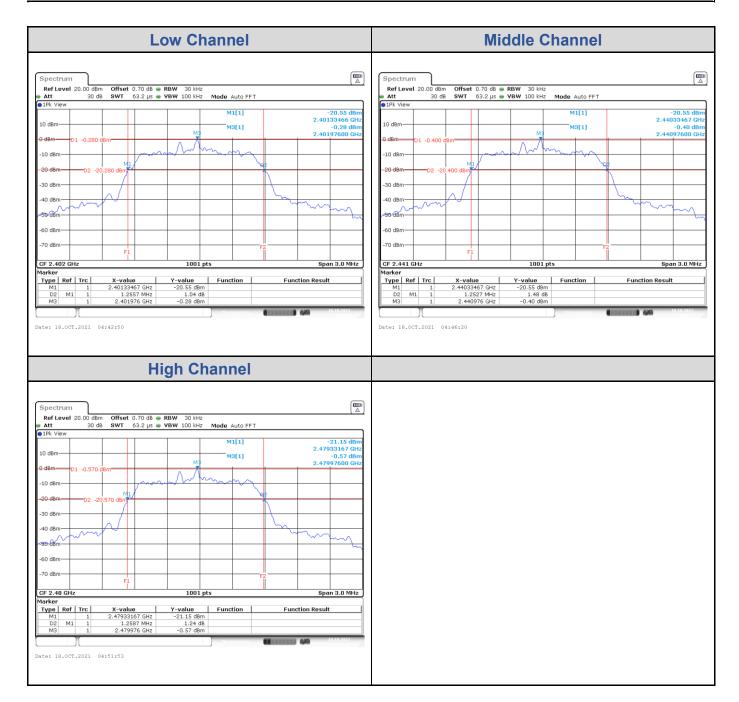

Seite A1 von A13
Page A1 of A13

Appendix A: Test Results of Conducted Test

Test Result of 20 dB Bandwidth

GFSK

Channel	Channel Frequency (MHz)	20 dB Bandwidth (kHz)	Result
Low Channel	2402	920.10	Pass
Middle Channel	2441	923.10	Pass
High Channel	2480	923.10	Pass


Test Report No.

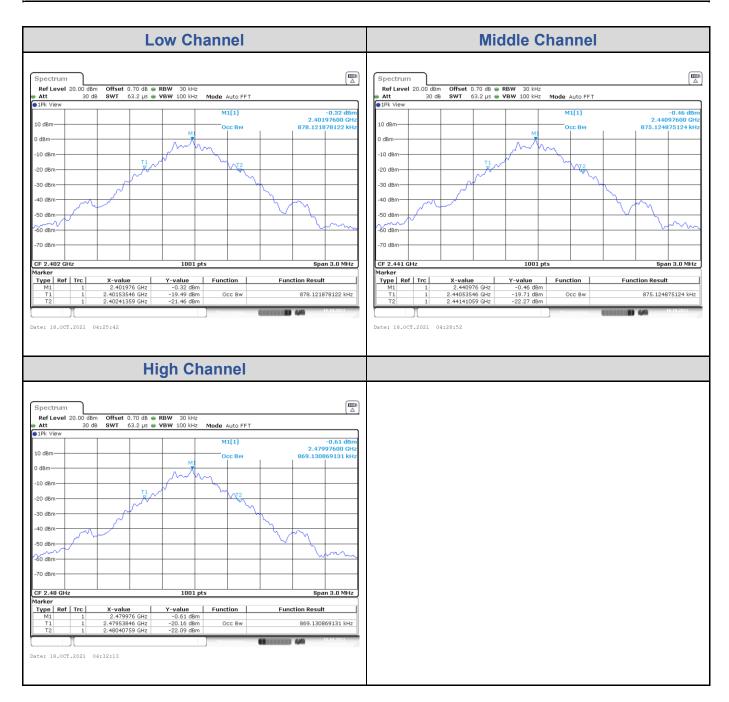
CN22NAWE (P15C-BT) 001

Seite A2 von A13
Page A2 of A13

8DPSK

Channel	Channel Frequency (MHz)	20 dB Bandwidth (kHz)	Result
Low Channel	2402	1255.70	Pass
Middle Channel	2441	1252.70	Pass
High Channel	2480	1258.70	Pass

Prüfbericht - Nr.: Test Report No.

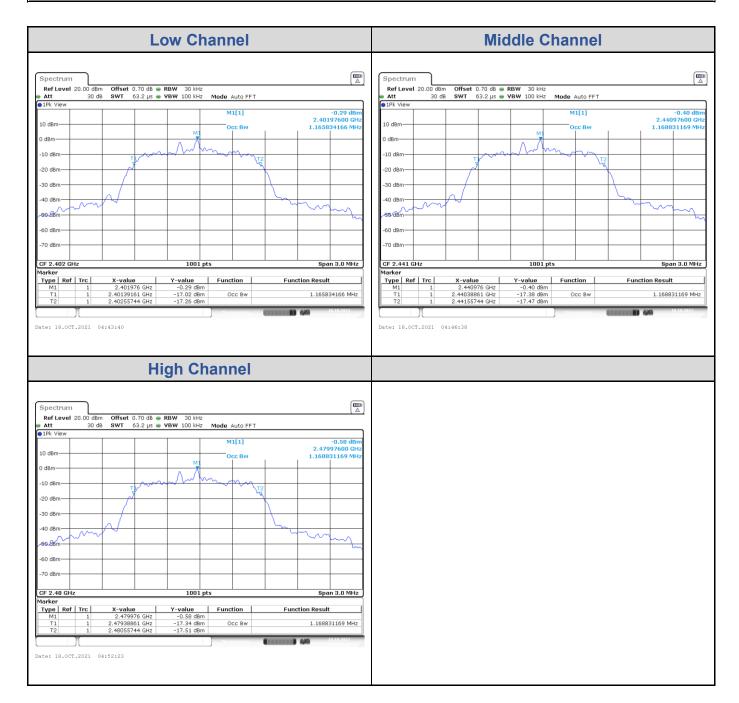

CN22NAWE (P15C-BT) 001

Seite A3 von A13 Page A3 of A13

Test Result of 99% Occupied Bandwidth

GFSK

Channel	Channel Frequency (MHz)	99% Bandwidth (kHz)
Low Channel	2402	878.12
Middle Channel	2441	875.12
High Channel	2480	869.13


Test Report No.

CN22NAWE (P15C-BT) 001

Seite A4 von A13
Page A4 of A13

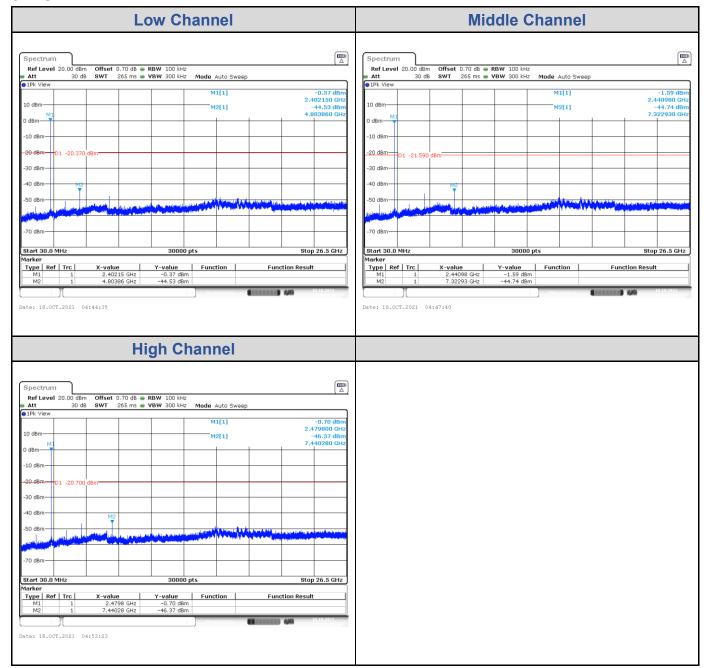
8DPSK

Channel	Channel Frequency (MHz)	99% Bandwidth (kHz)
Low Channel	2402	1165.83
Middle Channel	2441	1168.83
High Channel	2480	1168.83

CN22NAWE (P15C-BT) 001 Test Report No.

Seite A5 von A13 Page A5 of A13

Test Result of Conducted Spurious Emissions, Tx Mode GFSK

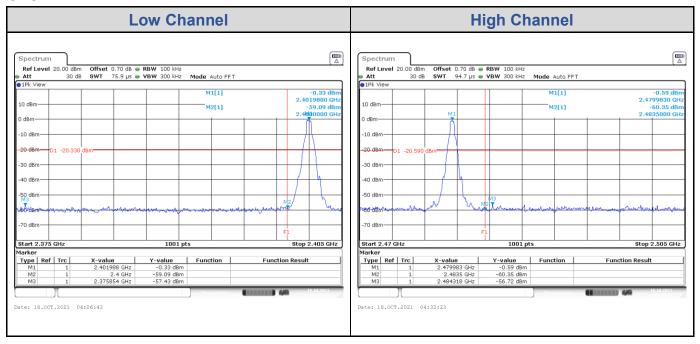


Test Report No.

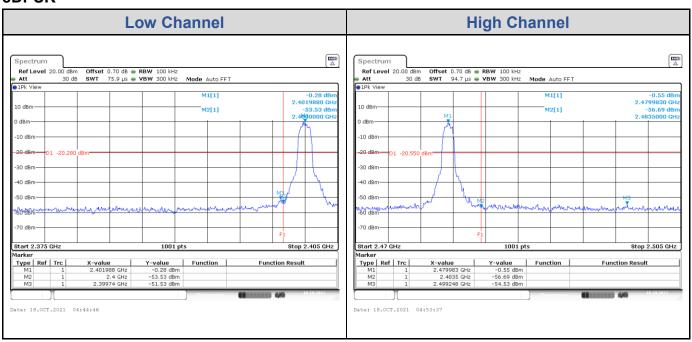
CN22NAWE (P15C-BT) 001

Seite A6 von A13
Page A6 of A13

8DPSK



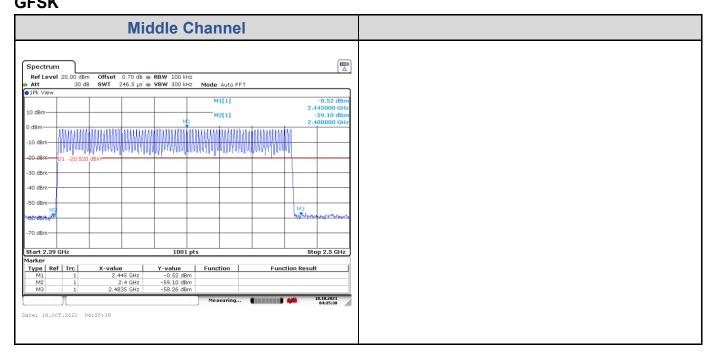
Prüfbericht - Nr.: Test Report No.

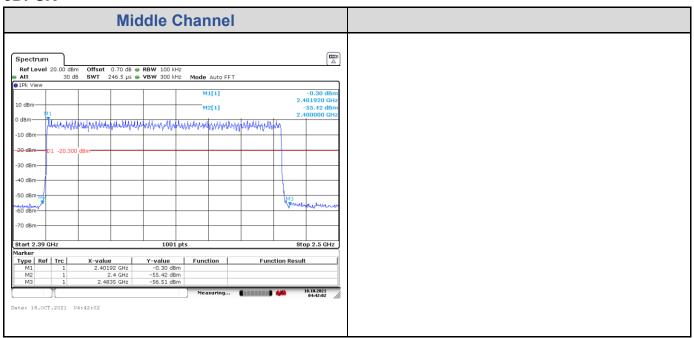

CN22NAWE (P15C-BT) 001

Seite A7 von A13
Page A7 of A13

Test Result of Conducted Band Edge, Tx Mode GFSK

8DPSK

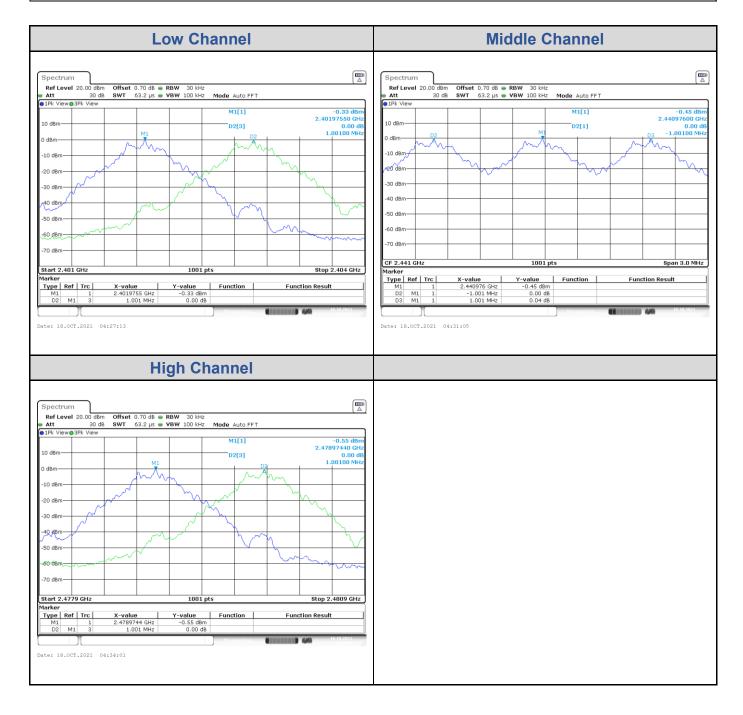



CN22NAWE (P15C-BT) 001

Seite A8 von A13
Page A8 of A13

Test Result of Hopping Band Edge GFSK

8DPSK

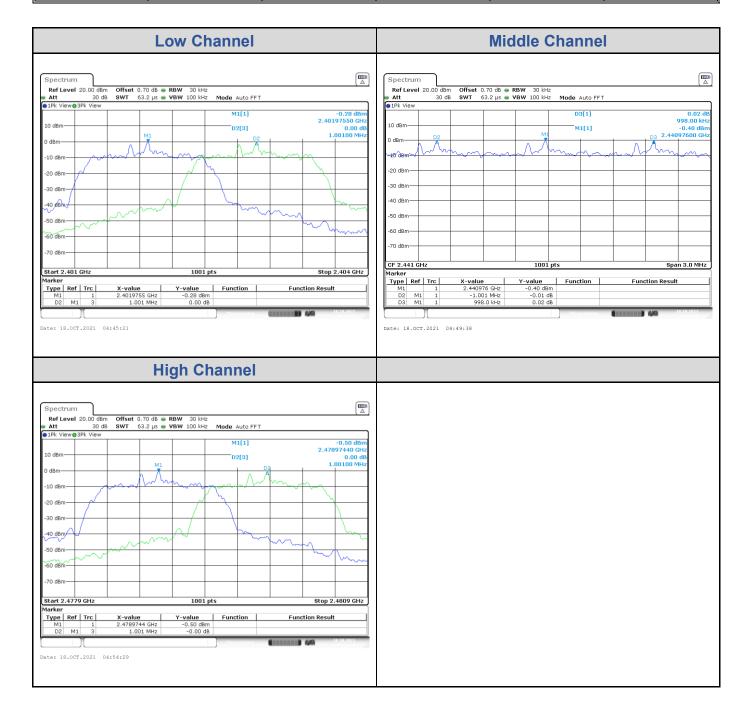


CN22NAWE (P15C-BT) 001

Seite A9 von A13
Page A9 of A13

Test Result of Hopping Channel Separation GFSK

Channel	Channel Frequency (MHz)	Adjacent Channel Separation (MHz)	20 dB Bandwidth (kHz)	Minimum Limit (MHz)	Result
0	2402	1.00	920.10	0.613	Pass
39	2441	1.00	923.10	0.615	Pass
78	2480	1.00	923.10	0.615	Pass

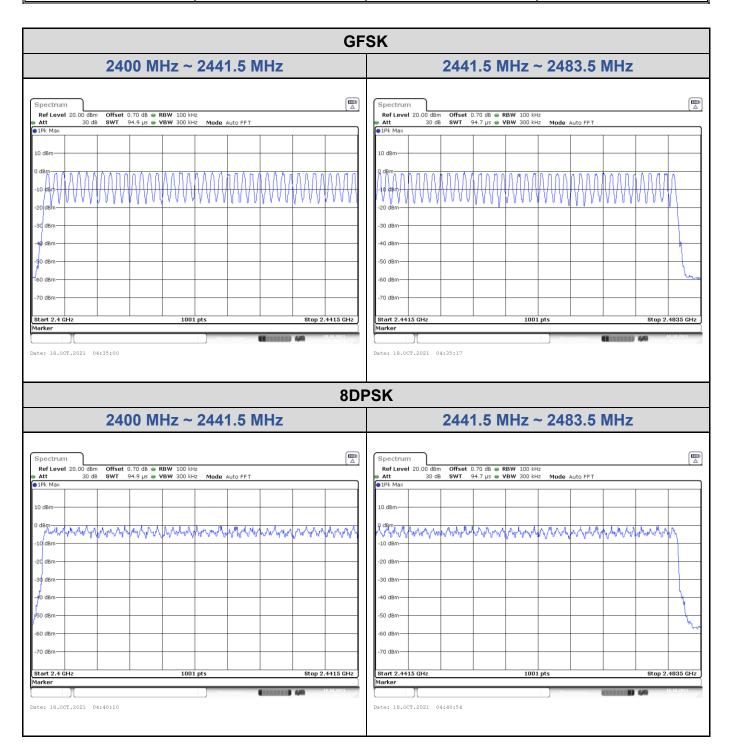

Test Report No.

CN22NAWE (P15C-BT) 001

Seite A10 von A13
Page A10 of A13

8DPSK

Channel	Channel Frequency (MHz)	Adjacent Channel Separation (MHz)	20 dB Bandwidth (kHz)	Minimum Limit (MHz)	Result
0	2402	1.00	1255.70	0.837	Pass
39	2441	1.00	1252.70	0.835	Pass
78	2480	1.00	1258.70	0.839	Pass

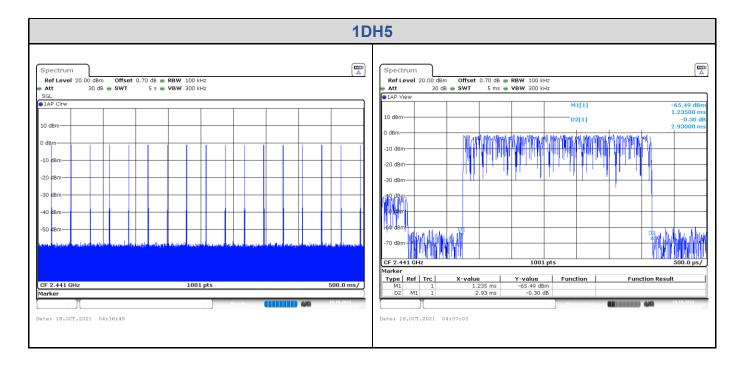

CN22NAWE (P15C-BT) 001

Seite A11 von A13

Page A11 of A13

Test Result of Number of Hopping Frequency

Frequency Range	Measured Quantity of Hopping Channel	Limit	Result
2400 to 2483.5 MHz	79	≥15	Pass

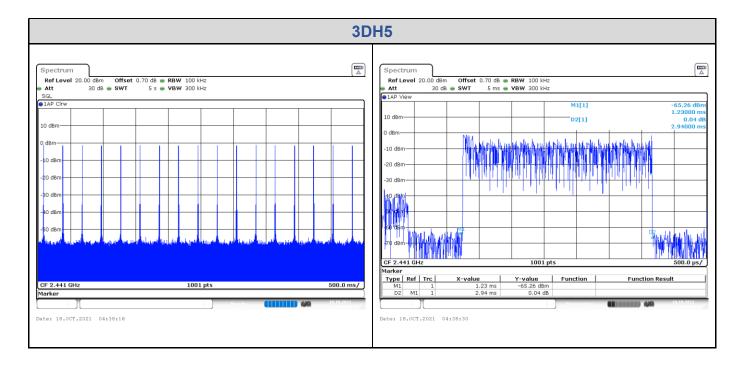

CN22NAWE (P15C-BT) 001

Seite A12 von A13
Page A12 of A13

Test Result of Dwell Time

GFSK

Data Mode	Number of transfer in a 31.6 (79Hopping*0.4s)	Package transfer time (msec)	Dwell time (s)	Limit (s)	Result
1DH5	17 (times / 5 sec) * 6.32 = 107.44 times	2.93	0.314799	0.4	Pass

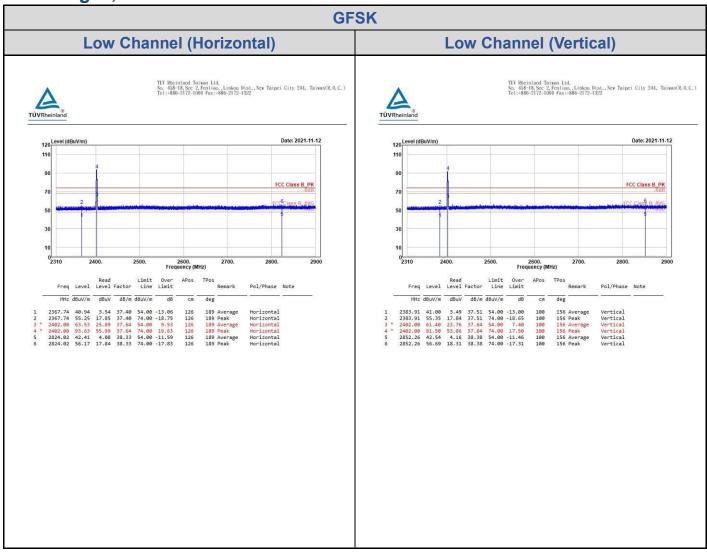


CN22NAWE (P15C-BT) 001

Seite A13 von A13
Page A13 of A13

8DPSK

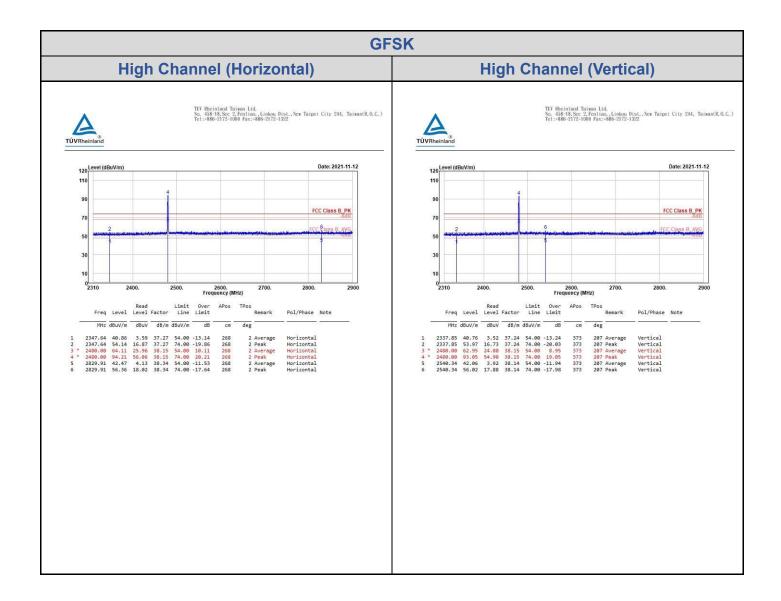
Data Mode	Number of transfer in a 31.6 (79Hopping*0.4s)	Package transfer time (msec)	Dwell time (s)	Limit (s)	Result
3DH5	17 (times / 5 sec) * 6.32 = 107.44 times	2.94	0.315874	0.4	Pass


Test Report No.

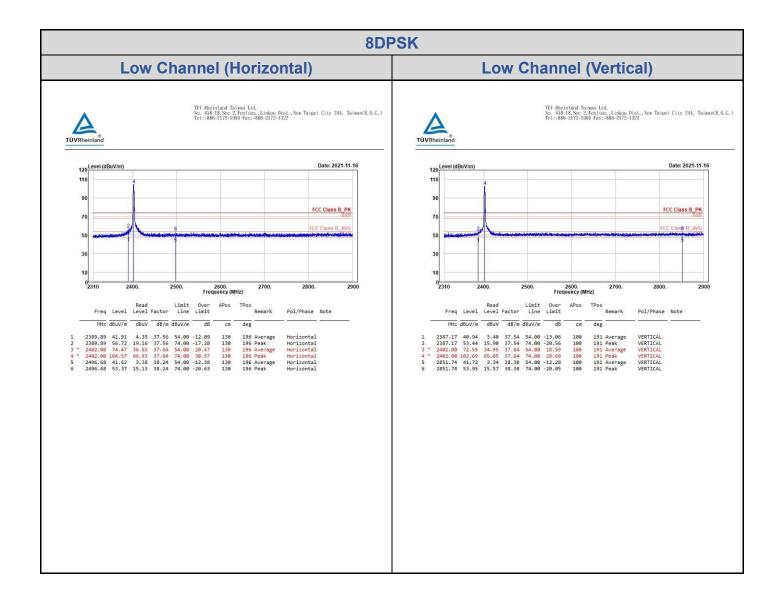
CN22NAWE (P15C-BT) 001

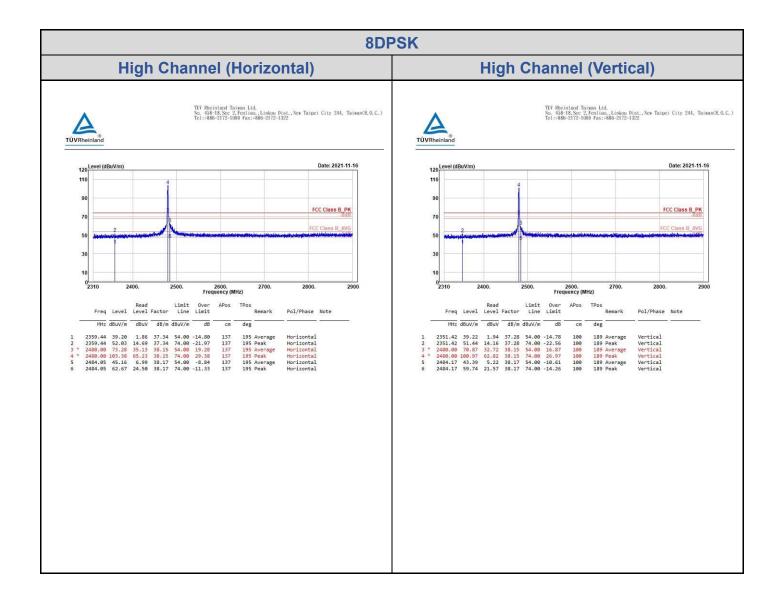
Appendix B: Test Results of Radiated Spurious Emissions & Mains

Radiated Emission Test


Band Edges, 2.31GHz ~ 2.9GHz

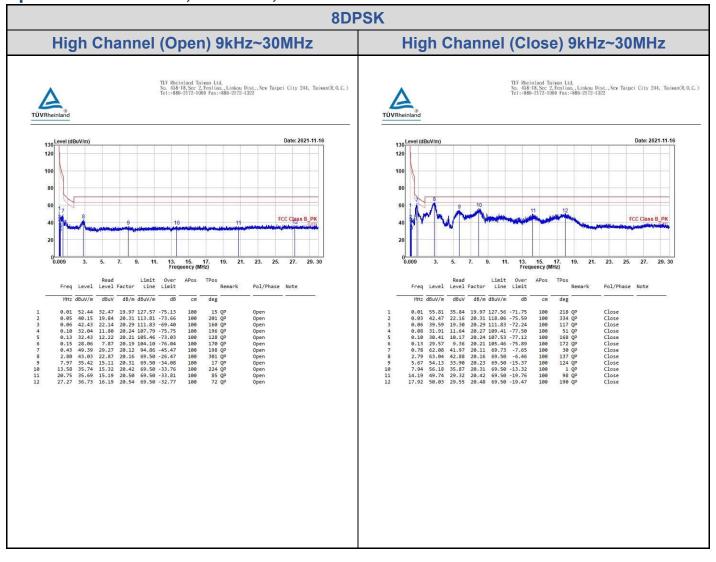
CN22NAWE (P15C-BT) 001


Seite B2 von B13
Page B2 of B13


CN22NAWE (P15C-BT) 001

Seite B3 von B13
Page B3 of B13

CN22NAWE (P15C-BT) 001

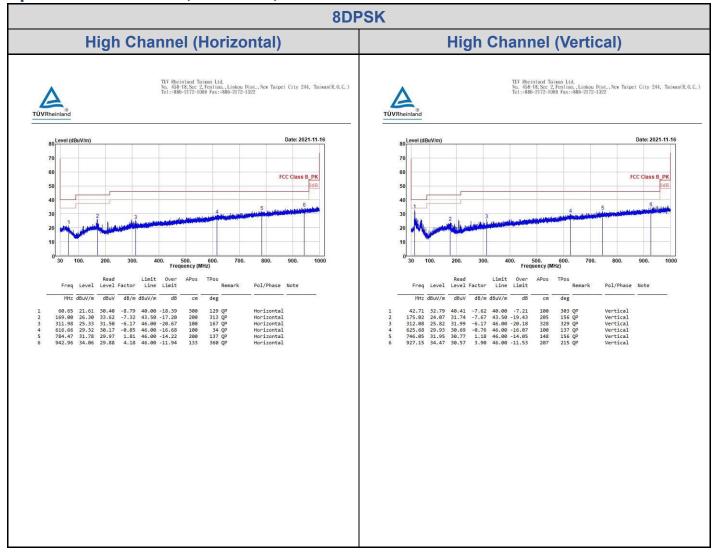



Test Report No.

CN22NAWE (P15C-BT) 001

Seite B5 von B13
Page B5 of B13

Spurious Emissions, Tx Mode, 9kHz ~ 30MHz

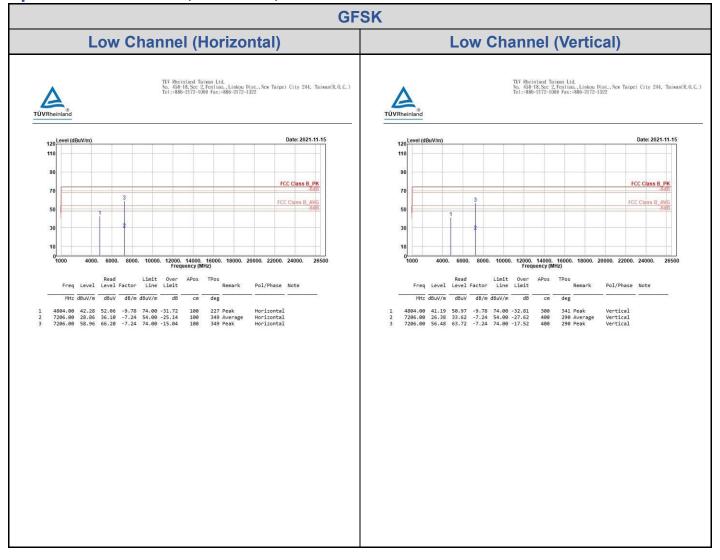


CN22NAWE (P15C-BT) 001

Seite B6 von B13

Page B6 of B13

Spurious Emissions, Tx Mode, 30MHz ~ 1GHz

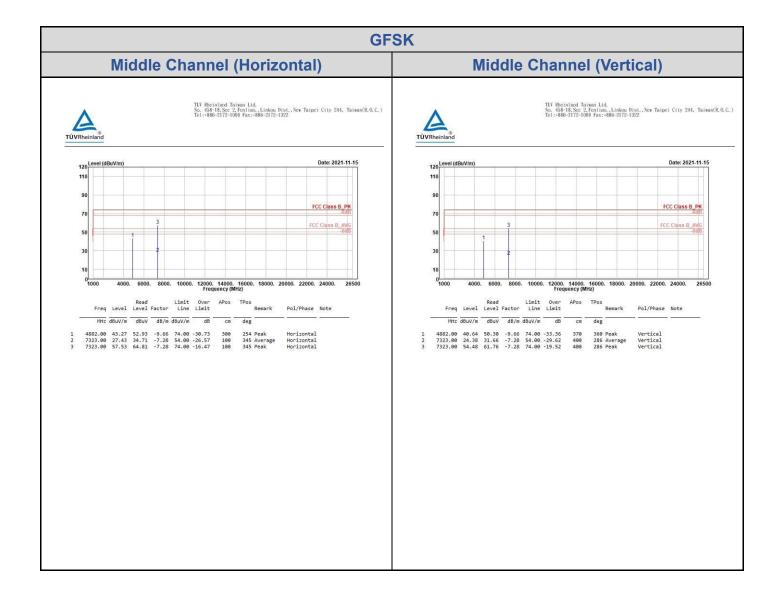


Test Report No.

CN22NAWE (P15C-BT) 001

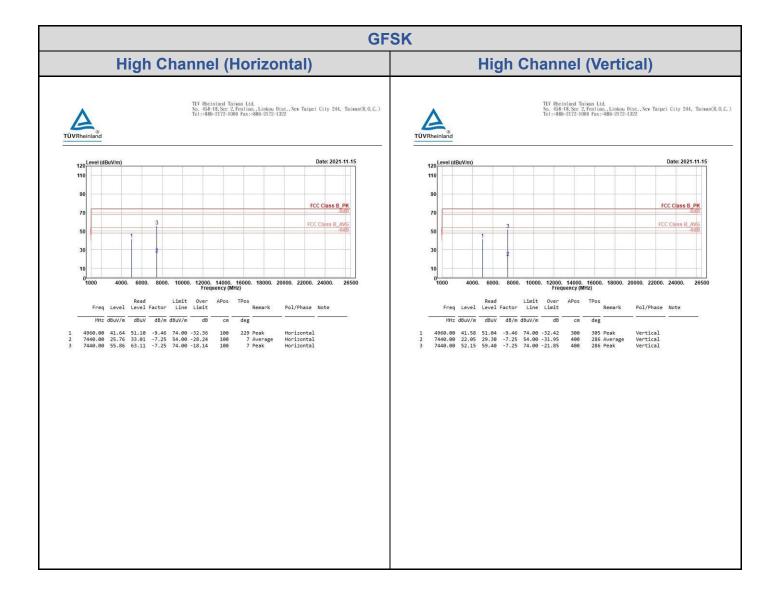
Seite B7 von B13
Page B7 of B13

Spurious Emissions, Tx Mode, 1GHz ~ 26.5GHz



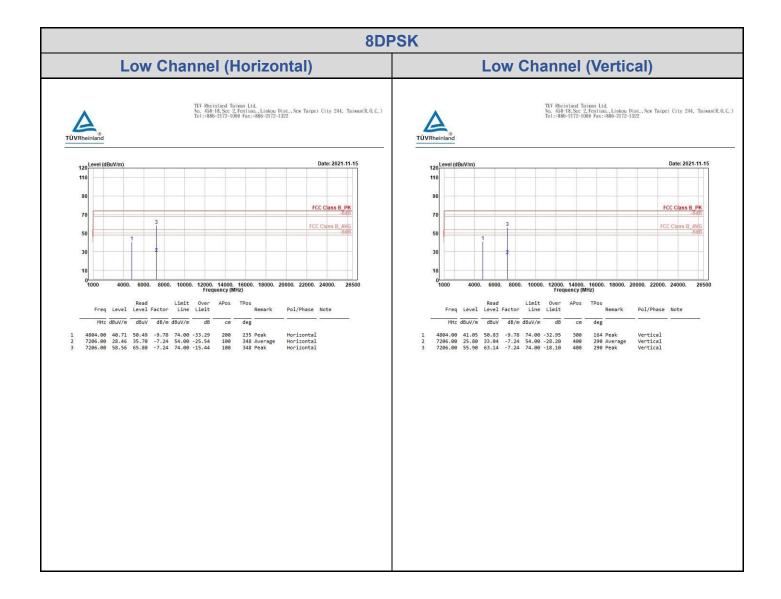
Test Report No.

CN22NAWE (P15C-BT) 001


Seite B8 von B13
Page B8 of B13

CN22NAWE (P15C-BT) 001

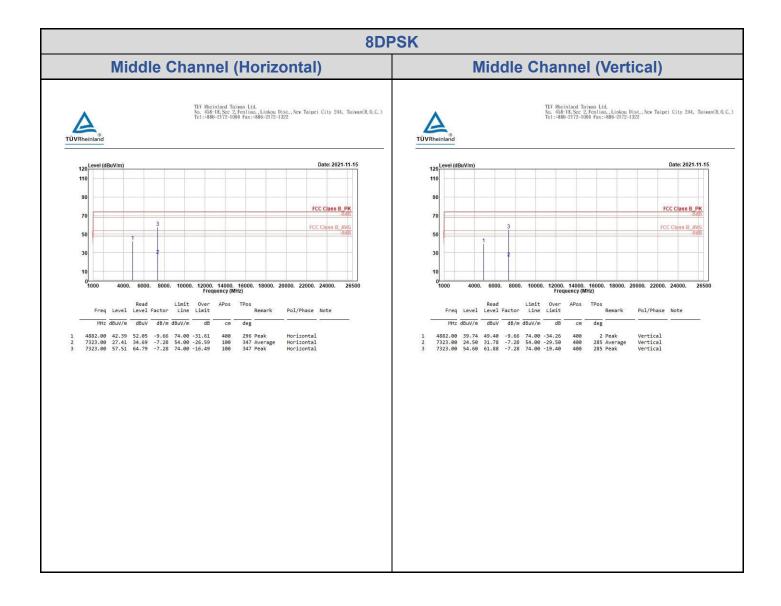
Page B9 of B13



Test Report No.

CN22NAWE (P15C-BT) 001

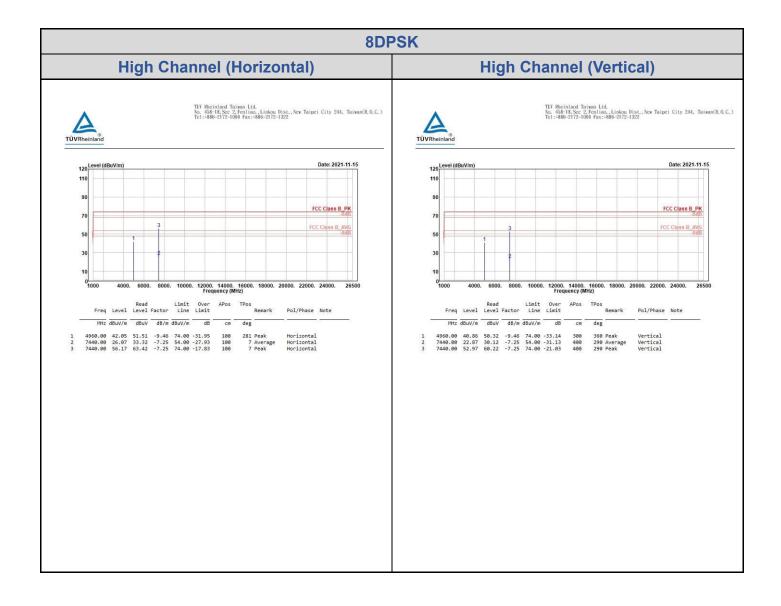
Seite B10 von B13
Page B10 of B13



Test Report No.

CN22NAWE (P15C-BT) 001

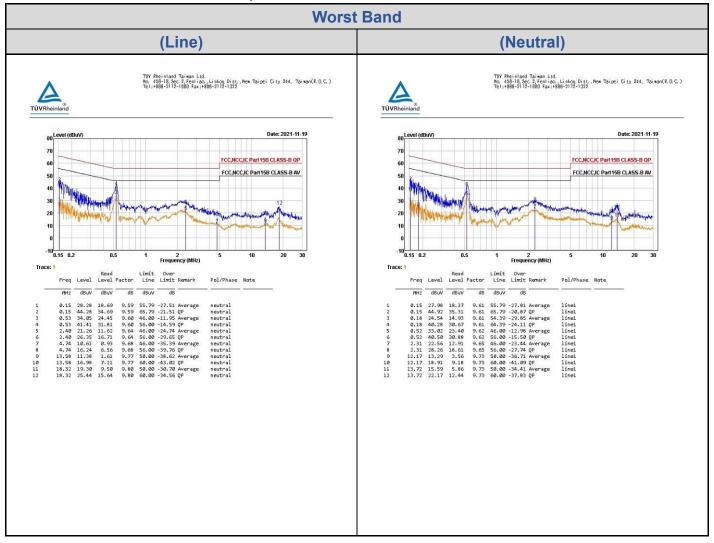
Seite B11 von B13
Page B11 of B13



Test Report No.

CN22NAWE (P15C-BT) 001

Seite B12 von B13 Page B12 of B13



CN22NAWE (P15C-BT) 001

Seite B13 von B13
Page B13 of B13

Mains Conducted Emission, 150kHz ~ 30MHz

