

atit

Min Xie Project Engineer 11 Gordon Collins Dr, Gormley, ON, L0H 1G0 Canada Ph: (905) 883-8189 Testing produced for

See Appendix A for full customer & EUT details.

Page 1 of 65 Report issue date: GEMC File #:FCC-T23438R0 5/2/2016 © TUV SUD Canada. This test report shall not be reproduced except in full, without written approval of TUV SUD Canada. This report is based on GEMC Template "FCC 15 247 Rev2." Client

Product

Standard(s)

Lakota

MMB Research Inc

d(s) RSS 247:2015 / FCC Part 15 Subpart 15.247:2016

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	6 7 8
Definitions and Acronyms	9
Testing Facility 1	0
Calibrations and Accreditations	
Detailed Test Results Section 1	2
6dB Bandwidth of Digitally Modulated Systems – 15.2471Maximum Peak Envelope Conducted Power - DM	20 26 29 52
Appendix A – EUT Summary	57
Appendix B – EUT and Test Setup Photographs6	50

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Report Scope

This report addresses the EMC verification testing and test results of Lakota herein referred to as EUT (Equipment Under Test) performed at TUV SUD Canada, Gormley.

The EUT was tested for compliance against the following standards:

RSS 247:2015 FCC Part 15 Subpart 15.247:2016

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or TUV SUD Canada.

Opinions/interpretations expressed in this report, if any, are outside the scope of TUV SUD Canada's accreditation. Any opinions expressed do not necessarily reflect the opinions of TUV SUD Canada, unless otherwise stated.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	XFF-LKT00
EUT Industry Canada Certification #, IC:	8365A-LKT00
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Min Xie

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS-GEN (Table 6)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207 RSS-GEN (Table 3)	Power line conducted emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-GEN (Table 4)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-247 5.2 (1)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-247 5.4 (4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-247 5.4 (4)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-247 5.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-247 5.2 (2)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
FCC 15.247(i) RSS-102	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overal	l Result		PASS

All tests were performed by Min Xie.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203, the unit uses a permanently connected SMD antenna which is less than 6 dBi gain.

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 - 2483.5 MHz band.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

For the scope of this test report the EUT was mounted in three orthogonal axis to maximize emissions. Worst case results are presented.

Power line conducted emissions were not applicable as the EUT is a modular transmitter, DC power, and relies on its host for supply.

The EUT was incapable of supporting 100% duty cycle, it was operated using the maximum possible duty cycle of 13.6%. Sweep triggering/signal gating was employed within the spectrum analyzer so that all measurements were performed while the EUT is transmitting at its maximum power control level.

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American national standard for testing unlicensed wireless devices
CFR 47 FCC 15	Code of Federal Regulations – Radio Frequency Devices
CISPR 22:2008	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
FCC KDB 558074	FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003:2012	Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	General Requirements for the competence of testing and calibration laboratories
RSS-GEN Issue 4	General Requirements and Information for the Certification of Radio Apparatus
RSS-247 Issue 1	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS 102 Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Sample calculation(s)

 $\label{eq:margin} \begin{array}{l} Margin = limit - (received signal + antenna factor + cable loss - pre-amp gain) \\ Margin = 50.5 dBuV/m - (50 dBuV + 10 dB + 2.5 dB - 20 dB) \\ Margin = 8.5 \ dB \end{array}$

Document Revision Status

Revision 0 - May 2, 2016 Initial release

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

- **AE** Auxiallary Equipment.
- BW Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.
- **EMC** Electro-Magnetic Compatibility
- **EMI** Electro-Magnetic Immunity
- **EUT** Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TUV SUD Canada near Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Industry Canada (IC, 6844A-3) and VCCI (R-4023, G-506, T-1246, and C-4498). This semi-anechoic chamber complies with the requirements of EN55016-2-3:2006, section 7.5 and the site attenuation requirements of EN55016-1-4. This chamber was additionally calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TUV SUD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TUV SUD Canada. TUV SUD Canada is accredited to ISO 17025 by A2LA with Testing Certificate #2955.02. The laboratories current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing -

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
2016/03/2 2016/02/26	Radiated emission	MX	20-24°C	39 - 50%	96 -102kPa
2016/03/3	Antenna conducted	MX	20-24°C	39 - 50%	96 -102kPa

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Detailed Test Results Section

Report issue date: 5/2/2016

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

6dB Bandwidth of Digitally Modulated Systems – 15.247

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits and Methods

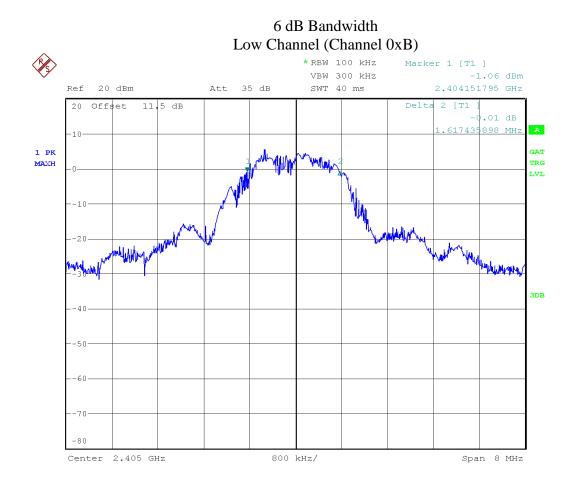
The Limit is as specified in FCC Part 15 and RSS 247.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

The method is given in Section 8.1 of FCC KDB 558074 and ANSI C63.10.

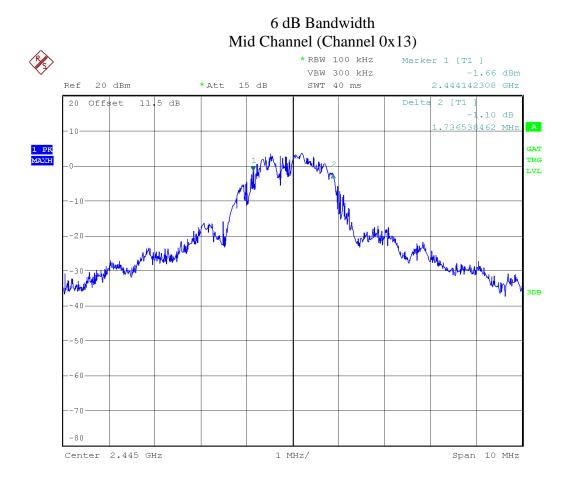
Results

The EUT passed. The minimum measured 6 dB BW was 1617 kHz and the maximum 99% BW at full power setting is 4050 kHz.

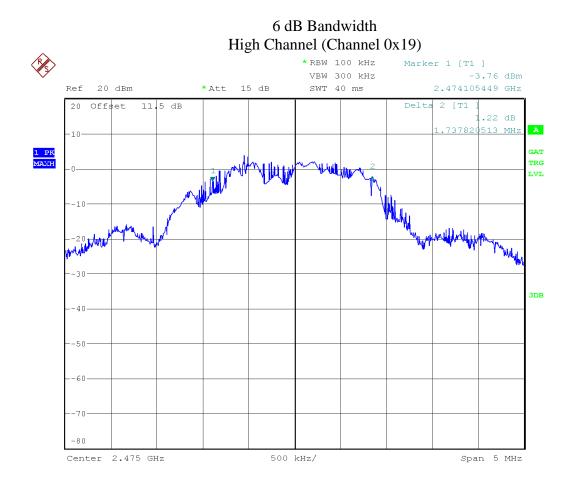

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)	
Lo Channel (0xB)	2405	1617	3708	
Mid Channel (0x13)	2445	1736	3708	
Hi Channel (0x19)	2475	1738	4050	
Hi Channel (Ox1A)	2480	1833	4725	

Graph(s)

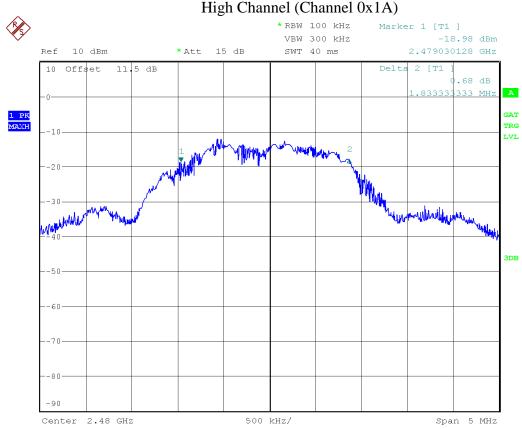
The graphs showed below shows the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.


Report issue date: 5/2/2016

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

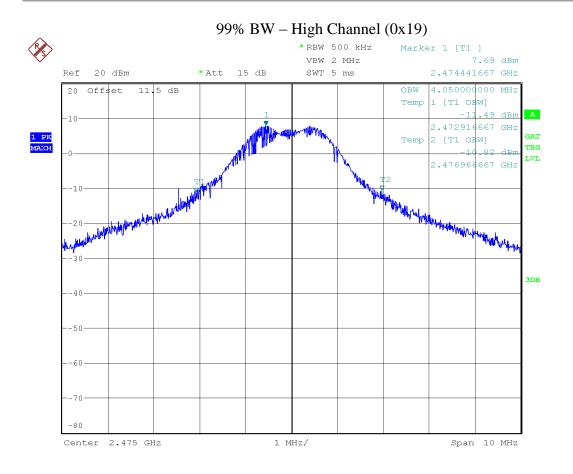

Date: 2.MAR.2016 20:25:08

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 20:42:32

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Date: 2.MAR.2016 21:01:17


Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

6 dB Bandwidth High Channel (Channel 0x1A)

Date: 2.MAR.2016 21:12:43

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Date: 2.MAR.2016 20:48:26

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb 11, 2016	Feb 11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Maximum Peak Envelope Conducted Power - DTS

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

Limits and Methods

The limits are defined in FCC Part 15.247(b) and RSS 247. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

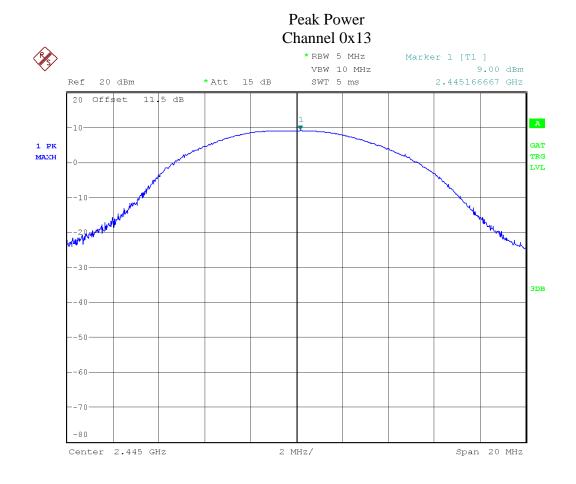
The method is given in Section 9.1.2 of FCC KDB 558074 and ANSI C63.10

Results

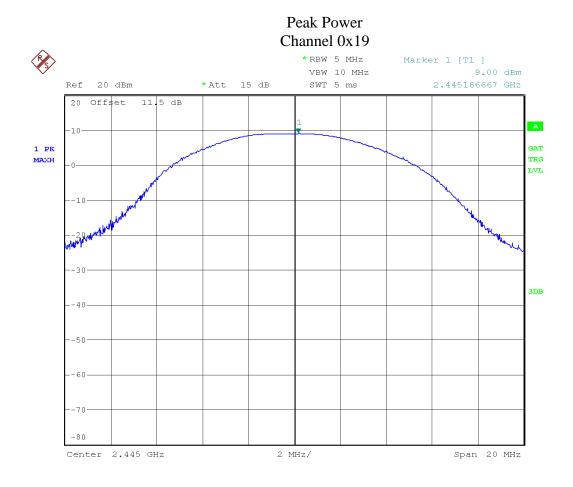
The EUT passed. The peak power of the EUT was set to transmit at maximum power. Three Channels were measured. The following table show the peak power: The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

Channel	Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	
Lo Channel (0xB)	2405	9.81	9.57	
Mid Channel (0x13)	2445	9.0	7.94	
Hi Channel (0x19)	2475	8.04	6.37	
Hi Channel (Ox1A)	2480	-7.75	0.17	

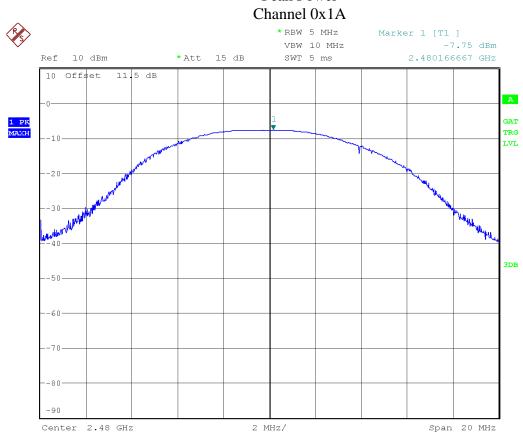
Graphs


The plots shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. The measurement RBW is \geq than the DTS bandwidth.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 20:35:55

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 20:38:02

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Date: 2.MAR.2016 20:38:02

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Peak Power

Date: 2.MAR.2016 21:07:22

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Antenna Spurious Conducted Emissions (-20 dBc Requirement) – 15.247

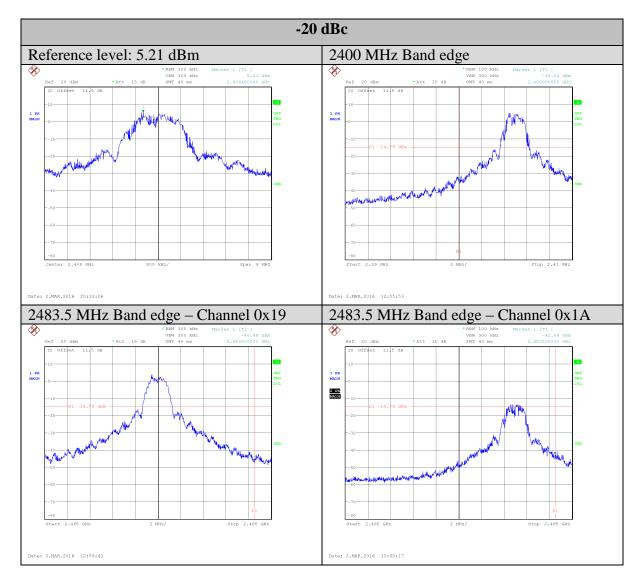
Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

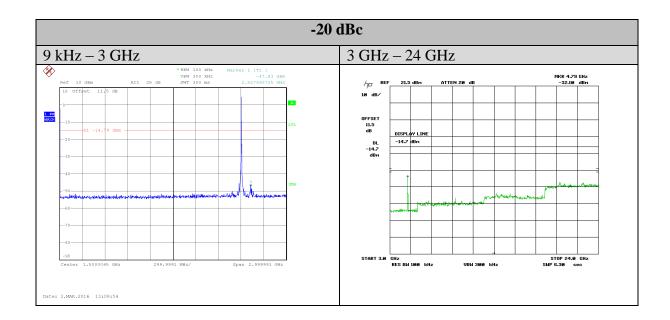
Limits and Methods

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

The method is given in Section 11 of FCC KDB 558074 and ANSI C63.10


Results

The EUT passed the limits. Low, middle and high channels were measured. The worst case was presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.


Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Radiated Emissions – 15.247

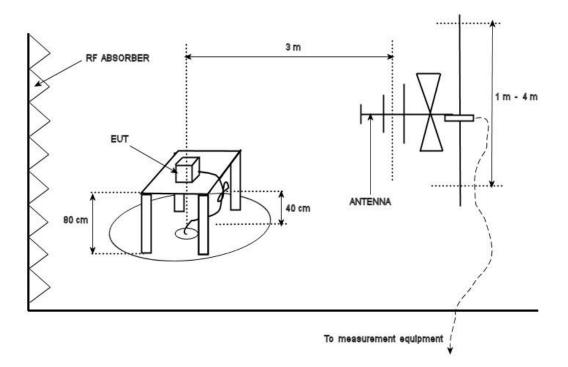
Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit and Method

The method is given in Section 12.1 of FCC KDB 558074 and ANSI C 63.10 The limits are as defined in FCC Part 15, Section 15.209:

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).


All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

0.009 MHz - 0.490 MHz, 2400/F (kHz) uV/m at 300 m¹ 0.490 MHz - 1.705 MHz, 24000/F (kHz) uV/m at 30 m¹ 1.705 MHz - 30 MHz, 30 uV/m at 30 m¹ 30 MHz - 88 MHz, 100 uV/m (40.0 dBuV/m^1) at 3 m 88 MHz - 216 MHz, 150 uV/m (43.5 dBuV/m^1) at 3 m 216 MHz - 960 MHz, 200 uV/m (46.0 dBuV/m^1) at 3 m Above 960 MHz, 500 uV/m (54.0 dBuV/m^1) at 3 m Above 1000 MHz, 500 uV/m (54 dBuV/m^2) at 3m Above 1000 MHz, 500 uV/m (74 dBuV/m^3) at 3m

¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1 ²Limit is with 1 MHz measurement bandwidth and using an Average detector ³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

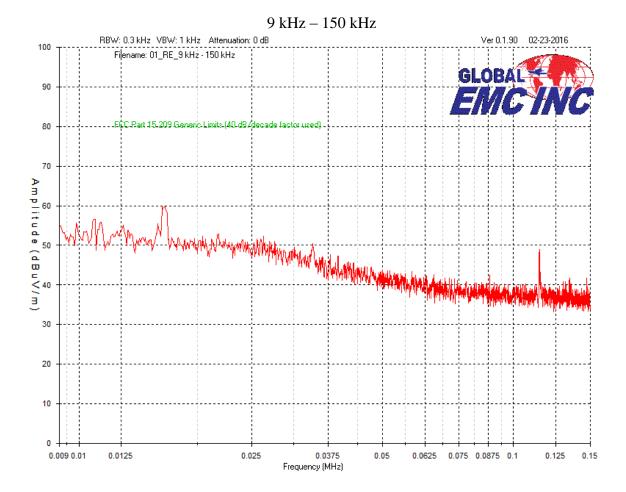
Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of a 24.835 GHz).

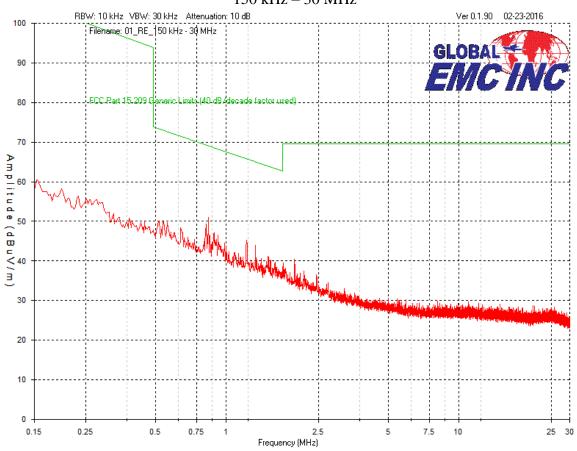
Devices scanned may be scanned at alternate test distances, and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above

Page 30 of 65

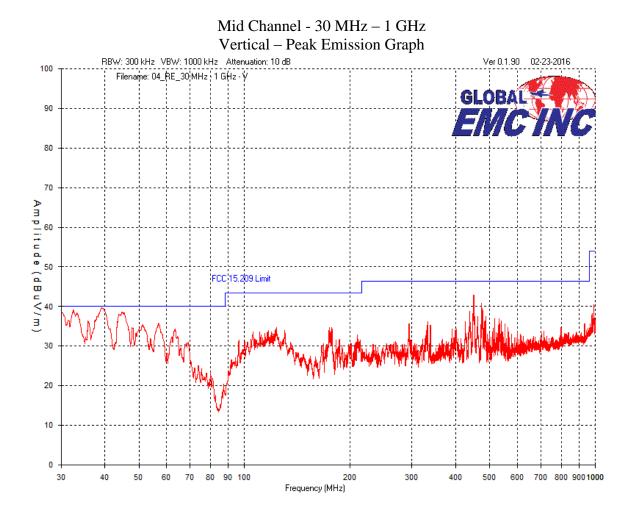

Report issue date: 5/2/2016

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

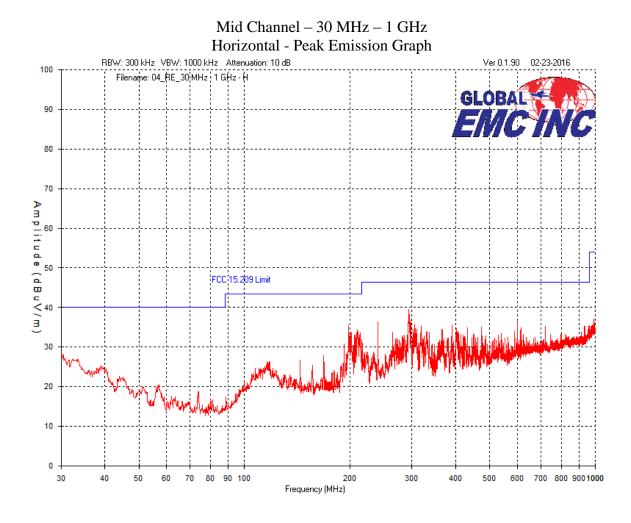
30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m / 3m) is applied.


Low, middle and high channels were measured, each in three orthogonal axes were checked; however the worst case graphs are presented.

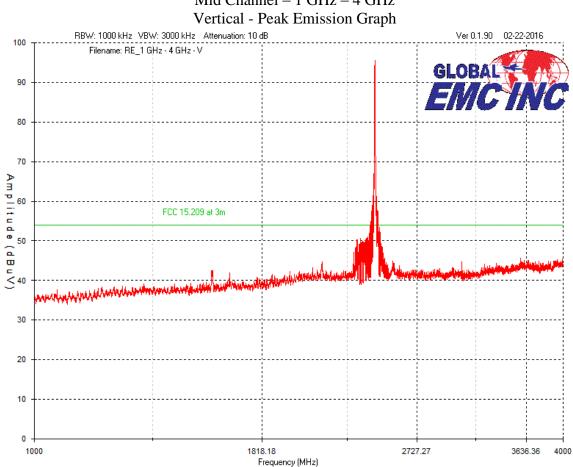
Band edge measure graphs were shown for illustrations purpose. See final measurement section for all measurements.


Page 31 of 65

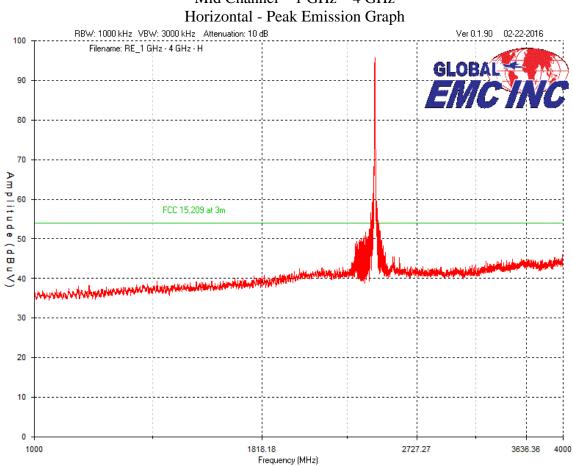
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada



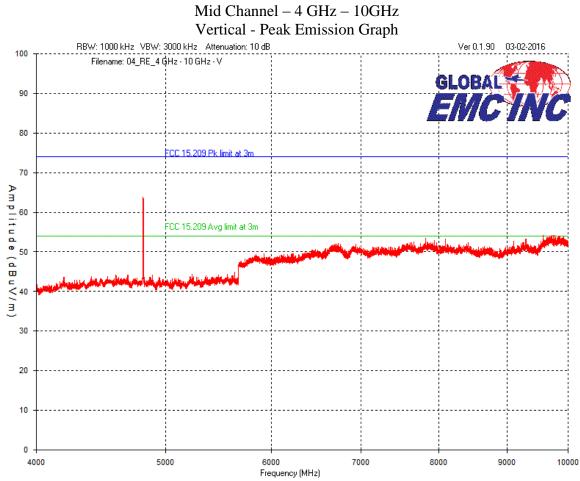
150 kHz - 30 MHz


Client	MMB Research Inc	
Product	Lakota	TÜV SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

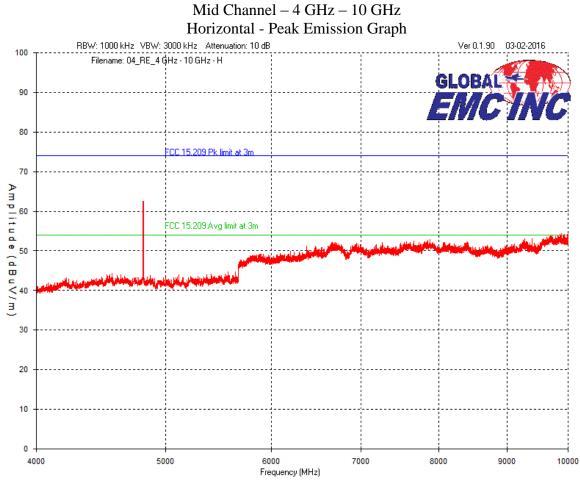
Client	MMB Research Inc	
Product	Lakota	TÜV SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada



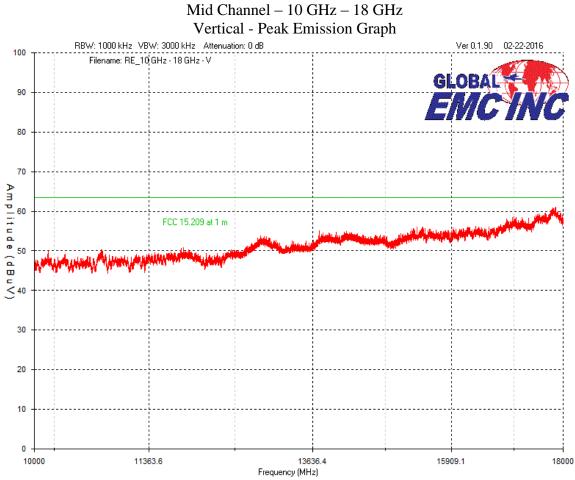
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Mid Channel – 1 GHz – 4 GHz

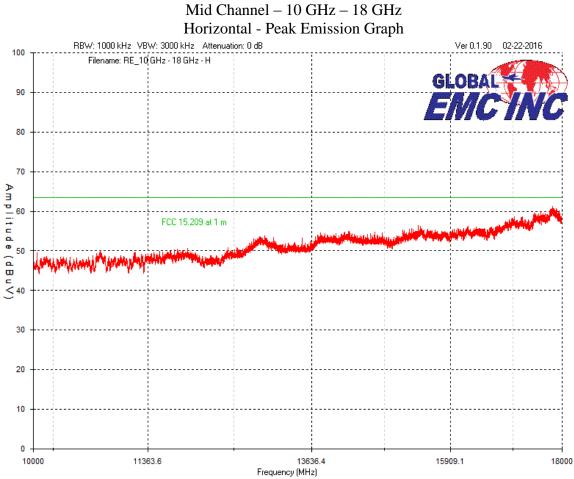
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Mid Channel – 1 GHz – 4 GHz

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

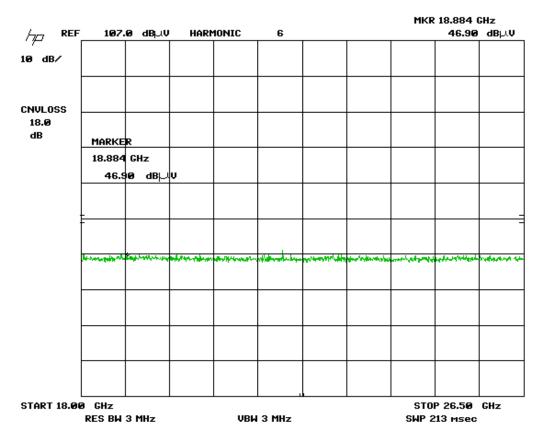

Note: See Final Measurements and Results section starting on page 49 for measurements.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Note: See Final Measurements and Results section starting on page 49 for measurements.

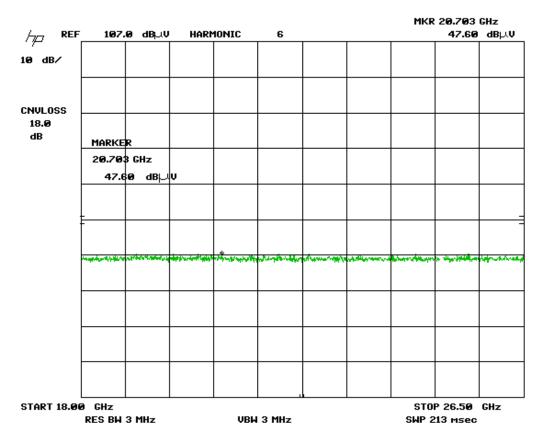
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Note: See Final Measurements and Results section starting on page 49 for measurements.

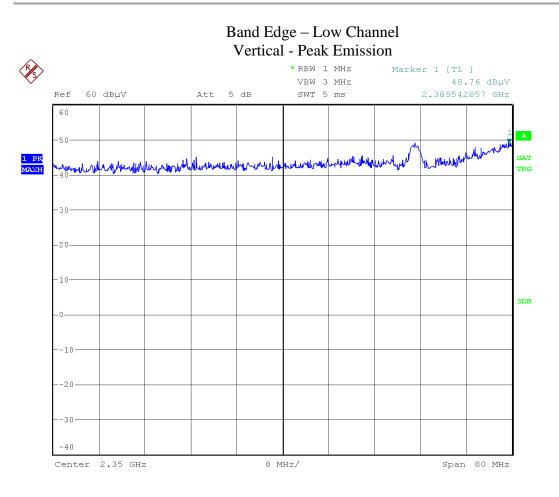

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Note: See Final Measurements and Results section starting on page 49 for measurements.

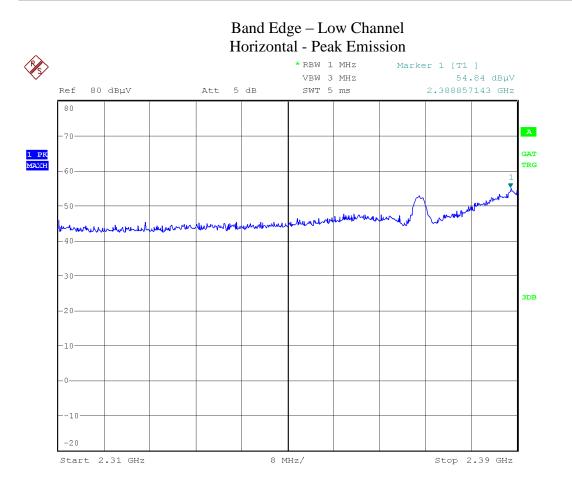
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Mid Channel – 18 GHz – 26 GHz Vertical - Peak Emission Graph

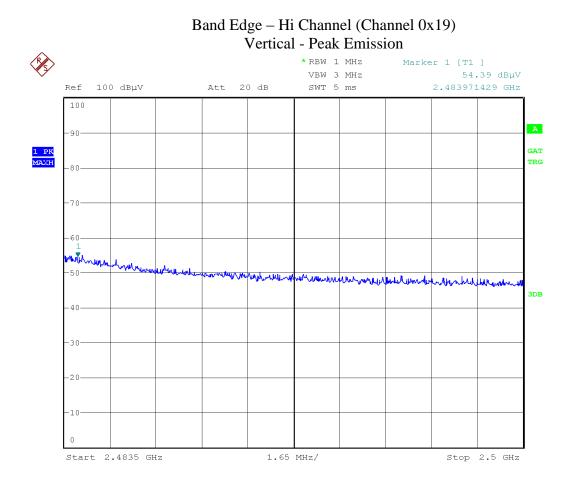
Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.


Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

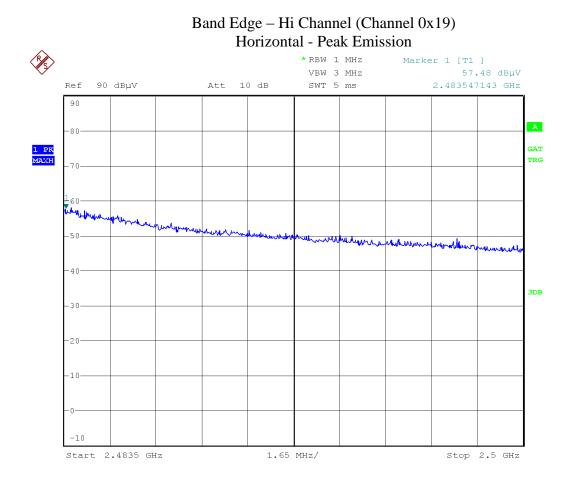
Mid Channel – 18 GHz – 26 GHz Horizontal - Peak Emission Graph


Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

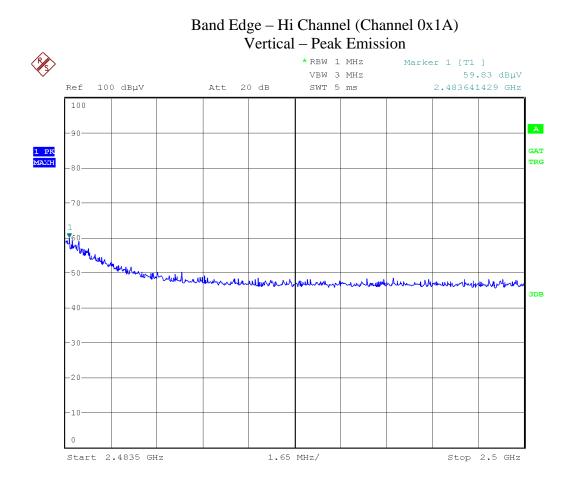
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 17:55:09

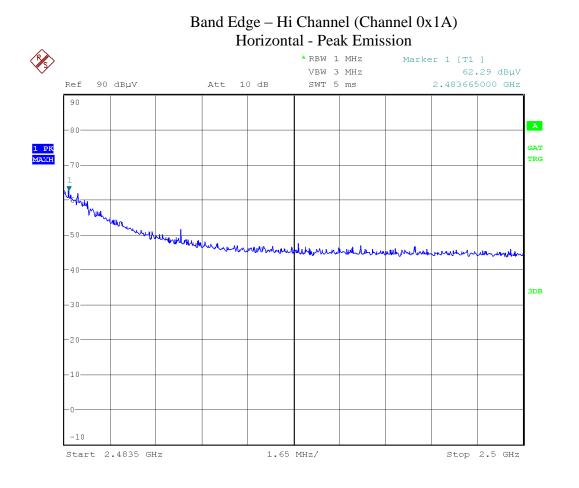
Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 18:10:43

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 17:34:55

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada


Date: 2.MAR.2016 17:18:09

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Date: 2.MAR.2016 17:28:38

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Date: 2.MAR.2016 17:21:54

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Final Measurements and Results

The EUT passed the limits. Low, middle and high bands were measured.

In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a final detector. Emission outside the restricted bands were measured for information purpose.

The measurements were maximized by rotating the turn table over a full 0-360 rotation and the antenna height was varied from 1 m to 4 m.

The EUT have a source base duty cycle of 13.6%; a duty cycle correction factor of -17.33 dB was used to derived Average emissions from peak emissions for band edge restricted band emissions and for harmonics that falls in restricted bands.

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
			Mid Chanr	nel (0x13) -	Y axis (\	/ertical)	Set power	10			
2440	Peak	Horz	99.4	28.2	4.2	10.0	35.8	106.0			PASS
2440	Avg	Horz	97.9	28.2	4.2	10.0	35.8	104.5			PASS
2440	Peak	Vert	96.7	28.2	4.2	10.0	35.8	103.3			PASS
2440	Avg	Vert	94.6	28.2	4.2	10.0	35.8	101.2			PASS
			N	lid Channel	(0x13) -	Xaxis (Side)				
2445	Peak	Horz	99.2	28.2	4.2	10.0	35.8	105.8			PASS
2445	Avg	Horz	97.3	28.2	4.2	10.0	35.8	103.9			PASS
2445	Peak	Vert	96.0	28.2	4.2	10.0	35.8	102.6			PASS
2445	Avg	Vert	93.7	28.2	4.2	10.0	35.8	100.3			PASS
			1	Mid Channe	l (0x13) l	Z-Axis (Flat)				
2445	Peak	Horz	94.0	28.2	4.2	10.0	35.8	100.6			PASS
2445	Avg	Horz	92.1	28.2	4.2	10.0	35.8	98.7			PASS
2445	Peak	Vert	95.4	28.2	4.2	10.0	35.8	102.0			PASS
2445	Avg	Vert	93.5	28.2	4.2	10.0	35.8	100.1			PASS

MMB Research Inc

Lakota

Product
Standard(s)

RSS 247:2015 / FCC Part 15 Subpart 15.247:2016

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
		Low	Channel (11) - Z axis (F	Flat) Setp	bower 10	C				
2405	Peak	Horz	100.7	28.2	4.2	10.0	35.8	107.3			PASS
2405	Avg	Horz	99.1	28.2	4.2	10.0	35.8	105.7			PASS
2405	Peak	Vert	97.4	28.2	4.2	10.0	35.8	104.0			PASS
2405	Avg	Vert	95.1	28.2	4.2	10.0	35.8	101.7			PASS
2390	Peak	Horz	54.8	28.2	4.2	10.0	35.8	61.4	74.0	12.6	PASS
2390	Avg	Horz	37.5	28.2	4.2	10.0	35.8	44.1	54.0	9.9	PASS
2390	Peak	Vert	48.8	28.2	4.2	10.0	35.8	55.4	74.0	18.6	PASS
2390	Avg	Vert	31.5	28.2	4.2	10.0	35.8	38.1	54.0	15.9	PASS
4810	Peak	Horz	64.4	33.5	5.8	0.0	35.3	68.4	74.0	5.6	PASS
4810	Avg	Horz	47.1	33.5	5.8	0.0	35.3	51.1	54.0	2.9	PASS
4810	Peak	Vert	66.8	33.5	5.8	0.0	35.3	70.8	74.0	3.2	PASS
4810	Avg	Vert	49.5	33.5	5.8	0.0	35.3	53.5	54.0	0.5	PASS
			High Cha	nnel (0x19)	- Z axis	(Flat) -	set power	10			

			High Char	nnel (0x19)	- Z axis	(Flat) -	set power	10			
2475	Peak	Horz	98.5	28.2	4.2	10.0	35.8	105.1			PASS
2475	Avg	Horz	97.1	28.2	4.2	10.0	35.8	103.7			PASS
2475	Peak	Vert	95.1	28.2	4.2	10.0	35.8	101.7			PASS
2475	Avg	Vert	93.7	28.2	4.2	10.0	35.8	100.3			PASS
2483.5	Peak	Horz	57.2	28.2	4.2	10.0	35.8	63.8	74.0	10.2	PASS
2483.5	Avg	Horz	39.9	28.2	4.2	10.0	35.8	46.5	54.0	7.5	PASS
2483.5	Peak	Vert	54.4	28.2	4.2	10.0	35.8	61.0	74.0	13.0	PASS
2483.5	Avg	Vert	37.1	28.2	4.2	10.0	35.8	43.7	54.0	10.3	PASS
			High Cha	nnel (0x1A)	-Z Axis	(Flat) S	et Power -	10			
2480	Peak	Horz	82.9	28.2	4.2	10.0	35.8	89.5			PASS
2480	Avg	Horz	81.1	28.2	4.2	10.0	35.8	87.7			PASS
2480	Peak	Vert	80.8	28.2	4.2	10.0	35.8	87.4			PASS
2480	Avg	Vert	78.9	28.2	4.2	10.0	35.8	85.5			PASS
2483.5	Peak	Horz	62.3	28.2	4.2	10.0	35.8	68.9	74.0	5.1	PASS
2483.5	Avg	Horz	45.0	28.2	4.2	10.0	35.8	51.6	54.0	2.4	PASS
2483.5	Peak	Vert	59.6	28.2	4.2	10.0	35.8	66.2	74.0	7.8	PASS
2483.5	Avg	Vert	42.3	28.2	4.2	10.0	35.8	48.9	54.0	5.1	PASS

	Vertical Emission Table									
Frequency (MHz)	Detector	Raw (dBuV)	Correction Factors (dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail			
39.32	QP	46.6	-13.9	32.7	40	7.3	Pass			
32.84	QP	42.3	-10.5	31.8	40	8.2	Pass			
44.9	QP	46.7	-16.8	29.9	40	10.1	Pass			
9771.67	AVG	39.6	6.1	45.7	54.0	8.3	Pass			
Horizontal Emission Table										
9879.33	AVG	39.4	5.9	45.3	54.0	8.7	Pass			

Page 50 of 65

Report issue date: 5/2/2016

GEMC File #: FCC-234380R0

Client	MMB Research Inc	
Product	Lakota	TÜV SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Loop Antenna	EM 6871	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 71
Bilog Antenna	CBL6111	Chase	Dec 17, 2015	Dec 17, 2017	GEMC 201
Attenuator 10 dB	8493B	Agilent	Feb 11, 2016	Feb 11, 2017	GEMC 133
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000- 0/0	K & L Microwave	Apr 9, 2015	Apr 9, 2016	GEMC 119
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Sept 9, 2014	Sept 9, 2016	GEMC 6403
Q-Par Horn Antenna (2 to 18 GHz)	WBH218HN	Q-par	Feb 12, 2016	Feb 12, 2018	GEMC 6375
Double Ridge Guide Horn Antenna 1-18 GHz	AH-118	Com-Power Corporation	Jul 1, 2015	Jul 1, 2015	GEMC 214
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	Sept 9, 2014	Sept 9, 2016	GEMC 6371
18.0-26.5 GHz Harmonic Mixer	11970K	HP	Feb 8, 2016	Feb 8, 2018	GEMC 158
1-26G pre-amp	HP 8449B	HP	Sept 9, 2014	Sept 9, 2016	GEMC 6351
2.0-8.0 GHz Amplifier	11975A	HP	Feb 8, 2016	Feb 8, 2018	GEMC157
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev1.doc"

Report issue date: 5/2/2016

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Power Spectral Density – 15.247 DM

Purpose

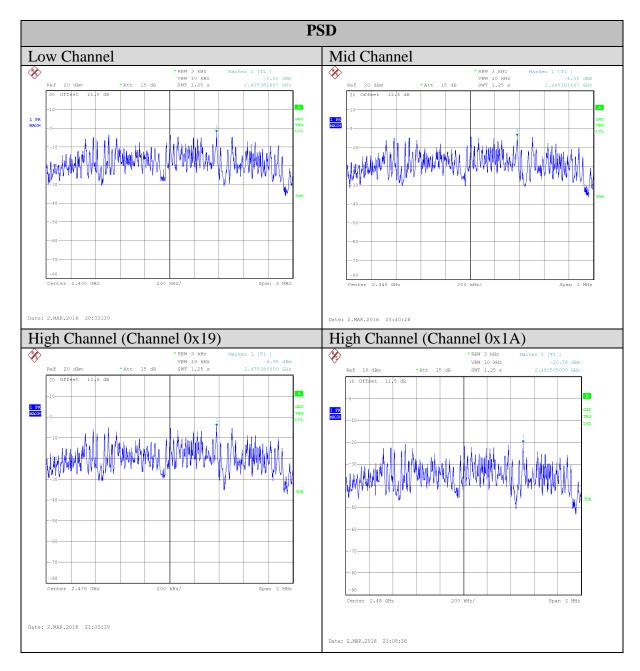
The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits and Methods

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The method is given in Section 10.2 of FCC KDB 558074.


Results

The EUT passed. Low, medium, and high band was tested. The worst case PSD is -2.60 dBm/3 kHz.

Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode, with the worst case being presented. The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	ESL6	Rohde & Schwarz	Nov 25, 2015	Nov 25, 2017	GEMC 160
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

RF Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limits for the frequency ranges 300 MHz to 1.5 GHz and 1.5 GHz to 100 GHz was applied. The limits are $f/1500 \text{ mW/ cm}^2$ and 1.0 mW/ cm² respectively. The distance used for calculations was 20 cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

As per FCC KDB 447498, Clause 4.3.1 b), the 1-g SAR exclusion threshold for 200 mm test distance is 1597 mW.

For RSS 102 the RF exposure exemption limit for a 2400 MHz transmitter is 1.31×10^{-2} f $^{0.6834}$ W which is 2.67 W.

Results

The EUT passed the requirements. The worst case calculated power density was 0.002 mW/cm^2 , this is significantly under the 1.0 mW/cm² requirement.

The Maximum peak conducted power of the EUT is 10 mW and is significantly less than the SAR exclusion threshold. Therefore SAR is not applicable to the EUT.

For RSS 102, the E.I.R.P of the EUT is 9.81 dBm + 0 dBi = 9.81 dBm (0.0096 W) which is significantly less than the 2.67W exemption limit. This is significantly less than the exemption limit.

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Calculations – Power Density

Method 1 (conducted power)

$$\begin{split} P_d &= (P_t ^*G) \ / \ (4^*pi^*R^2) \\ \text{Where } Pt &= 9.81 \ dBm \ or \ 9.57 \ mW \ as \ per \ Peak \ power \ conducted \ output \\ \text{Where } G &= 0 \ dBi, \ or \ numerically \ 1 \\ \text{Where } R &= 20 \ cm \end{split}$$

 $\begin{array}{l} P_{d} = (9.57 \ mW * 1) \ / \ (4 * pi * 20 cm^{2}) \\ P_{d} = 0.002 \ mW/cm^{2} \end{array}$

Calculations – SAR Exclusion Limit

According to FCC KDB 447498, Clause 4.3.1 a) the exclusion power for up to 50 mm is

Power @ 50 mm= (3 * distance)/ $\sqrt{f(GHz)}$ Power @ 50 mm= (3 * 50)/ $\sqrt{(2.4)}$ Power @ 50 mm= 96.8 mW

According to FCC KDB 447498, Clause 4.3.1 b), the test exclusion power for above 50 mm is

Power @ 50 mm + (dist - 50 mm) \times 10

The exclusion power for 200 mm is therefore 96.8 mW + ((200 mm - 50 mm)*10) = 1597 mW

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Appendix A – EUT Summary

Page 57 of 65

Report issue date: 5/2/2016

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

For further details for filing purposes, refer to filing package.

General EUT Description

Client				
Organization	MMB Research Inc.			
Contact	Mark Borins			
Phone	416.636.3145			
Email	mark.borins@mmbresearch.com			
	EUT Details			
EUT Model number	Lakota			
Equipment Category	Wireless module			
Basic EUT Functionality	The Lakota module is a ZigBee radio transceiver with integrated microcontroller operating in the 2.4GHz ISM band. The radio operates according to the IEEE 802.15.4 standard and employs DSSS and O-QPSK modulation. The EUT employs onboard shielding and internal ground plane. The antenna is a 50 ohm ceramic chip tuned to match the RF circuit of the radio transceiver. The module is typically used in automation applications where it will transmit small packets of command and control information. For example turning a light switch on or off, adjusting a thermostat, reading energy consumption data, etc.			
Input Voltage and Frequency	3.3 Vdc			
Connectors available on EUT	None.			
Peripherals Required for Test	None.			
Release type	Final			
Intentional Radiator Frequency	2405 – 2480.0 MHz for Zigbee applications as described above.			

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B - EUT & Test Setup Photographs'.

EUT Configuration

Please see Appendix B for a picture of the unit running in normal conditions.

• Wireless were configured to transmit continuously at maximum duty cycle

Operational Setup

A controller board is connected to the EUT through a

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Appendix B – EUT and Test Setup Photographs

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Figure 1: Radiated emissions setup – photo 1

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Figure 2: Radiated emission setup – photo 2

Client	MMB Research Inc	
Product	Lakota	TÜV
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

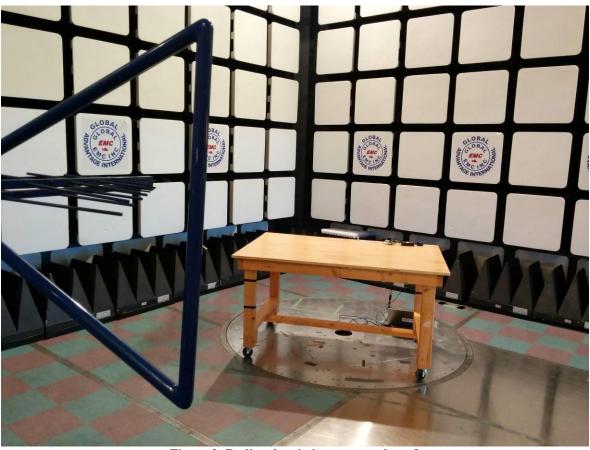


Figure 3: Radiated emission setup – photo 3

Client	MMB Research Inc	
Product	Lakota	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

Figure 4: Radiated emission setup – photo 4

Client	MMB Research Inc	
Product	Lakota	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart 15.247:2016	Canada

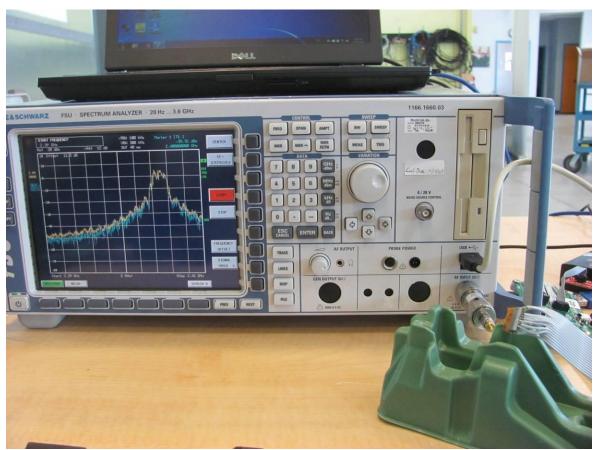


Figure 5: Antenna port conducted emission - photo