

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

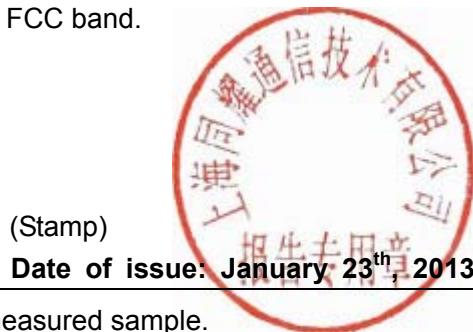
Page 1 of 101

OET 65

TEST REPORT

Product Name	Tablet MID
Model	B7916H3
Trademark	QBEX
FCC ID	XFM-B7916H3
Client	QBEX ELECTRONICS CORP

TA Technology (Shanghai) Co., Ltd.


TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 2 of 101

GENERAL SUMMARY

Product Name	Tablet MID	Model	B7916H3
Report No.	RXA1212-1125SAR01R2	FCC ID	XFM-B7916H3
Client	QBEX ELECTRONICS CORP		
Manufacturer	QBEX ELECTRONICS CORP		
Reference Standard(s)	<p>IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz.</p> <p>SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.</p> <p>FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices</p> <p>KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01 SAR Measurement Requirements for 100 MHz to 6 GHz</p> <p>KDB 447498 D01 Mobile Portable RF Exposure v05: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p>KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA</p> <p>KDB 941225 D03 Test Reduction GSM_GPRS_EDGE v01 Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE</p>		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for FCC band.</p> <p>General Judgment: Pass</p>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中
 Director

Revised by 凌致宏
 SAR Manager

Performed by 许红梅
 SAR Engineer

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the Test Report.....	5
1.2. Testing Laboratory	5
1.3. Applicant Information	6
1.4. Manufacturer Information.....	6
1.5. Information of EUT.....	7
1.6. The Maximum Report SAR _{1g} Values	8
1.7. Test Date	8
2. SAR Measurements System Configuration.....	9
2.1. SAR Measurement Set-up	9
2.2. DASY5 E-field Probe System	10
2.2.1. ES3DV3 Probe Specification	10
2.2.2. E-field Probe Calibration	11
2.3. Other Test Equipment	11
2.3.1. Device Holder for Transmitters	11
2.3.2. Phantom	12
2.4. Scanning Procedure	12
2.5. Data Storage and Evaluation	14
2.5.1. Data Storage.....	14
2.5.2. Data Evaluation by SEMCAD	14
3. Laboratory Environment.....	16
4. Tissue-equivalent Liquid	17
4.1. Tissue-equivalent Liquid Ingredients.....	17
4.2. Tissue-equivalent Liquid Properties	18
5. System Check.....	19
5.1. Description of System Check	19
5.2. System Check Results.....	20
6. Operational Conditions during Test	21
6.1. General Description of Test Procedures	21
6.2. Test Configuration	21
6.2.1. GSM Test Configuration.....	21
6.2.2. UMTS Test Configuration	22
6.2.3. HSDPA Test Configuration	22
6.3. Measurement Variability.....	25
6.4. Test Positions.....	26
7. Test Results	27
7.1. Conducted Power Results	27
7.2. SAR Test Results	29
7.2.1. GSM 850 (GPRS/EGPRS).....	29
7.2.2. GSM 1900 (GPRS/EGPRS).....	31

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 4 of 101

7.2.3. UMTS Band V (WCDMA/HSDPA)	33
7.2.4. Bluetooth/WiFi Function.....	34
8. 700MHz to 3GHz Measurement Uncertainty.....	37
9. Main Test Instruments	39
ANNEX A: Test Layout	40
ANNEX B: System Check Results	42
ANNEX C: Graph Results	45
ANNEX D: Probe ES3DV3 Calibration Certificate.....	66
ANNEX E: D835V2 Dipole Calibration Certificate	77
ANNEX F: D1900V2 Dipole Calibration Certificate	85
ANNEX G: DAE4 Calibration Certificate.....	93
ANNEX H: The EUT Appearances and Test Configuration.....	98

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 5 of 101

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Yang Weizhong
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 6 of 101

1.3. Applicant Information

Company: QBEX ELECTRONICS CORP
Address: 1606 NW 84th AVE, Miami, FL 33126, U.S.A.
City: /
Postal Code: /
Country: USA

1.4. Manufacturer Information

Company: QBEX ELECTRONICS CORP
Address: 1606 NW 84th AVE, Miami, FL 33126, U.S.A.
City: /
Postal Code: /
Country: USA

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information

Device Type:	Portable Device
Exposure Category:	Uncontrolled Environment / General Population
State of Sample:	Prototype Unit
Product Name:	Tablet MID
IMEI:	/
Hardware Version:	Windows 2000,Windows XP 32/64,Windows Vista 32/64, WinCE, Linux
Software Version:	Android 4.0
Antenna Type:	Internal Antenna

Device Operating Configurations :

Supporting Mode(s):	GSM 850/GSM 1900 /UMTS Band V; (tested) GSM 900/GSM 1800/WiFi (802.11b/g/n HT20)/Bluetooth; (untested)		
Test Modulation:	(GSM)GMSK; (UMTS)QPSK		
Device Class:	B		
HSDPA UE Category:	8		
GPRS Multislot Class(12):	Max Number of Timeslots in Uplink		4
	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
EGPRS Multislot Class(12):	Max Number of Timeslots in Uplink		4
	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
Operating Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)
	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8
	UMTS Band V	826.4 ~ 846.6	871.4 ~ 891.6
Power Class:	GSM 850: 4		
	GSM 1900: 1		
	UMTS Band V: 3		
Power Level:	GSM 850: tested with power level 5		
	GSM 1900: tested with power level 0		
	UMTS Band V: tested with power control all up bits		
Test Channel: (Low - Middle - High)	128 - 190 - 251	(GSM 850)	(tested)
	512 - 661 - 810	(GSM 1900)	(tested)
	4132 - 4183 - 4233	(UMTS Band V)	(tested)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 8 of 101

AE1:Battery

Model: PL3864105

Manufacturer: YAOAN BATTERY POTECH(SHENZHEN)CO.,LTD

SN: 00026

Equipment Under Test (EUT) is a Tablet MID. The EUT has a GSM/UMTS antenna that is used for Tx/Rx, and the other is BT/WIFI antenna that can be used for Tx/Rx. The detail about EUT is in chapter 1.5 in this report. SAR tested for GSM 850, GSM 1900 and UMTS Band V.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum Report SAR_{1g} Values

Body Worn Configuration

Mode	Test Position	Channel	Measurement Result		Tune-up procedures MAX Average Power(dBm)	1g Average Limit 1.6 W/kg
			Average Conducted Power(dBm)	1g Average (W/kg)		
4Txslots EGPRS850	Back Side	High/251	27.00	0.753	28.99	1.191
4Txslots GPRS1900	Back Side	Low/512	23.94	1.150	23.99	1.163
UMTS Band V	Back Side	Low/4132	22.52	0.426	23	0.476

1.7. Test Date

The test performed from December 24, 2012 to December 25, 2012 and January 6, 2013.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

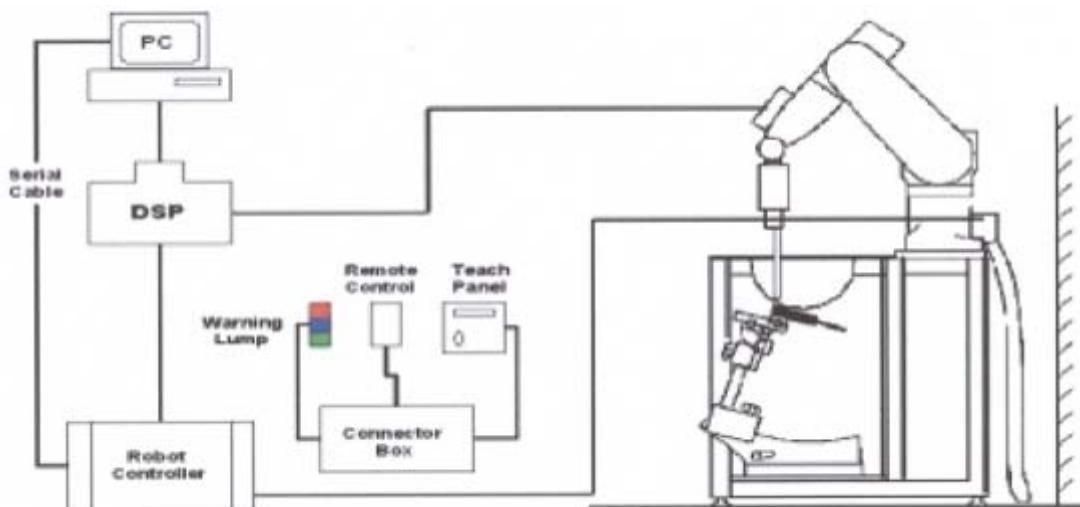


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 2.ES3DV3 E-field Probe

Figure 3. ES3DV3 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

Shell Thickness	2±0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	190×600×0 mm (H x L x W)

Figure 4.ELI4 Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the EUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 13 of 101

- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 5x5x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 8mm resolution amounting to 175 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 5x5x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	Conv _{F_i}
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 15 of 101

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

$d_c p_i$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

• = conductivity in [mho/m] or [Siemens/m]

• = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 1: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 17 of 101

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz		
Water		52.5	
Sugar		45	
Salt		1.4	
Preventol		0.1	
Cellulose		1.0	
Dielectric Parameters Target Value	f=835MHz	$\epsilon=55.2$	$\sigma=0.97$

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water		69.91	
Glycol monobutyl		29.96	
Salt		0.13	
Dielectric Parameters Target Value	f=1900MHz	$\epsilon=53.3$	$\sigma=1.52$

TA Technology (Shanghai) Co., Ltd.
Test Report

4.2. Tissue-equivalent Liquid Properties

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp °C	Limit
		ϵ_r	$\sigma(\text{s/m})$		
835MHz (body)	Target value	55.20	0.97	22.0	Deviation Within ±5%
	Measurement value 2012-12-24	55.10	0.99	21.5	
	Deviation	0.18%	2.06%	/	
1900MHz (body)	Target value	53.30	1.52	22.0	Deviation Within ±5%
	Measurement value 2013-1-6	52.10	1.54	21.5	
	Deviation	2.25%	1.32%	/	
	Measurement value 2012-12-25	52.15	1.52	21.5	
	Deviation	2.16%	0	/	

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 4.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

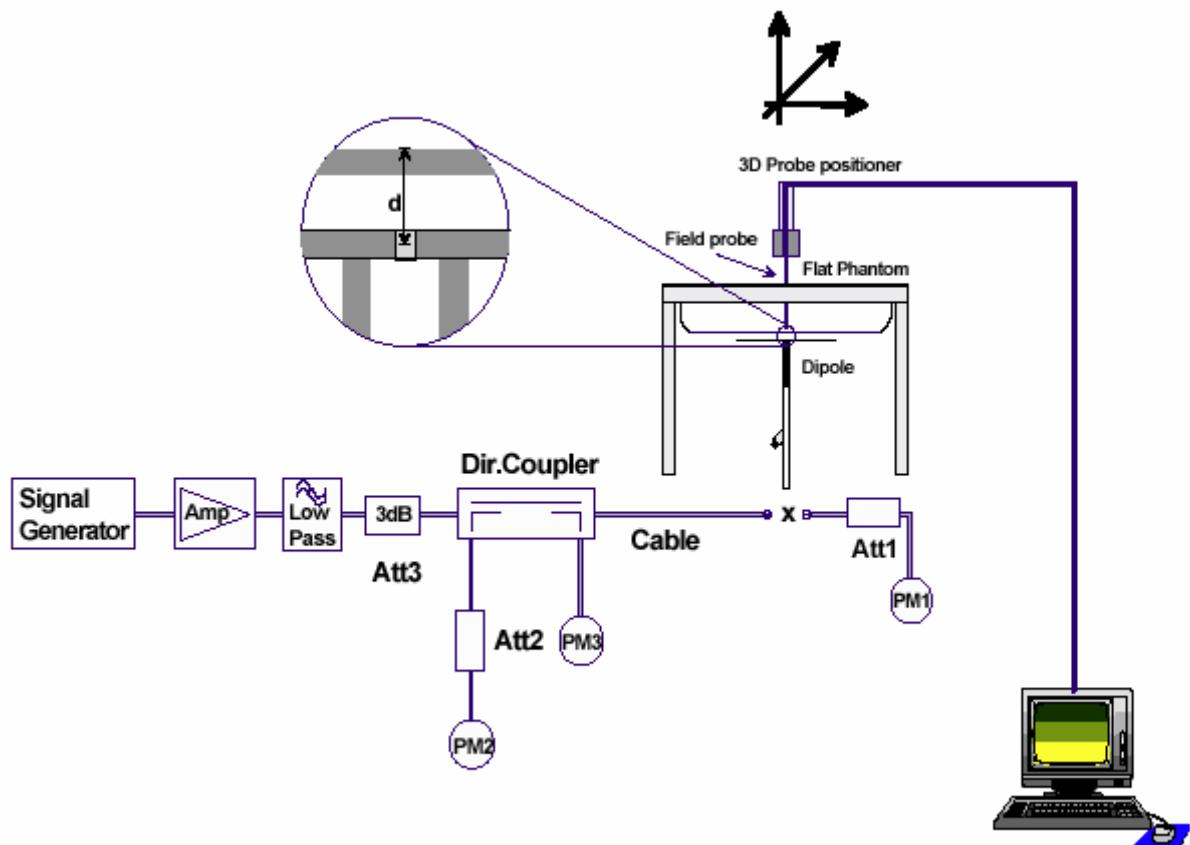


Figure 5 System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 20 of 101

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d020				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/26/2011	-25.1	/	48.7	/
8/25/2012	-24.3	3.2 %	50.6	1.9Ω

Dipole D1900V2 SN: 5d060				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/31/2011	-21.3	/	47.3	/
8/30/2012	-20.9	1.9%	45.9	1.4Ω

5.2. System Check Results

Table 4: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% Deviation)
		ε _r	σ(s/m)				
835MHz	2012-12-24	55.10	0.99	21.5	2.52	10.08	9.46 (8.51~10.41)
1900MHz	2013-1-6	52.10	1.54	21.5	9.80	39.20	41.70 (37.53~45.87)
	2012-12-25	52.15	1.52	21.5	9.82	39.28	

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate.

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radiofrequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, to 512, 661 and 810 in the case of GSM 1900, to 4132, 4183 and 4233 in the case of UMTS Band V. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Configuration

6.2.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5; the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 5: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

6.2.2. UMTS Test Configuration

6.2.2.1. WCDMA Test Configuration

As the body SAR tests for WCDMA Band V, we established the radio link through call processing.

The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all up bits
- 2) Test loop Mode 1

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

Table 6: The configurations for the DPCCH and DPDCH₁

	Channel Bit Rate(kbps)	Channel Symbol Rate(ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
DPDCH ₁	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640

SAR is tested with 12.2kps RMC and not required for other spreading codes (64,144, and 384 kbps RMC) and multiple DPDCH_n, because the maximum output power for each of these other configurations<0.25dB higher than 12.2kbps RMC and the multiple DPDCH_n is not applicable for the EUT.

6.2.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the “Body SAR Measurements” procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be

TA Technology (Shanghai) Co., Ltd.
Test Report

configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c, β_d), and HS-DPCCH power offset parameters($\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI}$)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 7: Subtests for UMTS Release 5 HSDPA

Sub-set	β_c	β_d	β_d (SF)	β_c/β_d	β_{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI}=8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A, and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK}=8$ ($A_{hs}=30/15$) with $\beta_{hs}=30/15 * \beta_c$, and $\Delta_{CQI}=7$ ($A_{hs}=24/15$) with $\beta_{hs}=24/15 * \beta_c$.

Note3: CM=1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Table 8: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (N_{INF})	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	/	0.67
Number of Physical Channel Codes	Codes	5
Modulation	/	QPSK

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 9: HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum Transport Bits/HS-DSCH	Total Channel
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 10: UE maximum output powers with HS-DPCCH (Release 5 Only)

Ratio of β_c to β_d for all values of β_{hs}	Power Class 3		Power Class 4	
	Power (dBm)	Tolerance (dB)	Power (dBm)	Tolerance (dB)
1/15 ≤ β_c/β_d ≤ 12/15	+24	+1/-3	+21	+2/-2
13/15 ≤ β_c/β_d ≤ 15/8	+23	+2/-3	+20	+3/-2
15/7 ≤ β_c/β_d ≤ 15/0	+22	+3/-3	+19	+4/-2

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

6.4. Test Positions

For tablets with a display or overall diagonal dimension 22 cm > 20 cm, for each antenna, SAR is only required for the edge with the most conservative exposure condition.

- Test Position 1: The back side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX H Picture 5)
SAR is required for GSM/WCDMA antenna, the bottom face (back of the device) is required to be tested touching the flat phantom.
- Test Position 2: The top side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX H Picture 6)
SAR is required for GSM/WCDMA antenna, since it is the most conservative exposure conditions of the edge. (Please see ANNEX H Picture 4)
- Test Position 3: The bottom side of the EUT towards and directed tightly to touch the bottom of the flat phantom.
SAR is not required for GSM/WCDMA antenna; this is not the most conservative antenna-to-user distance at edge mode. SAR is required only the edge with the most conservative exposure conditions. (Please see ANNEX H Picture 4)
- Test Position 4: The left side of the EUT towards and directed tightly to touch the bottom of the flat phantom.
SAR is not required for GSM/WCDMA antenna; this is not the most conservative antenna-to-user distance at edge mode. SAR is required only the edge with the most conservative exposure conditions .(Please see ANNEX H Picture 4)
- Test Position 5: The right side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX H Picture 7)
SAR is required for GSM/WCDMA antenna, since it is the most conservative exposure conditions of the edge. (Please see ANNEX H Picture 4)

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Conducted Power Results

Table 11: Conducted Power Measurement Results

GSM 850		Burst Conducted Power(dBm)				Average power(dBm)		
		Channel 128	Channel 190	Channel 251		Channel 128	Channel 190	Channel 251
GPRS (GMSK)	1Txslot	31.57	31.35	31.12	-9.03dB	22.54	22.32	22.09
	2Txslots	31.53	31.28	31.07	-6.02dB	25.51	25.26	25.05
	3Txslots	31.46	31.22	30.97	-4.26dB	27.20	26.96	26.71
	4Txslots	30.52	30.26	30.01	-3.01dB	27.51	27.25	27.00
EGPRS (GMSK)	1Txslot	31.57	31.35	31.12	-9.03dB	22.54	22.32	22.09
	2Txslots	31.53	31.28	31.07	-6.02dB	25.51	25.26	25.05
	3Txslots	31.46	31.22	30.97	-4.26dB	27.20	26.96	26.71
	4Txslots	30.52	30.26	30.01	-3.01dB	27.51	27.25	27.00
EGPRS (8PSK)	1Txslot	25.79	25.50	25.31	-9.03dB	16.76	16.47	16.28
	2Txslots	25.78	25.49	25.30	-6.02dB	19.76	19.47	19.28
	3Txslots	25.78	25.49	25.29	-4.26dB	21.52	21.23	21.03
	4Txslots	25.25	25.00	24.78	-3.01dB	22.24	21.99	21.77
GSM 1900		Burst Conducted Power(dBm)				Average power(dBm)		
		Channel 512	Channel 661	Channel 810		Channel 512	Channel 661	Channel 810
GPRS (GMSK)	1Txslot	30.31	30.20	29.77	-9.03dB	21.28	21.17	20.74
	2Txslots	28.06	27.90	27.78	-6.02dB	22.04	21.88	21.76
	3Txslots	27.96	27.83	27.75	-4.26dB	23.70	23.57	23.49
	4Txslots	26.95	26.84	26.73	-3.01dB	23.94	23.83	23.72
EGPRS (GMSK)	1Txslot	30.25	30.21	29.73	-9.03dB	21.22	21.18	20.70
	2Txslots	28.02	27.89	27.72	-6.02dB	21.67	21.87	21.70
	3Txslots	27.93	27.81	27.69	-4.26dB	23.67	23.55	23.43
	4Txslots	26.91	26.80	26.64	-3.01dB	23.90	23.79	23.63
EGPRS (8PSK)	1Txslot	26.30	26.20	26.04	-9.03dB	17.27	17.17	17.01
	2Txslots	25.62	25.15	25.00	-6.02dB	19.60	19.13	18.98
	3Txslots	24.25	24.13	24.00	-4.26dB	19.99	19.87	19.74
	4Txslots	22.77	22.64	22.48	-3.01dB	19.76	19.63	19.47

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 28 of 101

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

UMTS Band V		Conducted Power (dBm)		
		Channel 4132	Channel 4183	Channel 4233
RMC	12.2kbps RMC	22.52	22.04	22.42
	64kbps RMC	22.49	21.97	22.43
	144kbps RMC	22.42	22.01	22.34
	384kbps RMC	22.40	21.98	22.31
HSDPA	Sub - Test 1	22.53	22.06	22.40
	Sub - Test 2	22.43	22.00	22.41
	Sub - Test 3	22.45	21.99	22.35
	Sub - Test 4	22.44	21.97	22.32

7.2. SAR Test Results

7.2.1. GSM 850 (GPRS/EGPRS)

Table 12: SAR Values [GSM 850 (GPRS/EGPRS)]

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 13: Report SAR Values [GSM 850 (GPRS/EGPRS)]

Mode	Test Position	Channel	Measurement Result		Tune-up procedures MAX Average Power(dBm)	1g Average Limit 1.6 W/kg Report SAR Result (W/kg)
			Average Conducted Power(dBm)	1g Average (W/kg)		
4Txslots GPRS850	Back Side	High/251	27.00	0.710	27.99	0.892
4Txslots EGPRS850	Back Side	High/251	27.00	0.753	28.99	1.191

TA Technology (Shanghai) Co., Ltd.

Test Report

7.2.2. GSM 1900 (GPRS/EGPRS)

Table 14: SAR Values [GSM 1900(GPRS/EGPRS)]

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 15: SAR Measurement Variability Results [GSM 1900 (GPRS/EGPRS)]

Test Position	Timeslots	Channel	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)	Graph Results
Test Position 1	4 timeslots	Low/512	1.150	1.150	1.0	NA	NA	Figure 21

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~10% from the 1-g SAR limit).
3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 16: Report SAR Values [GSM 1900 (GPRS/EGPRS)]

Mode	Test Position	Channel	Measurement Result		Tune-up procedures MAX Average Power(dBm)	1g Average Limit 1.6 W/kg Report SAR Result (W/kg)
			Average Conducted Power(dBm)	1g Average (W/kg)		
4Txslots GPRS1900	Back Side	Low/512	23.94	1.150	23.99	1.163

TA Technology (Shanghai) Co., Ltd.
Test Report

7.2.3. UMTS Band V (WCDMA/HSDPA)

Table 17: SAR Values [UMTS Band V (WCDMA/HSDPA)]

Limit of SAR		10 g Average	1g Average	Power Drift	Graph Results
		2.0 W/kg	1.6 W/kg	± 0.21 dB	
Test Case Of Body		Measurement Result (W/kg)		Power Drift (dB)	
Test Position	Channel	10 g Average	1 g Average		
Test Case Position of GPRS(Distance 0mm)					
Test Position 1	High/4233	0.147	0.415	0.001	Figure 22
	Middle/4183	0.095	0.271	0.001	Figure 23
	Low/4132	0.148	0.426	0.001	Figure 24
Test Position 2	Middle/4183	0.008	0.020	0.106	Figure 25
Test Position 3	N/A	N/A	N/A	N/A	N/A
Test Position 4	N/A	N/A	N/A	N/A	N/A
Test Position 5	Middle/4183	0.003	0.004	0.118	Figure 26

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Upper and lower frequencies were measured at the worst position.
3. The SAR test shall be performed at the middle frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
4. WCDMA mode were tested under RMC 12.2kbps with HSPA (HSDPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA) SAR for body was not required since the average output power of the HSPA (HSDPA) subtests was not more than 0.25 dB higher than the RMC level and the maximum SAR for 12.2kbps RMC was less than 75% SAR limit.
5. NA: According to KDB 447498 D01 4)b)ii)(2), for each antenna, SAR is only required for the edge with the most conservative exposure condition. Therefore, these positions are not required for SAR measurement.

Table 18: Report SAR Values [UMTS Band V (WCDMA/HSDPA)]

Mode	Test Position	Channel	Measurement Result		Tune-up procedures	1g Average Limit 1.6 W/kg
			Average Conducted Power(dBm)	1g Average (W/kg)		MAX Average Power(dBm)
UMTS Band V	Back Side	Low/4132	22.52	0.426	23	0.476

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 34 of 101

7.2.4. Bluetooth/WiFi Function

The location of the antennas inside tablet is shown in Annex H:

The output power of BT antenna is as following:

Channel	Ch 0 (2402 MHz)	Ch 39 (2441 MHz)	Ch 78 (2480 MHz)
GFSK Test result (dBm)	2.10	1.89	1.82
EDR2M-4_DQPSK Test result (dBm)	1.15	1.20	1.02
EDR3M-8DPSK Test result (dBm)	0.85	0.56	0.70

The output power of WIFI antenna is as following:

Mode	Channel	Data rate (Mbps)	PK Power (dBm)	AV Power (dBm)
11b	1	1	9.11	5.90
		2	9.10	5.49
		5.5	9.05	5.18
		11	9.00	5.25
	6	1	9.03	5.58
		2	9.04	5.50
		5.5	9.00	5.30
		11	8.95	5.26
	11	1	9.10	5.12
		2	9.08	5.08
		5.5	9.05	5.20
		11	9.10	5.51
11g	1	6	7.80	4.80
		9	7.55	4.87
		12	7.80	4.86
		18	7.70	4.59
		24	7.75	4.68
		36	7.36	4.54
		48	7.60	4.69
		54	7.50	4.47
	6	6	7.60	4.25
		9	7.47	4.47
		12	7.78	4.41

TA Technology (Shanghai) Co., Ltd.
Test Report

	11	18	7.73	4.44
		24	7.40	4.50
		36	7.54	4.44
		48	7.58	4.19
		54	7.50	4.20
		6	7.47	4.36
		9	7.43	4.29
		12	7.57	4.28
		18	7.41	4.36
		24	7.54	4.41
11n	1	36	7.24	4.13
		48	7.36	4.24
		54	7.40	4.30
		MCS 0	6.85	3.10
		MCS 1	6.80	3.26
		MCS 2	6.55	3.17
		MCS 3	6.45	3.45
		MCS 4	6.56	3.02
	6	MCS 5	6.60	3.47
		MCS 6	6.78	3.10
		MCS 7	6.60	3.20
		MCS 0	6.85	3.02
		MCS 1	6.79	3.21
		MCS 2	6.65	3.17
		MCS 3	6.64	3.20
		MCS 4	6.85	3.28
	11	MCS 5	6.74	3.26
		MCS 6	6.77	3.25
		MCS 7	6.69	3.20
		MCS 0	6.79	3.26
		MCS 1	6.80	3.28
		MCS 2	6.75	3.10
		MCS 3	6.59	3.20
		MCS 4	6.60	3.29

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 36 of 101

		MCS 5	6.50	3.10
		MCS 6	6.64	3.20
		MCS 7	6.33	3.30

Stand-alone SAR

According to the output power and the test distance (When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion), we can draw the conclusion that:

Stand-alone SAR are not required for BT, because $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] * [\sqrt{f(\text{GHz})}] = (2.239 / 5) * (\sqrt{2.441}) = 0.7 \leq 3.0$

Stand-alone SAR are not required for WIFI, because $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] * [\sqrt{f(\text{GHz})}] = (3.981 / 5) * (\sqrt{2.437}) = 1.2 \leq 3.0$

Simultaneous Transmission SAR

About BT and GSM/UMTS Antenna,

$\text{SAR}_{\text{Max.BT}} = (\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) * [\sqrt{f(\text{GHz})} / 7.5] \text{ W/kg} = (2.239 / 5) * [(\sqrt{2.441}) / 7.5] = 0.1 \text{ W/kg}$

$\text{SAR}_{\text{Max.GSM/UMTS}} = 1.191 \text{ W/kg}$

$\text{SAR}_{\text{Max.BT}} + \text{SAR}_{\text{Max.GSM/UMTS}} = 0.1 \text{ W/kg} + 1.191 \text{ W/kg} = 1.291 \text{ W/kg} \leq 1.6 \text{ W/kg}$, So the Simultaneous SAR are not required for BT and GSM/UMTS antenna.

About WIFI and GSM/UMTS Antenna,

$\text{SAR}_{\text{Max.WIFI}} = (\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) * [\sqrt{f(\text{GHz})} / 7.5] \text{ W/kg} = (3.981 / 5) * [(\sqrt{2.437}) / 7.5] = 0.2 \text{ W/kg}$

$\text{SAR}_{\text{Max.GSM/UMTS}} = 1.191 \text{ W/kg}$

$\text{SAR}_{\text{Max.WIFI}} + \text{SAR}_{\text{Max.GSM/UMTS}} = 0.2 \text{ W/kg} + 1.191 \text{ W/kg} = 1.391 \text{ W/kg} \leq 1.6 \text{ W/kg}$, So the Simultaneous SAR are not required for WIFI and GSM/UMTS antenna.

About BT and WIFI Antenna,

$\text{SAR}_{\text{Max.BT}} = (\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) * [\sqrt{f(\text{GHz})} / 7.5] \text{ W/kg} = (2.239 / 5) * [(\sqrt{2.441}) / 7.5] = 0.1 \text{ W/kg}$

$\text{SAR}_{\text{Max.WIFI}} = (\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) * [\sqrt{f(\text{GHz})} / 7.5] \text{ W/kg} = (3.981 / 5) * [(\sqrt{2.437}) / 7.5] = 0.2 \text{ W/kg}$

$\text{SAR}_{\text{Max.BT}} + \text{SAR}_{\text{Max.WIFI}} = 0.1 \text{ W/kg} + 0.2 \text{ W/kg} = 0.3 \text{ W/kg} \leq 1.6 \text{ W/kg}$, So the Simultaneous SAR are not required for BT and WIFI antenna.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 37 of 101

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Type	Uncertainty Value (%)	Probability Distribution	k	c _i	Standard uncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	-probe calibration	B	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	B	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	B	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	B	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	B	1.0	N	1	1	1.0	∞
10	-response time	B	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	B	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	B	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	B	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test sample Related								
17	-Test Sample Positioning	A	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	A	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 38 of 101

21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	2.5	N	1	0.6	1.5	9
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.50		
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$	N	k=2	23.00		

TA Technology (Shanghai) Co., Ltd.
Test Report

9. Main Test Instruments

Table 19: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year
05	Power sensor	E9327A	US40441622	September 23, 2012	One year
06	Signal Generator	HP 8341B	2730A00804	September 10, 2012	One year
07	Dual directional coupler	778D-012	50519	March 26, 2012	One year
08	Amplifier	IXA-020	0401	No Calibration Requested	
09	BTS	E5515C	MY48360988	December 1, 2012	One year
10	E-field Probe	ES3DV3	3189	June 22, 2012	One year
11	DAE	DAE4	1317	January 23, 2012	One year
12	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Two years
13	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Two years
14	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
15	Hygrothermograph	WS-1	64591	September 27, 2012	One year

*****END OF REPORT*****

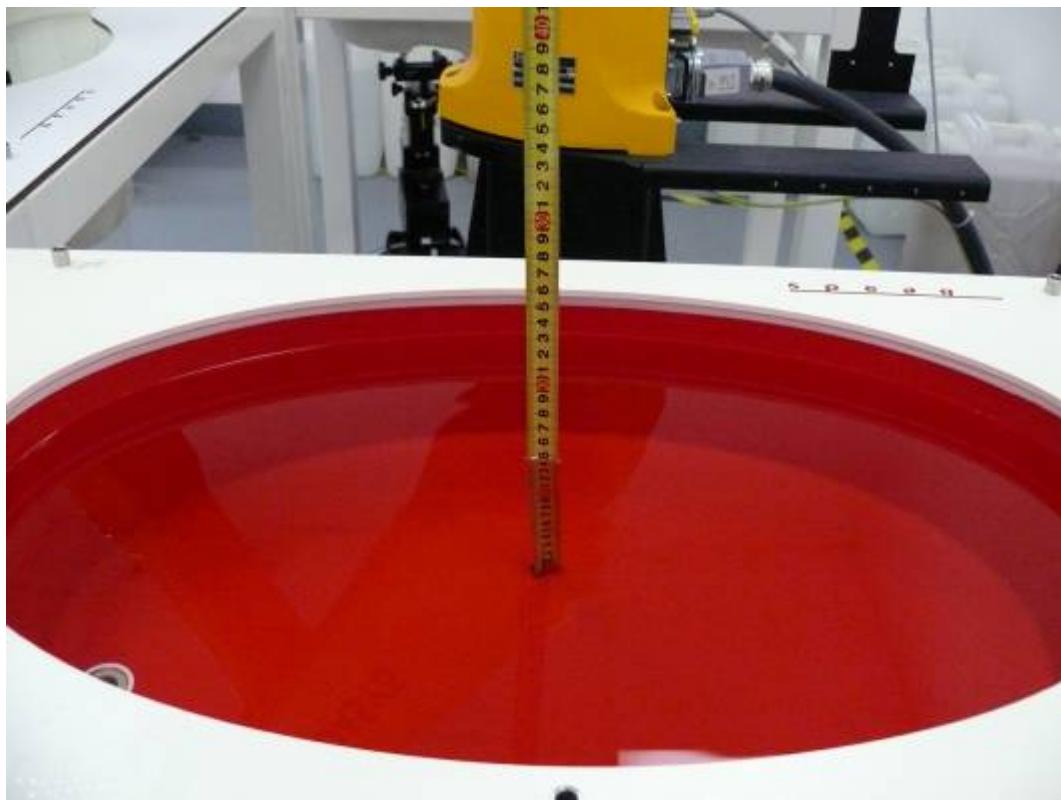
**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 40 of 101

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout


**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 41 of 101

Picture 2: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)

Picture 3: Liquid depth in the Flat Phantom (1900 MHz, 15.2cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 12/24/2012 12:45:20 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.10$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

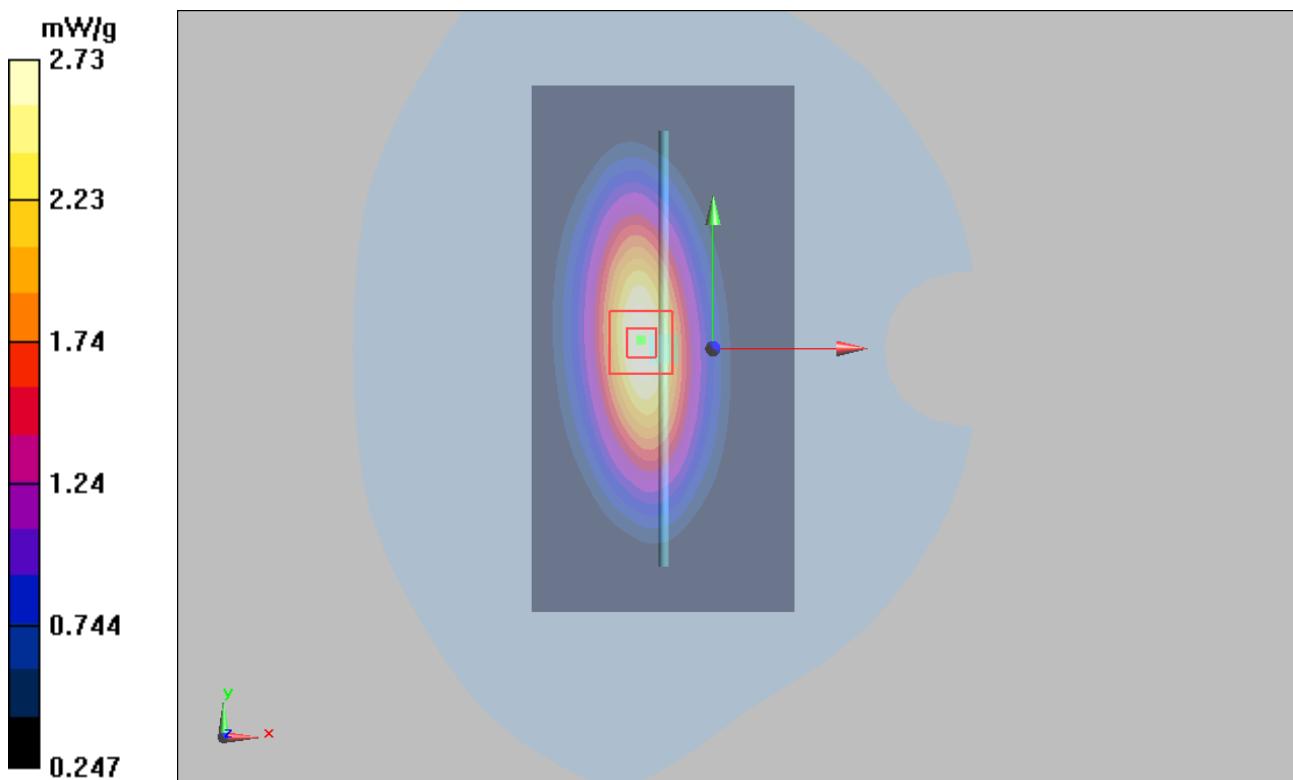


Figure 6 System Performance Check 835MHz 250mW

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 1/6/2013 4:25:19 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.10$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.78 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.78 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 17.63 W/kg

SAR(1 g) = 9.80 mW/g; SAR(10 g) = 5.23 mW/g

Maximum value of SAR (measured) = 10.97 mW/g

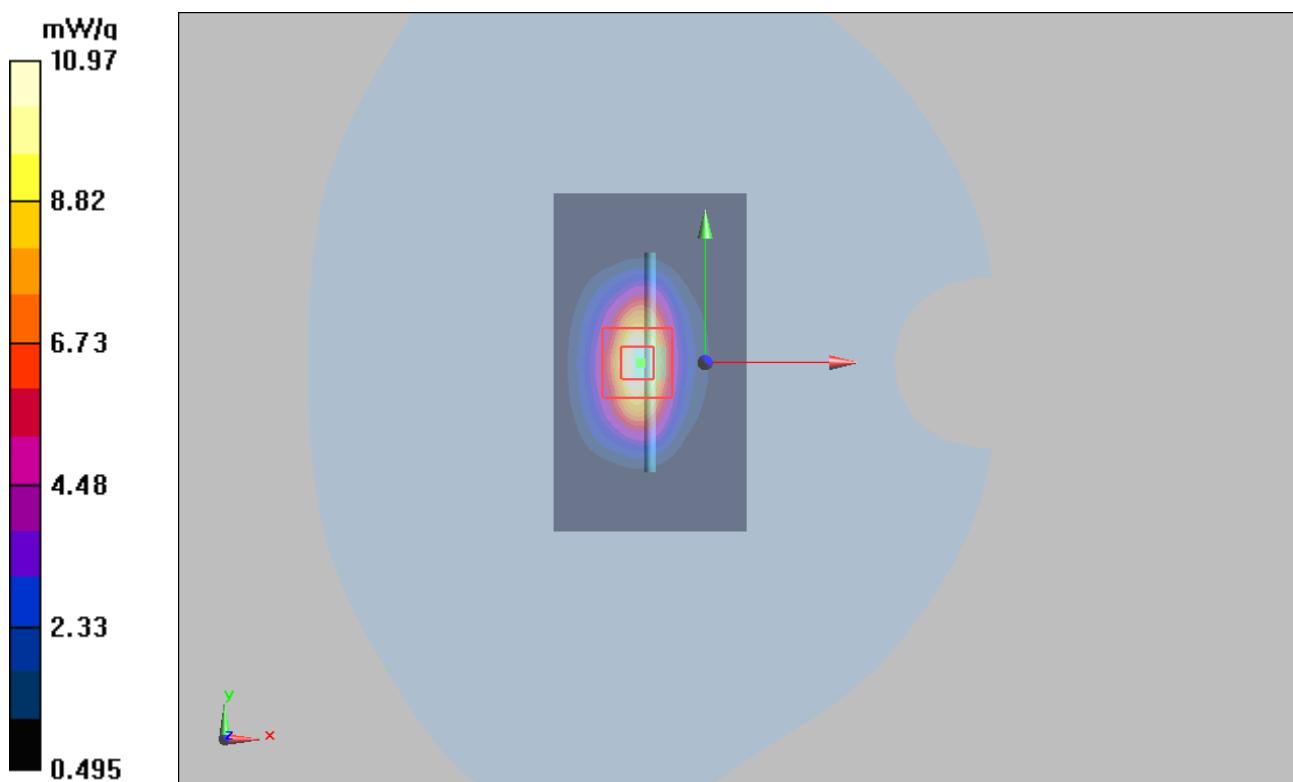


Figure 7 System Performance Check 1900MHz 250mW

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 44 of 101

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 12/25/2012 2:00:19 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 52.15$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 11 mW/g

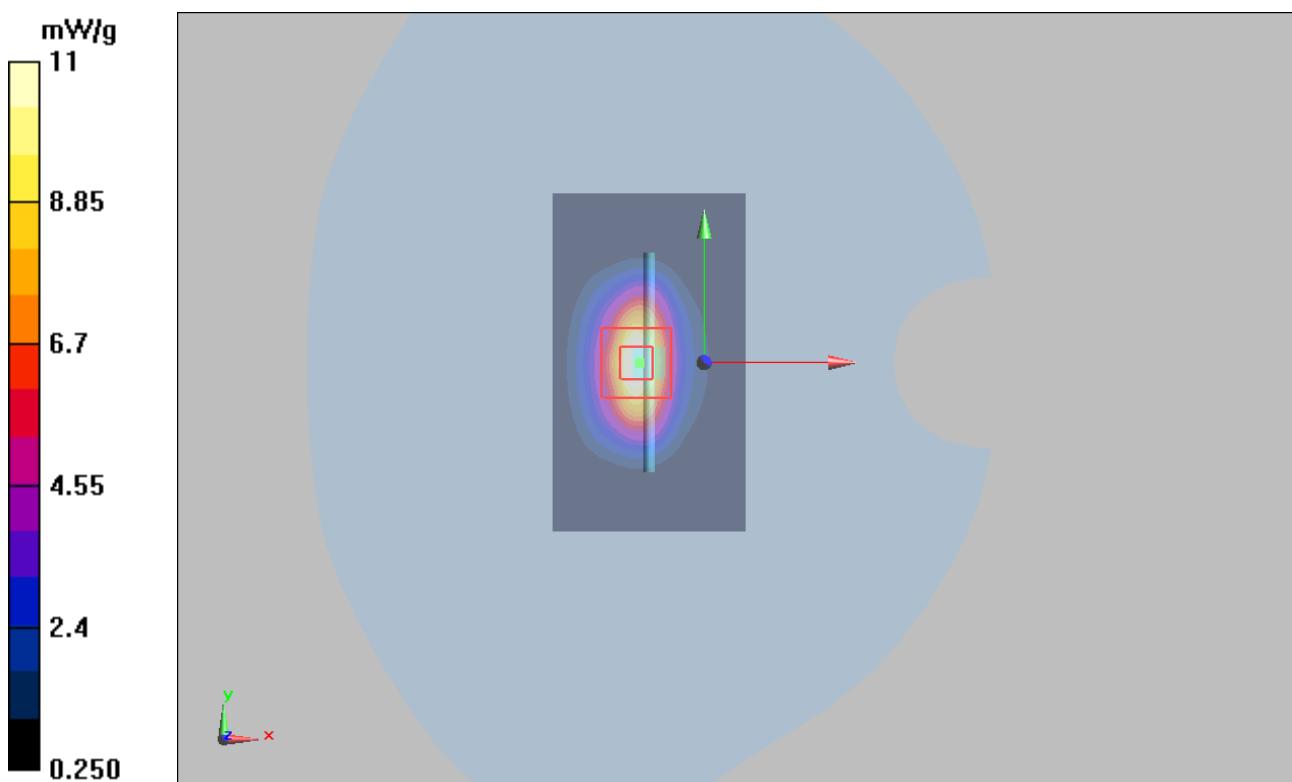


Figure 8 System Performance Check 1900MHz 250mW

ANNEX C: Graph Results

GSM 850 GPRS (4Txslots) Test Position 1 High

Date/Time: 12/24/2012 2:15:51 PM

Communication System: GPRS 4TX; Frequency: 848.8 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 849$ MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/High/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.705 mW/g

Test Position 1/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.613 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.45 W/kg

SAR(1 g) = 0.710 mW/g; SAR(10 g) = 0.257 mW/g

Maximum value of SAR (measured) = 0.824 mW/g

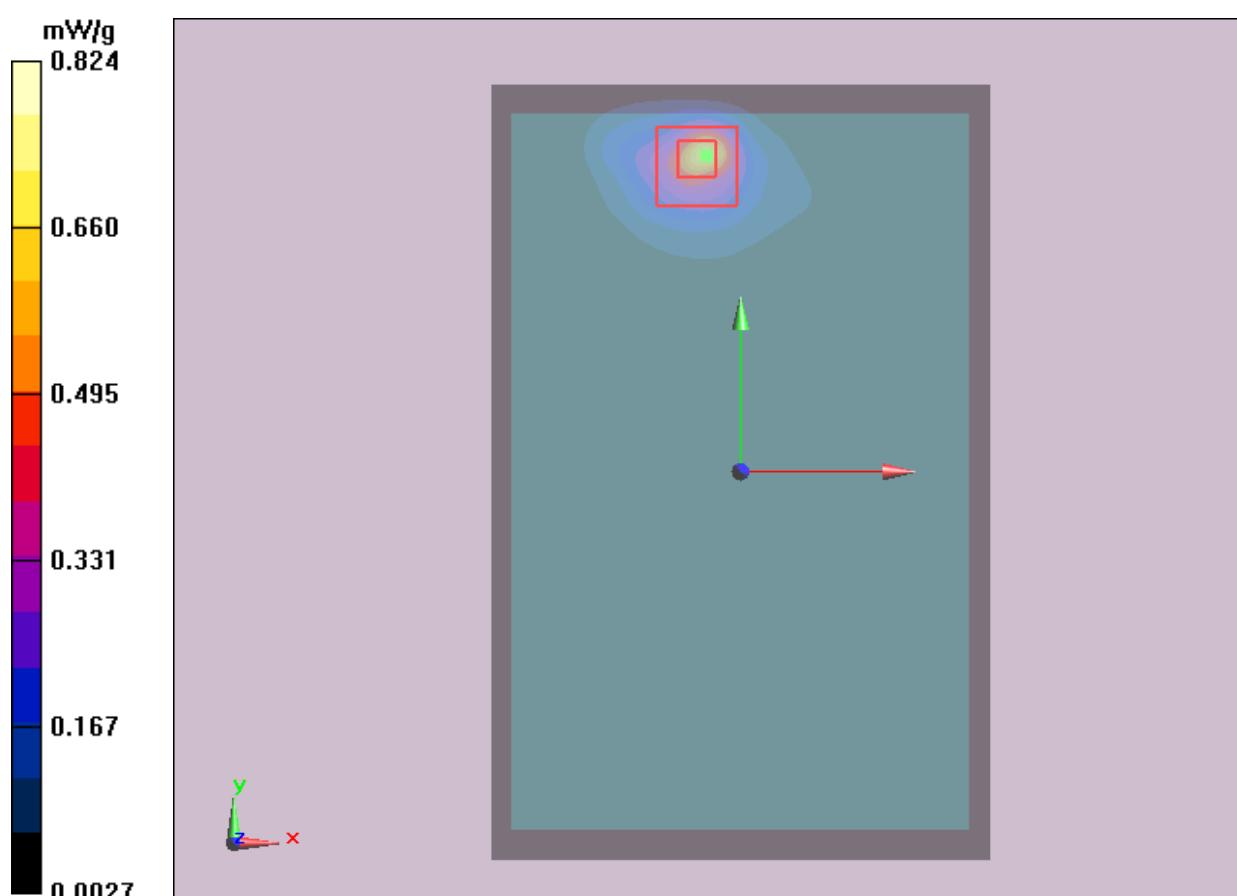


Figure 9 GSM 850 GPRS (4Txslots) Test Position 1 Channel 251

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 46 of 101

GSM 850 GPRS (4Txslots) Test Position 1 Middle

Date/Time: 12/24/2012 3:48:37 PM

Communication System: GPRS 4TX; Frequency: 836.6 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

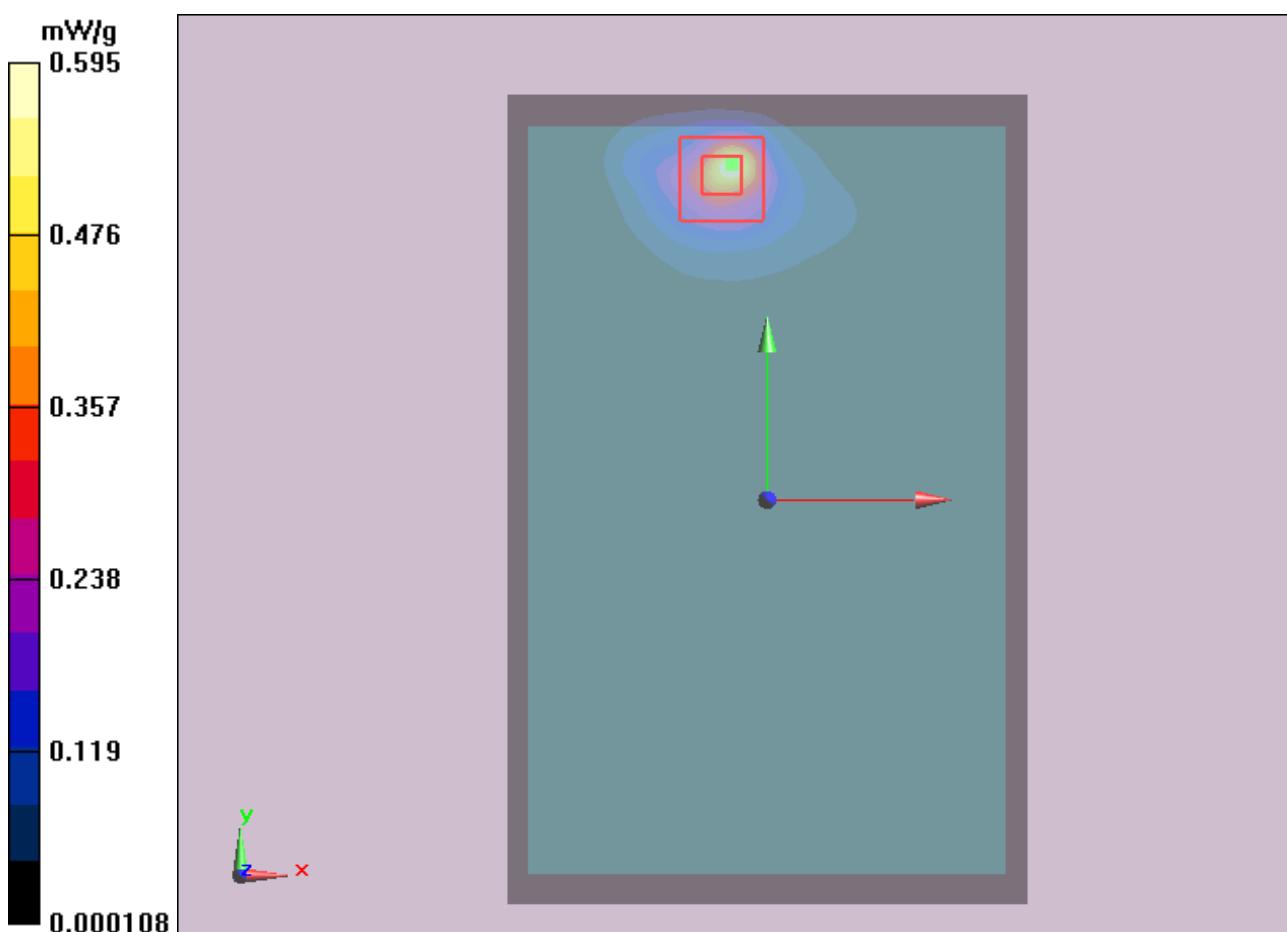
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Middle/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.578 mW/g


Test Position 1/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.505 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.198 mW/g

Maximum value of SAR (measured) = 0.595 mW/g

Figure 10 GSM 850 GPRS (4Txslots) Test Position 1 Channel 190

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 47 of 101

GSM 850 GPRS (4Txslots) Test Position 1 Low

Date/Time: 12/24/2012 2:41:50 PM

Communication System: GPRS 4TX; Frequency: 824.2 MHz; Duty Cycle: 1:2.07491

Medium parameters used (interpolated): $f = 824.2$ MHz; $\sigma = 0.976$ mho/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

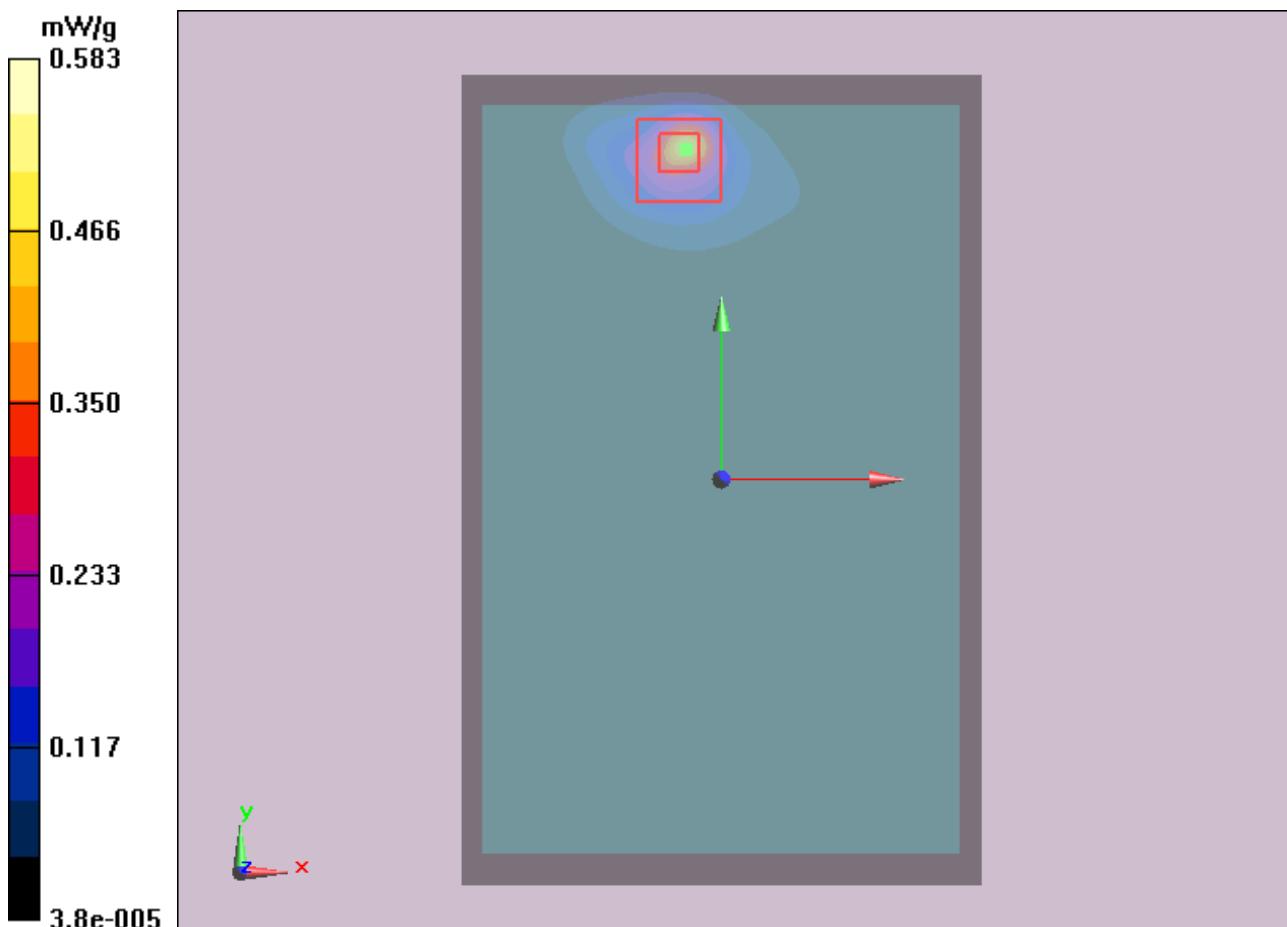
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Low/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.479 mW/g


Test Position 1/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.1 W/kg

SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.164 mW/g

Maximum value of SAR (measured) = 0.583 mW/g

Figure 11 GSM 850 GPRS (4Txslots) Test Position 1 Channel 128

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 48 of 101

GSM 850 GPRS (4Txslots) Test Position 2 Middle

Date/Time: 12/25/2012 11:18:04 AM

Communication System: GPRS 4TX; Frequency: 836.6 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2/Middle/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.054 mW/g

Test Position 2/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.34 V/m; Power Drift = 0.053 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.067 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.082 mW/g

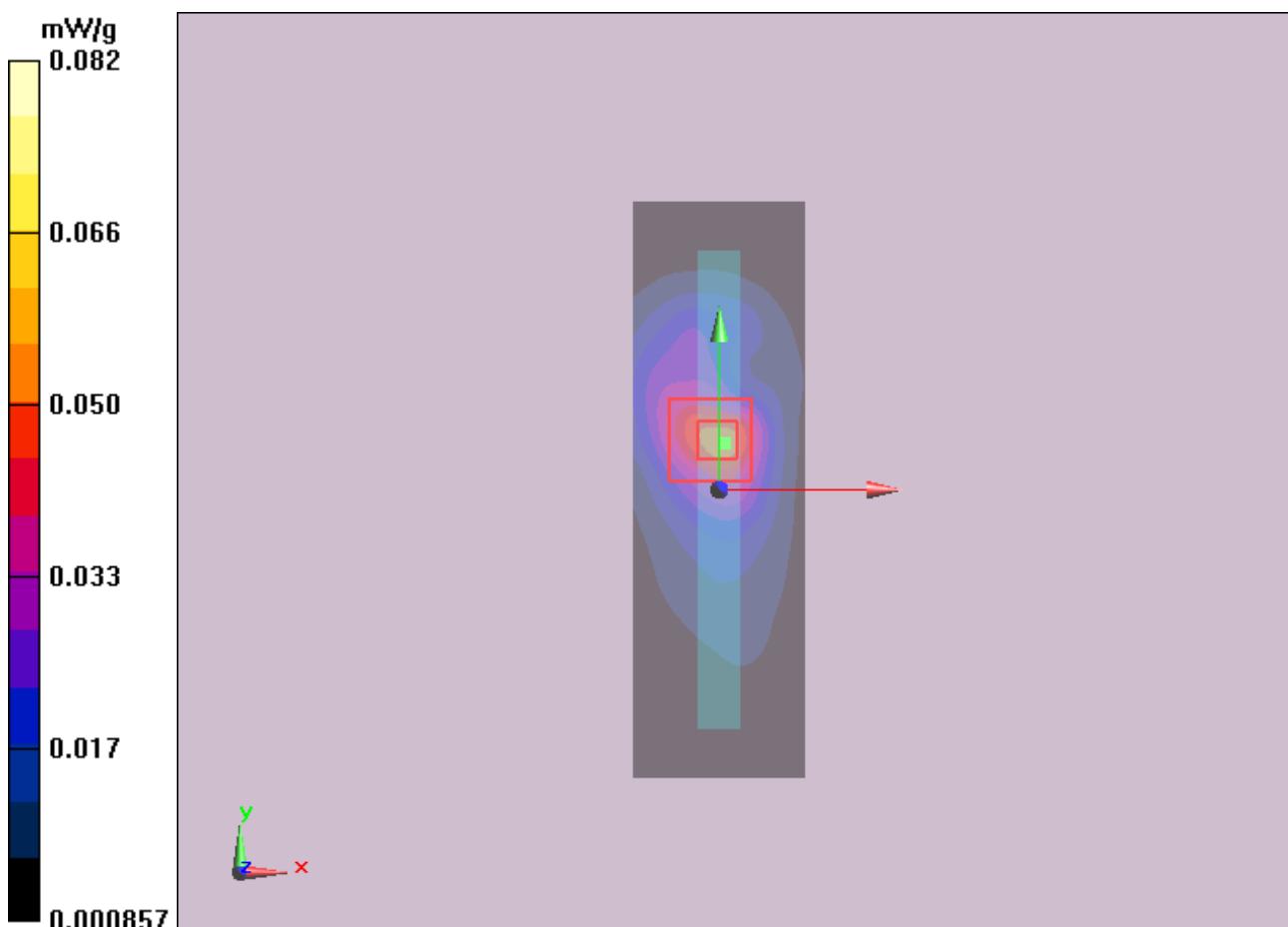


Figure 12 GSM 850 GPRS (4Txslots) Test Position 2 Channel 190

GSM 850 GPRS (4Txslots) Test Position 5 Middle

Date/Time: 12/24/2012 3:19:14 PM

Communication System: GPRS 4TX; Frequency: 836.6 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5/Middle/Area Scan (21x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.0065 mW/g

Test Position 5/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.252 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.003 mW/g

Maximum value of SAR (measured) = 0.00619 mW/g

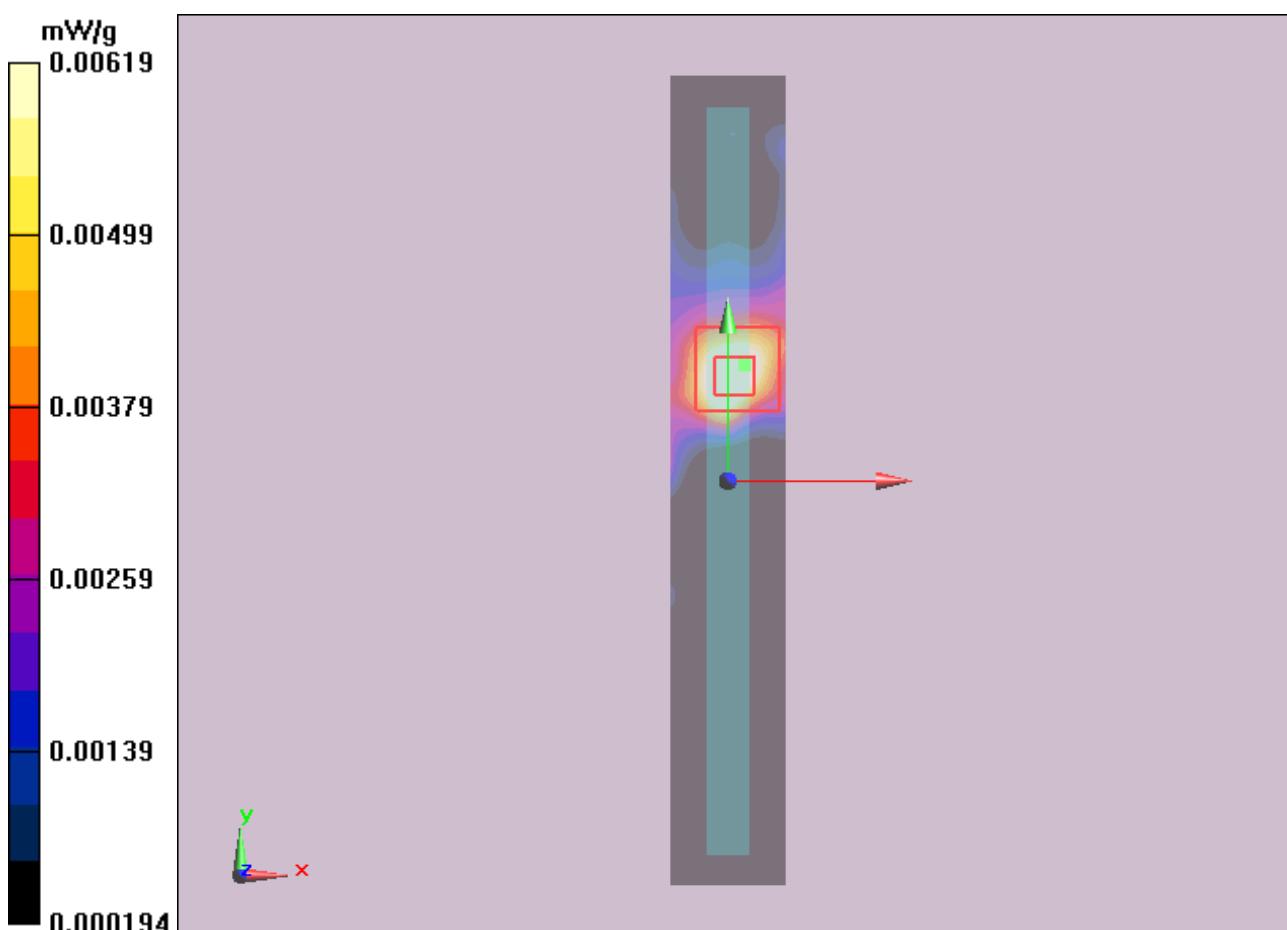


Figure 13 GSM 850 GPRS (4Txslots) Test Position 5 Channel 190

GSM 850 EGPRS (4Txslots) Test Position 1 High

Date/Time: 12/24/2012 10:42:28 PM

Communication System: EGPRS 4TX; Frequency: 848.8 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 849$ MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1High/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

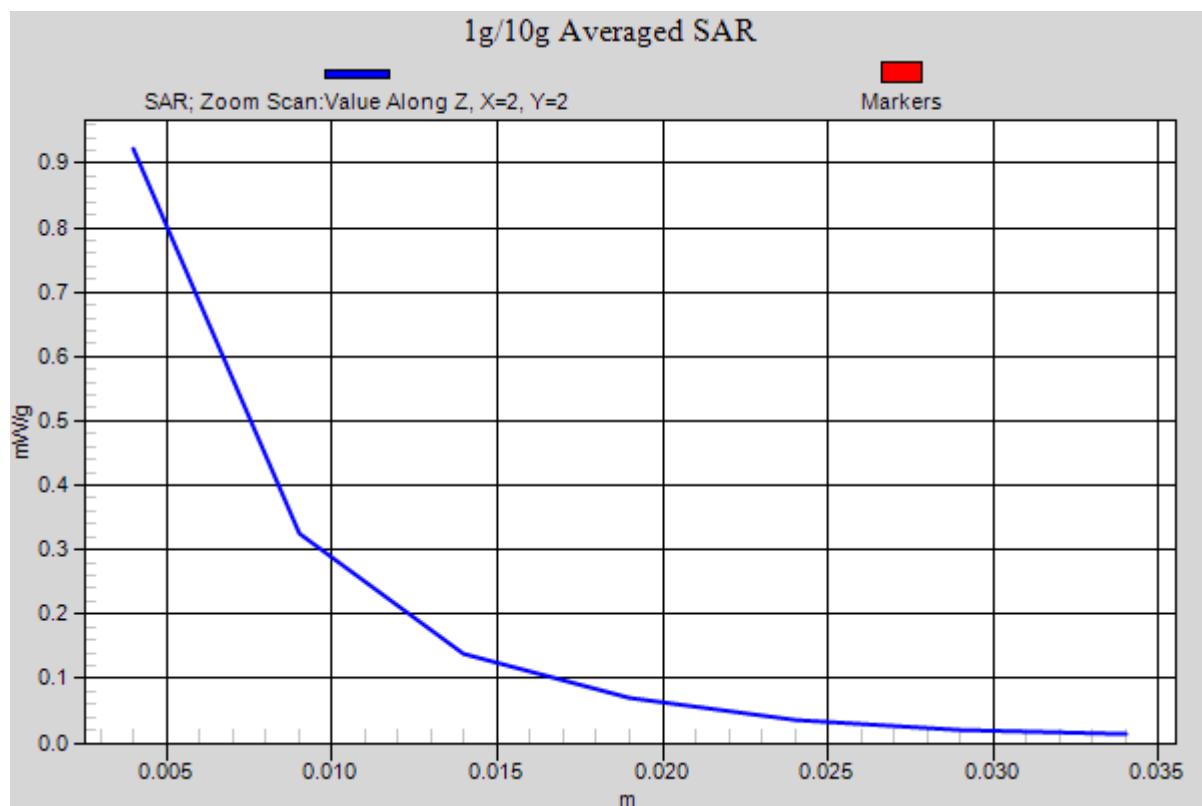
Maximum value of SAR (interpolated) = 1.01 mW/g

Test Position 1High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.433 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 0.753 mW/g; SAR(10 g) = 0.270 mW/g


Maximum value of SAR (measured) = 0.922 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 51 of 101

Figure 14 GSM 850 EGPRS (4Txslots) Test Position 1 Channel 251

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 52 of 101

GSM 1900 GPRS (4Txslots) Test Position 1 High

Date/Time: 12/25/2012 6:46:52 PM

Communication System: GPRS 4TX; Frequency: 1909.8 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 1910$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

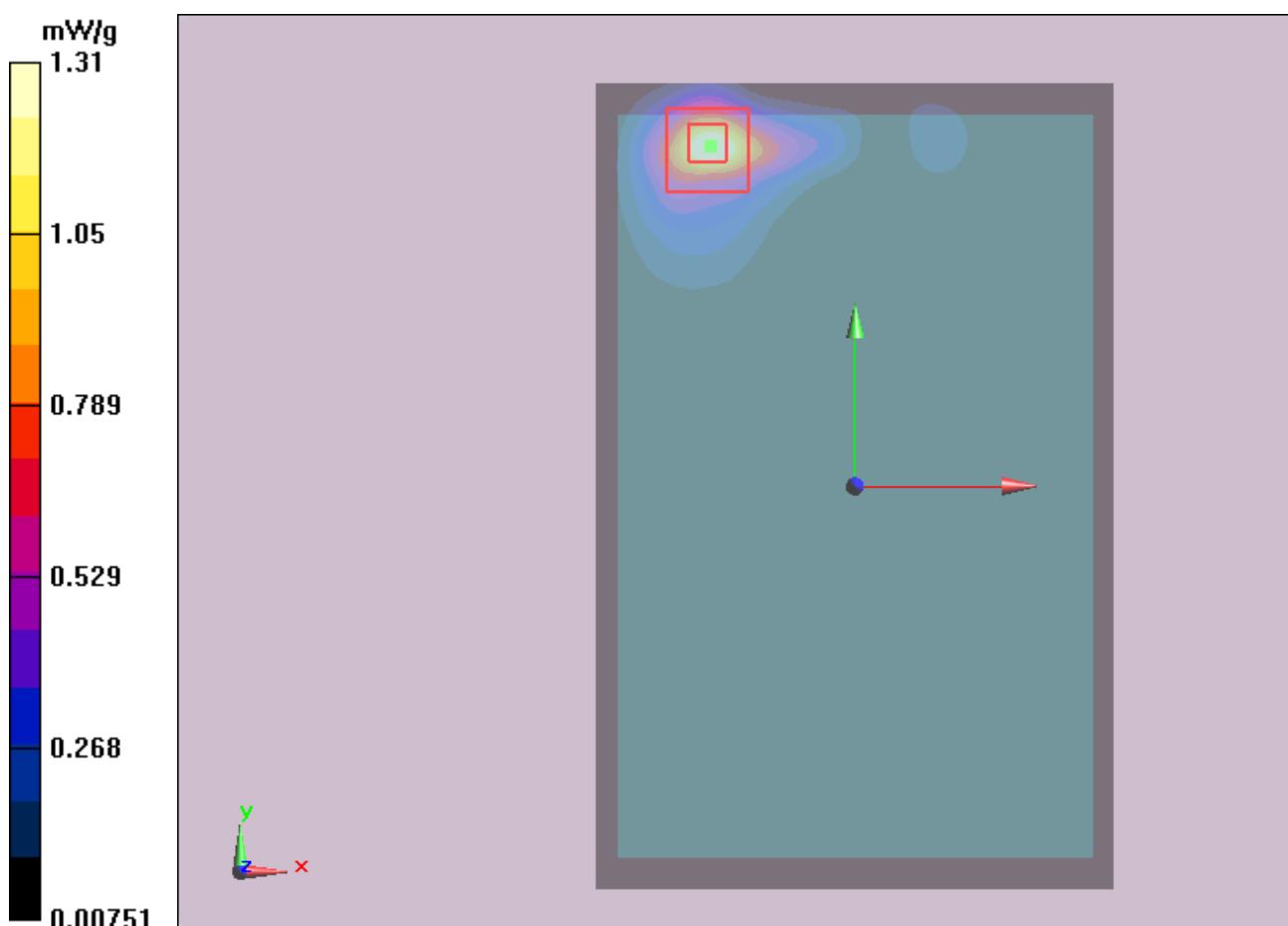
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/High/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g


Test Position 1/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.473 mW/g

Maximum value of SAR (measured) = 1.31 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 53 of 101

GSM 1900 GPRS (4Txslots) Test Position 1 Middle

Date/Time: 12/25/2012 6:19:32 PM

Communication System: GPRS 4TX; Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Middle/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.861 mW/g

Test Position 1/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.393 mW/g

Maximum value of SAR (measured) = 1.21 mW/g

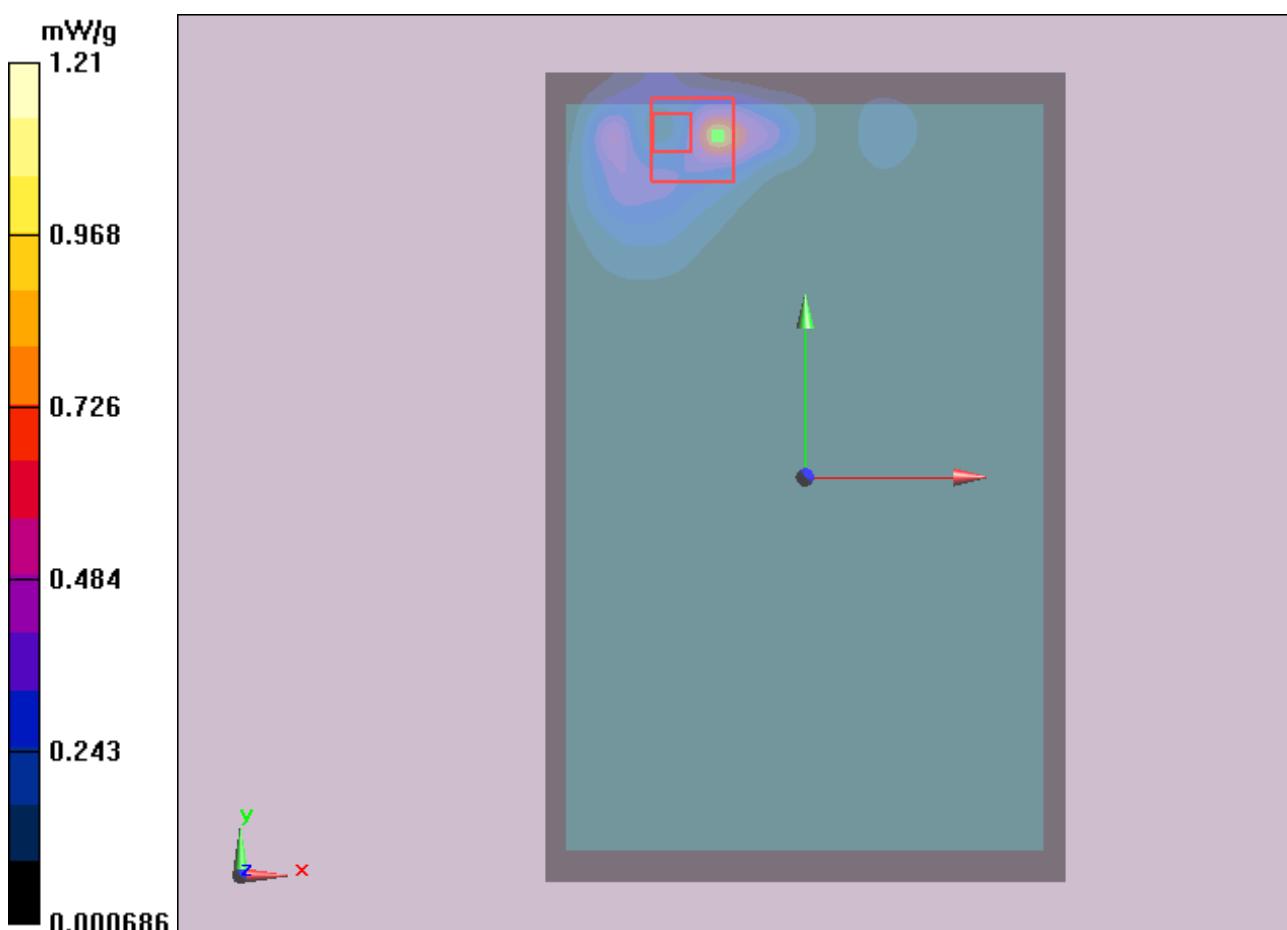


Figure 16 GSM 1900 GPRS (4Txslots) Test Position 1 Channel 661

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 54 of 101

GSM 1900 GPRS (4Txslots) Test Position 1 Low

Date/Time: 12/25/2012 7:14:50 PM

Communication System: GPRS 4TX; Frequency: 1850.2 MHz; Duty Cycle: 1:2.07491

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

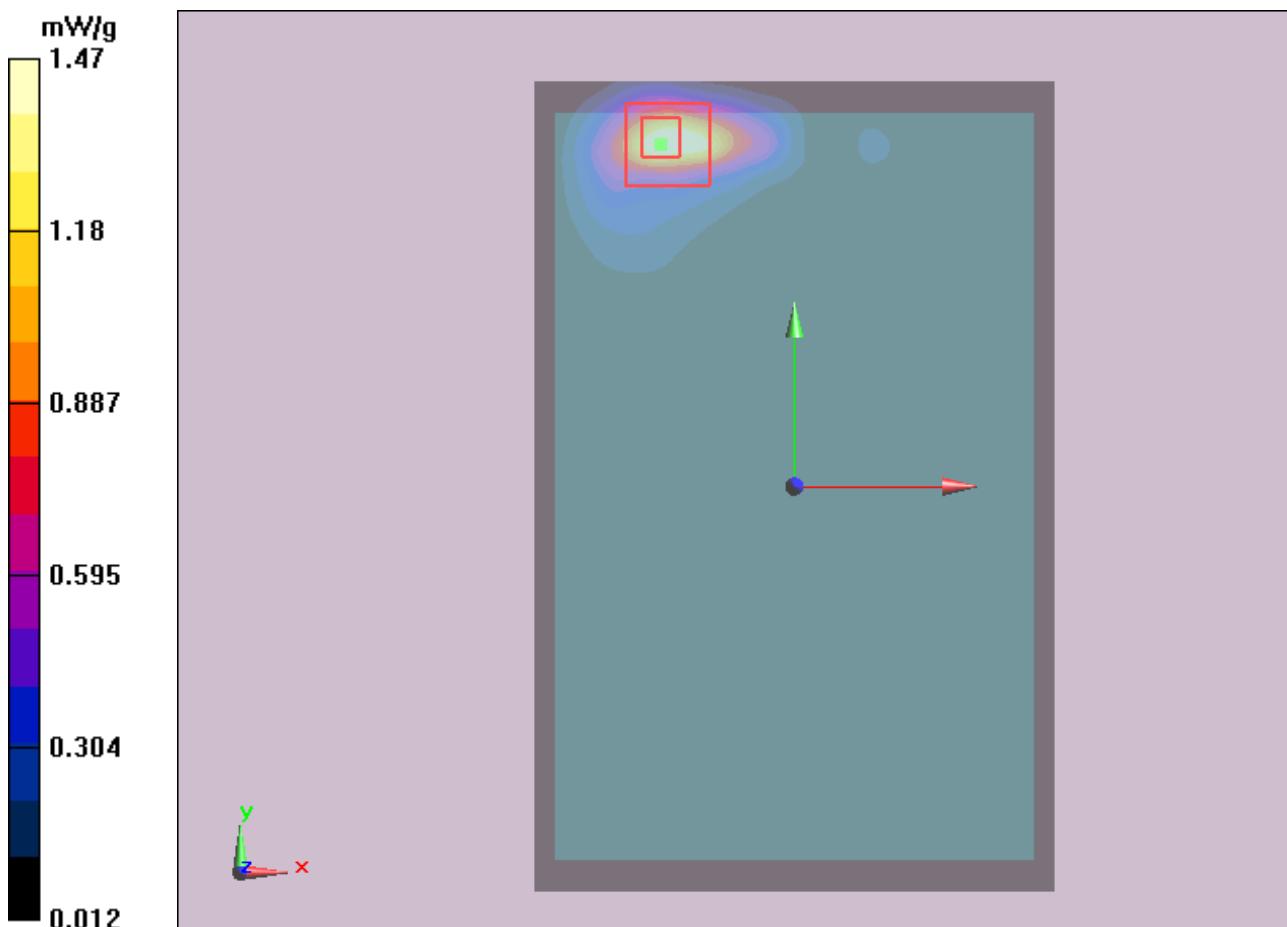
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Low/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

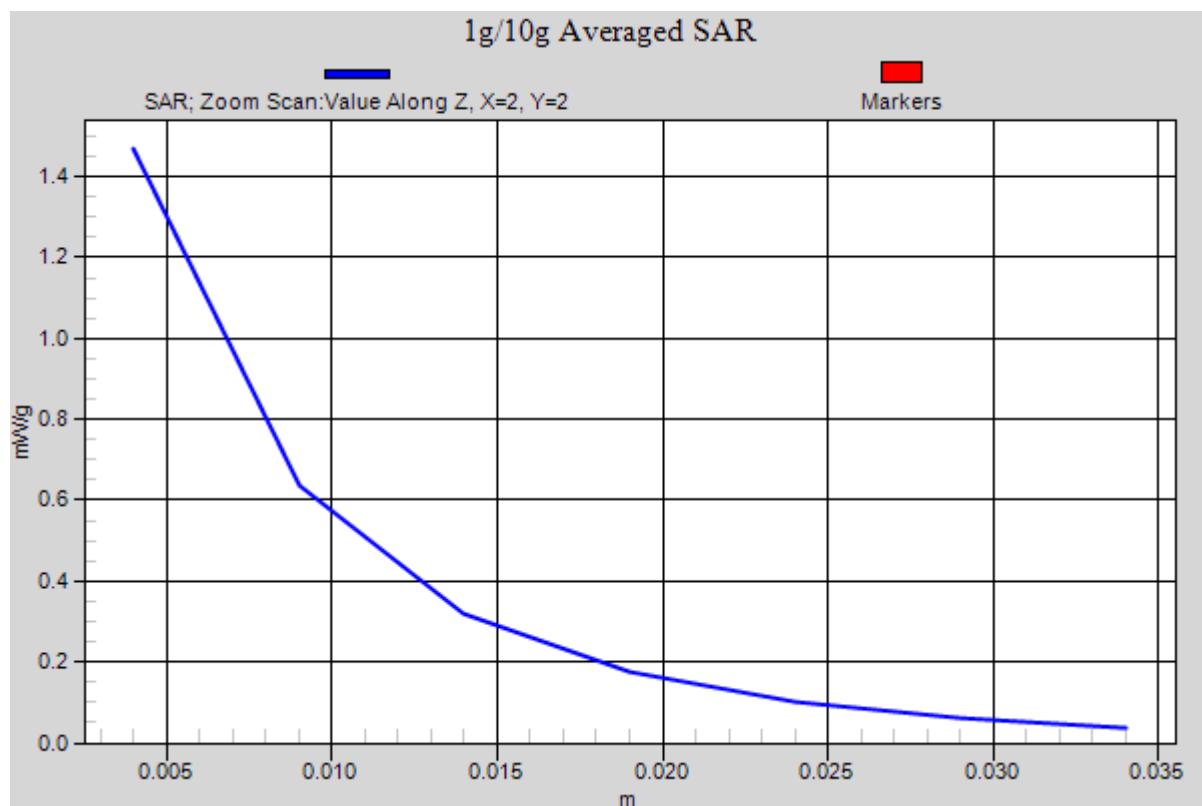
Maximum value of SAR (interpolated) = 1.48 mW/g


Test Position 1/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 2.66 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.502 mW/g


Maximum value of SAR (measured) = 1.47 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 55 of 101

Figure 17 GSM 1900 GPRS (4Txslots) Test Position 1 Channel 512

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 56 of 101

GSM 1900 GPRS (4Txslots) Test Position 2 Middle

Date/Time: 12/25/2012 7:07:11 PM

Communication System: GPRS 4TX; Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

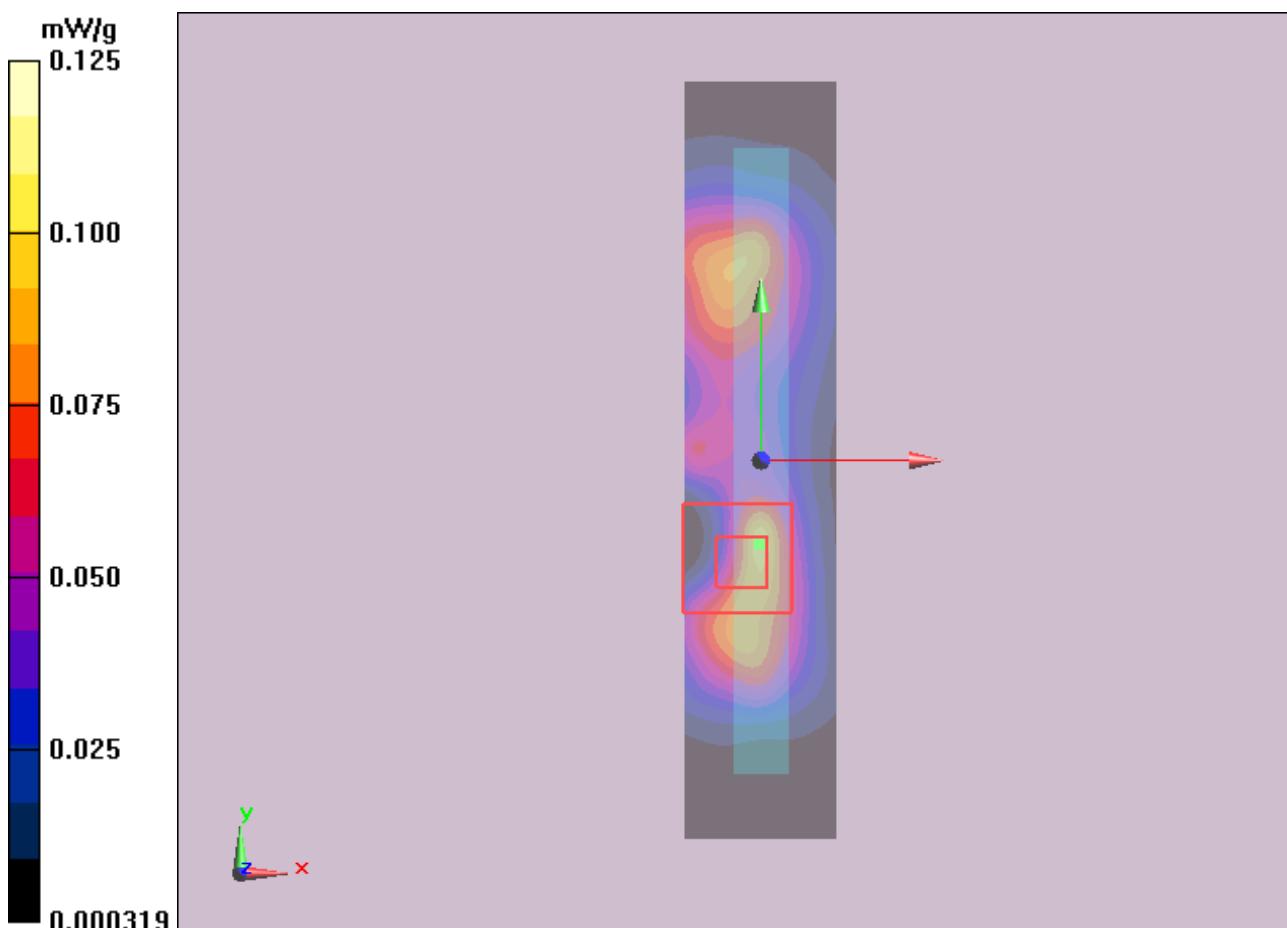
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2/Middle/Area Scan (21x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.099 mW/g


Test Position 2/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.65 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.047 mW/g

Maximum value of SAR (measured) = 0.125 mW/g

Figure 18 GSM 1900 GPRS (4Txslots) Test Position 2 Channel 661

GSM 1900 GPRS (4Txslots) Test Position 5 Middle

Date/Time: 12/25/2012 6:46:02 PM

Communication System: GPRS 4TX; Frequency: 1880 MHz; Duty Cycle: 1:2.07491

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5/Middle/Area Scan (21x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.021 mW/g

Test Position 5/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.28 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.037 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/g

Maximum value of SAR (measured) = 0.022 mW/g

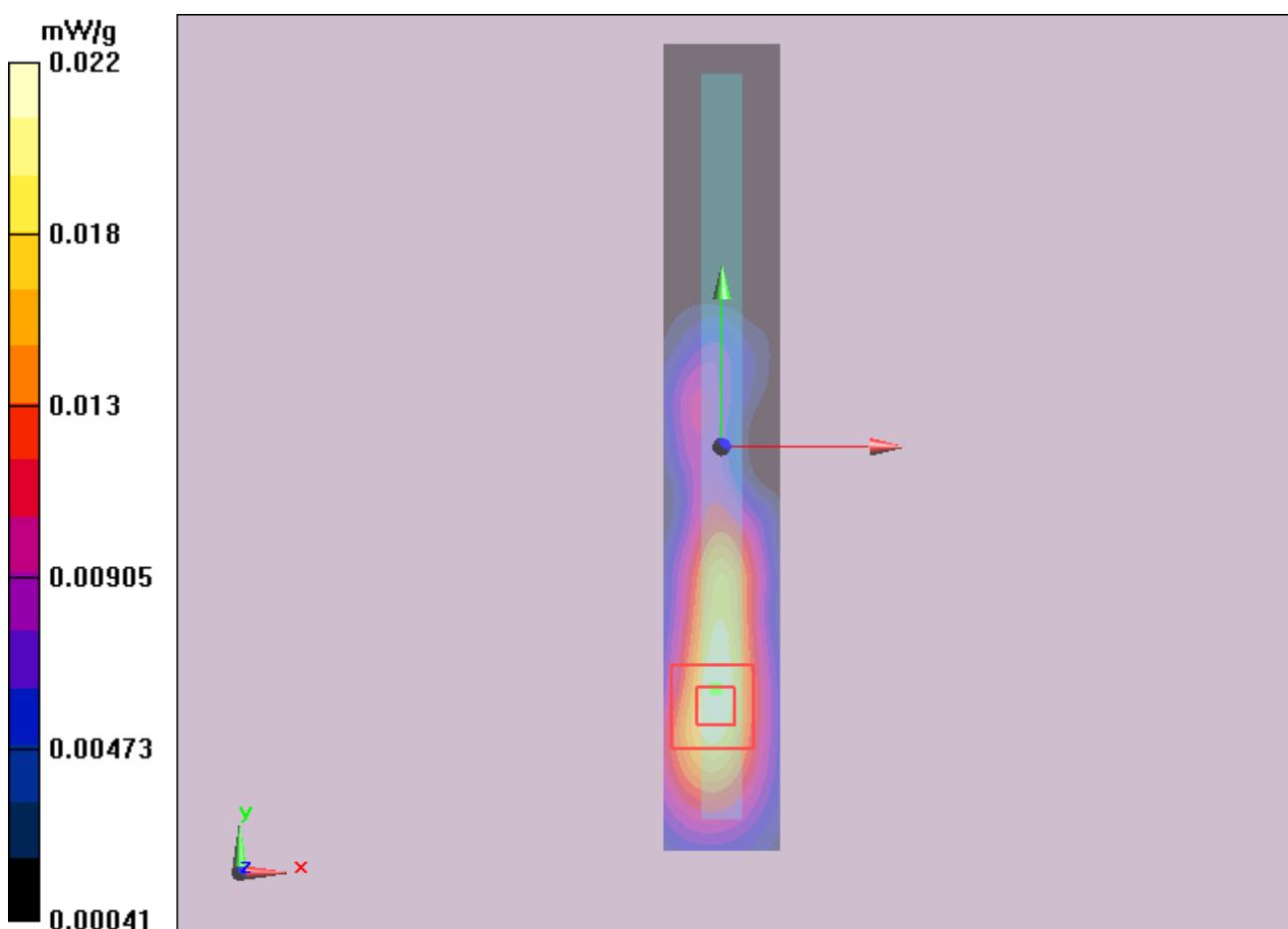


Figure 19 GSM 1900 GPRS (4Txslots) Test Position 5 Channel 661

GSM 1900 EGPRS (4Txslots) Test Position 1 Low

Date/Time: 12/25/2012 7:46:31 PM

Communication System: EGPRS 4TX; Frequency: 1850.2 MHz; Duty Cycle: 1:2.07491

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Low/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.47 mW/g

Test Position 1/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001dB

Peak SAR (extrapolated) = 2.41 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.499 mW/g

Maximum value of SAR (measured) = 1.46 mW/g

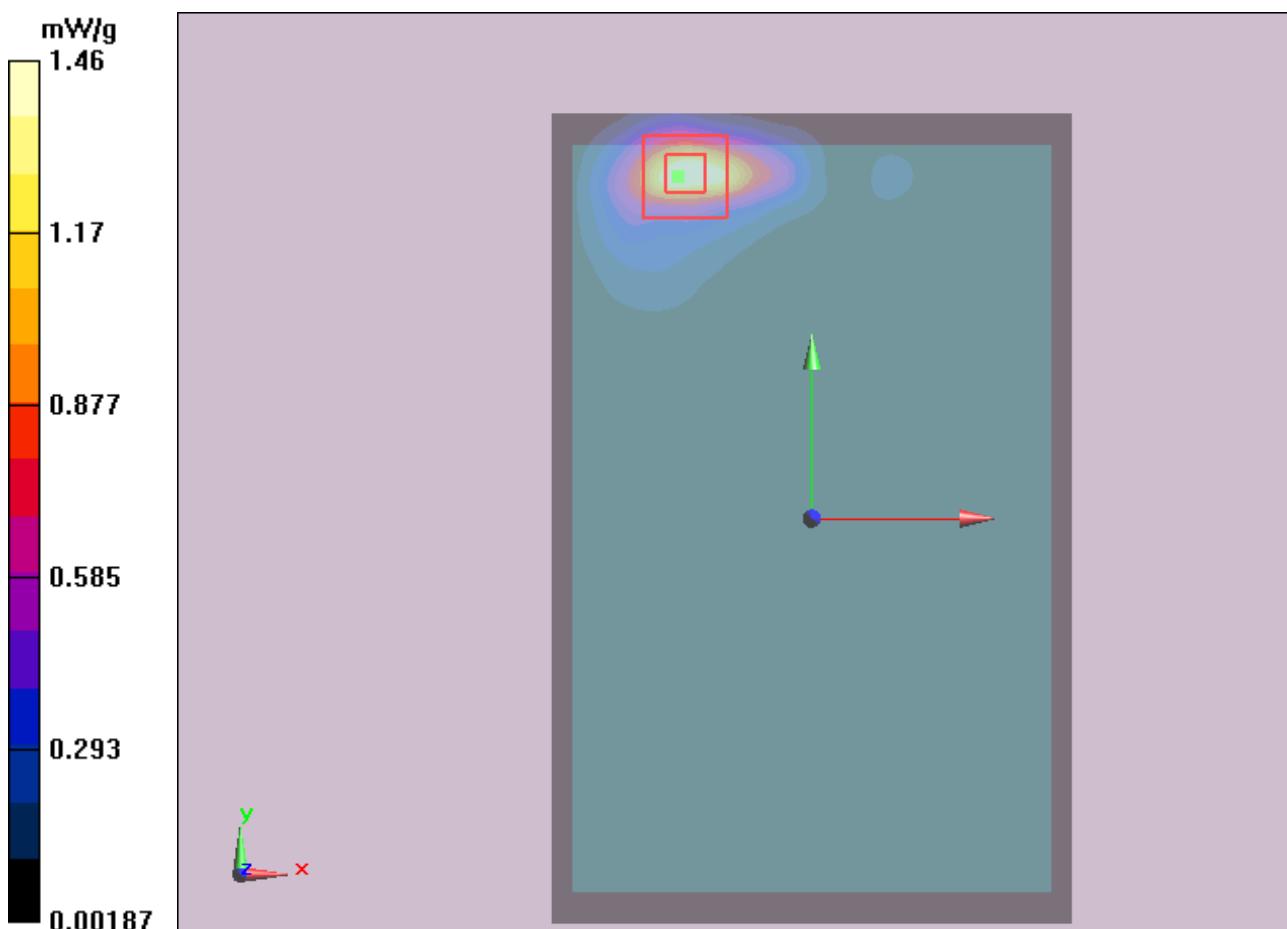


Figure 20 GSM 1900 EGPRS (4Txslots) Test Position 1 Channel 512

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 59 of 101

GSM 1900 GPRS (4Txslots) Test Position 1 Low (1st Repeated SAR)

Date/Time: 1/6/2013 5:44:46 PM

Communication System: GPRS 4TX; Frequency: 1850.2 MHz; Duty Cycle: 1:2.07491

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

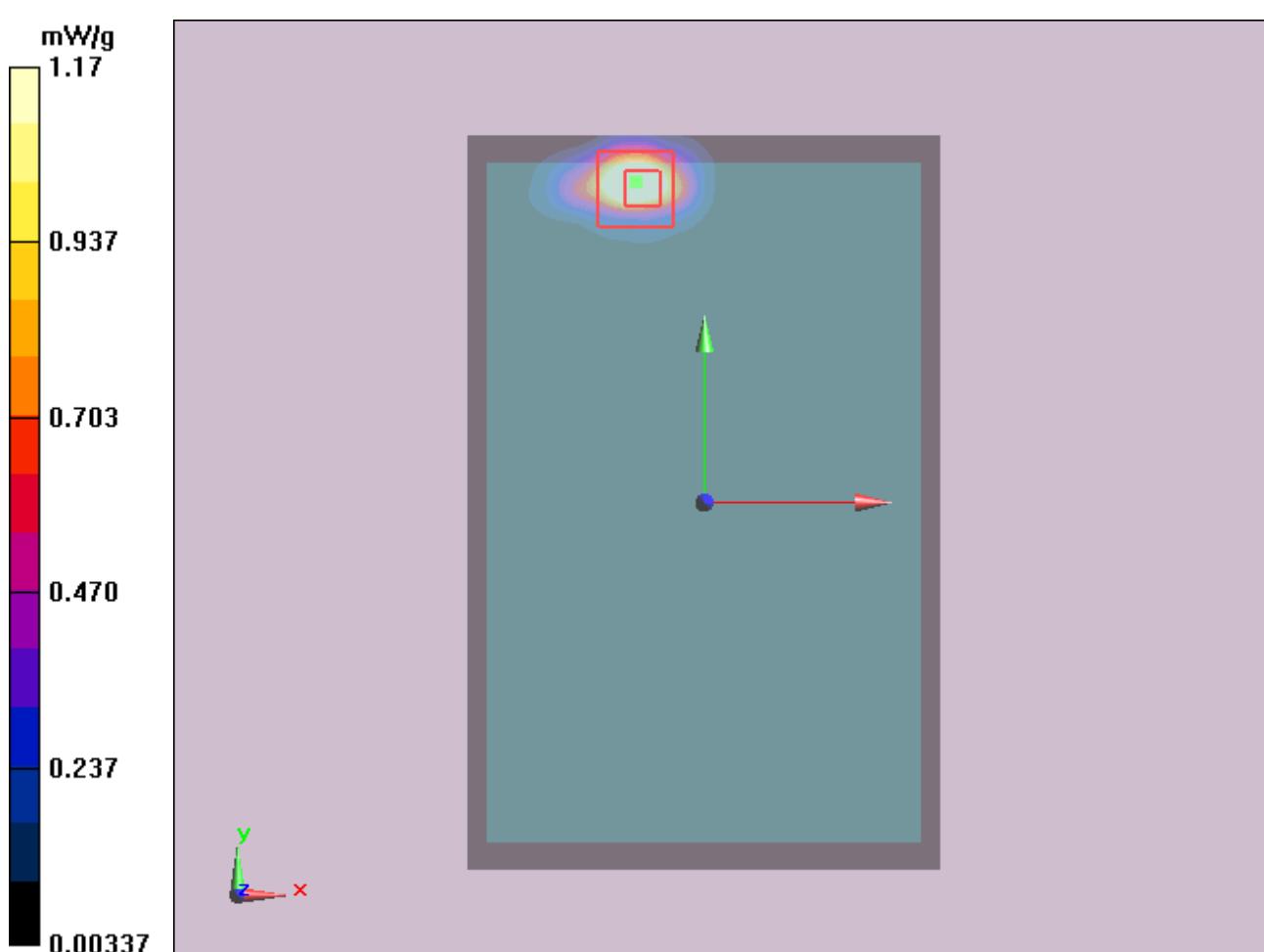
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Low/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.6 mW/g


Test Position 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.426 mW/g

Maximum value of SAR (measured) = 1.17 mW/g

Figure 21 GSM 1900 GPRS (4Txslots) Test Position 1 Channel 512

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 60 of 101

UMTS Band V Test Position 1 High

Date/Time: 12/25/2012 12:36:06 PM

Communication System: WCDMA ; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 847$ MHz; $\sigma = 0.998$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

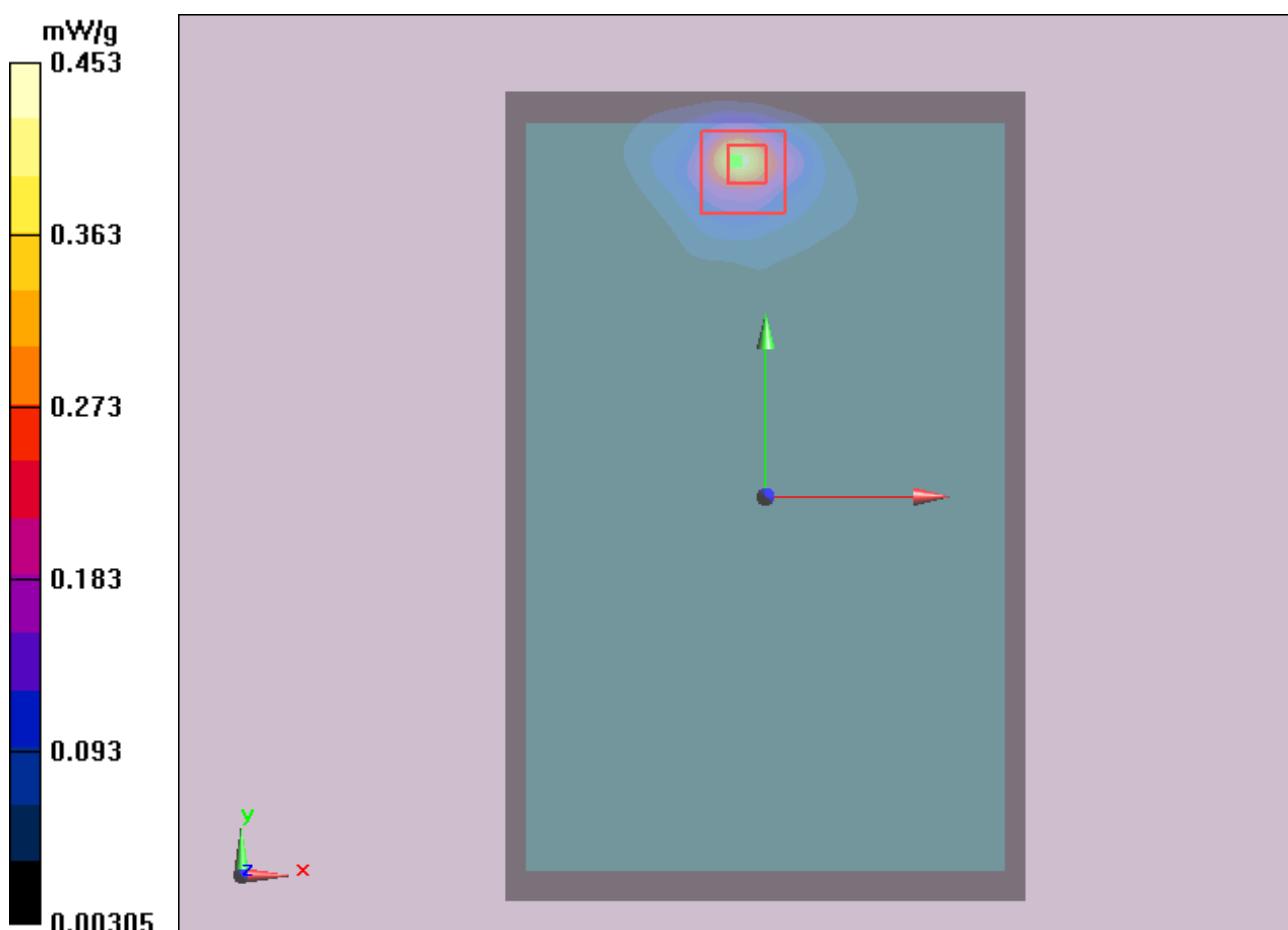
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/High/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.423 mW/g


Test Position 1/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 1.5 W/kg

SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.453 mW/g

Figure 22 UMTS Band V Test Position 1 Channel 4233

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 61 of 101

UMTS Band V Test Position 1 Middle

Date/Time: 12/25/2012 12:09:49 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Middle/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.282 mW/g

Test Position 1/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001dB

Peak SAR (extrapolated) = 0.975 W/kg

SAR(1 g) = 0.271 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.307 mW/g

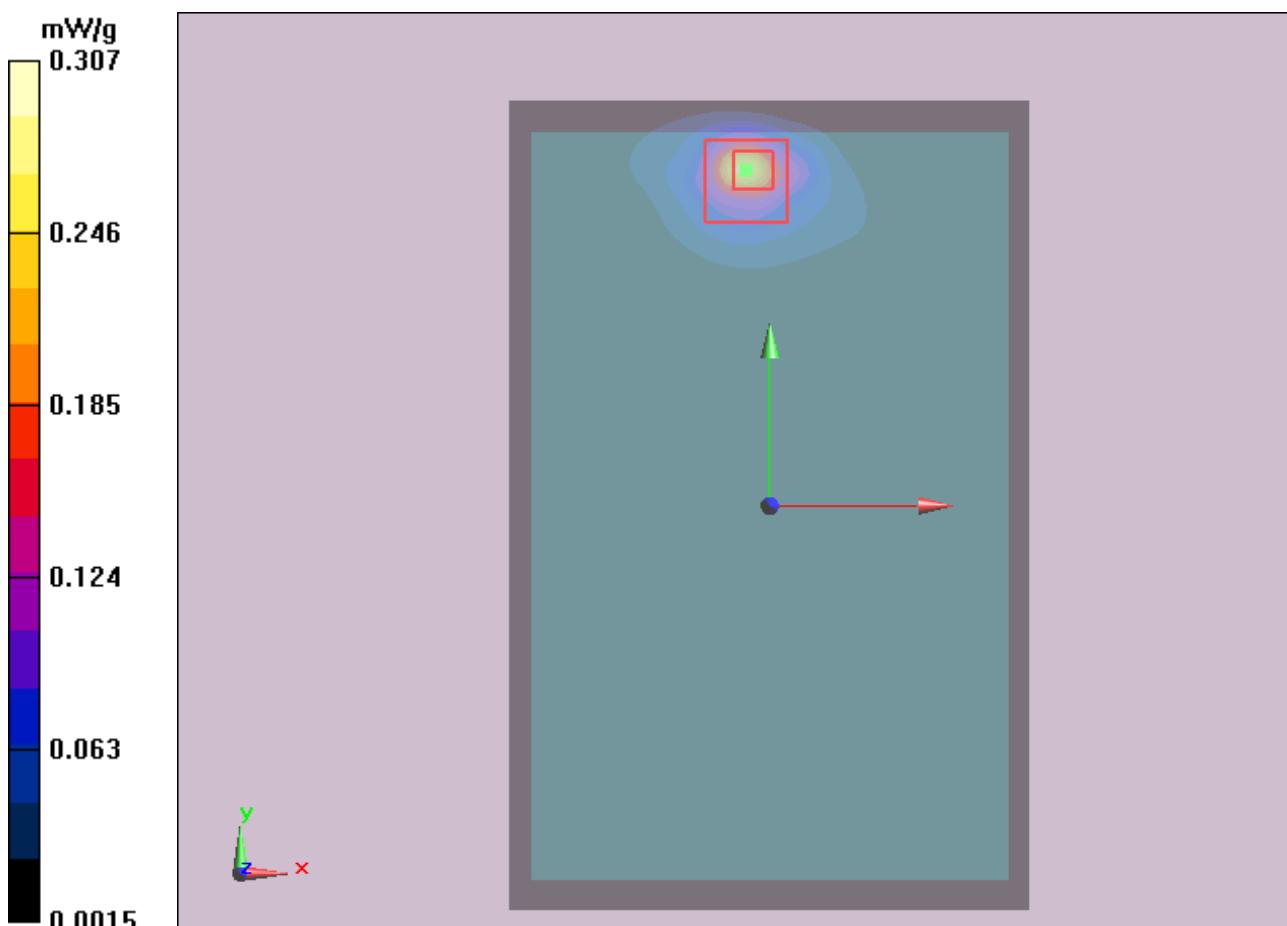


Figure 23 UMTS Band V Test Position 1 Channel 4183

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 62 of 101

UMTS Band V Test Position 1 Low

Date/Time: 12/25/2012 1:04:28 PM

Communication System: WCDMA ; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 826.4$ MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

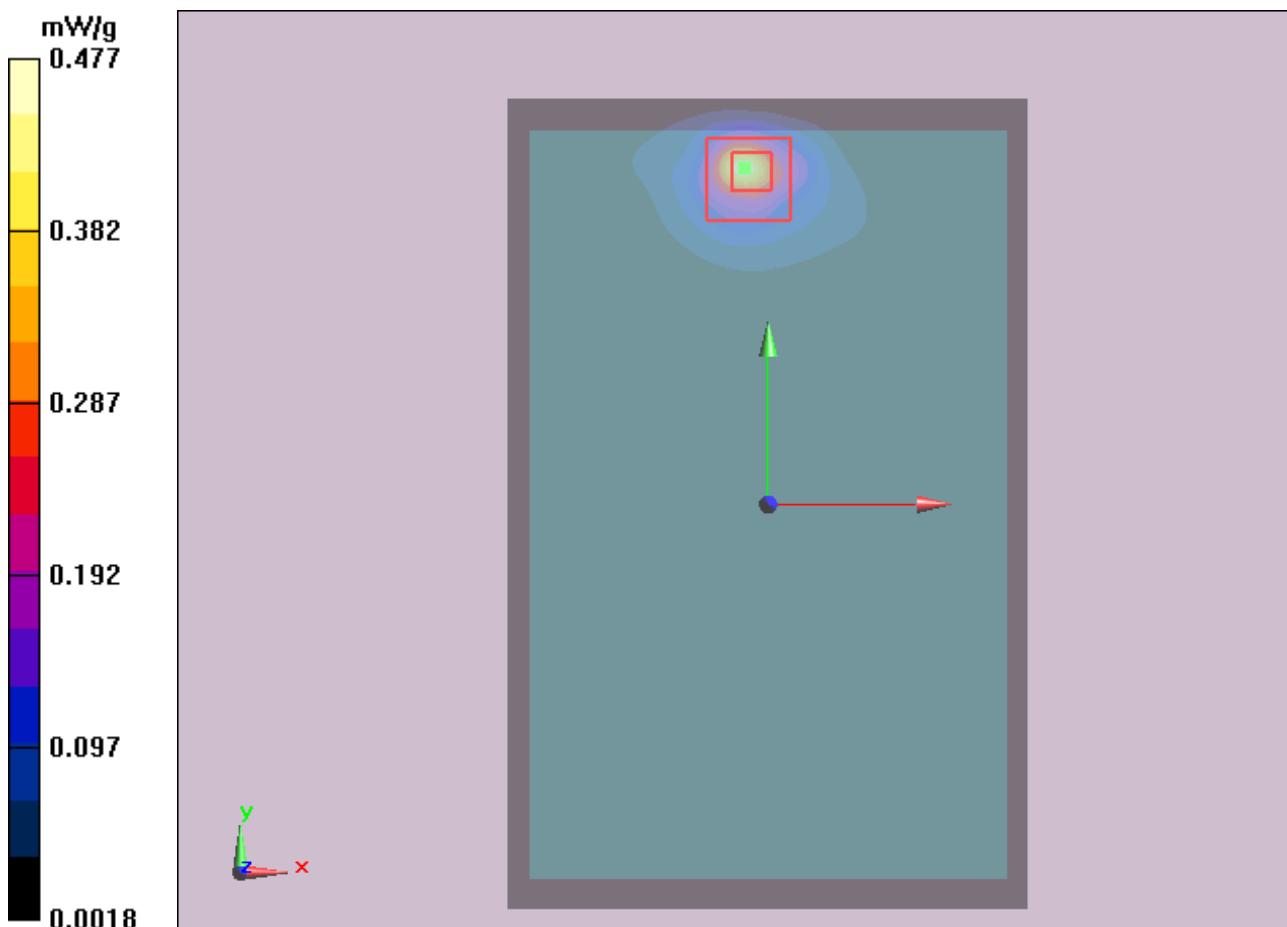
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Low/Area Scan (91x141x1): Measurement grid: dx=15mm, dy=15mm

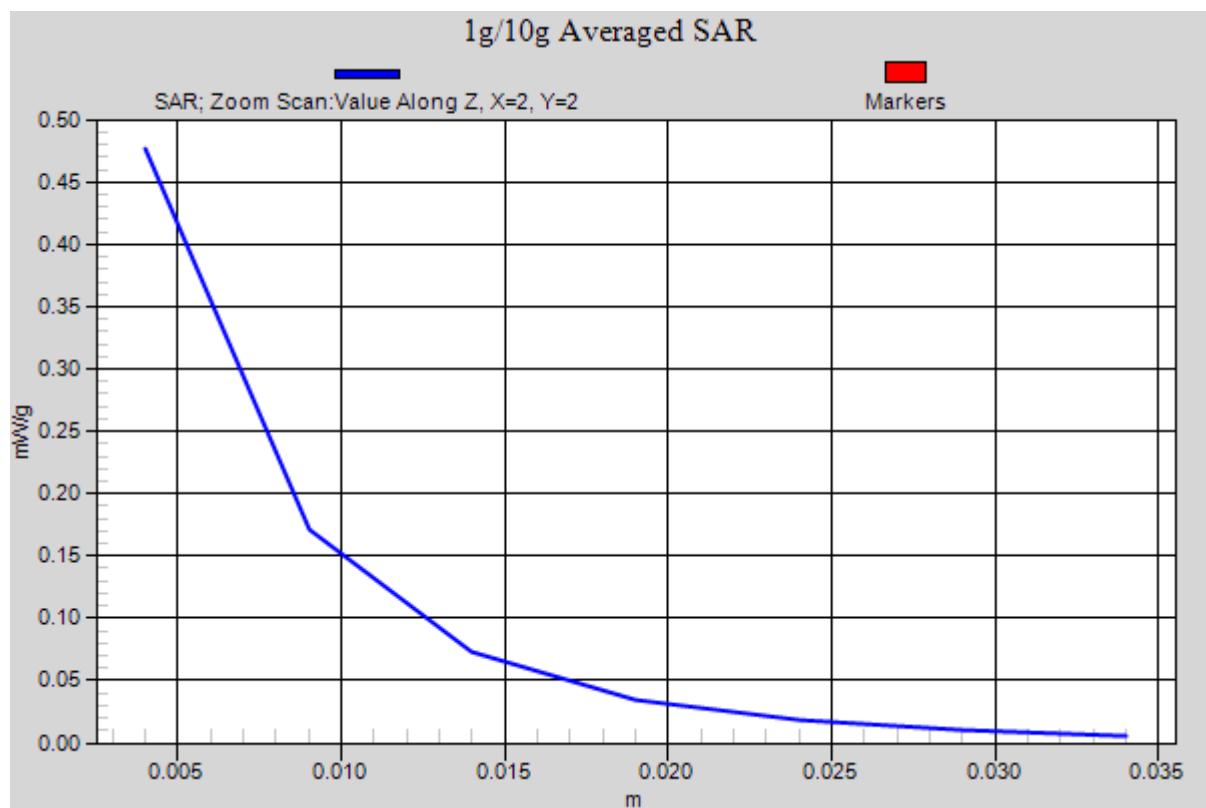
Maximum value of SAR (interpolated) = 0.454 mW/g


Test Position 1/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.148 mW/g


Maximum value of SAR (measured) = 0.477 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 63 of 101

Figure 24 UMTS Band V Test Position 1 Channel 4132

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 64 of 101

UMTS Band V Test Position 2 Middle

Date/Time: 12/24/2012 4:02:09 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2/Middle/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.014 mW/g

Test Position 2/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.97 V/m; Power Drift = 0.106 dB

Peak SAR (extrapolated) = 0.059 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.008 mW/g

Maximum value of SAR (measured) = 0.021 mW/g

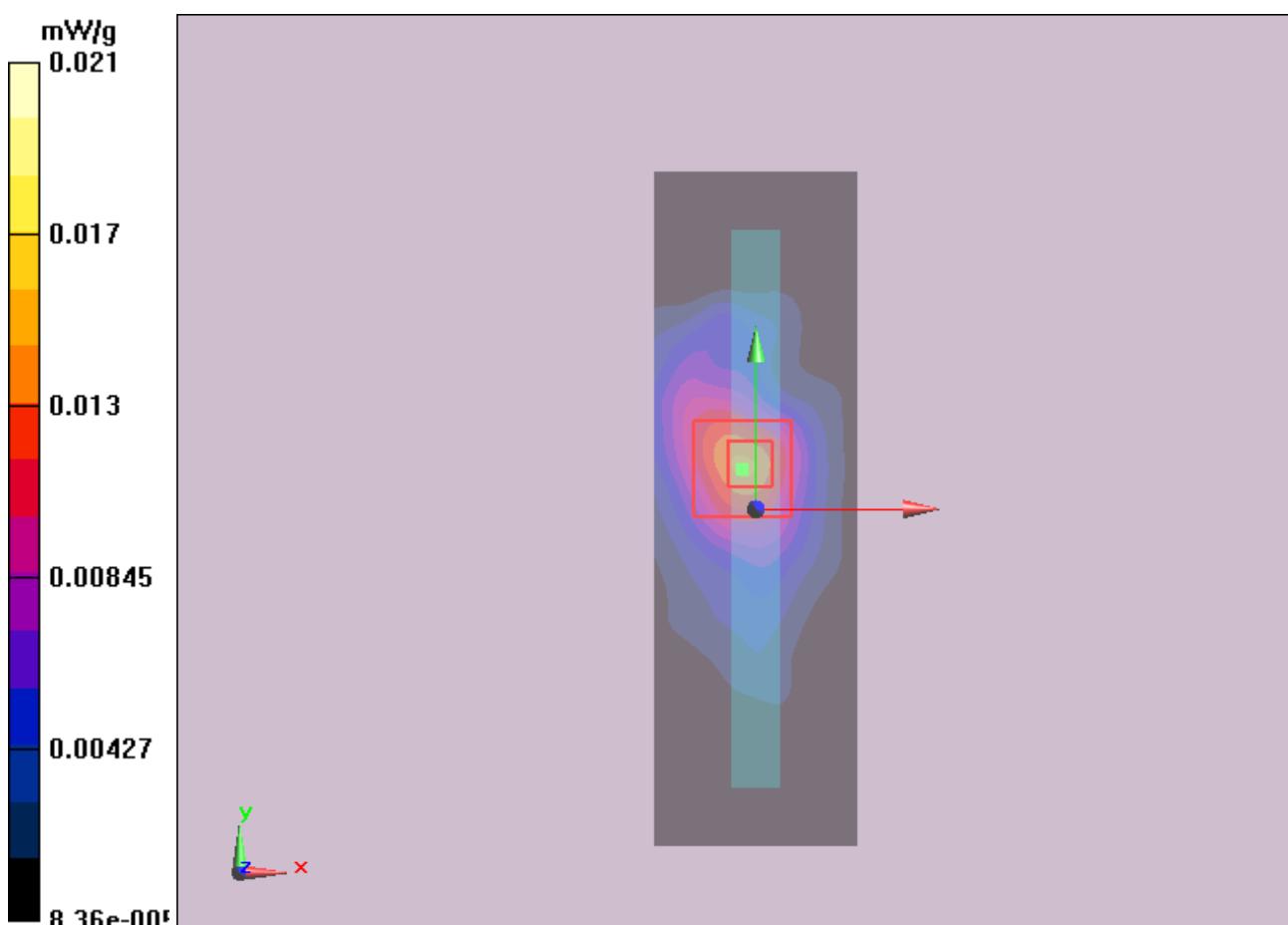


Figure 25 UMTS Band V Test Position 2 Channel 4183

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 65 of 101

UMTS Band V Test Position 5 Middle

Date/Time: 12/25/2012 9:36:36 AM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5/Middle/Area Scan (31x141x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00438 mW/g

Test Position 5/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.27 V/m; Power Drift = 0.118 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.003 mW/g

Maximum value of SAR (measured) = 0.00349 mW/g

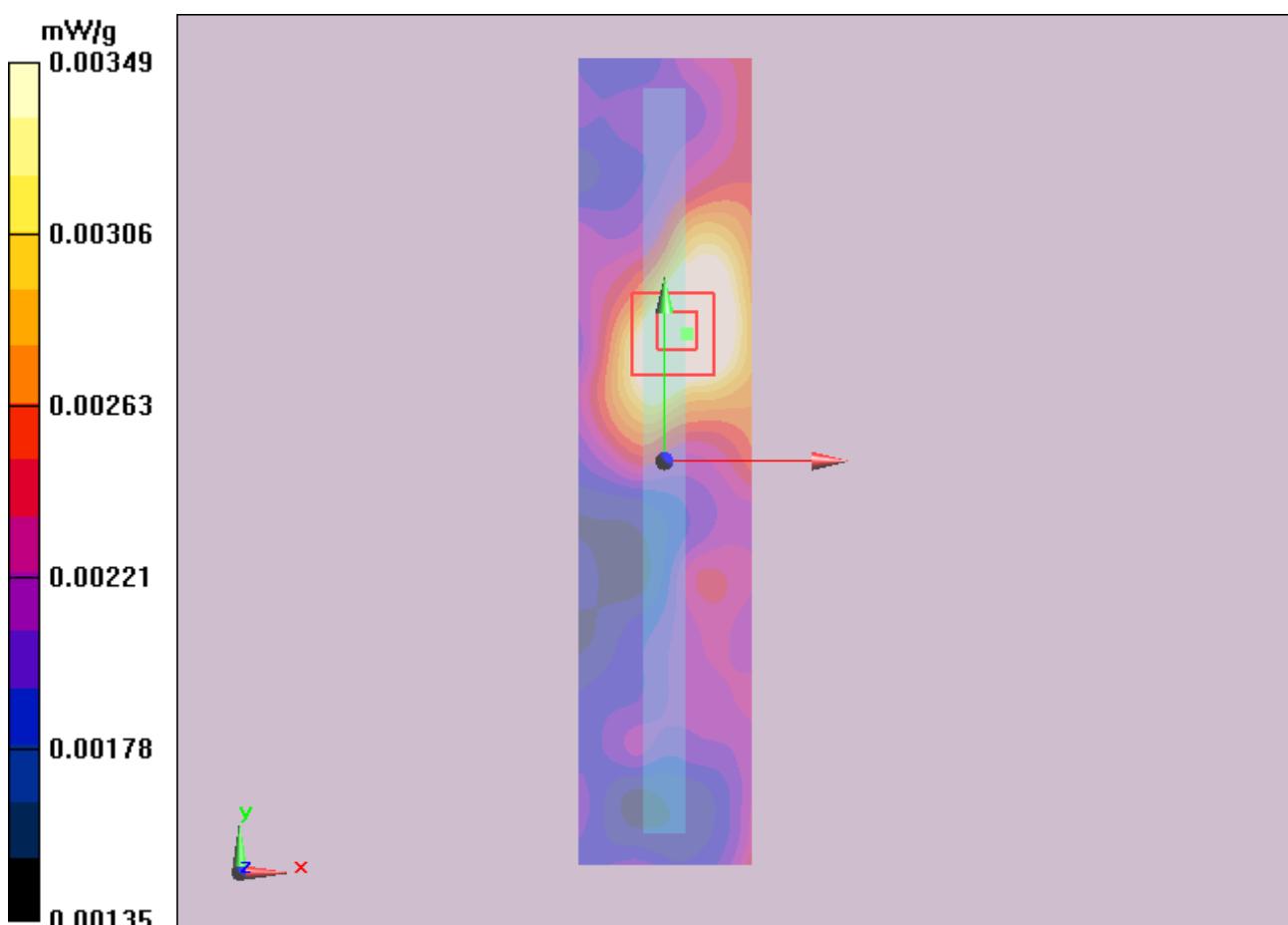


Figure 26 UMTS Band V Test Position 5 Channel 4183

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 66 of 101

ANNEX D: Probe ES3DV3 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: ES3-3189_Jun12

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3189

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: June 22, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5066 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 22, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 67 of 101

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}*: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). *NORM_{x,y,z}* are only intermediate values, i.e., the uncertainties of *NORM_{x,y,z}* does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z*: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORM_{x,y,z} * ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 68 of 101

ES3DV3 – SN:3189

June 22, 2012

Probe ES3DV3

SN:3189

Manufactured: March 25, 2008
Calibrated: June 22, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 69 of 101

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²) ^A	1.32	1.35	1.05	\pm 10.1 %
DCP (mV) ^B	99.5	100.6	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	160.3	\pm 3.8 %
			Y	0.00	0.00	1.00	164.9	
			Z	0.00	0.00	1.00	182.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 70 of 101

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.83	6.83	6.83	0.25	1.06	± 13.4 %
450	43.5	0.87	6.37	6.37	6.37	0.14	1.67	± 13.4 %
835	41.5	0.90	5.81	5.81	5.81	0.63	1.24	± 12.0 %
1750	40.1	1.37	4.90	4.90	4.90	0.80	1.14	± 12.0 %
1900	40.0	1.40	4.69	4.69	4.69	0.62	1.31	± 12.0 %
2450	39.2	1.80	4.14	4.14	4.14	0.65	1.36	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 71 of 101

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

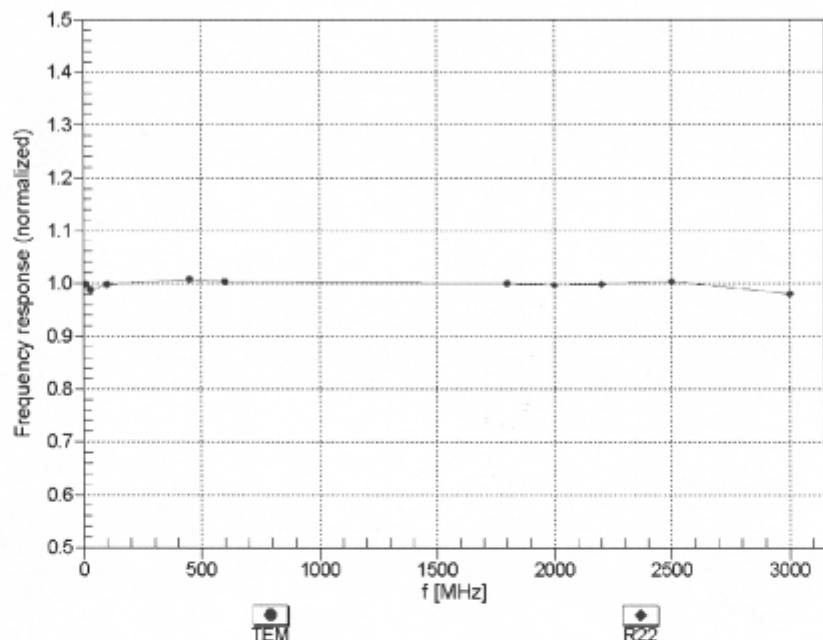
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.53	6.53	6.53	0.23	1.90	± 13.4 %
450	56.7	0.94	6.73	6.73	6.73	0.10	1.00	± 13.4 %
835	55.2	0.97	5.81	5.81	5.81	0.54	1.33	± 12.0 %
1750	53.4	1.49	4.65	4.65	4.65	0.67	1.38	± 12.0 %
1900	53.3	1.52	4.36	4.36	4.36	0.62	1.40	± 12.0 %
2450	52.7	1.95	3.96	3.96	3.96	0.64	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**TA Technology (Shanghai) Co., Ltd.
Test Report**


Report No.: RXA1212-1125SAR01R2

Page 72 of 101

ES3DV3- SN:3189

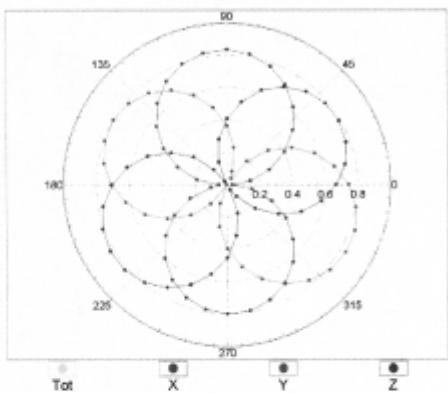
June 22, 2012

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

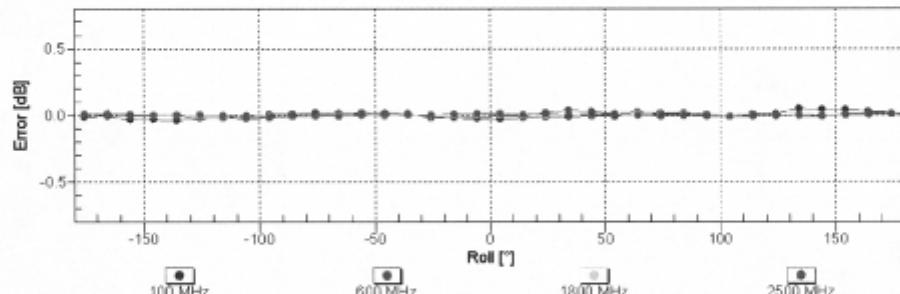
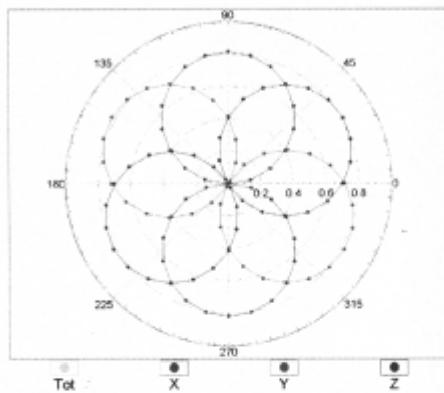
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2


Page 73 of 101

ES3DV3- SN:3189



June 22, 2012

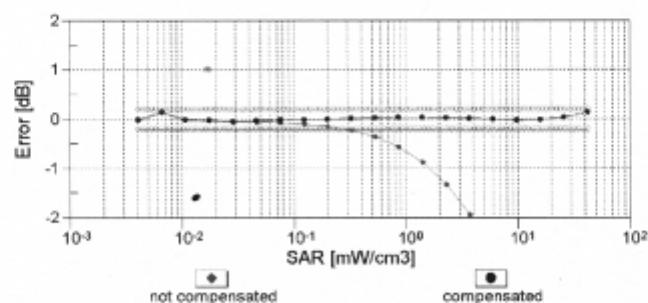
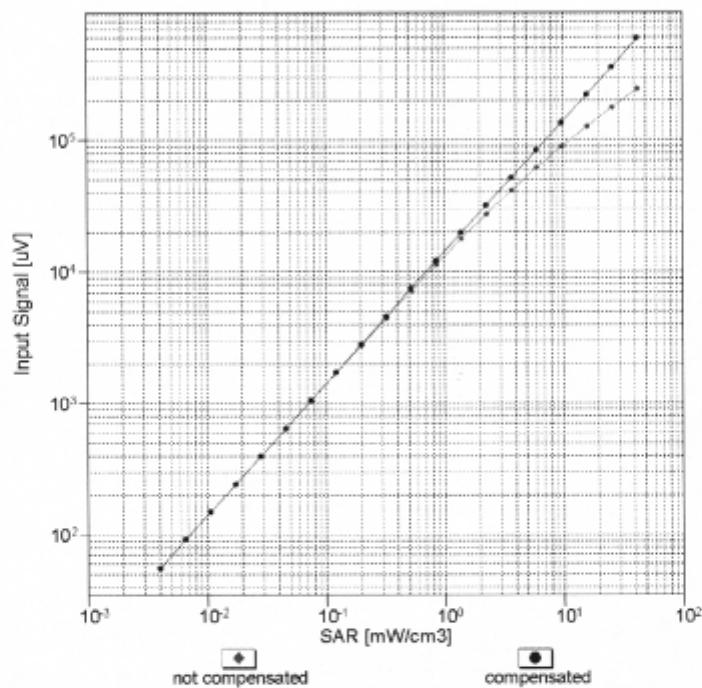
Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No.: RXA1212-1125SAR01R2

Page 74 of 101

ES3DV3- SN:3189

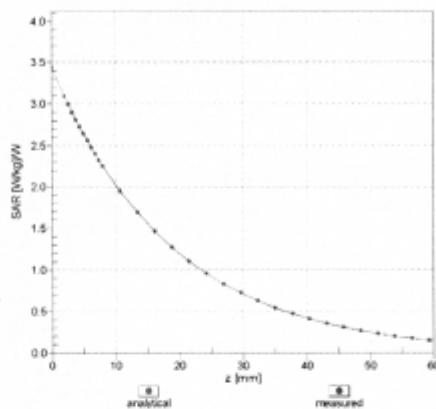
June 22, 2012

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)

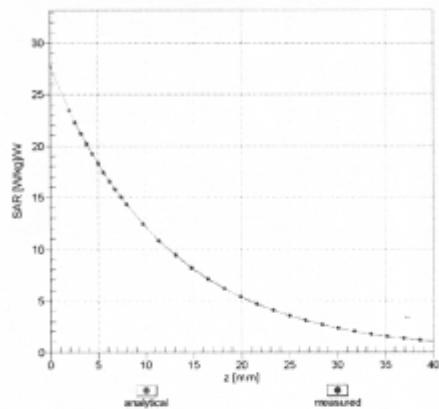
Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

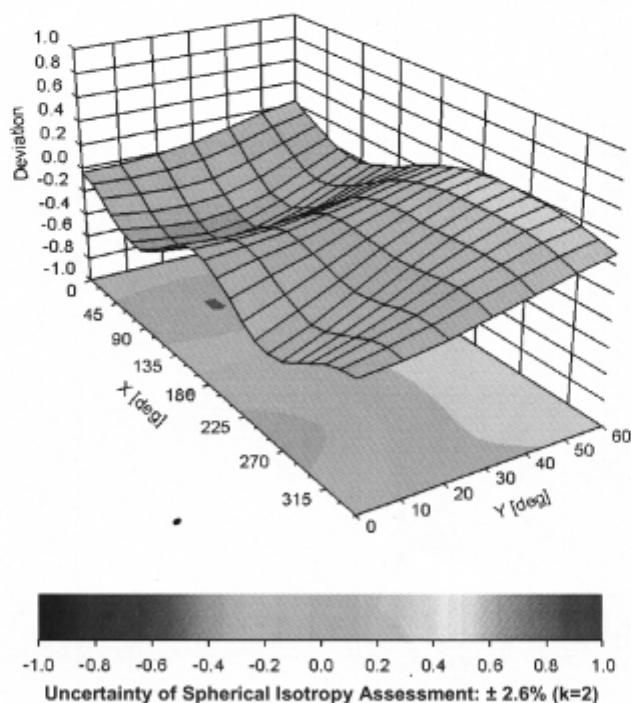

Page 75 of 101

ES3DV3- SN:3189


June 22, 2012

Conversion Factor Assessment

$f = 835 \text{ MHz}, \text{WGLS R9 (H_convF)}$



$f = 1900 \text{ MHz}, \text{WGLS R22 (H_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 76 of 101

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	54.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 77 of 101

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **TA-Shanghai (Auden)**

Certificate No: **D835V2-4d020_Aug11**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 4d020**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **August 26, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: Name **Jeton Kastrati** Function **Laboratory Technician** Signature

Approved by: Name **Katja Pokovic** Function **Technical Manager** Signature

Issued: August 26, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 78 of 101

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 79 of 101

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.11 mW / g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.26 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 80 of 101

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 $j\Omega$
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 $j\Omega$
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 81 of 101

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

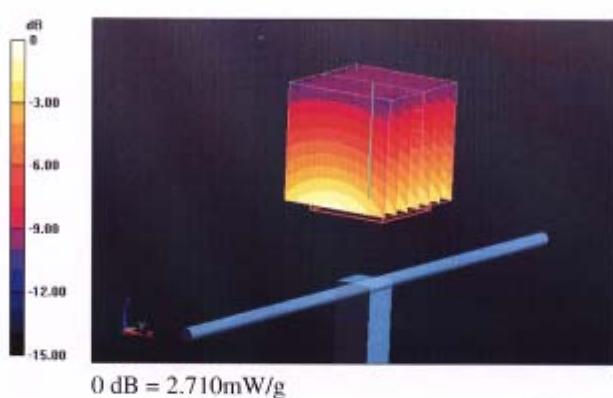
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

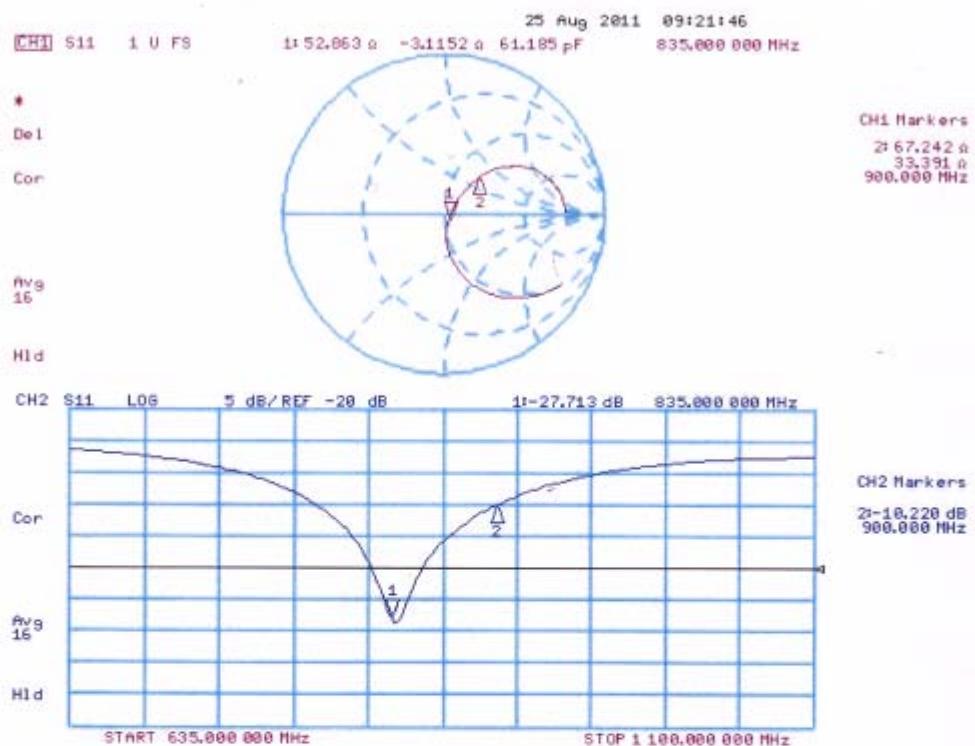

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.930 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.421 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.708 mW/g



**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 82 of 101

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 83 of 101

DASY5 Validation Report for Body TSL

Date: 26.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

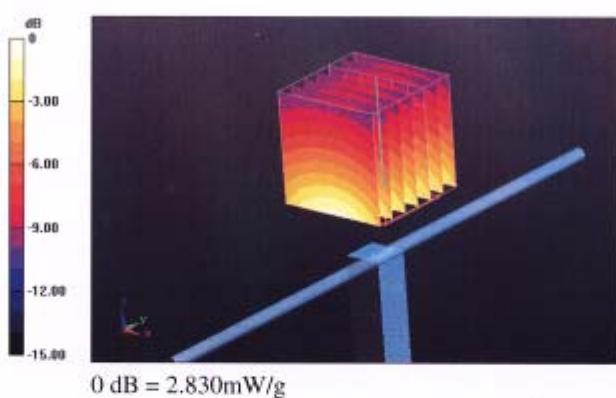
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

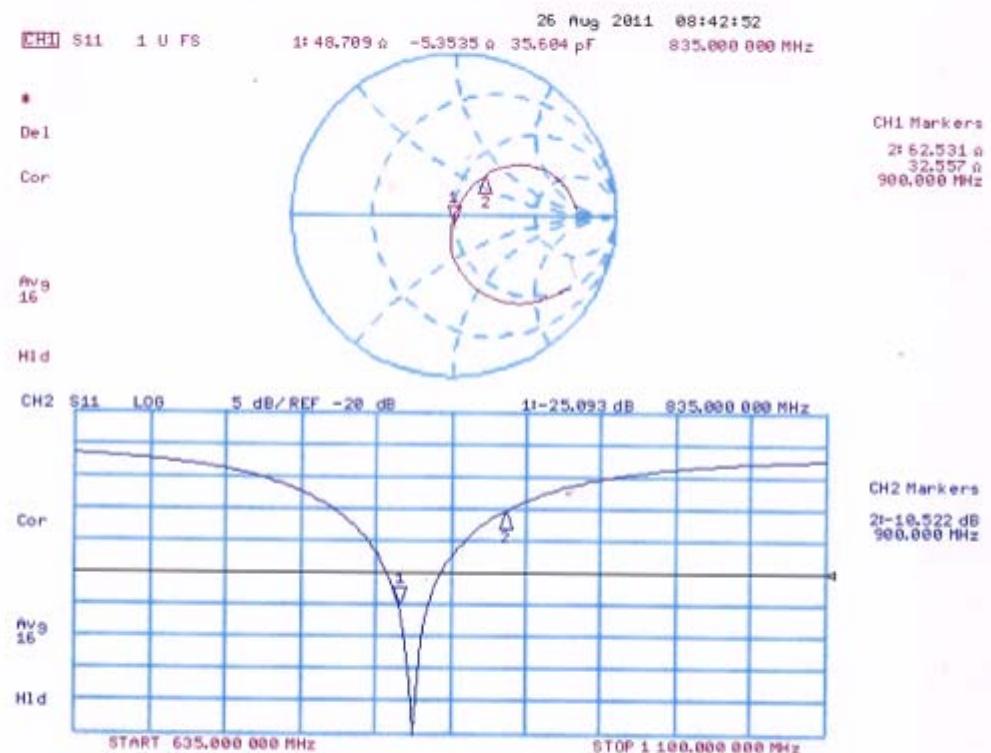

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.406 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.509 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.827 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 84 of 101

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 85 of 101

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: D1900V2-5d060_Aug11

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5d060																														
Calibration procedure(s)	QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz																														
Calibration date:	August 31, 2011																														
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>																															
<table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter EPM-442A</td><td>GB37480704</td><td>06-Oct-10 (No. 217-01266)</td><td>Oct-11</td></tr><tr><td>Power sensor HP 8481A</td><td>US37292783</td><td>06-Oct-10 (No. 217-01266)</td><td>Oct-11</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: S5086 (20b)</td><td>29-Mar-11 (No. 217-01367)</td><td>Apr-12</td></tr><tr><td>Type-N mismatch combination</td><td>SN: 5047.2 / 06327</td><td>29-Mar-11 (No. 217-01371)</td><td>Apr-12</td></tr><tr><td>Reference Probe ES3DV3</td><td>SN: 3205</td><td>29-Apr-11 (No. ES3-3205_Apr11)</td><td>Apr-12</td></tr><tr><td>DAE4</td><td>SN: 601</td><td>04-Jul-11 (No. DAE4-601_Jul11)</td><td>Jul-12</td></tr></tbody></table>				Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11	Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11	Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12	Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12	Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12	DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration																												
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11																												
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11																												
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12																												
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12																												
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12																												
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12																												
<table border="1"><thead><tr><th>Secondary Standards</th><th>ID #</th><th>Check Date (in house)</th><th>Scheduled Check</th></tr></thead><tbody><tr><td>Power sensor HP 8481A</td><td>MY41092317</td><td>18-Oct-02 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>RF generator R&S SMT-06</td><td>100005</td><td>04-Aug-99 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>Network Analyzer HP 8753E</td><td>US37390585 S4206</td><td>18-Oct-01 (in house check Oct-10)</td><td>In house check: Oct-11</td></tr></tbody></table>				Secondary Standards	ID #	Check Date (in house)	Scheduled Check	Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11	RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11	Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11												
Secondary Standards	ID #	Check Date (in house)	Scheduled Check																												
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11																												
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11																												
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11																												
Calibrated by:	Name Dimco Iliev	Function Laboratory Technician	Signature 																												
Approved by:	Katja Pokovic	Technical Manager																													
<p>Issued: August 31, 2011</p> <p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p>																															

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 86 of 101

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSI	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 87 of 101

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 88 of 101

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.6 \Omega + 7.5 j\Omega$
Return Loss	-22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.3 \Omega + 7.9 j\Omega$
Return Loss	-21.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 89 of 101

DASY5 Validation Report for Head TSL

Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

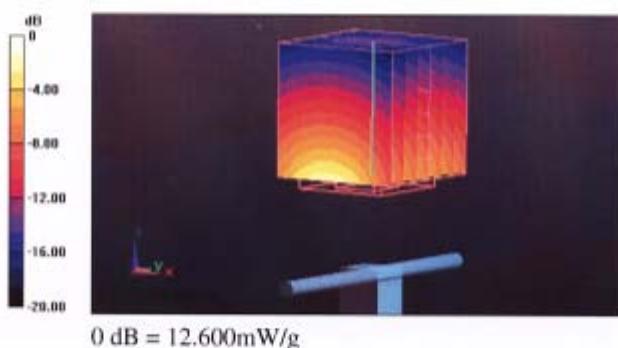
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

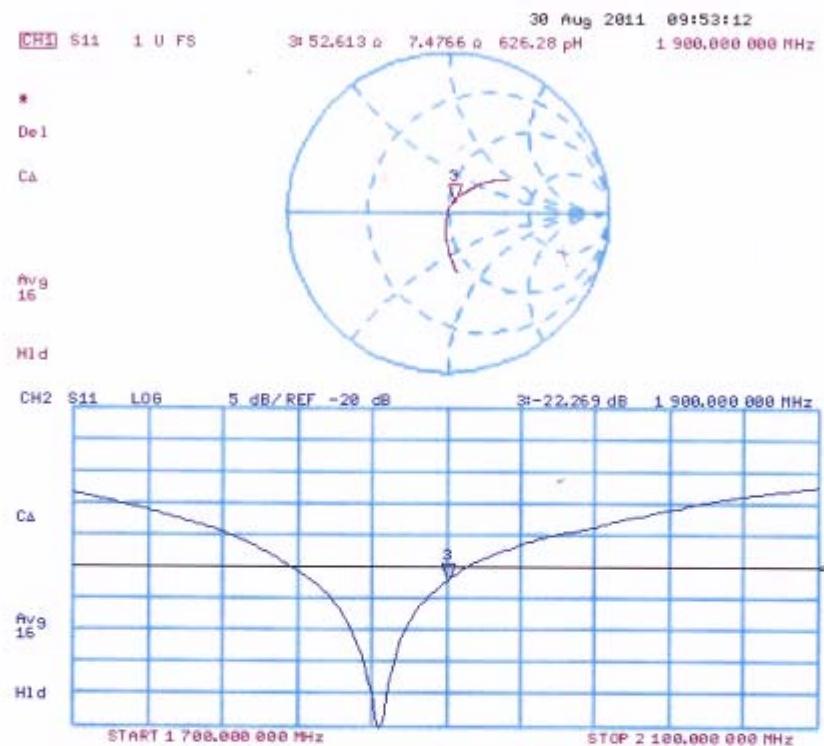

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.636 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.535 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.600 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 90 of 101

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 91 of 101

DASY5 Validation Report for Body TSL

Date: 31.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

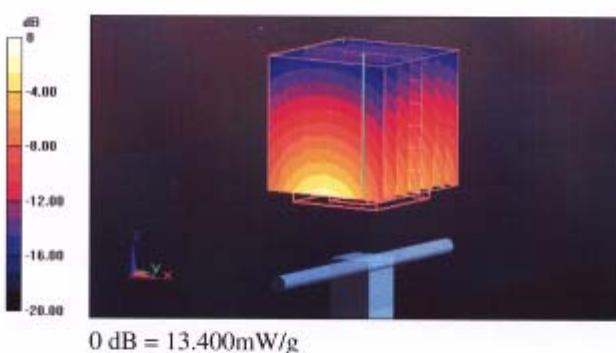
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

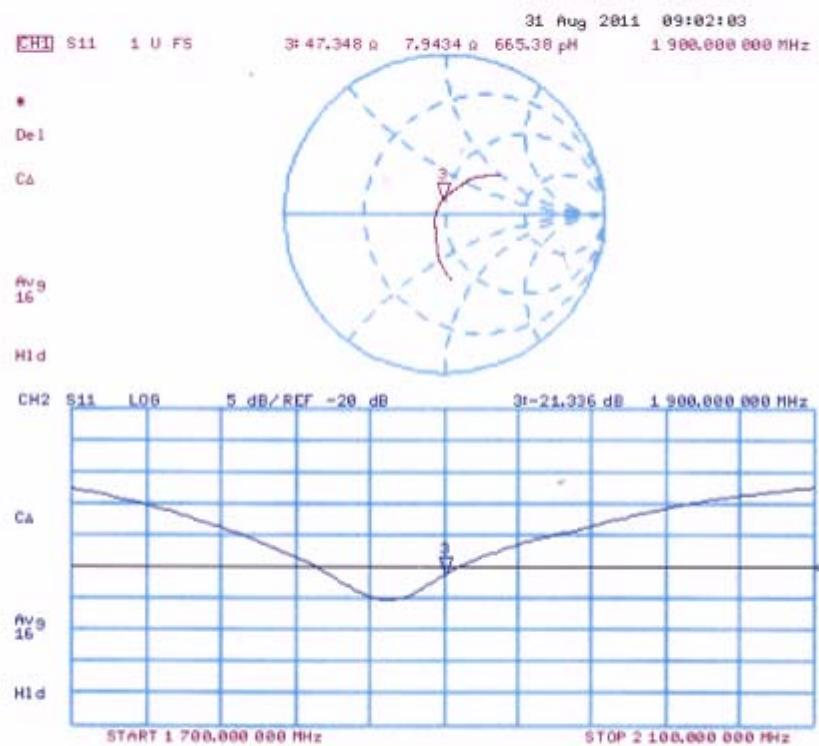

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.435 V/m; Power Drift = -0.0099 dB

Peak SAR (extrapolated) = 18.663 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 13.397 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No.: RXA1212-1125SAR01R2

Page 92 of 101

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 93 of 101

ANNEX G: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **TA Shanghai (Auden)**

Certificate No: **DAE4-1317_Jan12**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BJ - SN: 1317**

Calibration procedure(s) **QA CAL-06.v24**
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **January 23, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check

Calibrator Box V2.1 SE UWS 053 AA 1001 05-Jan-12 (in house check) In house check: Jan-13

Calibrated by: Name **Dominique Steffan** Function **Technician** Signature

Approved by: Name **Fin Bomholt** Function **R&D Director** Signature

Issued: January 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 94 of 101

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- **DC Voltage Measurement:** Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- **Connector angle:** The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - **DC Voltage Measurement Linearity:** Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - **Common mode sensitivity:** Influence of a positive or negative common mode voltage on the differential measurement.
 - **Channel separation:** Influence of a voltage on the neighbor channels not subject to an input voltage.
 - **AD Converter Values with inputs shorted:** Values on the internal AD converter corresponding to zero input voltage
 - **Input Offset Measurement:** Output voltage and statistical results over a large number of zero voltage measurements.
 - **Input Offset Current:** Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - **Input resistance:** Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - **Low Battery Alarm Voltage:** Typical value for information. Below this voltage, a battery alarm signal is generated.
 - **Power consumption:** Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 95 of 101

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.064 \pm 0.1\% \text{ (k=2)}$	$404.056 \pm 0.1\% \text{ (k=2)}$	$403.955 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.98762 \pm 0.7\% \text{ (k=2)}$	$3.98737 \pm 0.7\% \text{ (k=2)}$	$3.98343 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$117.0^\circ \pm 1^\circ$
---	---------------------------

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No.: RXA1212-1125SAR01R2

Page 96 of 101

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.18	-1.75	-0.00
Channel X + Input	20001.35	0.46	0.00
Channel X - Input	-19997.31	1.96	-0.01
Channel Y + Input	199993.18	-1.24	-0.00
Channel Y + Input	20001.40	0.60	0.00
Channel Y - Input	-20000.04	-0.70	0.00
Channel Z + Input	199991.58	-2.43	-0.00
Channel Z + Input	19999.62	-1.14	-0.01
Channel Z - Input	-20001.31	-1.83	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.74	-0.89	-0.04
Channel X + Input	202.18	-0.01	-0.01
Channel X - Input	-197.58	0.36	-0.18
Channel Y + Input	2000.34	-1.20	-0.06
Channel Y + Input	199.67	-2.39	-1.18
Channel Y - Input	-197.64	0.32	-0.16
Channel Z + Input	2000.69	-0.78	-0.04
Channel Z + Input	200.84	-1.16	-0.57
Channel Z - Input	-198.45	-0.47	0.24

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-23.40	-24.98
	-200	28.01	26.12
Channel Y	200	-2.57	-2.75
	-200	1.67	1.31
Channel Z	200	-11.92	-11.43
	-200	9.80	9.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-2.15	-4.41
Channel Y	200	7.18	-	-2.47
Channel Z	200	7.44	5.46	-

TA Technology (Shanghai) Co., Ltd. Test Report

Report No.: RXA1212-1125SAR01R2

Page 97 of 101

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16081	17027
Channel Y	16103	16170
Channel Z	16221	16651

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

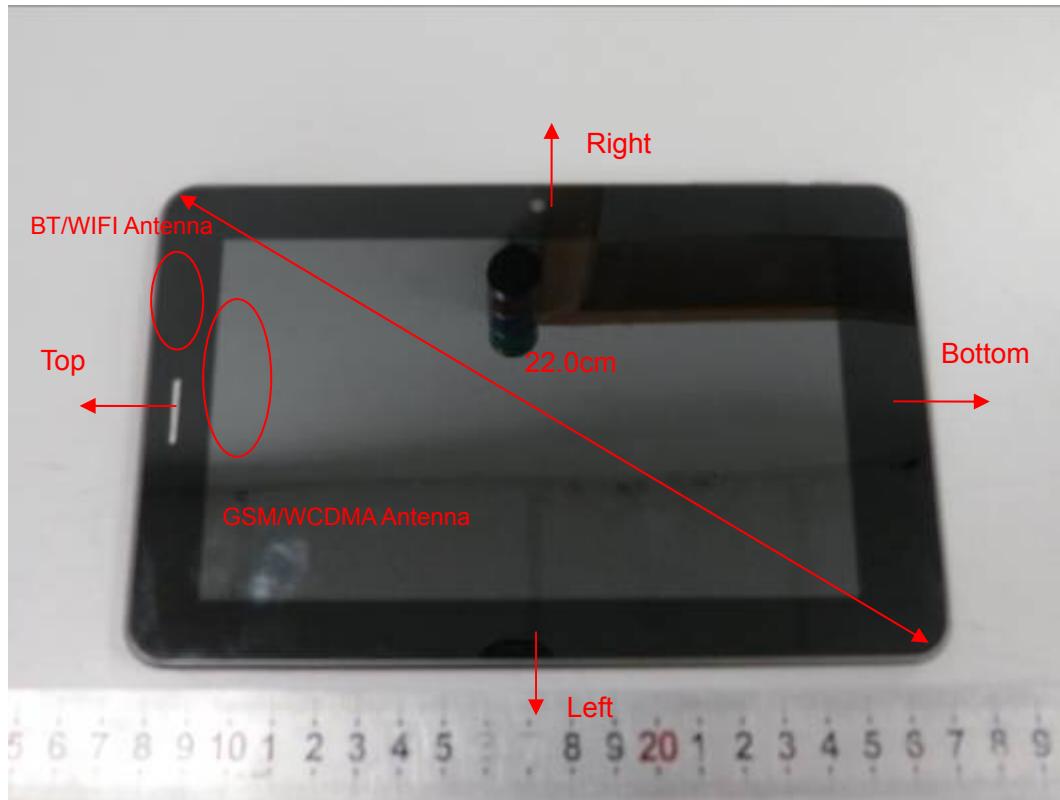
	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	-0.45	-1.32	0.40	0.32
Channel Y	-2.63	-3.99	-1.68	0.42
Channel Z	-0.67	-3.07	1.36	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200


8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX H: The EUT Appearances and Test Configuration

a: Front side

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 99 of 101


b: Back view

Picture 4: Constituents of the EUT

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 100 of 101

Picture 5: Test position 1

Picture 6: Test position 2

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No.: RXA1212-1125SAR01R2

Page 101 of 101

Picture 7: Test position 5