TUV SUD Canada/Global EMC Inc. EMC & RF Test Report As per RSS 247: 2015 & FCC Part 15 Subpart C: 2015 Unlicensed Intentional Radiators GWY10

Min Xie

Project Engineer 11 Gordon Collins Dr, Gormley, ON, L0H 1G0 Canada Ph: (905) 883-8189 Testing produced for MMB Research

See Appendix A for full customer & EUT details.

 Page 1 of 177
 Report issue date:
 GEMC File #: FCC-T23262R0

 6/4/2016
 6/4/2016

 © TUV SUD Canada/Global EMC Inc. This test report shall not be reproduced except in full, without written approval of TUV SUD Canada/Global EMC Inc. This report is based on GEMC Template "FCC 15 247 Rev2."

Client

MMB Research Inc

Product

Standard(s)

GWY10

rd(s) RSS 247:2015 / FCC Part 15 Subpart C 15:2015

Table of Contents

Table of Contents	
Report Scope	
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	
Definitions and Acronyms	9
Testing Facility	
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	
6dB Bandwidth of Digitally Modulated Systems Maximum Peak Envelope Conducted Power - DM Antenna Spurious Conducted Emissions (-20 dBc Requirement) – 15.247 Spurious Radiated Emissions Power Spectral Density – 15.247 DM Power Line Conducted Emissions RF Exposure	
Appendix A – EUT Summary	175

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Report Scope

This report addresses the EMC verification testing and test results of MMB Research's **Communication Gateway, Model: GWY10**, herein referred to as EUT (Equipment Under Test) performed at TUV SUD Canada/Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 247:2015 FCC Part 15 Subpart C 15.247:2015

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or TUV SUD Canada/Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of TUV SUD Canada/Global EMC Inc. accreditation. Any opinions expressed do not necessarily reflect the opinions of TUV SUD Canada/Global EMC Inc., unless otherwise stated.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	XFF-GWY10	
EUT Industry Canada Certification #, IC:	8365A-GWY10	
EUT Passed all tests performed.	Yes (see test results summary)	
Tests conducted by	Min Xie	

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS-GEN (Table 6)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207 RSS-GEN (Table 3)	Power line conducted emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-GEN (Table 4)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-247 5.2 (1)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-247 5.4 (4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-247 5.4 (4)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-247 5.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-247 5.2 (2)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
FCC 15.247(i) RSS-102	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overal	Result		PASS

All tests were performed by Min Xie.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203, the Zigbee uses a permanently connected monopole antenna (5 dBi peak gain) and the WIFI uses a PCB antenna (2.8 dBi Airgain N2420) which is less than 6 dBi gain.

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 - 2483.5 MHz band.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

For the scope of this test report the EUT was mounted in two orthogonal axes to maximize emissions. Worst case results are presented.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American national standard for testing unlicensed wireless devices
CFR 47 FCC: 2015	Code of Federal Regulations – Radio Frequency Devices
CISPR 22:2008	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
FCC KDB 558074	FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003:2012	Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	General Requirements for the competence of testing and calibration laboratories
RSS-GEN Issue 4	General Requirements and Information for the Certification of Radio Apparatus
RSS-247 Issue 1	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS 102 Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Page 7 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Sample calculation(s)

 $\label{eq:margin} \begin{array}{l} Margin = limit - (received signal + antenna factor + cable loss - pre-amp gain) \\ Margin = 50.5 dBuV/m - (50 dBuV + 10 dB + 2.5 dB - 20 dB) \\ Margin = 8.5 \ dB \end{array}$

Document Revision Status

- Revision 0 May 19, 2016 Initial release
- Revision 1 June 4, 1016 Appendix B was remove from report to reduce file size. Information contain in Appendix B is also in External Photo and Test Support exhibits. The revision replaces Revision 0 in its entirety.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

- **AE** Auxiallary Equipment.
- BW Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.
- EMC Electro-Magnetic Compatibility
- **EMI** Electro-Magnetic Immunity
- **EUT** Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TUV SUD Canada/Global EMC Inc. near Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Industry Canada (IC, 6844A-3) and VCCI (R-4023, G-506, T-1246, and C-4498). This semi-anechoic chamber complies with the requirements of EN55016-2-3:2006, section 7.5 and the site attenuation requirements of EN55016-1-4. This chamber was additionally calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TUV SUD Canada/Global EMC.. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TUV SUD Canada/Global EMC. TUV SUD Canada/Global EMC Inc is accredited to ISO 17025 by A2LA with Testing Certificate #2955.01. The laboratories current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing -

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
2016/2/17 - 22	Radiated emission	MX	20-24°C	39 - 50%	96 -102kPa
2016/2/23 - 24	Antenna conducted	MX	20-24°C	39 - 50%	96 -102kPa
2016/5/17	N-Mode Radiated emission	MX	20-24°C	39 - 50%	96 -102kPa
2016/5/18	N-Mode Antenna Conducted Emission	MX	20-24°C	39 - 50%	96 -102kPa

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Detailed Test Results Section

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits and Methods

The Limit is as specified in FCC Part 15 and RSS 247.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

The method is given in Section 8.1 of FCC KDB 558074 and ANSI C63.10.

Results

The EUT passed. The measured 6 dB BW and the minimum 99% BW are shown in tables below:

Bandwidth: Zigbee				
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)	
Lo Channel (0xB)	2405	1618	2452	
Mid Channel (0x13)	2445	1618	2436	
Hi Channel (0x19)	2475	1602	2452	
Hi Channel (Ox1A)	2480	1618	2480	

Bandwidth: WIFI B-Mode				
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)	
Lo Channel	2412	10128	13365	
Mid Channel	2437	10064	13400	
Hi Channel	2462	10134	13422	

Page 13 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Bandwidth: WIFI G-Mode				
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)	
Lo Channel	2412	16634	16634	
Mid Channel	2437	16682	16683	
Hi Channel	2462	16586	16634	

Bandwidth: WIFI N-Mode				
Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	99% Bandwidth (kHz)	
Lo Channel	2412	17688	17725	
Mid Channel	2437	17779	17850	
Hi Channel	2462	17811	17840	

Graph(s)

The graphs showed below shows the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

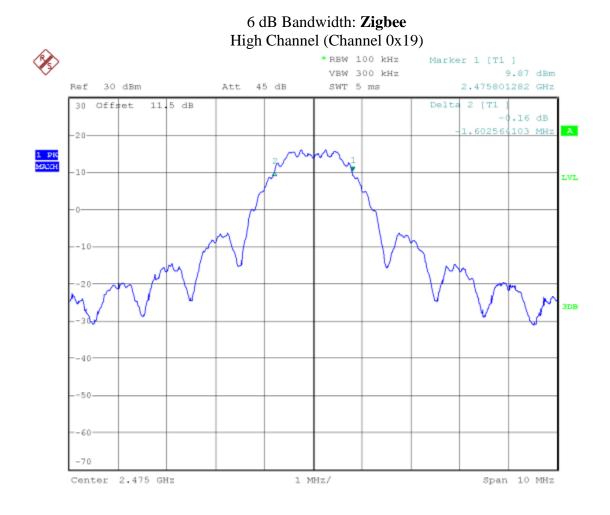
6 dB Bandwidth: Zigbee Low Channel (Channel 0xB) X * RBW 100 kHz Delta 2 [T1] VBW 300 kHz 0.77 dB Ref 31.5 dBm Att 45 dB SWT 5 ms -1.618589744 MHz 30 Offset 11.5 dB Marker 1 (T1 .10 dBm 2.405806410 GHz A -20 1 PK MAXH LVL -10--10 -2.0 3DB -40--50 -60-Center 2.405069231 GHz Span 10 MHz 1 MHz/

Date: 24.FEB.2016 13:20:37

Page 15 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

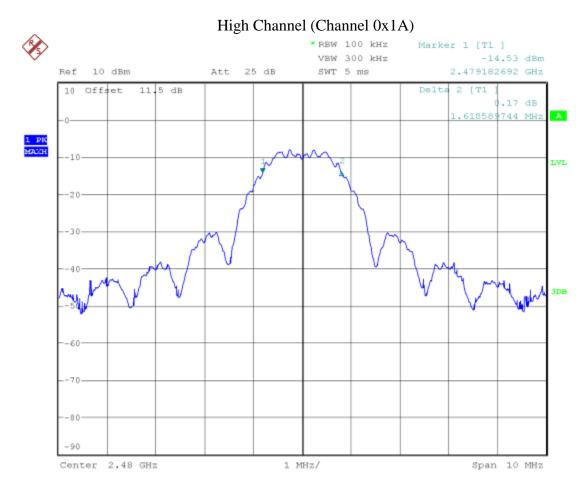

6 dB Bandwidth: Zigbee Mid Channel (Channel 0x13) Ì * RBW 100 kHz Delta 2 [T1] VBW 300 kHz 0.38 dB Ref 31.5 dBm Att 45 dB SWT 5 ms 1.618589744 MHz 30 Offset 11.5 dB Marker 1 (T1 .22 dBm 2.444182692 GHz A -20 1 PK MAXH LVL -10--10 -2.0 3DB -40--50 -60-1 MHz/ Center 2.445 GHz Span 10 MHz

Date: 24.FEB.2016 13:32:08

Page 16 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

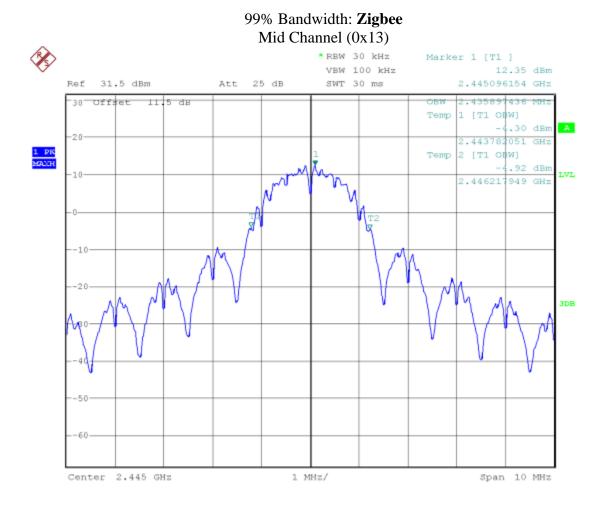


Date: 24.FEB.2016 13:54:14

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

6 dB Bandwidth: Zigbee



Date: 24.FEB.2016 13:47:41

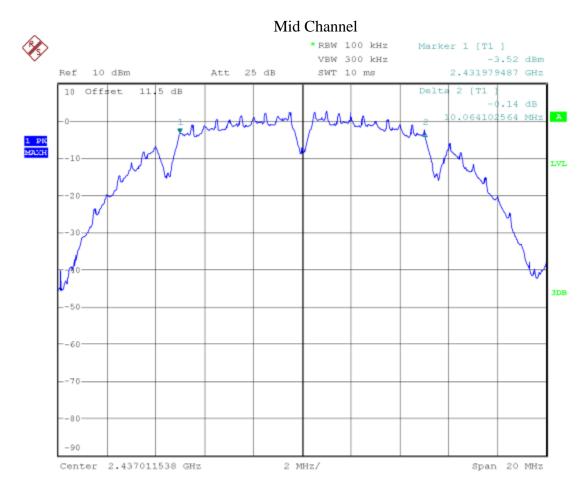
Page 18 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Date: 24.FEB.2016 13:36:02

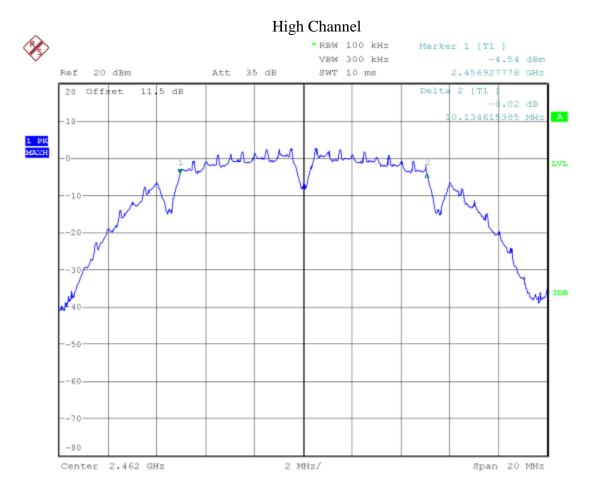
Report issue date: 6/4/2016


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Date: 23.FEB.2016 18:50:27

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

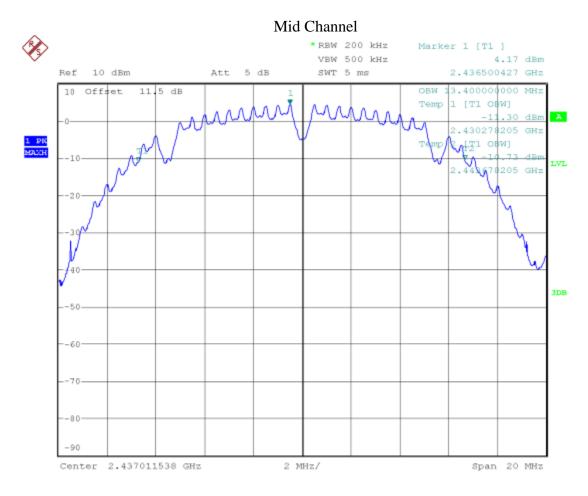


Date: 23.FEB.2016 19:08:34

Page 21 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

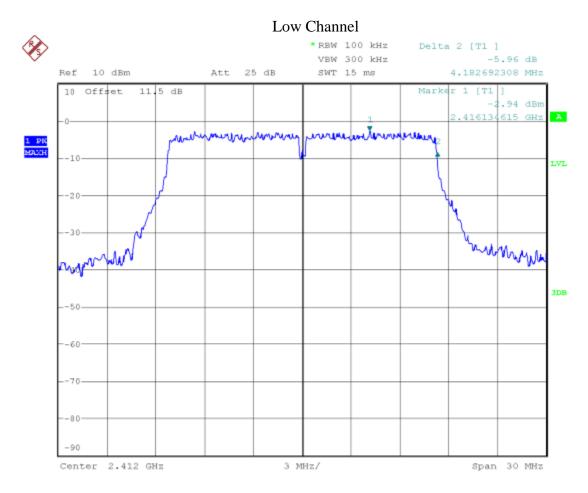

Date: 23.FEB.2016 19:18:42

Page 22 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

99% Bandwidth: WIFI B-Mode

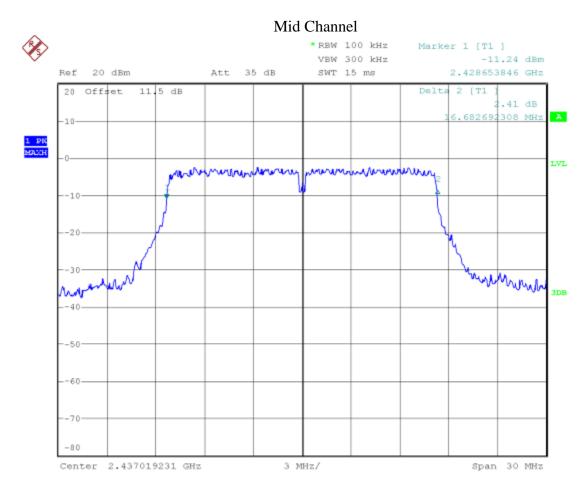


Date: 23.FEB.2016 19:12:34

Page 23 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

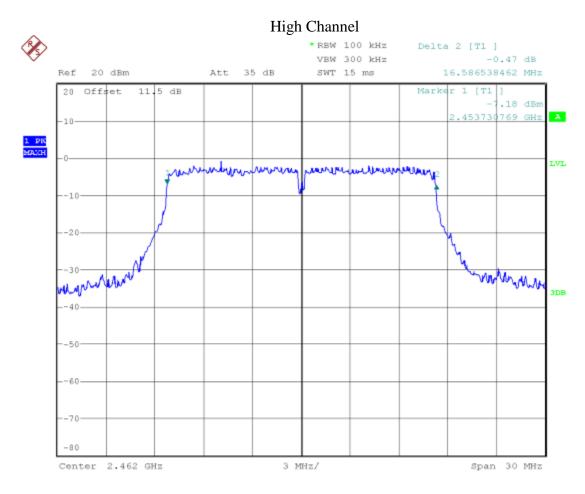


Date: 24.FEB.2016 12:05:25

Page 24 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

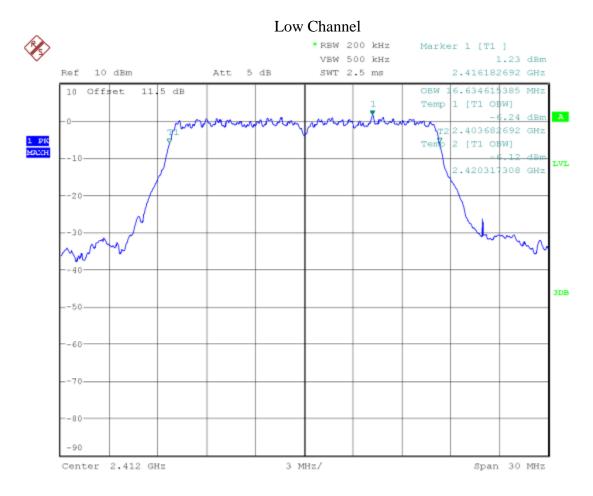


Date: 24.FEB.2016 12:18:12

Page 25 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

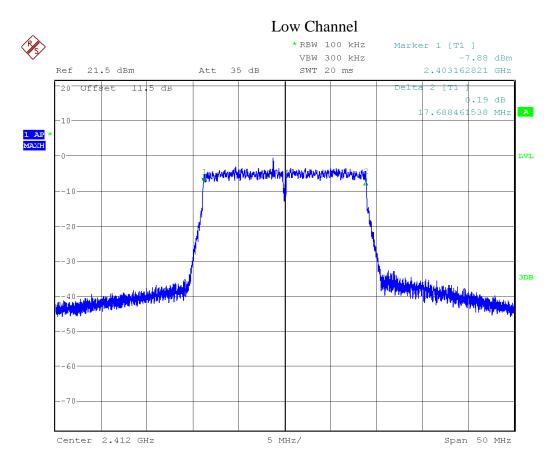


Date: 24.FEB.2016 12:23:21

Page 26 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

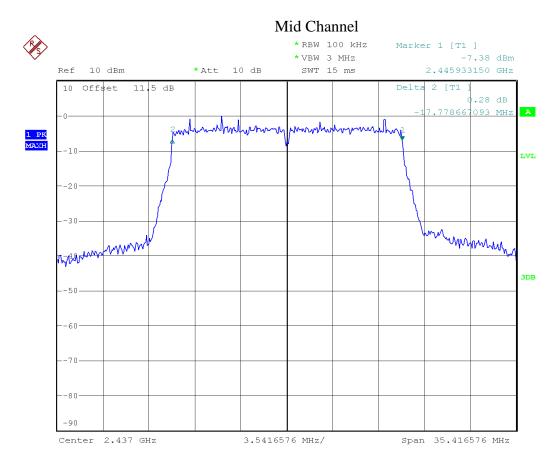


Date: 24.FEB.2016 12:11:01

Page 27 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

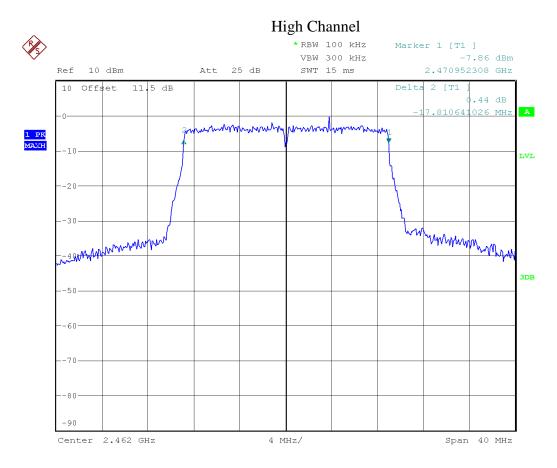


Date: 18.MAY.2016 12:42:35

Page 28 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

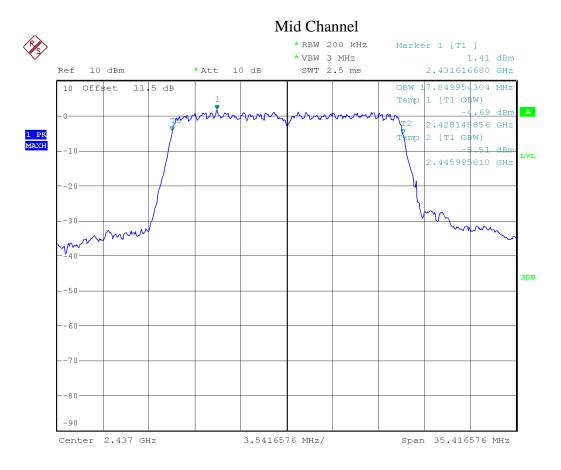


Date: 18.MAY.2016 13:31:25

Page 29 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



Date: 18.MAY.2016 13:47:30

Page 30 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Date: 18.MAY.2016 13:34:53

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Page 31 of 177

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb 11, 2016	Feb 11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Page 32 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Maximum Peak Envelope Conducted Power - DM

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

Limits and Methods

The limits are defined in FCC Part 15.247(b) and RSS 247. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

The method is given in Section 9.1.2 of FCC KDB 558074 and ANSI C63.10

Results

The EUT passed. The peak power of the EUT was measured with the EUT set to transmit at maximum power. Three Channels were measured for each transmitter/mode. The following tables show the peak power: The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

Peak Power: Zigbee				
Channel	Frequency	Peak Power	Peak Power	
Channel	(MHz)	(dBm)	(mW)	
Lo Channel (0xB)	2405	19.38	86.70	
Mid Channel (0x13)	2445	19.43	87.70	
Hi Channel (0x19)	2475	19.38	86.70	
Hi Channel (Ox1A)	2480	-4.43	0.36	

Peak Power: WIFI B-Mode				
Channel Frequency Peak Power Peak Power (MHz) (dBm) (mW)				
Lo Channel	2412	15.70	37.15	
Mid Channel	2437	16.15	41.21	
Hi Channel 2462 16.59 45.60				

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Peak Power: WIFI G-Mode					
Channel Frequency Peak Power Peak Power (MHz) (dBm) (mW)					
Lo Channel	2412	21.46	139.96		
Mid Channel	2437	21.94	156.31		
Hi Channel	Hi Channel 2462 22.05 160.32				

Peak Power: WIFI N-Mode				
Channel Frequency Peak Power Peak Power (MHz) (dBm) (mW)				
Lo Channel	2412	20.52	112.72	
Mid Channel	2437	21.00	125.89	
Hi Channel 2462 21.62 145.21				

Readings

The plots shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. The measurement RBW is \geq than the DTS bandwidth.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

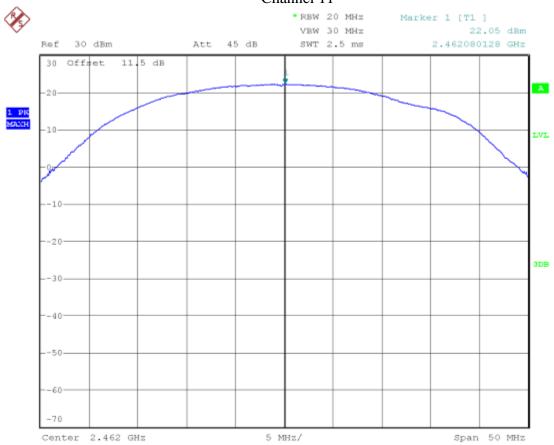
Date: 24.FEB.2016 13:29:18

Page 35 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	Canada
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	

Peak Power: WIFI B-Mode Channel 11 Ż * RBW 20 MHz Marker 1 [T1] VBW 30 MHz 16.59 dBm 2.458666667 GHz Ref 30 dBm Att 45 dB SWT 5 ms Offset 11.5 dB 30 A -20-1 PK MAXH 10 LVL -10 Anhas MAR dia dh -20 3DB -30 -40 -50 -60 -70 Center 2.462 GHz 10 MHz/ Span 100 MHz


Date: 23.FEB.2016 19:15:14

Page 36 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Peak Power: WIFI G-Mode Channel 11



Date: 24.FEB.2016 12:29:54

Page 37 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Date: 18.MAY.2016 14:22:24

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133
RF Cable 1m	LMR-400- 1M-50OHM- MN-MN	LexTec	Feb-10, 2015	Feb-10, 2016	GEMC 29

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Antenna Spurious Conducted Emissions (-20 dBc Requirement) – 15.247

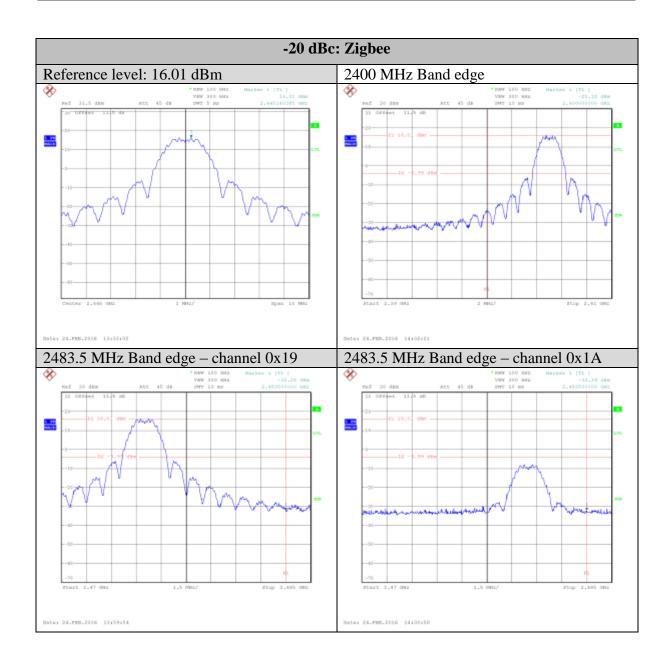
Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits and Methods

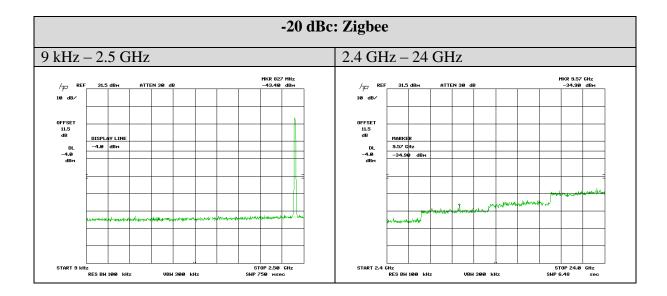
The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

The method is given in Section 11 of FCC KDB 558074 and ANSI C63.10


Results

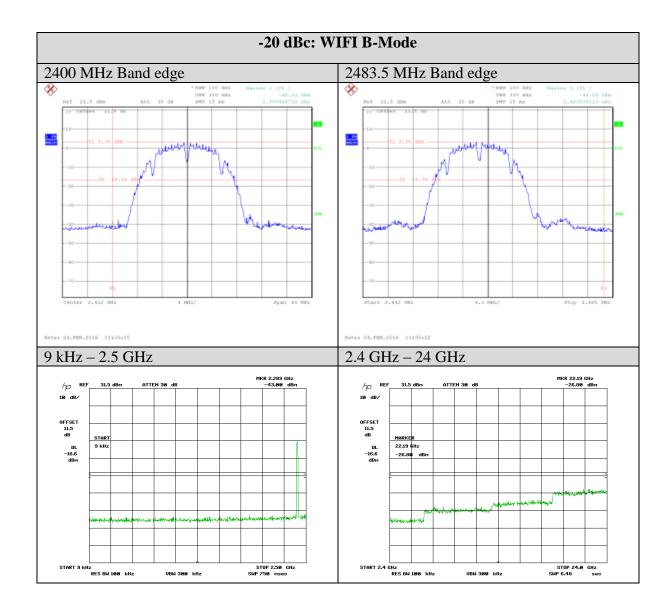
The EUT passed the limits. Low, middle and high channels were measured. The worst case was presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band. The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

Graph(s)


The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Report issue date: 6/4/2016

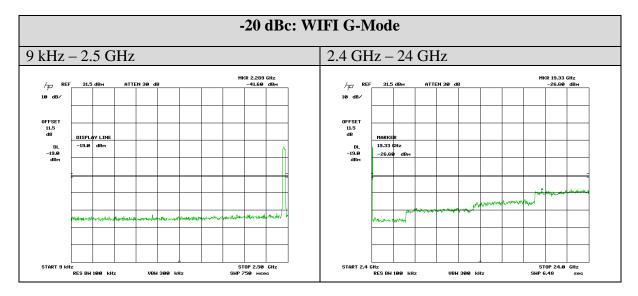

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

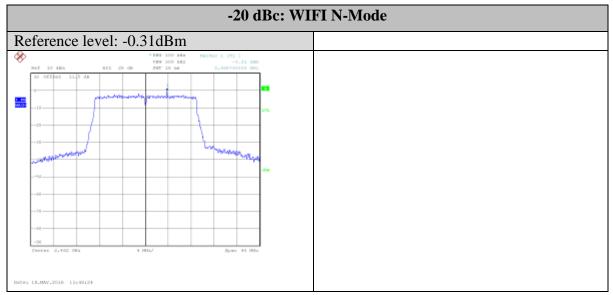
Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

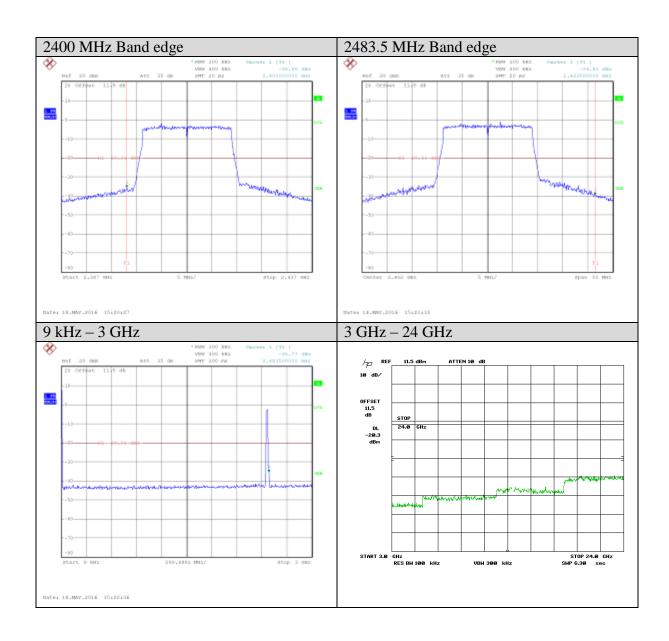
Page 43 of 177

Report issue date: 6/4/2016


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



Page 44 of 177


Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133
RF Cable 1m	LMR-400- 1M-50OHM- MN-MN	LexTec	Feb-10, 2016	Feb-10, 2017	GEMC 29

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Spurious Radiated Emissions

Purpose

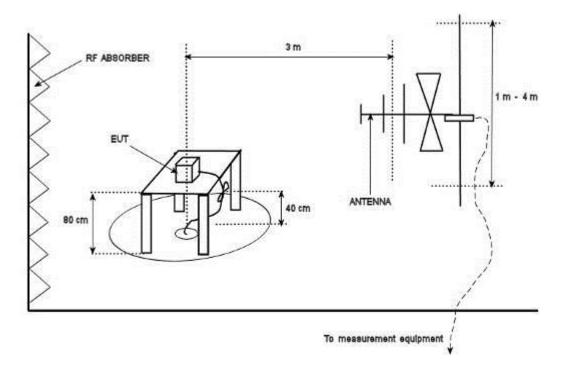
The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit and Method

The method is given in Section 12.1 of FCC KDB 558074 and ANSI C 63.10 The limits are as defined in FCC Part 15, Section 15.209:

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.


0.009 MHz – 0.490 MHz, 2400/F (kHz) uV/m at 300 m¹ 0.490 MHz – 1.705 MHz, 24000/F (kHz) uV/m at 30 m¹ 1.705 MHz – 30 MHz, 30 uV/m at 30 m¹ 30 MHz – 88 MHz, 100 uV/m (40.0 dBuV/m¹) at 3 m 88 MHz – 216 MHz, 150 uV/m (43.5 dBuV/m¹) at 3 m 216 MHz – 960 MHz, 200 uV/m (46.0 dBuV/m¹) at 3 m Above 960 MHz, 500 uV/m (54.0 dBuV/m¹) at 3 m Above 1000 MHz, 500 uV/m (54 dBuV/m²) at 3m Above 1000 MHz, 500 uV/m (74 dBuV/m³) at 3m

¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1 ²Limit is with 1 MHz measurement bandwidth and using an Average detector ³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

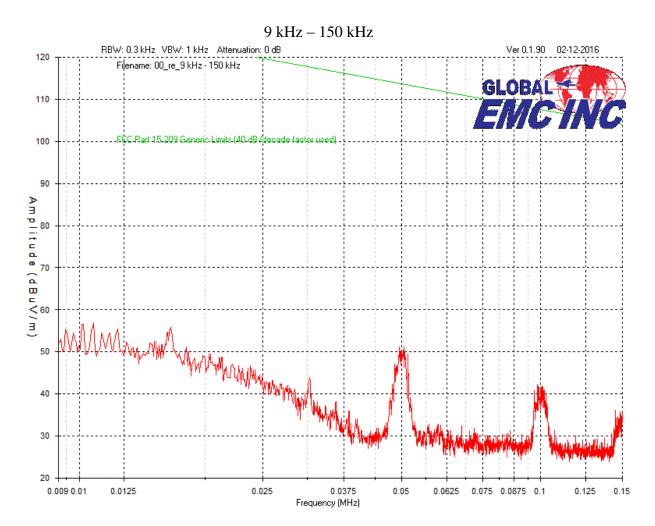
Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of a 24.835 GHz).

Devices scanned may be scanned at alternate test distances, and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above

Page 49 of 177

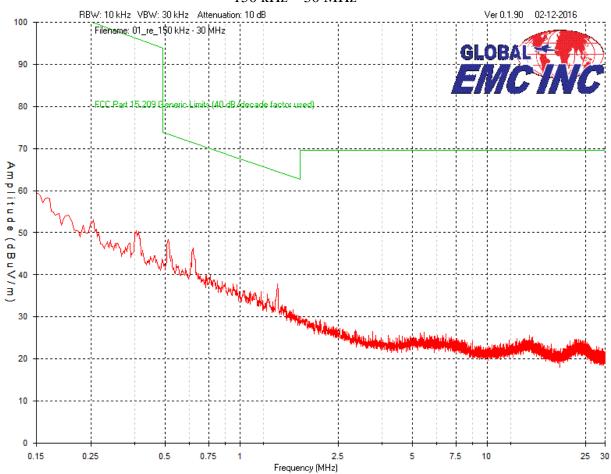

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m / 3m) is applied.

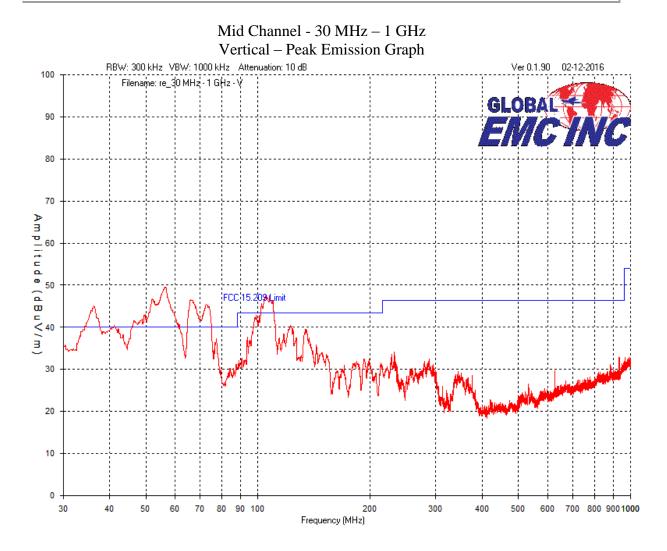
Low, middle and high channels were measured, each in three orthogonal axes were checked; however the worst case graphs are presented.

Band edge measure graphs were shown for illustrations purpose. See final measurement section for all measurements.



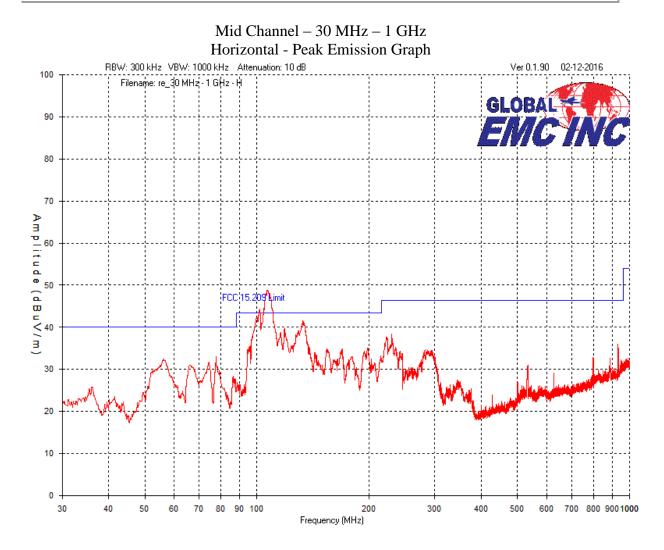
Zigbee Peak Graphs

Page 50 of 177


Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

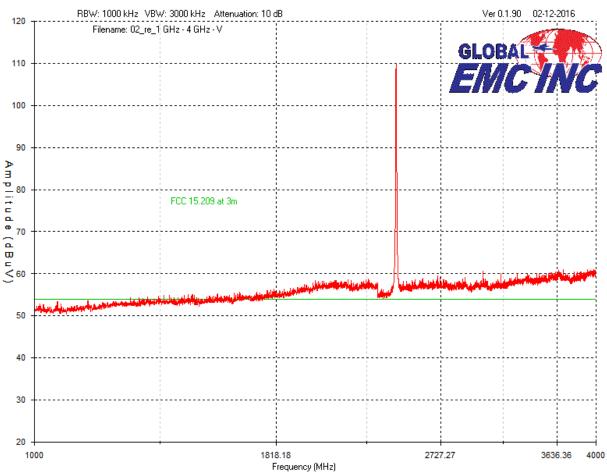
150 kHz - 30 MHz


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Page 52 of 177

Report issue date: 6/4/2016

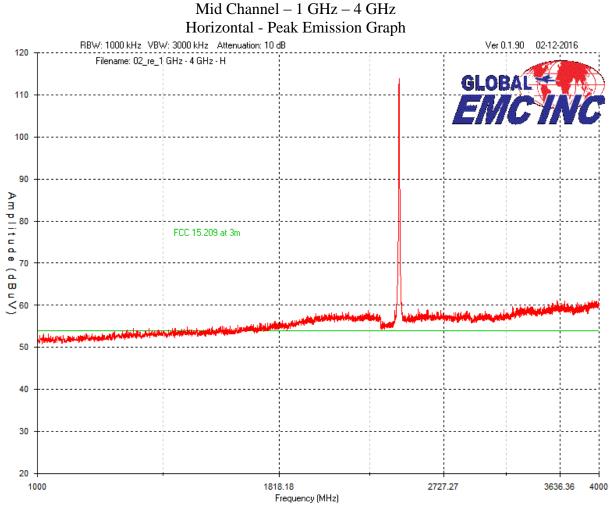
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



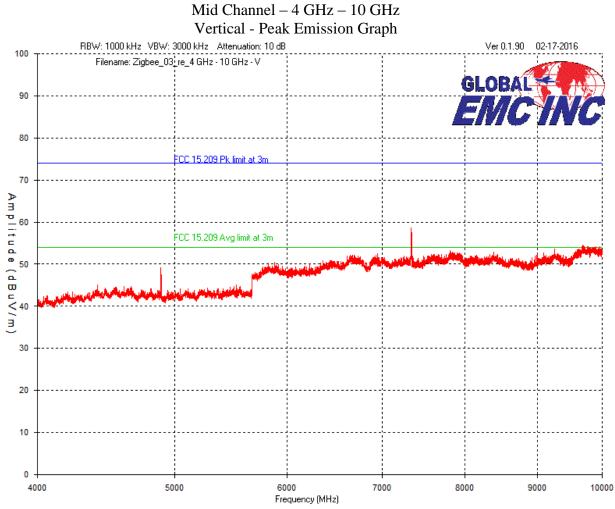
Page 53 of 177

Report issue date: 6/4/2016

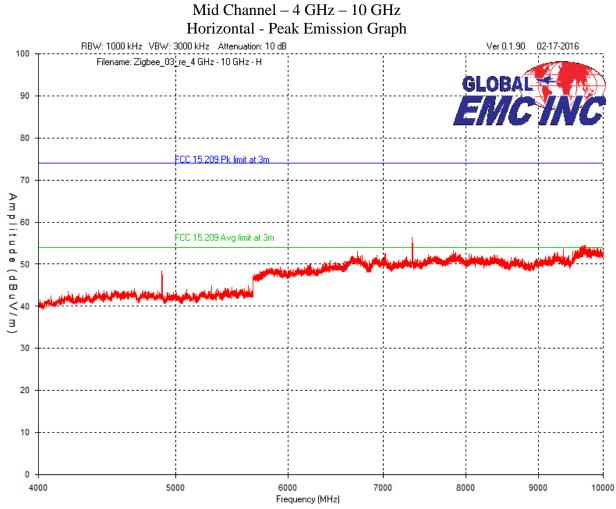
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Mid Channel – 1 GHz – 4 GHz Vertical - Peak Emission Graph

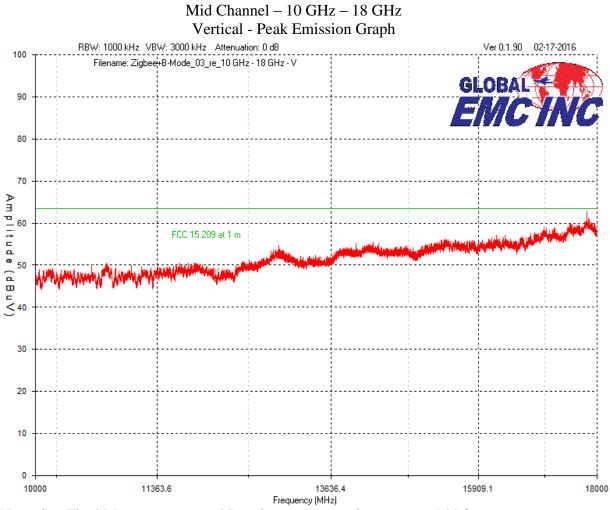
Note: due to the attenuation used in from of the pre-amp, the noise floor of the measurement instrument was higher than average limit. See Graph 1: Zigbee vertical average emission, 1 GHz - 4 GHz. for average plot.


Page 54 of 177

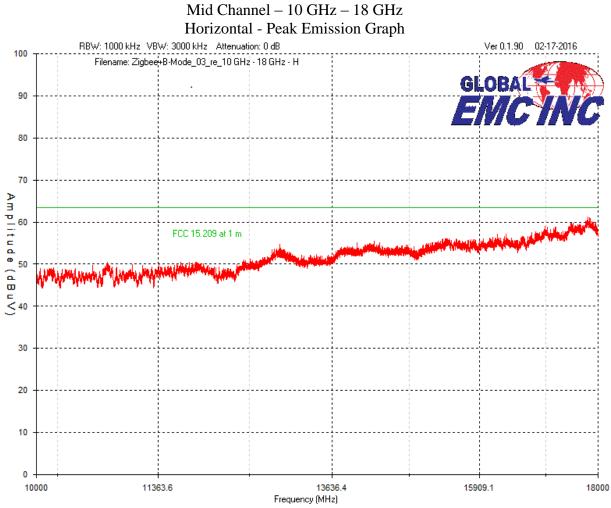
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Note: due to the attenuation used in from of the pre-amp, the noise floor of the measurement instrument was higher than average limit. See Graph 2: Zigbee horizontal average emission, 1 GHz - 4 GHz.for average plot.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

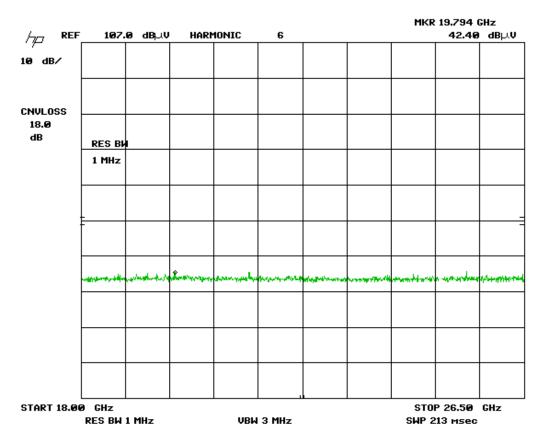

Note: See Final Measurements and Results section starting on page 144 for measurements.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Note: See Final Measurements and Results section starting on page 144 for measurements.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Note: See Final Measurements and Results section starting on page 144 for measurements.


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

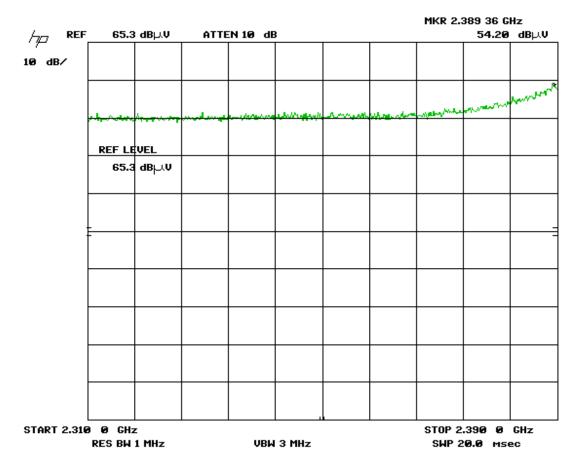
Note: See Final Measurements and Results section starting on page 144 for measurements.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

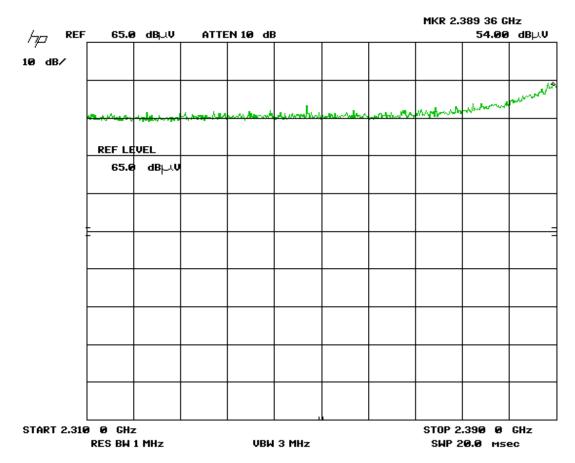

Mid Channel – 18 GHz – 26 GHz Horizontal - Peak Emission Graph

Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.

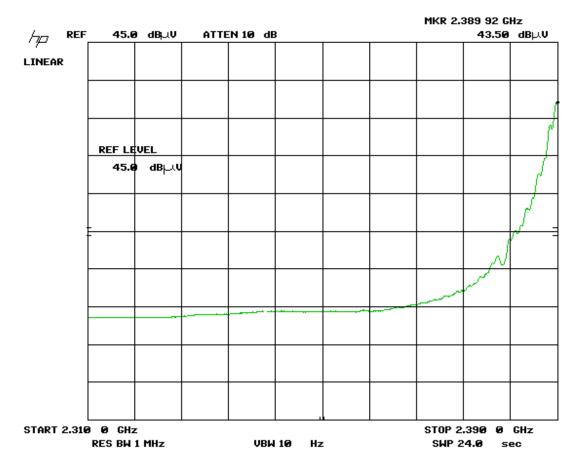
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Mid Channel – 18 GHz – 26 GHz Vertical - Peak Emission Graph

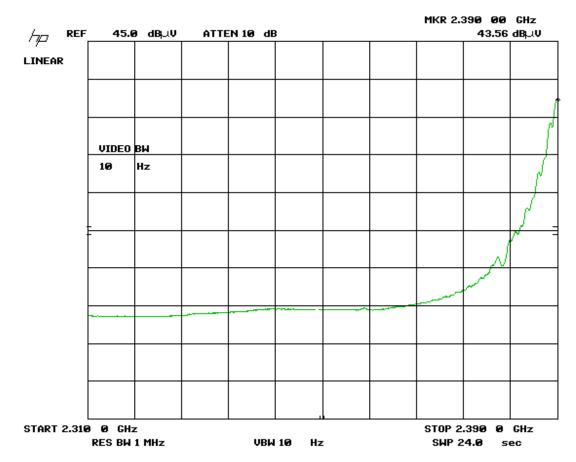
Plot was taken at 1 meter distances. All emissions shown were instrument noise floor of measurement instrument. No emissions were found in this frequency range.


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

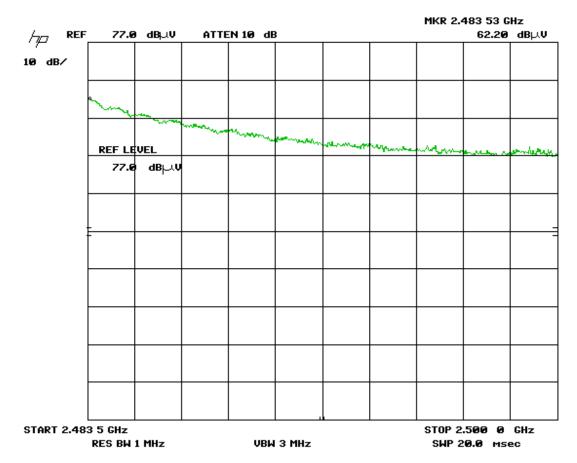
Restricted-Band, Band Edge – Low Channel Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

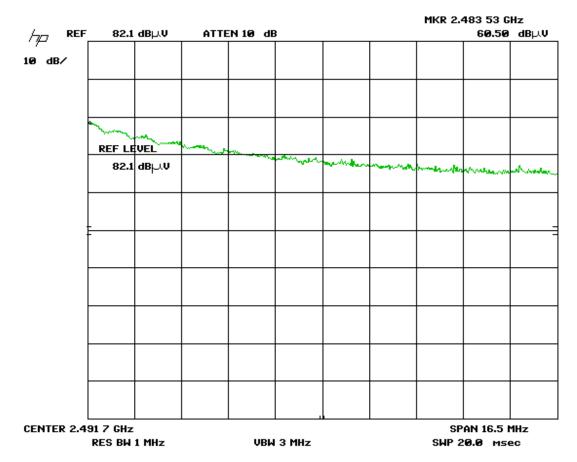
Restricted-Band, Band Edge – Low Channel Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

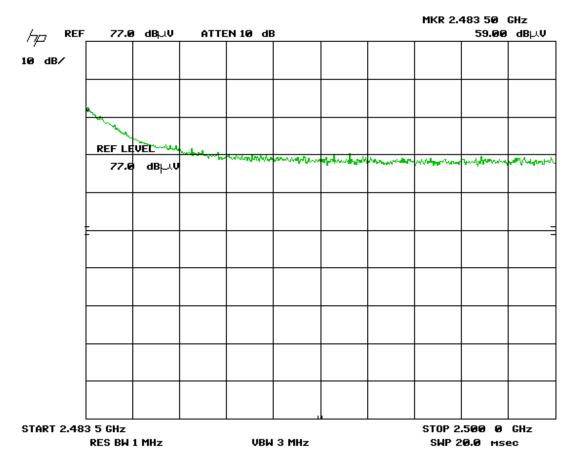
Restricted-Band, Band Edge – Low Channel Vertical – Average Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

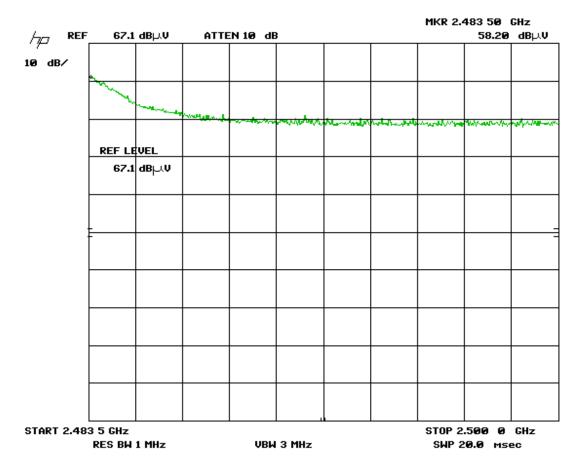
Restricted-Band, Band Edge – Low Channel Horizontal - Average Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Restricted-Band, Band Edge – Channel 0x19 Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Restricted-Band, Band Edge – Channel 0x19 Horizontal - Peak Emission

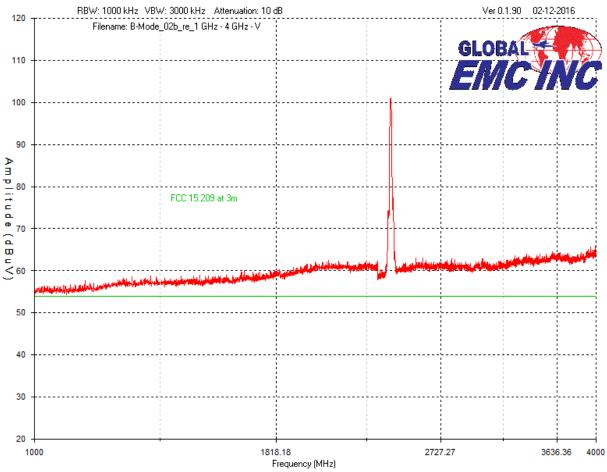

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Restricted-Band, Band Edge – Channel 0x1A Vertical - Peak Emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Restricted-Band, Band Edge – Channel 0x1A Horizontal - Peak Emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

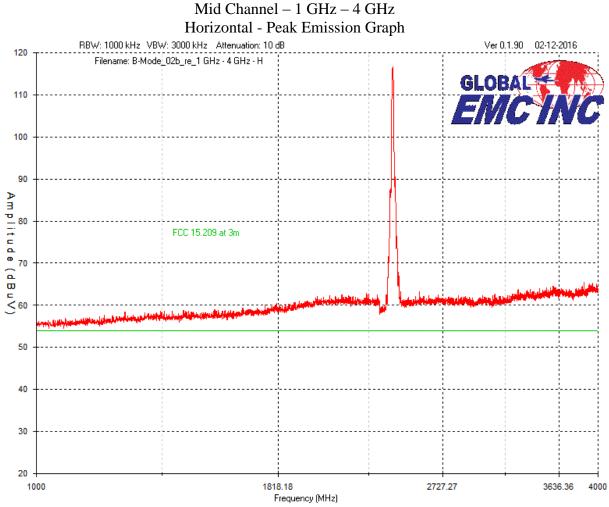

WIFI

Both B, G, and N modes were tested for spurious emission. The worst case peak graphs are presented below.

Band edge emissions for both protocols were presented.

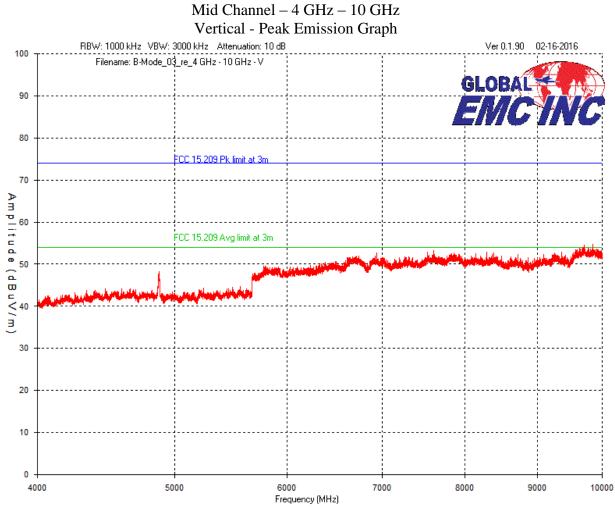
Emissions between 9 kHz - 1 GHz were identical to peak emission graphs shown in Zigbee Peak Graphs.

Mid Channel – 1 GHz – 4 GHz Vertical - Peak Emission Graph

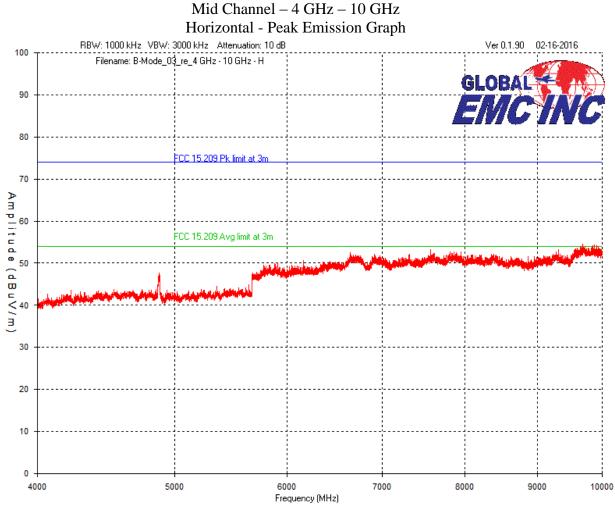


Note: due to the attenuation used in from of the pre-amp, the noise floor of the measurement instrument was higher than average limit. See Graph 1: Zigbee vertical average emission, 1 GHz - 4 GHz. for average plot.

Page 70 of 177


Report issue date: 6/4/2016

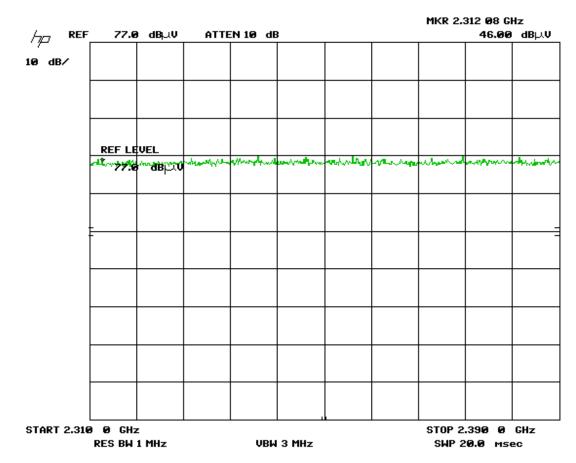
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Note: due to the attenuation used in from of the pre-amp, the noise floor of the measurement instrument was higher than average limit. See Graph 4: WIFI B-Mode horizontal average emission, 1 GHz - 4 GHz. for average plot.

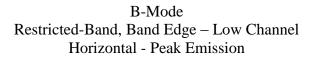
Client	MMB Research Inc	Canada
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	

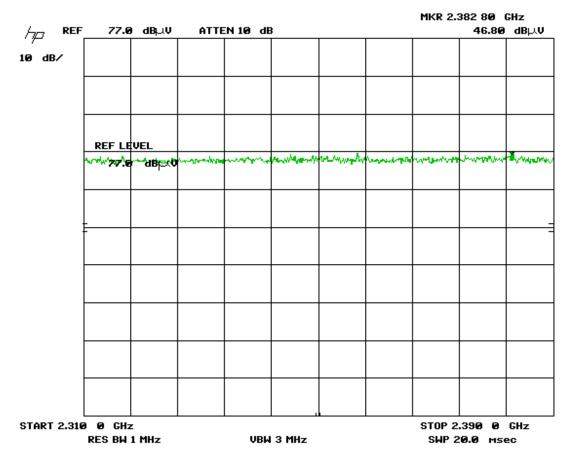
Note: See Final Measurements and Results section starting on page 144 for measurements.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

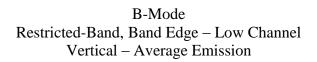


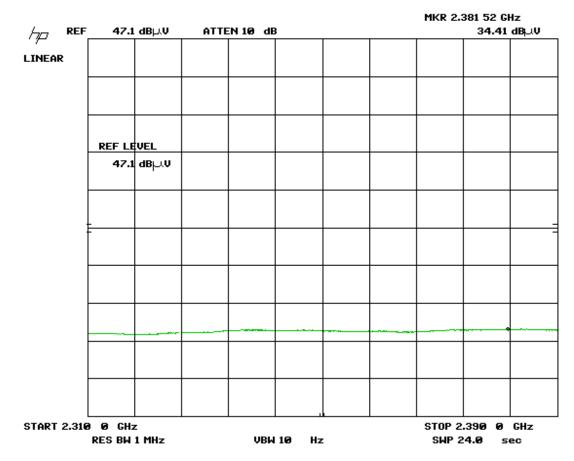
Note: See Final Measurements and Results section starting on page 144 for measurements.

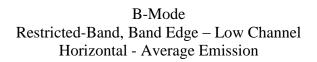

There are no emissions from 10 GHz – 26 GHz. Representative Plots are provided in Zigbee Peak Graphs section.

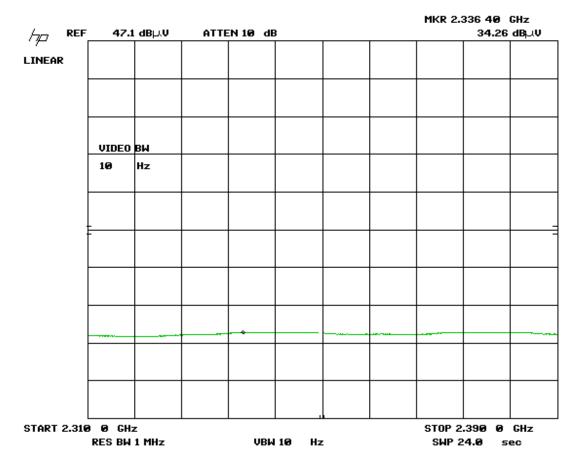

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

B-Mode Restricted-Band, Band Edge – Low Channel Vertical - Peak Emission

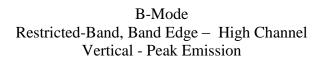


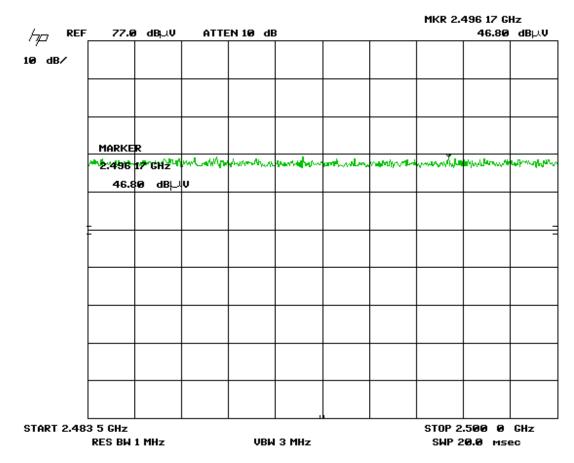

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

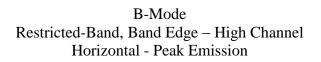


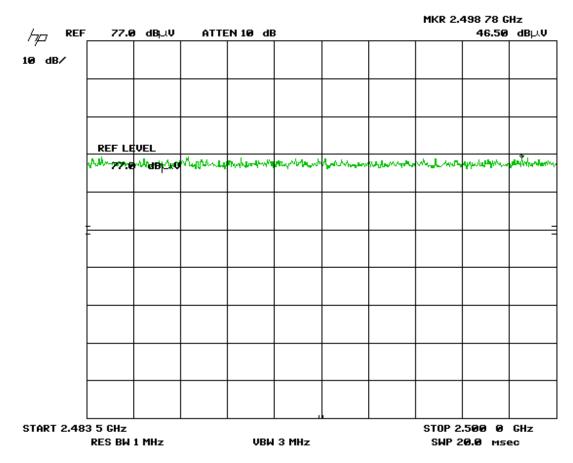
Page 76 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

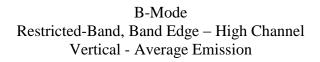


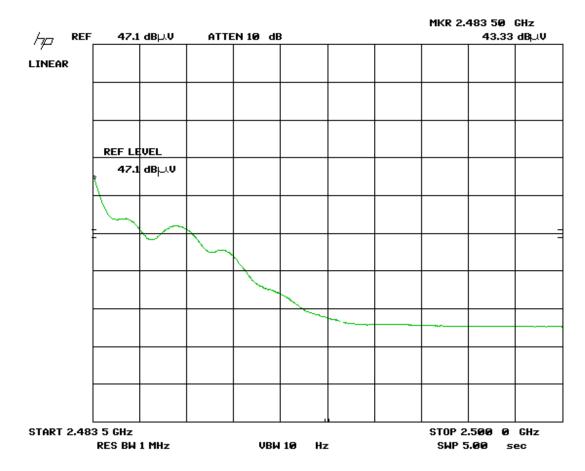
Page 77 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

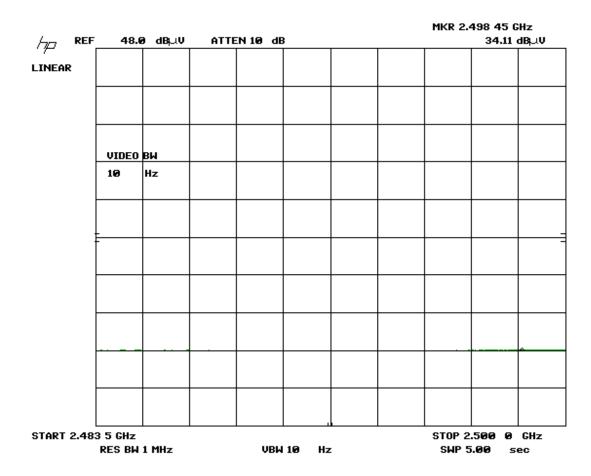


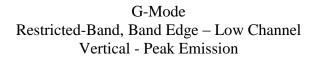
Page 78 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



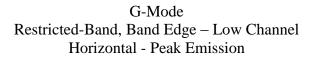
Page 79 of 177

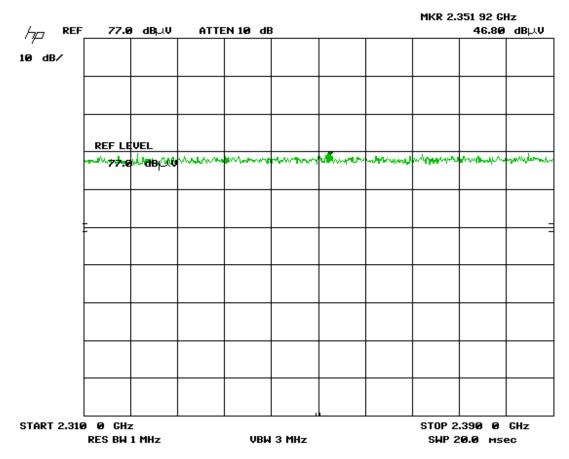

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

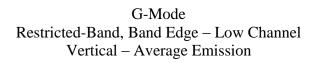


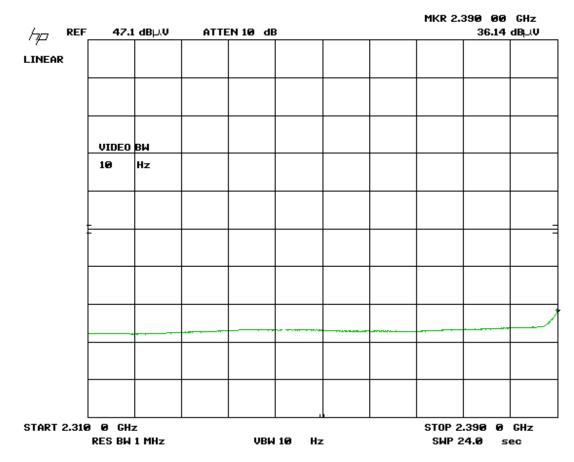
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

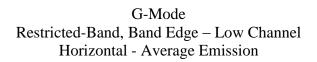
B-Mode Restricted-Band, Band Edge – High Channel Horizontal - Average Emission

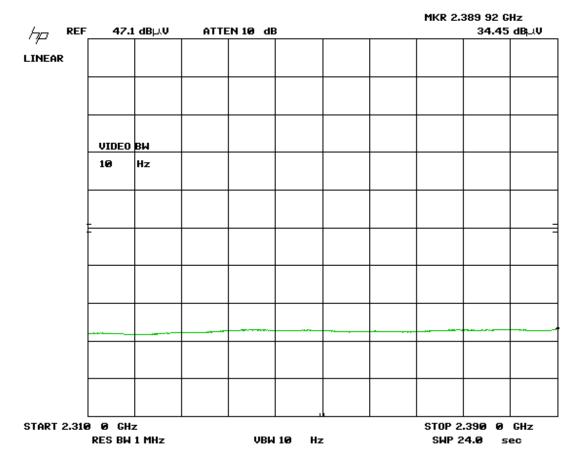



Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

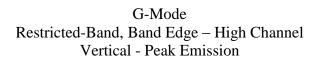

	77.6)dBµV	ATTE	:N 100 dE	3			MKR 2.	390 00 48.30	GHz dBµ.V
10 dB∕										
	REF LE	VEL	mallasher		-serveration	-	ملورياندو وه يد	hall war	May New York	Handwallow
										-
START 2.310	0 0 GHz RES BW			VBW	3 MHz				.390 0 20.0 mse	

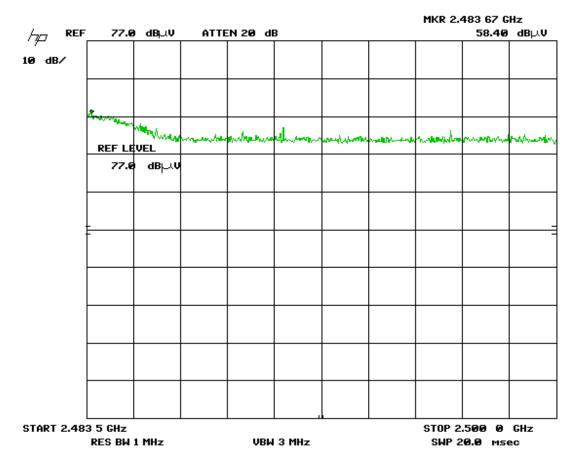

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

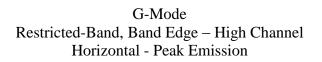


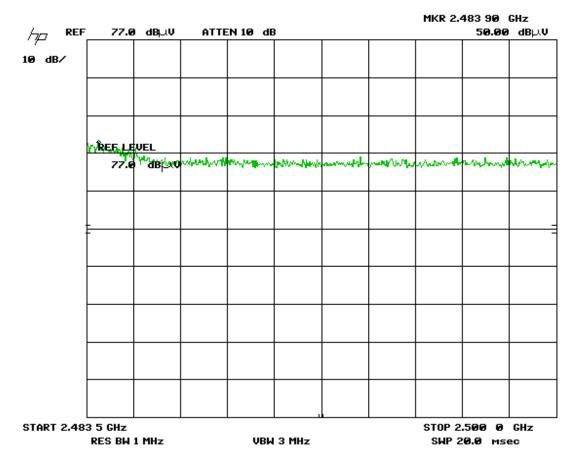
Page 84 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



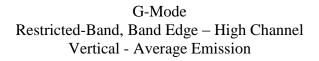
Page 85 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



Page 86 of 177

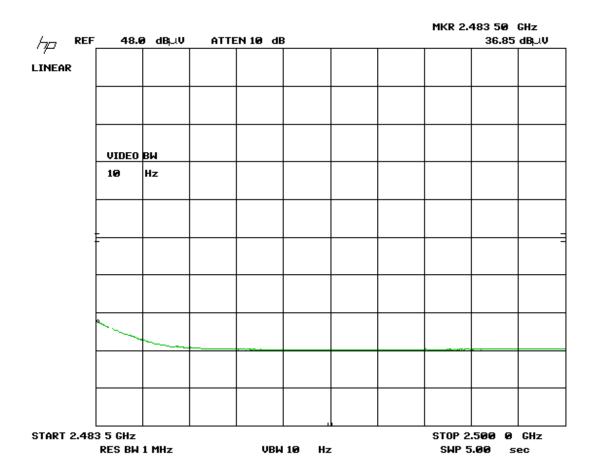
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

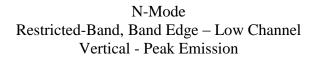


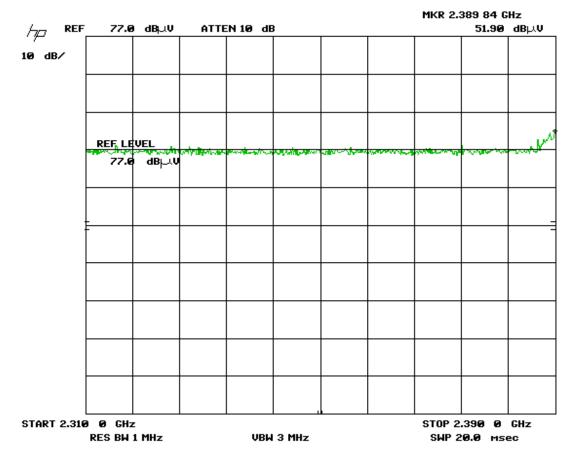
Page 87 of 177

Report issue date: 6/4/2016

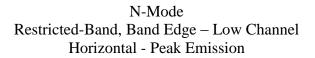
GEMC File #: FCC-T23262R0

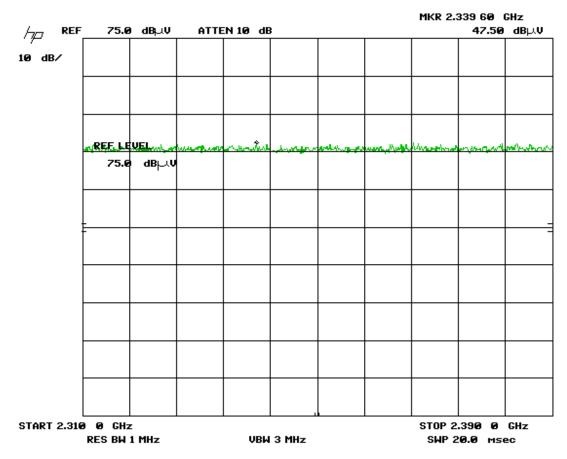

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

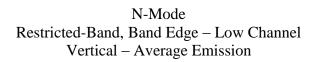

							MKR 2.	483 5 0	
	48.6)dBµV	ATTE	N 200 di	B			43.53	dBµV
LINEAR									
	RF AT1	EN							
	200 d	В							
	, , , , , , , , , , , , , , , , , , ,				-				_
				-					
START 2.48	3 5 GHz RES BW	1 MHz		VBM	100 Hz	:	STOP 2 SWP 5	.500 0 5.00 s	GHz ec

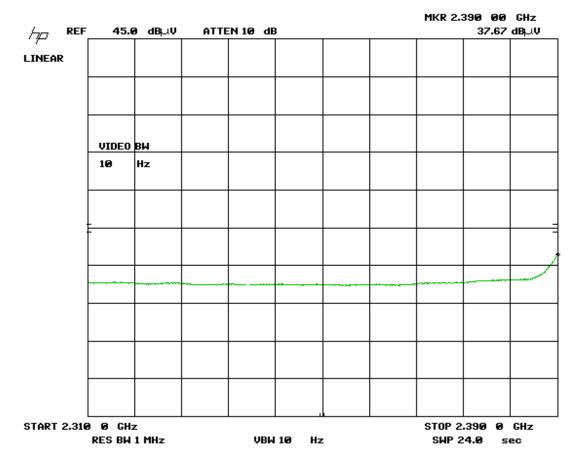

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

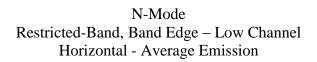
G-Mode Restricted-Band, Band Edge – High Channel Horizontal - Average Emission

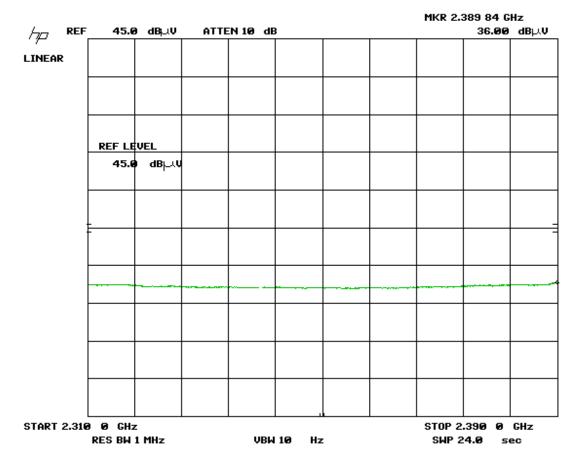



Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

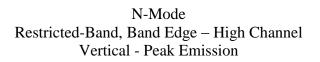


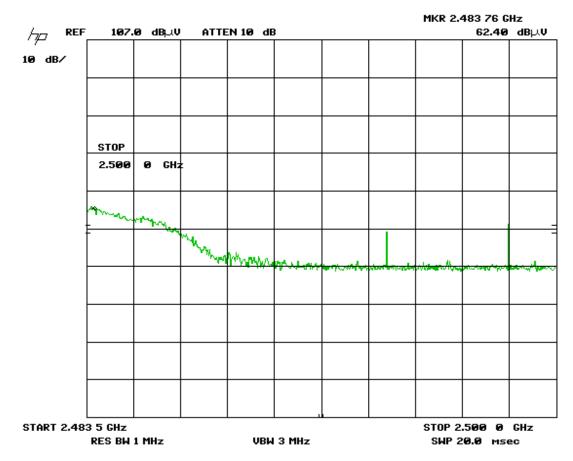

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

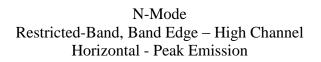

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

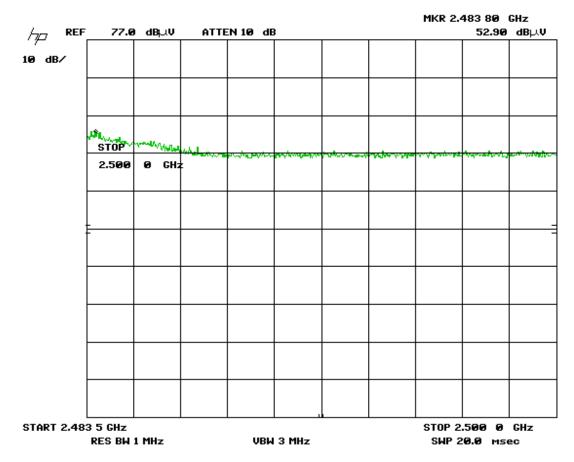


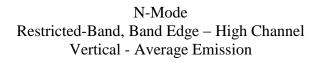
Page 92 of 177

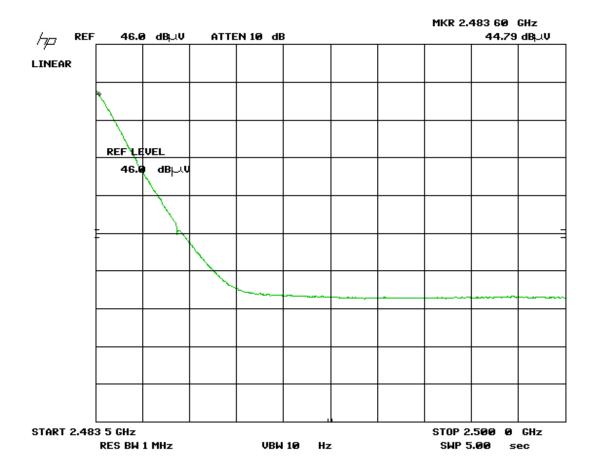

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



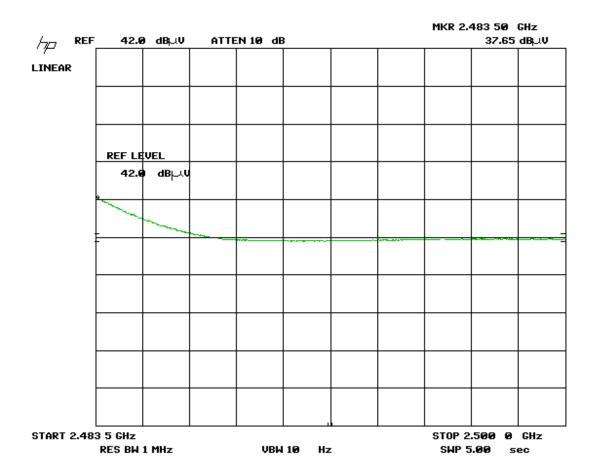

Page 93 of 177


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

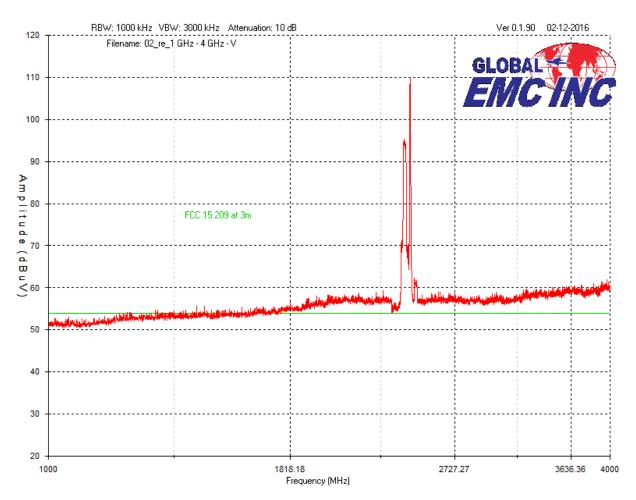


Page 95 of 177

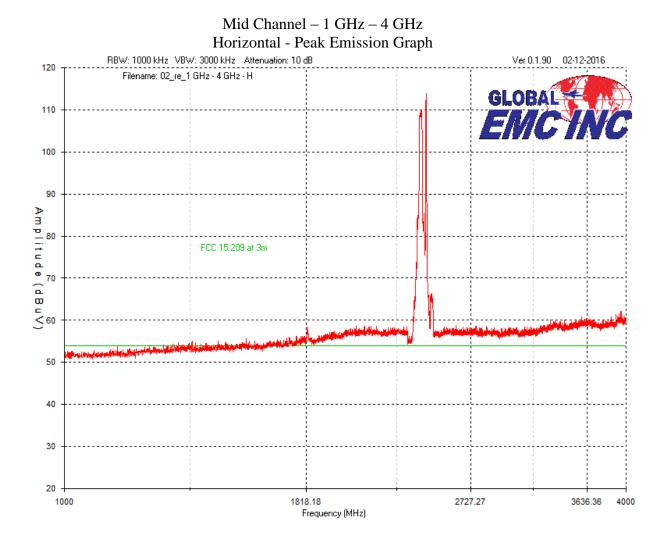

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

N-Mode Restricted-Band, Band Edge – High Channel Horizontal - Average Emission

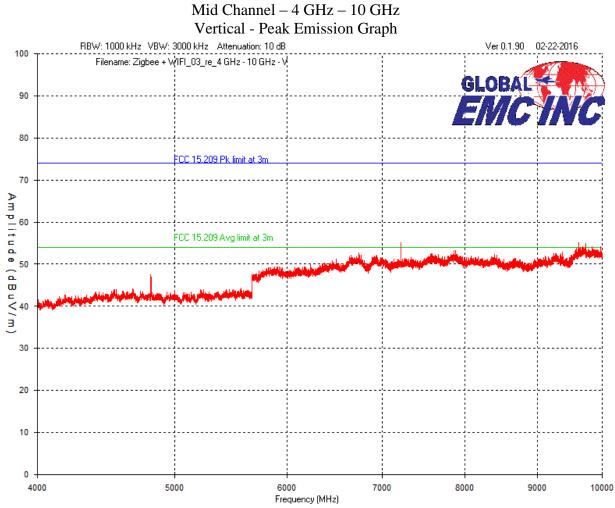


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

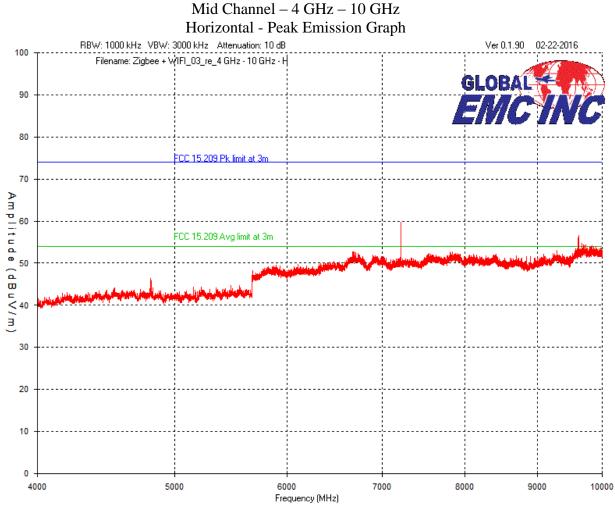

Zigbee and WIFI Co-Location

Emissions between 9 kHz – 1 GHz were identical to peak emission graphs shown in Zigbee Peak Graphs.

Mid Channel – 1 GHz – 4 GHz Vertical - Peak Emission Graph



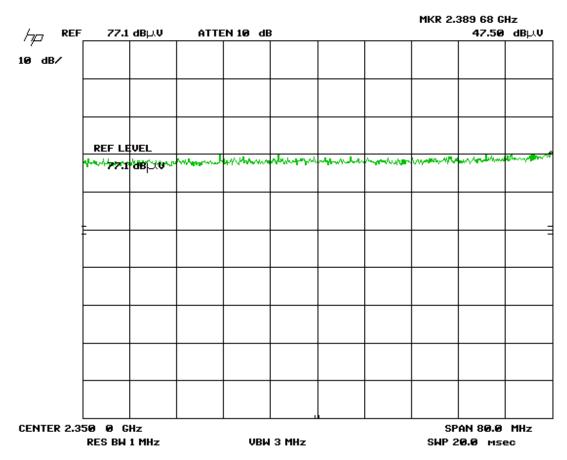
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Page 99 of 177

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

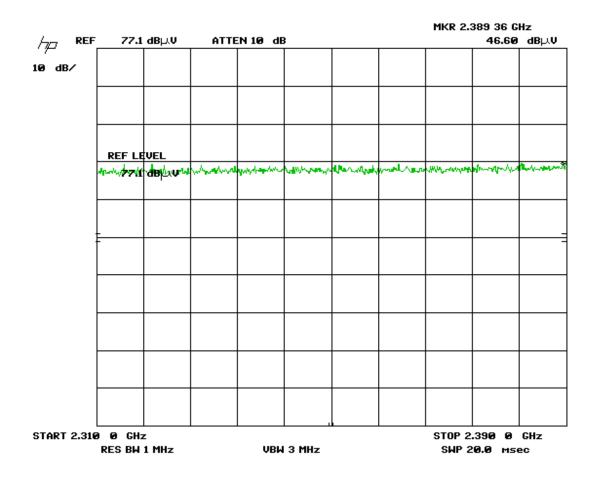
Note: See Final Measurements and Results section starting on page 144 for measurements.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

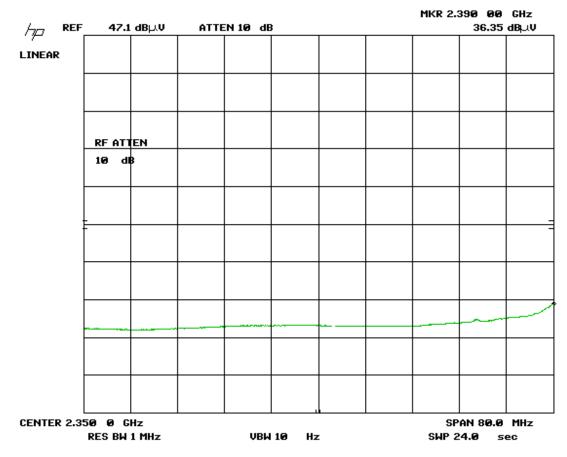

Note: See Final Measurements and Results section starting on page 144 for measurements.

There are no emissions from 10 GHz – 26 GHz. Representative plots are provided in Zigbee Peak Graphs section.

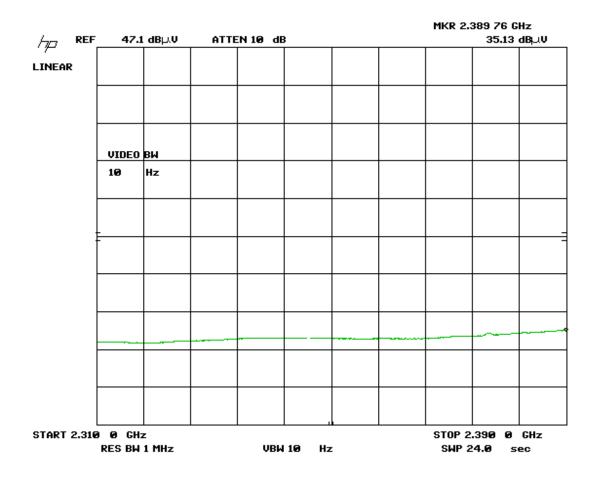
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Co-location WIFI B-Mode and Zigbee: Low Channels

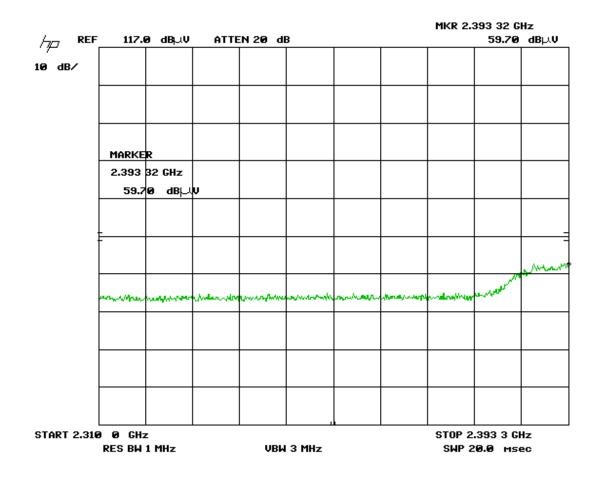
WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

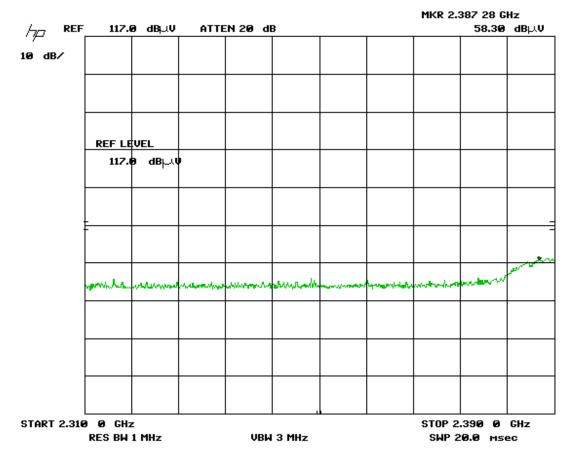
WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical –Average Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal – Average Emission

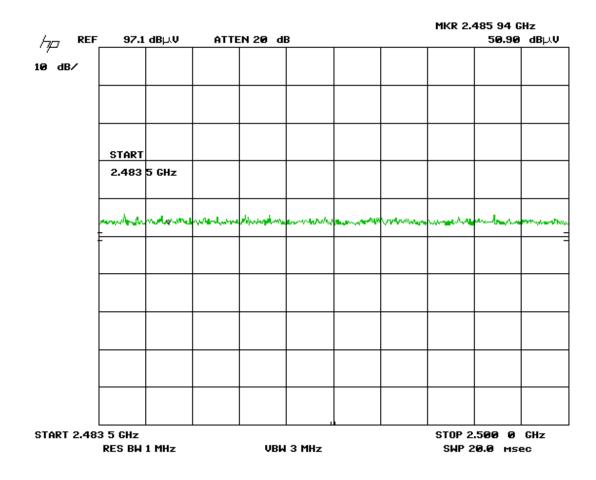

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Vertical - Peak Emission

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Horizontal - Peak Emission

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Co-location WIFI B-Mode and Zigbee: High Channels

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical - Peak Emission

	87.6) dBpJV	ATTE	N 200 di	B			MKR 2.4	483 63 G 53.20	Hz _dBµ,V
10 dB∕										
	REF LE	VEL								
	87.6 1	dBµ.V	hundry	unintran	ter Marcado	-	- marthan	marking	yw,Weining	mumu
	-									_
START 2.48		VBW	3 MHz	L			.500 0 :0.0 mse			

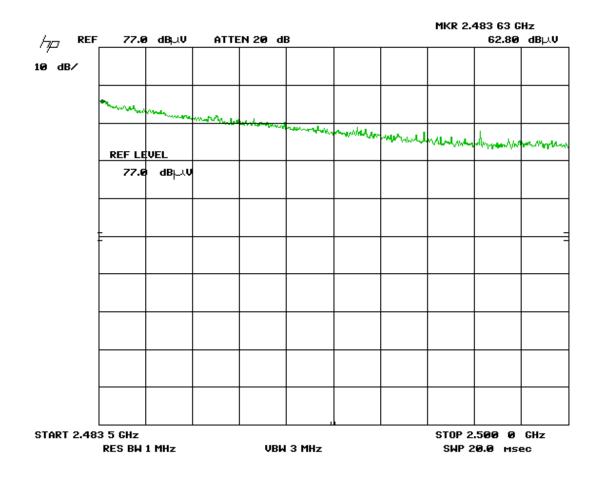
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal - Peak Emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

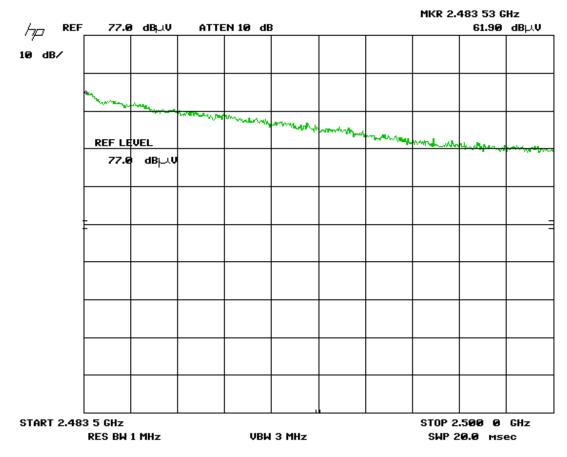
WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical –Average Emission

							MKR 2.	483 58 6	Hz
hp REF	47.1	dBμλV	ATTE	N 200 d	В			41.01	dBµ.JV
LINEAR									
ŀ									
Ļ									
	VIDEO	вм							
	10	Hz							
F									
Į.	-								
			┝╼╾╍╼╼┥				 		
L									
F									
ŀ									
L									
						l			
L 5TART 2.483	5 GHz		· · · · · ·			•	STOP 2	.500 0	GHz
	RES BW	· MII_		VBM	100 Hz		SWP 5		ec

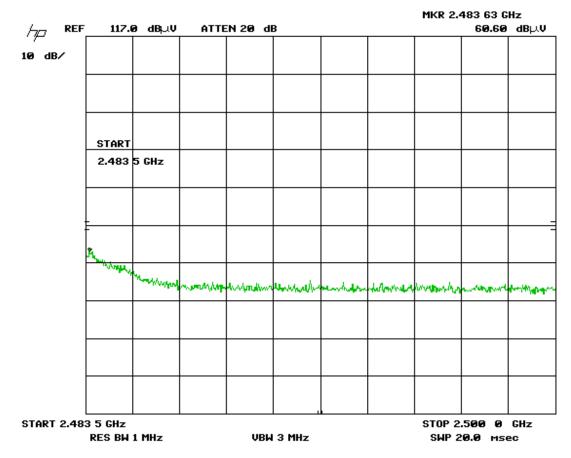

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal – Average Emission

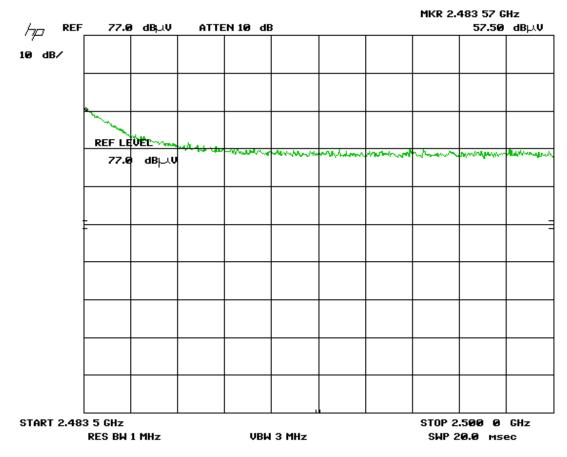
								MKR 2.4	483 50	
	47.1	dBµ.V	ATTE	N 200 di	В				40.03	dBµ.↓V
LINEAR										
LINERK										
	REF LE	VEL								
		dB⊢∆V								
	-									
	-									
	•- -									
START 2.48	35GHz	II			I	1	1	STOP 2	.500 0	GHz
	RES BW	1 MHz		VBM	10 Hz	:		SWP 5		ec


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Vertical - Peak Emission

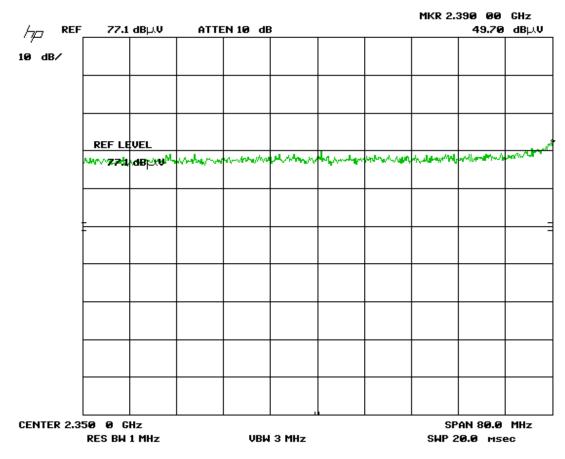

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Horizontal - Peak Emission

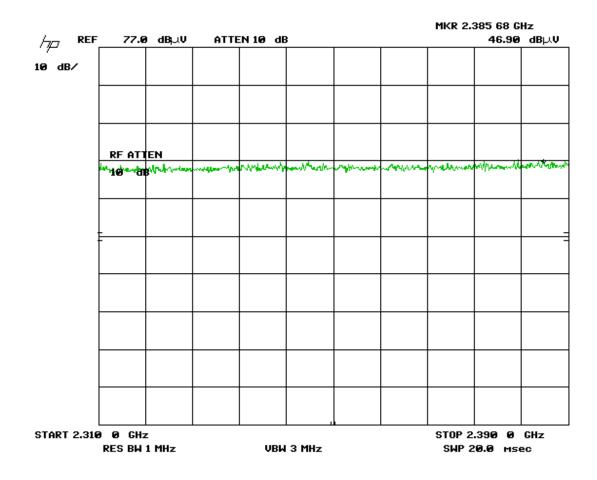

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Vertical - Peak Emission

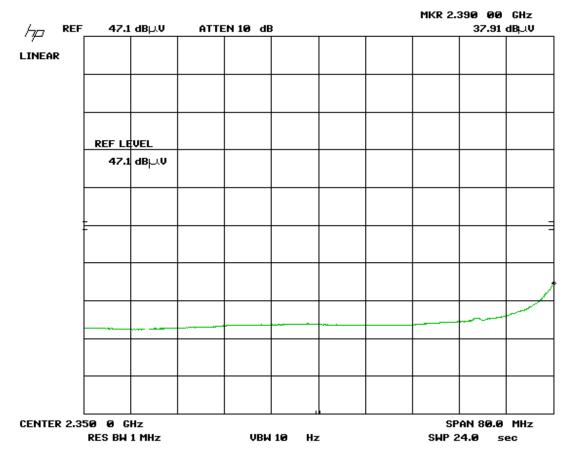
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


WIFI B-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Horizontal - Peak Emission

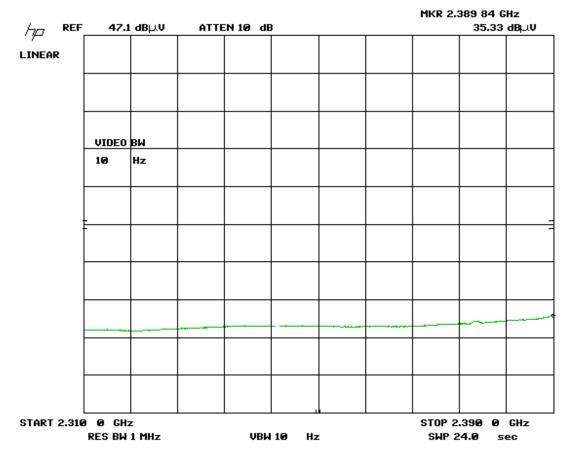
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Co-location WIFI G-Mode and Zigbee: Low Channels

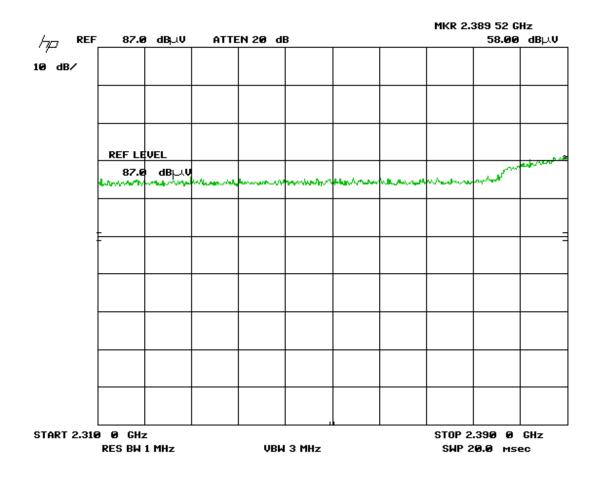
WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

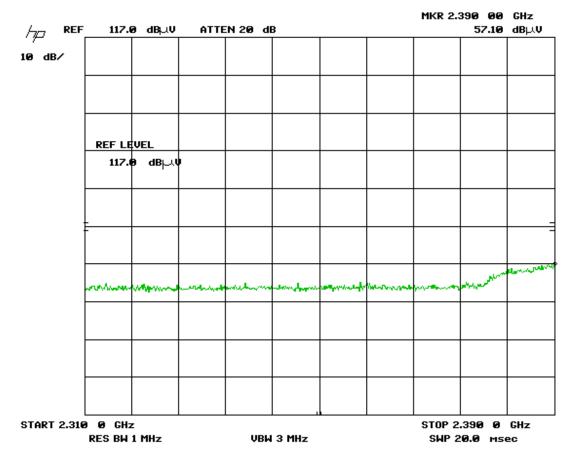
WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical –Average Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal – Average Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Vertical - Peak Emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

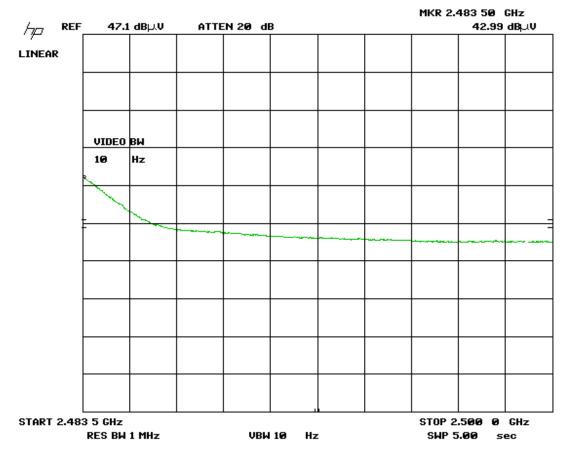
WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Horizontal - Peak Emission

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Co-location WIFI G-Mode and Zigbee: High Channels

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical - Peak Emission

								MKR 2.4	483 93 G	
	97.0	dBµV	ATTE	N 200 d	B				56.80	dBµ.V
10 dB/										
	REF LE	VEL								
	97.6	u dB⊨∧V								
	hation of the second	And the work	man	htere	-		nerdano	wante	g,kerstinie	0q.,11/m.by.4+11
										-
START 2.48	3 5 GHz RES BW	1 MHz		VBW	I3 MHz	•			.500 0 :0.0 mse	

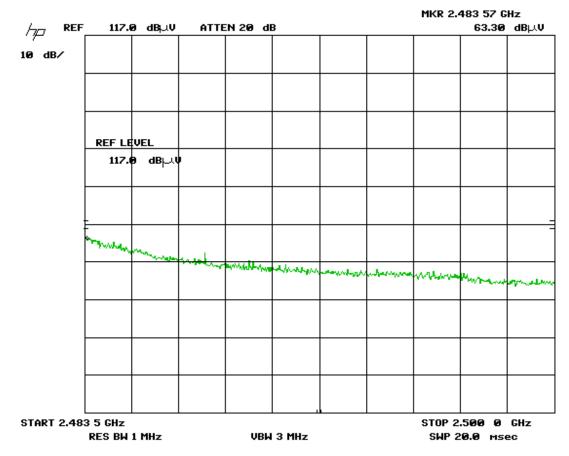

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal - Peak Emission

								MKR 2.	486 40	GHz
	97.0	dBµV	ATTE	N 200	1B				52.50	dBµ.V
10 dB∕										
	REF LE	1161								
	97.0									
	konner	monte	- Automatica	**-*-	-	and the second second	1	manin		and the second
-	-									
START 2.48	3 5 GHz							STOP 2	.500 0	GHz
	RES BW :	1 MHz		VB	W 3 MHz			SWP 2	0.0 MS	2C

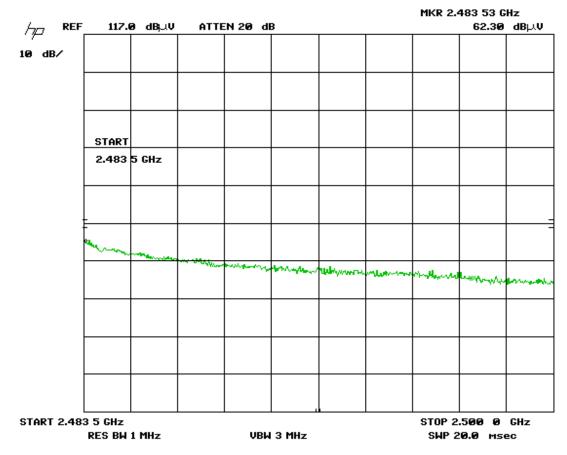
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical –Average Emission

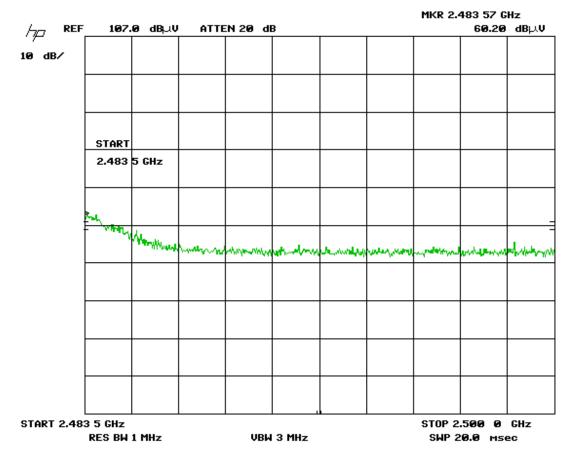

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal – Average Emission

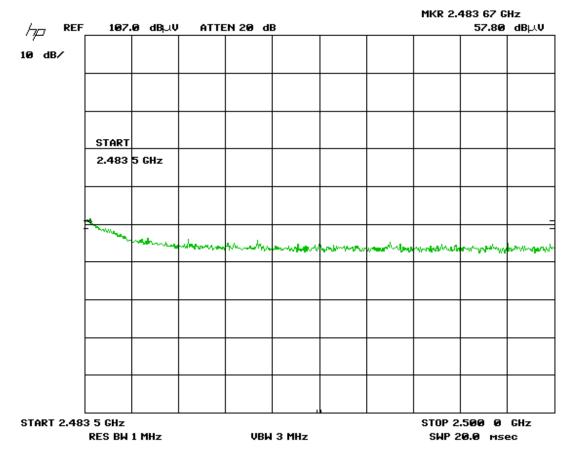
							MKR 2.4	483 50	GHz
hp REF	47.1	dBµ.V	ATTE	N 200 di	8	-		40.47	dBµV
LINEAR									
	REF LE								
	47.1	dBµ.v							
	_								
	-								
		┝──╼──┤		·			 		
ا START 2.483) 5 CU~				l 1		STOP 2	500 0	GHz
	RES BW	1 MHz		VBM	10 Hz		SWP 5		GHZ EC
				104		•			


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Vertical - Peak Emission

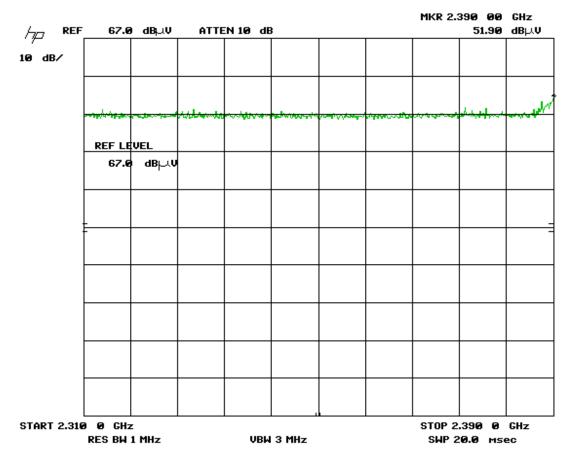

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Horizontal - Peak Emission

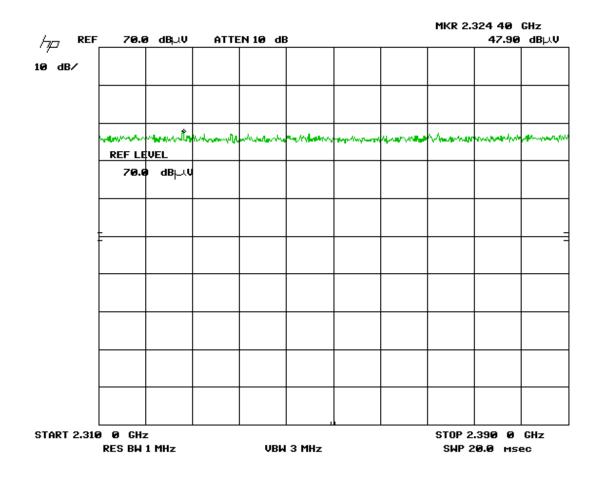

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Vertical - Peak Emission

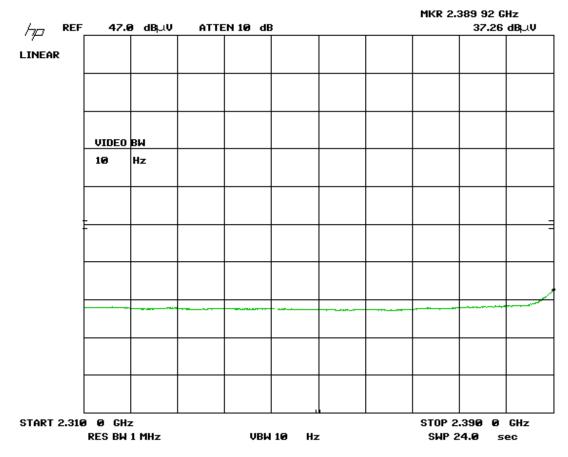
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


WIFI G-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Horizontal - Peak Emission

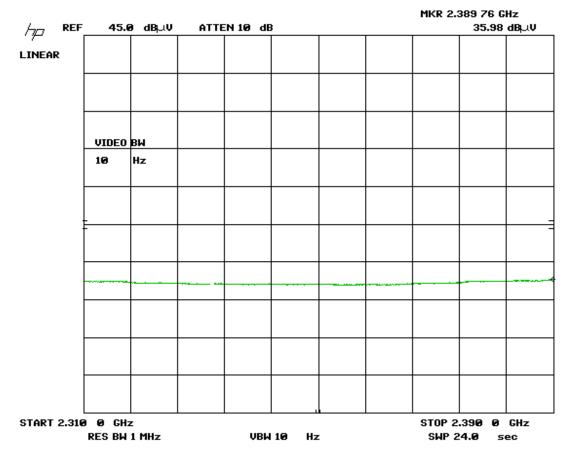
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Co-location WIFI N-Mode and Zigbee: Low Channels

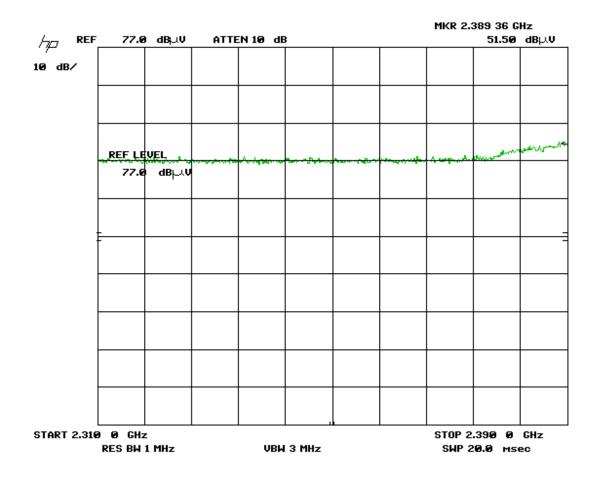
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

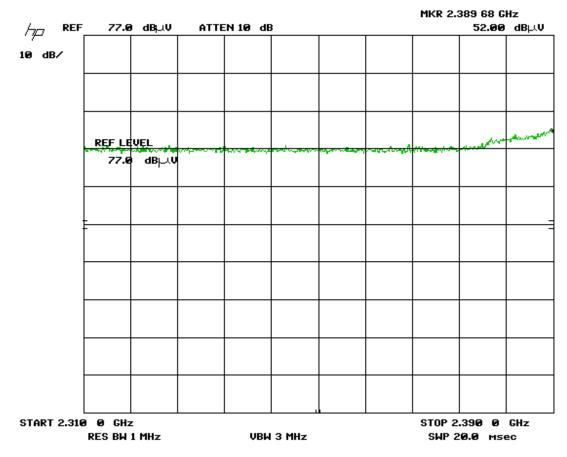
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Vertical –Average Emission

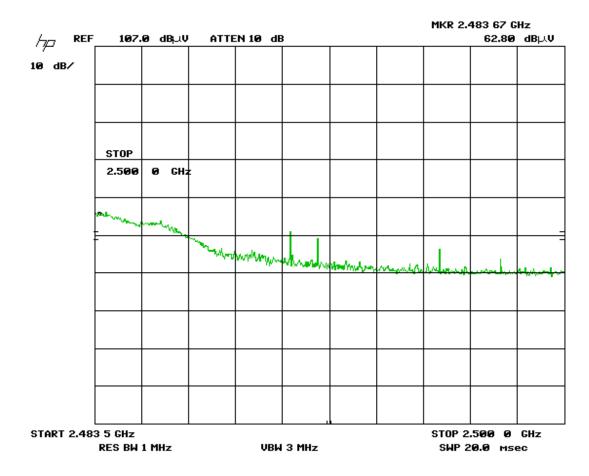

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 1, Zigbee Ch 0xF Horizontal – Average Emission

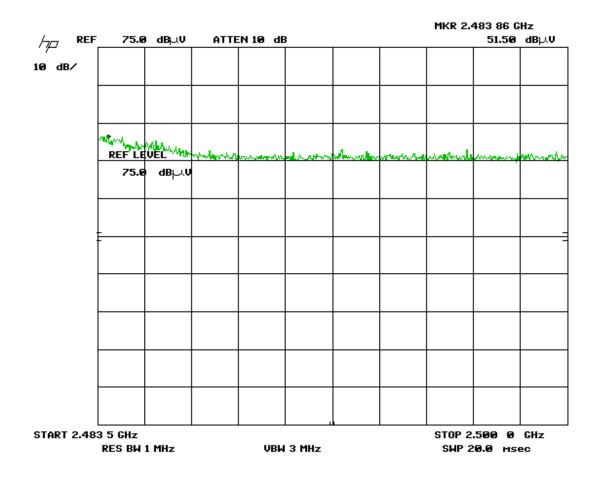

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Vertical - Peak Emission

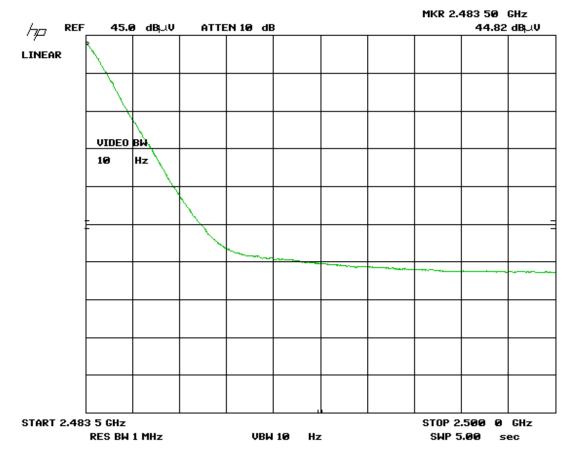
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 3, Zigbee Ch 0xB Horizontal - Peak Emission

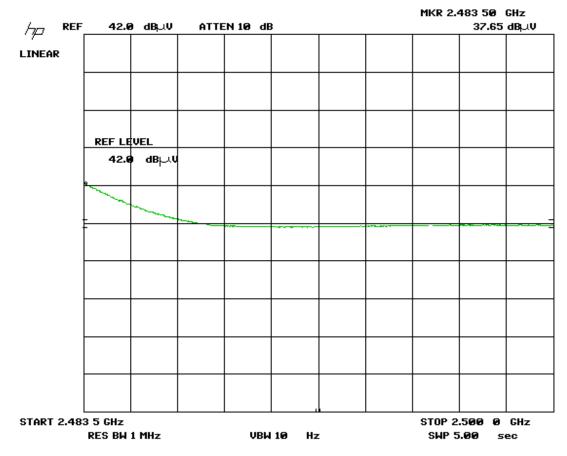
Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Co-location WIFI N-Mode and Zigbee: High Channels

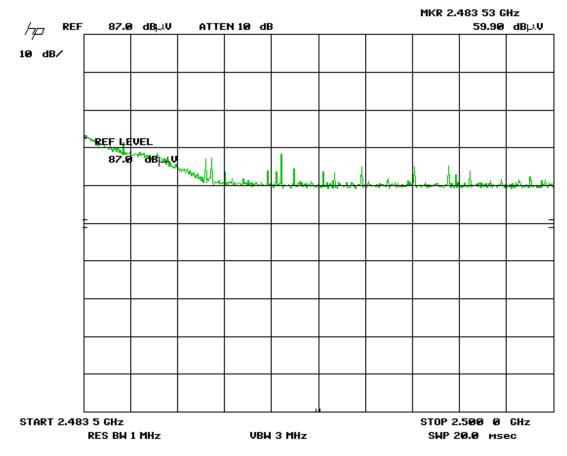
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

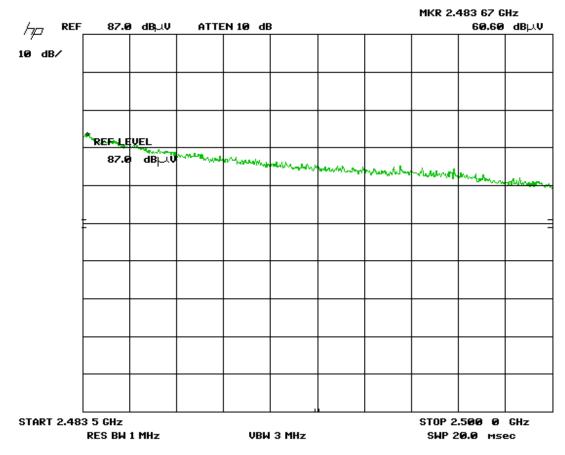
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

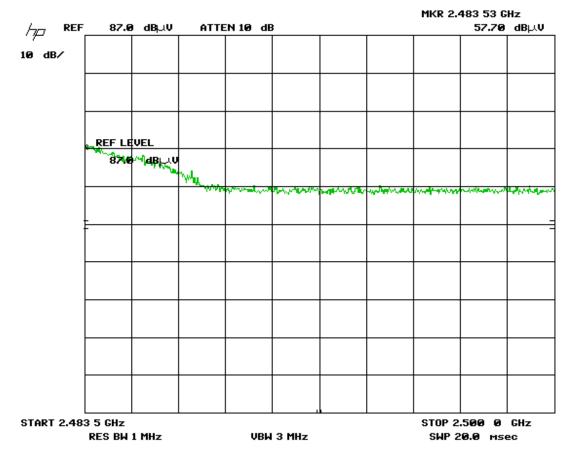
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Vertical –Average Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

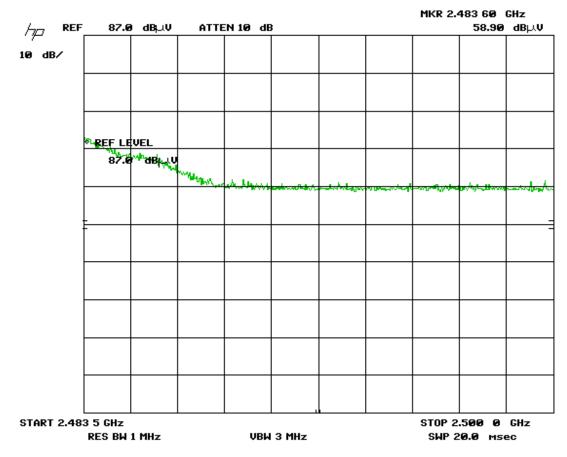
WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x13 Horizontal – Average Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Vertical - Peak Emission


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x19 Horizontal - Peak Emission


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Vertical - Peak Emission

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee Restricted-Band, Band Edge – WIFI Ch 11, Zigbee Ch 0x1A Horizontal - Peak Emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Final Measurements and Results

The EUT passed the limits. Low, middle and high bands were measured.

In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a final detector. Emission outside the restricted bands were measured for information purpose.

The measurements were maximized by rotating the turn table over a full 0-360 rotation and the antenna height was varied from 1 m to 4 m.

Produc	t	Tripoli						
Supply		120 Vac 60 Hz						
	Emission Table							
Frequency (MHz)	Detector		Raw (dBuV)	Correction Factors (dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
56.384	QP		62.7	-26.1	36.6	40	3.4	Pass
65.987	QP		58.1	-26.6	31.5	40	8.5	Pass
36.208	QP		48.8	-16.8	32.0	40	8.0	Pass
107.891	QP		55.3	-21.2	34.1	43.5	9.4	Pass
122.441	QP		52.7	-20.6	32.1	43.5	11.4	Pass
133.984	QP		48.8	-20.9	27.9	43.5	15.6	Pass
9879.33	AVG		34.2	12.7	46.9	54.0	7.1	Pass
Emission Table								
106.727	QP		56.3	-21.3	35.0	43.5	8.5	Pass
132.626	QP		51.1	-20.9	30.2	43.5	13.3	Pass
9712.33	AVG		34.1	12.8	46.9	54.0	7.1	Pass

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Zigbee band edge and harmonic measurement

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	Low Cl	hannel (11) - `	Y axis (Vert	ical) Setpov	ver 0x1 (Actual I	Power = 1 c	lBm)			
2405	Peak	Horz	108.8	30.7	4.2	10.0	35.8	117.9			PASS
2405	Avg	Horz	106.7	30.7	4.2	10.0	35.8	115.8			PASS
2405	Peak	Vert	108.1	30.7	4.2	10.0	35.8	117.2			PASS
2405	Avg	Vert	105.9	30.7	4.2	10.0	35.8	115.0			PASS
2390	Peak	Horz	54.0	30.7	4.2	10.0	35.8	63.1	74.0	10.9	PASS
2390	Avg	Horz	35.3	30.7	4.2	10.0	35.8	44.4	54.0	9.6	PASS
2390	Peak	Vert	54.2	30.7	4.2	10.0	35.8	63.3	74.0	10.7	PASS
2390	Avg	Vert	35.5	30.7	4.2	10.0	35.8	44.6	54.0	9.4	PASS
4810	Peak	Horz	50.0	33.5	5.8	0.0	35.3	54.0	74.0	20.0	PASS
4810	Avg	Horz	31.3	33.5	5.8	0.0	35.3	35.3	54.0	18.7	PASS
4810	Peak	Vert	49.4	33.5	5.8	0.0	35.3	53.4	74.0	20.6	PASS
4810	Avg	Vert	30.7	33.5	5.8	0.0	35.3	34.7	54.0	19.3	PASS
7215	Peak	Horz	57.2	38.2	7.1	0.0	35.5	67.0	74.0	7.0	PASS
7215	Avg	Horz	38.5	38.2	7.1	0.0	35.5	48.3	54.0	5.7	PASS
7215	Peak	Vert	52.8	38.2	7.1	0.0	35.5	62.6	74.0	11.4	PASS
7215	Avg	Vert	34.1	38.2	7.1	0.0	35.5	43.9	54.0	10.1	PASS
9620	Peak	Horz	53.6	39.4	8.7	0.0	36.1	65.6	74.0	8.4	PASS
9620	Avg	Horz	34.9	39.4	8.7	0.0	36.1	46.9	54.0	7.1	PASS
9620	Peak	Vert	51.3	39.4	8.7	0.0	36.1	63.3	74.0	10.7	PASS
9620	Avg	Vert	32.6	39.4	8.7	0.0	36.1	44.6	54.0	9.4	PASS
		Mid Channe	el (0x13) - Y	axis (Vertio	cal) Setp	ower 0x	1 (Actual F	ower = 1 dE	Bm)		
2445	Peak	Horz	107.1	30.7	4.2	10.0	35.8	116.2			PASS
2445	Avg	Horz	105.2	30.7	4.2	10.0	35.8	114.3			PASS
2445	Peak	Vert	107.7	30.7	4.2	10.0	35.8	116.8			PASS
2445	Avg	Vert	105.7	30.7	4.2	10.0	35.8	114.8			PASS
		Mid Char	nel (0x13) -	Zaxis (Fla	t) Setpov	ver 0x1	(Actual Po	wer = 1 dBm	1)		
2445	Peak	Horz	107.6	30.7	4.2	10.0	35.8	116.7			PASS
2445	Avg	Horz	105.6	30.7	4.2	10.0	35.8	114.7			PASS
2445	Peak	Vert	106.4	30.7	4.2	10.0	35.8	115.5			PASS
2445	Avg	Vert	104.4	30.7	4.2	10.0	35.8	113.5			PASS

Note 1: A duty cycle correction factor of -18.7 dB was used to derive average emissions from peak emissions.

Client	

Product

Standard(s)

MMB Research Inc

GWY10
RSS 247:2015 / FCC Part 15 Subpart C 15:2015

Result

PASS

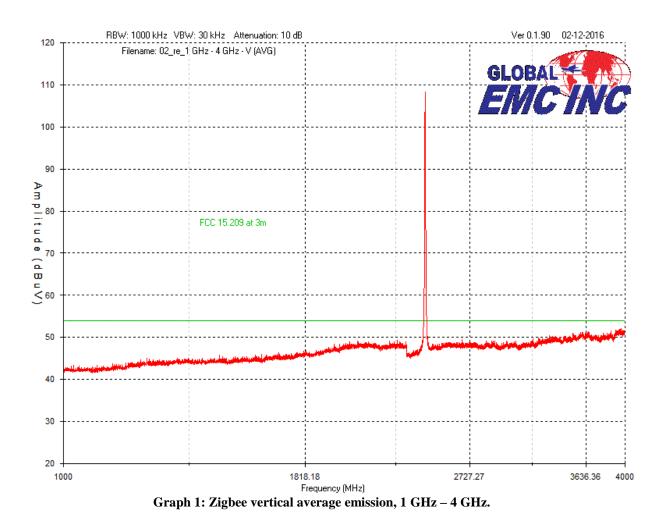
PASS

PASS

PASS

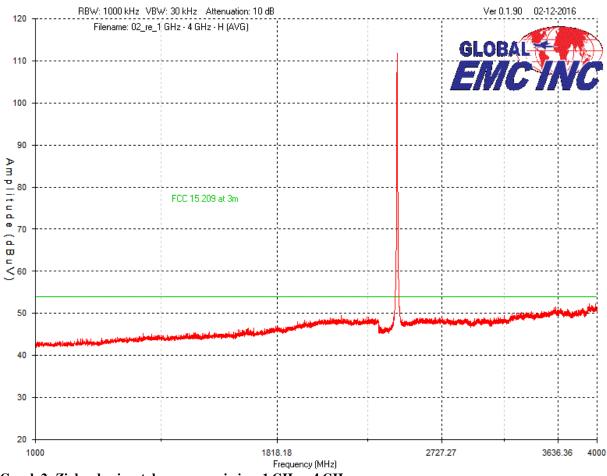
PASS PASS

PASS


PASS

Test Antenna Raw Antenna Cable Atten **Received Emission** Detection Pre-Amp Margin Frequency polarity signal factor loss uator signal limit mode Gain dB dB dB(µV/m) dB(µV/m) (MHz) (Horz/Vert) dB(µV) dB dB dB High Channel (0x19) - Z axis (Flat) - set power 1 (Actual Power = 1 dBm) 2475 Peak 115.3 106.2 30.7 Horz 4.2 10.0 35.8 2475 Avg Horz 104.3 30.7 4.2 10.0 35.8 113.4 2475 Peak Vert 108.4 30.7 4.2 10.0 117.5 35.8 2475 Avg Vert 106.1 30.7 4.2 10.0 35.8 115.2 2483.5 Peak Horz 60.5 30.7 4.2 10.0 35.8 69.6 74.0 4.4 2483.5 Avg Horz 41.8 30.7 4.2 10.0 35.8 50.9 54.0 3.1 4.2 2483.5 Peak Vert 62.2 30.7 10.0 35.8 71.3 74.0 2.7 2483.5 Vert 43.5 30.7 4.2 54.0 1.4 Avg 10.0 35.8 52.6

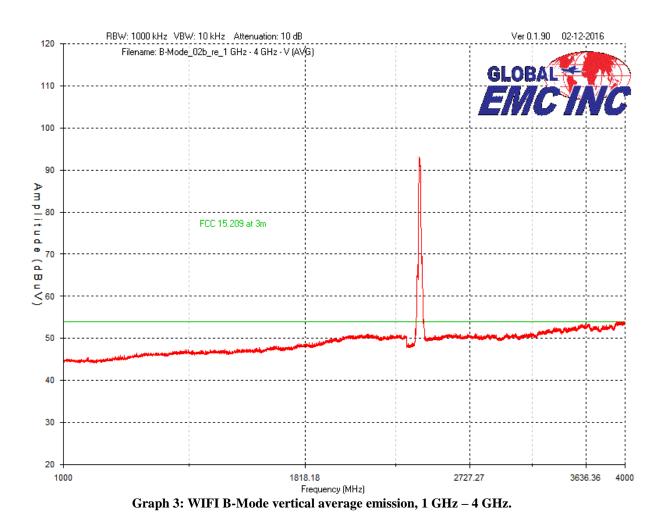
		High Chann	el (0x1A) -Z	Axis (Flat)	Set Pow	er -0x1A	(Actual P	ower = -26 c	lBm)		
2480	Peak	Horz	84.1	30.7	4.2	10.0	35.8	93.2			PASS
2480	Avg	Horz	82.0	30.7	4.2	10.0	35.8	91.1			PASS
2480	Peak	Vert	85.3	30.7	4.2	10.0	35.8	94.4			PASS
2480	Avg	Vert	83.1	30.7	4.2	10.0	35.8	92.2			PASS
2483.5	Peak	Horz	58.2	30.7	4.2	10.0	35.8	67.3	74.0	6.7	PASS
2483.5	Avg	Horz	39.5	30.7	4.2	10.0	35.8	48.6	54.0	5.4	PASS
2483.5	Peak	Vert	58.8	30.7	4.2	10.0	35.8	67.9	74.0	6.1	PASS
2483.5	Avg	Vert	40.1	30.7	4.2	10.0	35.8	49.2	54.0	4.8	PASS


Note 2: A duty cycle correction factor of -18.7 dB was used to derive average emissions from peak emissions.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

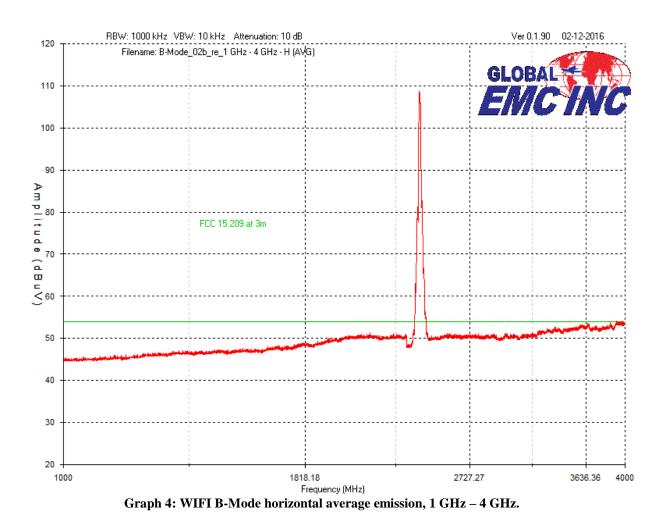
Page 147 of 177

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Graph 2: Zigbee horizontal average emission, 1 GHz – 4 GHz.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

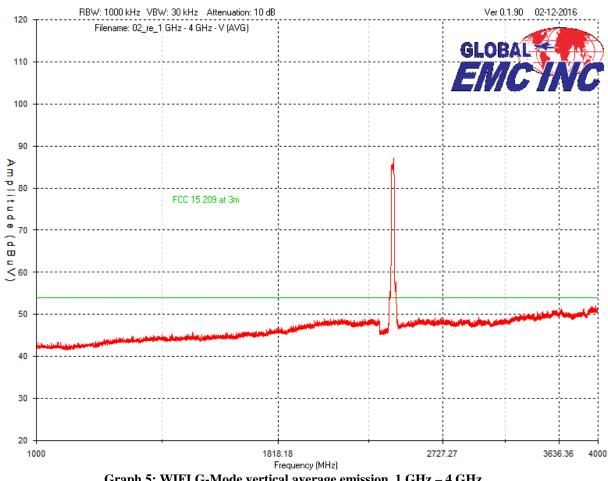
WIFI B-Mode harmonics and band edge


Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	Low Chanr	nel (1) - Y Axis	s (Vertical)	Set Power 1	13 (Comr	mand "2	2 11 13 0",	"17 1 5")			
2405	Peak	Horz	90.9	30.7	4.2	10.0	35.8	100.0			PASS
2405	Avg	Horz	82.2	30.7	4.2	10.0	35.8	91.3			PASS
2405	Peak	Vert	96.7	30.7	4.2	10.0	35.8	105.8			PASS
2405	Avg	Vert	88.0	30.7	4.2	10.0	35.8	97.1			PASS
2390	Peak	Horz	46.8	30.7	4.2	10.0	35.8	55.9	74.0	18.1	PASS
2390	Avg	Horz	34.3	30.7	4.2	10.0	35.8	43.4	54.0	10.6	PASS
2390	Peak	Vert	46.0	30.7	4.2	10.0	35.8	55.1	74.0	18.9	PASS
2390	Avg	Vert	34.4	30.7	4.2	10.0	35.8	43.5	54.0	10.5	PASS
				Channel (C)x13) - Y	axis (V	ertical)				
2437	Peak	Horz	89.6	30.7	4.2	10.0	35.8	98.7			PASS
2437	Avg	Horz	80.9	30.7	4.2	10.0	35.8	90.0			PASS
2437	Peak	Vert	99.1	30.7	4.2	10.0	35.8	108.2			PASS
2437	Avg	Vert	90.4	30.7	4.2	10.0	35.8	99.5			PASS
				lid Channel	· · ·	Zaxis	, ,				
2445	Peak	Horz	98.2	30.7	4.2	10.0	35.8	107.3			PASS
2445	Avg	Horz	89.7	30.7	4.2	10.0	35.8	98.8			PASS
2445	Peak	Vert	84.2	30.7	4.2	10.0	35.8	93.3			PASS
2445	Avg	Vert	75.3	30.7	4.2	10.0	35.8	84.4			PASS
		igh Channel (· · · · ·			1		17 1 5")		
2462	Peak	Horz	92.8	30.7	4.2	10.0	35.8	101.9			PASS
2462	Avg	Horz	83.9	30.7	4.2	10.0	35.8	93.0			PASS
2462	Peak	Vert	99.4	30.7	4.2	10.0	35.8	108.5			PASS
2462	Avg	Vert	90.5	30.7	4.2	10.0	35.8	99.6	74.0	40.4	PASS
2483.5	Peak	Horz	46.5	30.7	4.2	10.0	35.8	55.6	74.0	18.4	PASS
2483.5	Avg	Horz	34.1	30.7	4.2	10.0	35.8	43.2	54.0	10.8	PASS
2483.5	Peak	Vert	46.8	30.7	4.2	10.0	35.8	55.9	74.0	18.1	PASS
2483.5	Avg	Vert	34.5	30.7	4.2	10.0	35.8	43.6	54.0	10.4	PASS
4924	Peak	Horz	44.0	33.5	7.7	0.0	35.3	49.9	74.0	24.1	PASS
4924	Avg	Horz	31.8	33.5	7.7	0.0	35.3	37.7	54.0	16.3	PASS
4924	Peak	Vert	45.1	33.5	7.7	0.0	35.3	51.0	74.0	23.0	PASS
4924	Avg	Vert	31.9	33.5	7.7	0.0	35.3	37.8	54.0	16.2	PASS
7386	Peak	Vert	46.7	38.2	5.8	0.0	35.5	55.2	74.0	18.8	PASS
7386	Avg	Vert	34.9	38.2	5.8	0.0	35.5	43.4	54.0	10.6	PASS
7386	Peak	Horz	46.5	38.2	5.8	0.0	35.5	55.0	74.0	19.0	PASS
7386	Avg	Horz	34.8	38.2	5.8	0.0	35.5	43.3	54.0	10.7	PASS

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Page 150 of 177

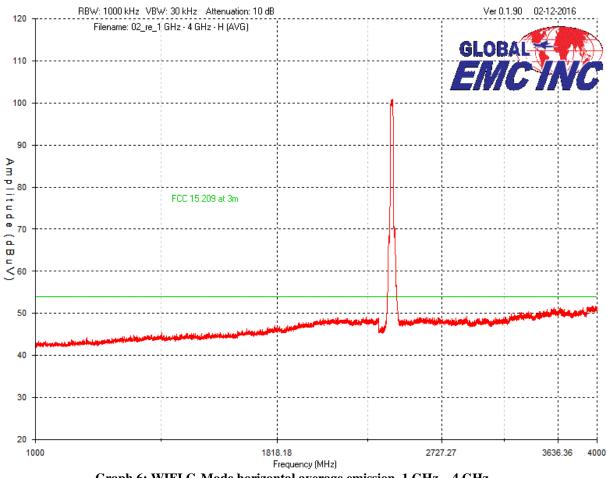
Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Page 151 of 177

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode harmonics and band edge

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	Low Chann	el (1) - Y Axis	(Vertical) S	Set Power 1	3 (Comm	nand "22	2 11 13 1",	"17 1 13")			
2412	Peak	Horz	88.5	30.7	4.2	10.0	35.8	97.6			PASS
2412	Avg	Horz	77.2	30.7	4.2	10.0	35.8	86.3			PASS
2412	Peak	Vert	94.6	30.7	4.2	10.0	35.8	103.7			PASS
2412	Avg	Vert	83.5	30.7	4.2	10.0	35.8	92.6			PASS
2390	Peak	Horz	46.8	30.7	4.2	10.0	35.8	55.9	74.0	18.1	PASS
2390	Avg	Horz	34.5	30.7	4.2	10.0	35.8	43.6	54.0	10.4	PASS
2390	Peak	Vert	48.3	30.7	4.2	10.0	35.8	57.4	74.0	16.6	PASS
2390	Avg	Vert	36.1	30.7	4.2	10.0	35.8	45.2	54.0	8.8	PASS
			N	lid Channel	(6) - Y a	ixis (Vei	rtical)				
2437	Peak	Horz	86.4	30.7	4.2	10.0	35.8	95.5			PASS
2437	Avg	Horz	75.7	30.7	4.2	10.0	35.8	84.8			PASS
2437	Peak	Vert	96.8	30.7	4.2	10.0	35.8	105.9			PASS
2437	Avg	Vert	85.4	30.7	4.2	10.0	35.8	94.5			PASS
				Mid Chann	el (6) - Z	axis (F	lat)				
2437	Peak	Horz	95.8	30.7	4.2	10.0	35.8	104.9			PASS
2437	Avg	Horz	84.7	30.7	4.2	10.0	35.8	93.8			PASS
2437	Peak	Vert	81.8	30.7	4.2	10.0	35.8	90.9			PASS
2437	Avg	Vert	70.5	30.7	4.2	10.0	35.8	79.6			PASS
		gh Channel (1	1) -Y Axis (Vertical) Se	t Power	13 (Con	nmand "22		7 1 13")		
2462	Peak	Horz	90.5	30.7	4.2	10.0	35.8	99.6			PASS
2462	Avg	Horz	79.0	30.7	4.2	10.0	35.8	88.1			PASS
2462	Peak	Vert	97.3	30.7	4.2	10.0	35.8	106.4			PASS
2462	Avg	Vert	85.8	30.7	4.2	10.0	35.8	94.9			PASS
2483.5	Peak	Horz	50.0	30.7	4.2	10.0	35.8	59.1	74.0	14.9	PASS
2483.5	Avg	Horz	36.9	30.7	4.2	10.0	35.8	46.0	54.0	8.0	PASS
2483.5	Peak	Vert	58.4	30.7	4.2	10.0	35.8	67.5	74.0	6.5	PASS
4924	Peak	Horz	44.1	33.5	7.7	0.0	35.3	50.0	74.0	24.0	PASS
4924	Avg	Horz	31.7	33.5	7.7	0.0	35.3	37.6	54.0	16.4	PASS
4924	Peak	Vert	44.9	33.5	7.7	0.0	35.3	50.8	74.0	23.2	PASS
4924	Avg	Vert	32.0	33.5	7.7	0.0	35.3	37.9	54.0	16.1	PASS
7386	Peak	Vert	47.6	38.2	5.8	0.0	35.5	56.1	74.0	17.9	PASS
7386	Avg	Vert	35.0	38.2	5.8	0.0	35.5	43.5	54.0	10.5	PASS
7386	Peak	Horz	46.4	38.2	5.8	0.0	35.5	54.9	74.0	19.1	PASS
7386	Avg	Horz	34.6	38.2	5.8	0.0	35.5	43.1	54.0	10.9	PASS


Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Graph 5: WIFI G-Mode vertical average emission, 1 GHz – 4 GHz.

Page 153 of 177

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Graph 6: WIFI G-Mode horizontal average emission, 1 GHz – 4 GHz.

Page 154 of 177

Client	MMB Research Inc	
Product	GWY10	TÜV
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode harmonics and band edge

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	Low Channe	el (1) - Y Axis	(Vertical) S	Set Power 1	3 (Comm	nand "22	2 11 13 1",	"17 1 13")			
2412	Peak	Horz	84.1	30.7	4.2	10.0	35.8	93.2			PASS
2412	Avg	Horz	73.2	30.7	4.2	10.0	35.8	82.3			PASS
2412	Peak	Vert	95.3	30.7	4.2	10.0	35.8	104.4			PASS
2412	Avg	Vert	84.7	30.7	4.2	10.0	35.8	93.8			PASS
2390	Peak	Horz	47.5	30.7	4.2	10.0	35.8	56.6	74.0	17.4	PASS
2390	Avg	Horz	36.0	30.7	4.2	10.0	35.8	45.1	54.0	8.9	PASS
2390	Peak	Vert	51.9	30.7	4.2	10.0	35.8	61.0	74.0	13.0	PASS
2390	Avg	Vert	37.7	30.7	4.2	10.0	35.8	46.8	54.0	7.2	PASS
			N	lid Channel	(6) - Y a	ixis (Vei	rtical)				
2437	Peak	Horz	85.0	30.7	4.2	10.0	35.8	94.1			PASS
2437	Avg	Horz	74.8	30.7	4.2	10.0	35.8	83.9			PASS
2437	Peak	Vert	95.3	30.7	4.2	10.0	35.8	104.4			PASS
2437	Avg	Vert	84.8	30.7	4.2	10.0	35.8	93.9			PASS
				Mid Chann	el (6) - Z	axis (F	lat)				
2437	Peak	Horz	92.5	30.7	4.2	10.0	35.8	101.6			PASS
2437	Avg	Horz	82.3	30.7	4.2	10.0	35.8	91.4			PASS
2437	Peak	Vert	87.1	30.7	4.2	10.0	35.8	96.2			PASS
2437	Avg	Vert	76.1	30.7	4.2	10.0	35.8	85.2			PASS
	Hi	gh Channel (1	1) - Y Axis (Vertical) Se	t Power	13 (Cor	nmand "22	11 13 1", "1	7 1 13")		
2462	Peak	Horz	85.2	30.7	4.2	10.0	35.8	94.3			PASS
2462	Avg	Horz	74.9	30.7	4.2	10.0	35.8	84.0			PASS
2462	Peak	Vert	96.3	30.7	4.2	10.0	35.8	105.4			PASS
2462	Avg	Vert	85.3	30.7	4.2	10.0	35.8	94.4			PASS
2483.5	Peak	Horz	52.9	30.7	4.2	10.0	35.8	62.0	74.0	12.0	PASS
2483.5	Avg	Horz	37.6	30.7	4.2	10.0	35.8	46.7	54.0	7.3	PASS
2483.5	Peak	Vert	62.9	30.7	4.2	10.0	35.8	72.0	74.0	2.0	PASS
2483.5	Avg	Vert	44.8	30.7	4.2	10.0	35.8	53.9	54.0	0.1	PASS
4924	Peak	Horz	43.8	33.5	5.8	0.0	35.3	47.8	74.0	26.2	PASS
4924	Avg	Horz	32.8	33.5	5.8	0.0	35.3	36.8	54.0	17.2	PASS
4924	Peak	Vert	45.2	33.5	5.8	0.0	35.3	49.2	74.0	24.8	PASS
4924	Avg	Vert	32.8	33.5	5.8	0.0	35.3	36.8	54.0	17.2	PASS
7386	Peak	Vert	49.1	38.2	7.1	0.0	35.5	58.9	74.0	15.1	PASS
7386	Avg	Vert	36.7	38.2	7.1	0.0	35.5	46.5	54.0	7.5	PASS
7386	Peak	Horz	49.2	38.2	7.1	0.0	35.5	59.0	74.0	15.0	PASS
7386	Avg	Horz	36.8	38.2	7.1	0.0	35.5	46.6	54.0	7.4	PASS

Note 3: 1 GHz – 4 GHz Average plot for N-Mode are similar to G-Mode.

Client	MMB Research Inc	
Product	GWY10	TUV
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI B-Mode and Zigbee co-location harmonics and band edge

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
Zigbee: Low Cł	nannel (11) -	Z axis (Vertic	al) Setpowe	r 0x1 (Actu	al Power	[.] = 1 dB	m), WIFI: C	Channel 3 Se	etpower = 13	3,	
2390	Peak	Horz	58.3	30.7	4.2	10.0	35.8	67.4	74.0	6.6	PASS
2390	Avg	Horz	39.6	30.7	4.2	10.0	35.8	48.7	54.0	5.3	PASS
2390	Peak	Vert	59.7	30.7	4.2	10.0	35.8	68.8	74.0	5.2	PASS
2390	Avg	Vert	41.0	30.7	4.2	10.0	35.8	50.1	54.0	3.9	PASS
4810	Peak	Horz	51.6	33.5	5.8	0.0	35.3	55.6	74.0	18.4	PASS
4810	Avg	Horz	32.9	33.5	5.8	0.0	35.3	36.9	54.0	17.1	PASS
4810	Peak	Vert	52.3	33.5	5.8	0.0	35.3	56.3	74.0	17.7	PASS
4810	Avg	Vert	33.6	33.5	5.8	0.0	35.3	37.6	54.0	16.4	PASS
7215	Peak	Horz	55.3	38.2	7.1	0.0	35.5	65.1	74.0	8.9	PASS
7215	Avg	Horz	36.6	38.2	7.1	0.0	35.5	46.4	54.0	7.6	PASS
7215	Peak	Vert	51.4	38.2	7.1	0.0	35.5	61.2	74.0	12.8	PASS
7215	Avg	Vert	32.7	38.2	7.1	0.0	35.5	42.5	54.0	11.5	PASS
9620	Peak	Horz	52.0	39.4	8.7	0.0	36.1	64.0	74.0	10.0	PASS
9620	Avg	Horz	33.3	39.4	8.7	0.0	36.1	45.3	54.0	8.7	PASS
9620	Peak	Vert	49.8	39.4	8.7	0.0	36.1	61.8	74.0	12.2	PASS
9620	Avg	Vert	31.1	39.4	8.7	0.0	36.1	43.1	54.0	10.9	PASS

	High Cha	nnel (0x19) -	Zaxis (Flat) - set powe	er 1 (Act	ual Pow	er = 1 dBm) WIFI CH11	, POWER=	=13	
2483.5	Peak	Horz	61.9	30.7	4.2	10.0	35.8	71.0	74.0	3.0	PASS
2483.5	Avg	Horz	43.2	30.7	4.2	10.0	35.8	52.3	54.0	1.7	PASS
2483.5	Peak	Vert	62.8	30.7	4.2	10.0	35.8	71.9	74.0	2.1	PASS
2483.5	Avg	Vert	44.1	30.7	4.2	10.0	35.8	53.2	54.0	0.8	PASS
	High Channe	el (0x1A) -Z	Axis (Flat) Se	et Power -0	x1A (Act	tual Pow	ver = -26 d	3m) WIFI CH	111, POWE	R=13	
2483.5	Peak	Horz	57.3	30.7	4.2	10.0	35.8	66.4	74.0	7.6	PASS
2483.5	Avg	Horz	38.6	30.7	4.2	10.0	35.8	47.7	54.0	6.3	PASS
2483.5	Peak	Vert	57.4	30.7	4.2	10.0	35.8	66.5	74.0	7.5	PASS
2483.5	Avg	Vert	38.7	30.7	4.2	10.0	35.8	47.8	54.0	6.2	PASS

Note 4: Co-location band edges data were measured with the Zigbee as the outer most transmitter. A duty cycle correction factor of -18.7 dB was used to derive average emissions from peak emissions.

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	High Char	nnel (0x12) -Z	Axis (Vertic	al) Set Pow	ver 1 (Ac	tual Pov	wer = 1 dBr	n) WIFI CH1	1, POWER	=13	
2483.5	Peak	Horz	51.9	30.7	4.2	10.0	35.8	61.0	74.0	13.0	PASS
2483.5	Avg	Horz	40.0	30.7	4.2	10.0	35.8	49.1	54.0	4.9	PASS
2483.5	Peak	Vert	23.2	30.7	4.2	10.0	35.8	32.3	74.0	41.7	PASS
2483.5	Avg	Vert	41.0	30.7	4.2	10.0	35.8	50.1	54.0	3.9	PASS
Channel (0xF)	- Z axis (Ver	tical) Setpowe	er 0x1 (Actua	al Power =	1 dBm) ^v	WIFI Se	tpower = 13	3, Ch 1			
2390	Peak	Horz	46.6	30.7	4.2	10.0	35.8	55.7	74.0	18.3	PASS
2390	Avg	Horz	35.1	30.7	4.2	10.0	35.8	44.2	54.0	9.8	PASS
2390	Peak	Vert	47.5	30.7	4.2	10.0	35.8	56.6	74.0	17.4	PASS
2390	Avg	Vert	36.5	30.7	4.2	10.0	35.8	45.6	54.0	8.4	PASS

Note 5: Co-location band edges data were measured with the WIFI as the outer most transmitter.

Page 156 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI G-Mode and Zigbee co-location harmonics and band edge

2390AvgHorz38.430.74.210.035.847.554.06.5PAS2390PeakVert58.030.74.210.035.867.174.06.9PAS2390AvgVert39.330.74.210.035.867.174.06.9PAS4810PeakHorz53.533.55.80.035.357.574.016.5PAS4810AvgHorz34.833.55.80.035.338.854.015.2PAS4810PeakVert52.433.55.80.035.338.854.015.2PAS4810AvgVert33.733.55.80.035.337.754.016.3PAS4810AvgVert33.733.55.80.035.337.754.016.3PAS7215PeakHorz54.738.27.10.035.564.574.09.5PAS7215AvgHorz36.038.27.10.035.562.174.011.9PAS7215AvgVert53.239.48.70.036.165.274.08.8PAS		Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
2390AvgHorz38.430.74.210.035.847.554.06.5PAS2390PeakVert58.030.74.210.035.867.174.06.9PAS2390AvgVert39.330.74.210.035.867.174.06.9PAS4810PeakHorz53.533.55.80.035.357.574.016.5PAS4810AvgHorz34.833.55.80.035.338.854.015.2PAS4810PeakVert52.433.55.80.035.338.854.015.2PAS4810AvgVert33.733.55.80.035.337.754.016.3PAS4810AvgVert33.733.55.80.035.337.754.016.3PAS7215PeakHorz54.738.27.10.035.564.574.09.5PAS7215AvgHorz36.038.27.10.035.562.174.011.9PAS7215AvgVert53.239.48.70.036.165.274.08.8PAS		Low Ch	annel (11) -	Zaxis (Vertic	al) Setpowe	r 0x1 (Actua	al Power	= 1 dBi	m) WIFI Se	tpower = 13	, Ch 3		
2390 Peak Vert 58.0 30.7 4.2 10.0 35.8 67.1 74.0 6.9 PAS 2390 Avg Vert 39.3 30.7 4.2 10.0 35.8 67.1 74.0 6.9 PAS 4810 Peak Horz 53.5 33.5 5.8 0.0 35.3 57.5 74.0 16.5 PAS 4810 Avg Horz 53.5 33.5 5.8 0.0 35.3 57.5 74.0 16.5 PAS 4810 Avg Horz 34.8 33.5 5.8 0.0 35.3 38.8 54.0 15.2 PAS 4810 Peak Vert 52.4 33.5 5.8 0.0 35.3 36.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 37.7 54.0 16.3 PAS 7215 Peak Horz 5		2390	Peak	Horz	57.1	30.7	4.2	10.0	35.8	66.2	74.0	7.8	PASS
2390AvgVert39.330.74.210.035.848.454.05.6PAS4810PeakHorz53.533.55.80.035.357.574.016.5PAS4810AvgHorz34.833.55.80.035.338.854.015.2PAS4810PeakVert52.433.55.80.035.338.854.015.2PAS4810AvgVert33.733.55.80.035.336.474.017.6PAS4810AvgVert33.733.55.80.035.337.754.016.3PAS7215PeakHorz54.738.27.10.035.564.574.09.5PAS7215AvgHorz36.038.27.10.035.562.174.011.9PAS7215PeakVert52.338.27.10.035.562.174.011.9PAS7215AvgVert33.638.27.10.035.543.454.010.6PAS9620PeakHorz53.239.48.70.036.165.274.08.8PAS		2390	Avg	Horz	38.4	30.7	4.2	10.0	35.8	47.5	54.0	6.5	PASS
4810 Peak Horz 53.5 33.5 5.8 0.0 35.3 57.5 74.0 16.5 PAS 4810 Avg Horz 34.8 33.5 5.8 0.0 35.3 57.5 74.0 16.5 PAS 4810 Avg Horz 34.8 33.5 5.8 0.0 35.3 38.8 54.0 15.2 PAS 4810 Peak Vert 52.4 33.5 5.8 0.0 35.3 56.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 37.7 54.0 16.3 PAS 7215 Peak Horz 54.7 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Peak Horz 36.0 38.2 7.1 0.0 35.5 62.1 74.0 8.2 PAS 7215 Peak Vert 52		2390	Peak	Vert	58.0	30.7	4.2	10.0	35.8	67.1	74.0	6.9	PASS
4810 Avg Horz 34.8 33.5 5.8 0.0 35.3 38.8 54.0 15.2 PAS 4810 Peak Vert 52.4 33.5 5.8 0.0 35.3 56.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 56.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 37.7 54.0 16.3 PAS 7215 Peak Horz 54.7 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 62.1 74.0 8.2 PAS 7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 53.2		2390	Avg	Vert	39.3	30.7	4.2	10.0	35.8	48.4	54.0	5.6	PASS
4810 Peak Vert 52.4 33.5 5.8 0.0 35.3 56.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 56.4 74.0 17.6 PAS 4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 37.7 54.0 16.3 PAS 7215 Peak Horz 54.7 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 62.1 74.0 8.2 PAS 7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6<		4810	Peak	Horz	53.5	33.5	5.8	0.0	35.3	57.5	74.0	16.5	PASS
4810 Avg Vert 33.7 33.5 5.8 0.0 35.3 37.7 54.0 16.3 PAS 7215 Peak Horz 54.7 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 62.1 74.0 9.5 PAS 7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Peak Vert 53.6 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 43.4 54.0 10.6 PAS 9620 Peak Horz 53.2	Γ	4810	Avg	Horz	34.8	33.5	5.8	0.0	35.3	38.8	54.0	15.2	PASS
7215 Peak Horz 54.7 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 64.5 74.0 9.5 PAS 7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 45.8 54.0 8.2 PAS 7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 43.4 54.0 10.6 PAS 9620 Peak Horz 53.2 39.4 8.7 0.0 36.1 65.2 74.0 8.8 PAS		4810	Peak	Vert	52.4	33.5	5.8	0.0	35.3	56.4	74.0	17.6	PASS
7215 Avg Horz 36.0 38.2 7.1 0.0 35.5 45.8 54.0 8.2 PAS 7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 43.4 54.0 10.6 PAS 9620 Peak Horz 53.2 39.4 8.7 0.0 36.1 65.2 74.0 8.8 PAS		4810	Avg	Vert	33.7	33.5	5.8	0.0	35.3	37.7	54.0	16.3	PASS
7215 Peak Vert 52.3 38.2 7.1 0.0 35.5 62.1 74.0 11.9 PAS 7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 43.4 54.0 10.6 PAS 9620 Peak Horz 53.2 39.4 8.7 0.0 36.1 65.2 74.0 8.8 PAS		7215	Peak	Horz	54.7	38.2	7.1	0.0	35.5	64.5	74.0	9.5	PASS
7215 Avg Vert 33.6 38.2 7.1 0.0 35.5 43.4 54.0 10.6 PAS 9620 Peak Horz 53.2 39.4 8.7 0.0 36.1 65.2 74.0 8.8 PAS	Γ	7215	Avg	Horz	36.0	38.2	7.1	0.0	35.5	45.8	54.0	8.2	PASS
9620 Peak Horz 53.2 39.4 8.7 0.0 36.1 65.2 74.0 8.8 PAS		7215	Peak	Vert	52.3	38.2	7.1	0.0	35.5	62.1	74.0	11.9	PASS
		7215	Avg	Vert	33.6	38.2	7.1	0.0	35.5	43.4	54.0	10.6	PASS
	ľ	9620	Peak	Horz	53.2	39.4	8.7	0.0	36.1	65.2	74.0	8.8	PASS
9020 Avy HUZ 34.3 39.4 8.7 0.0 30.1 40.5 34.0 7.5 PAG		9620	Avg	Horz	34.5	39.4	8.7	0.0	36.1	46.5	54.0	7.5	PASS
9620 Peak Vert 50.7 39.4 8.7 0.0 36.1 62.7 74.0 11.3 PAS		9620	Peak	Vert	50.7	39.4	8.7	0.0	36.1	62.7	74.0	11.3	PASS
9620 Avg Vert 32.0 39.4 8.7 0.0 36.1 44.0 54.0 10.0 PAS		9620	Avg	Vert	32.0	39.4	8.7	0.0	36.1	44.0	54.0	10.0	PASS

	R=13	111, POWEF	m) WIFI CH	wer = 1 dB	ctual Po	wer 1 (Ad	al) - set po	axis (Vertic	nel (0x19) - Z	High Chanr	
PASS	3.2	74.0	70.8	35.8	10.0	4.2	30.7	61.7	Horz	Peak	2483.5
PASS	1.9	54.0	52.1	35.8	10.0	4.2	30.7	43.0	Horz	Avg	2483.5
PASS	1.6	74.0	72.4	35.8	10.0	4.2	30.7	63.3	Vert	Peak	2483.5
PASS	0.3	54.0	53.7	35.8	10.0	4.2	30.7	44.6	Vert	Avg	2483.5
	'ER=13	CH11, POW	dBm) WIFI (ower = -26	ctual Po	-0x1A (A	Set Power	kis (Vertical)	(0x1A) -Z Ax	ligh Channel	F
PASS	7.1	74.0	66.9	35.8	10.0	4.2	30.7	57.8	Horz	Peak	2483.5
PASS	5.8	54.0	48.2	35.8	10.0	4.2	30.7	39.1	Horz	Avg	2483.5
PASS	4.7	74.0	69.3	35.8	10.0	4.2	30.7	60.2	Vert	Peak	2483.5
PASS	3.4	54.0	50.6	35.8	10.0	4.2	30.7	41.5	Vert	Avg	2483.5
	1.6 0.3 ER=13 7.1 5.8 4.7	74.0 54.0 CH11, POW 74.0 54.0 74.0	72.4 53.7 dBm) WIFI (66.9 48.2 69.3	35.8 35.8 wer = -26 35.8 35.8 35.8 35.8	10.0 10.0 actual Pc 10.0 10.0 10.0	4.2 4.2 -0x1A (A 4.2 4.2 4.2 4.2	30.7 30.7 Set Power 30.7 30.7 30.7	63.3 44.6 (is (Vertical) 57.8 39.1 60.2	Vert Vert (0x1A) -Z Ax Horz Horz Vert	Peak Avg High Channel Peak Avg Peak	2483.5 2483.5 2483.5 2483.5 2483.5 2483.5

Note 6: Co-location band edges data were measured with the Zigbee as the outer most transmitter. A duty cycle correction factor of -18.7 dB was used to derive average emissions from peak emissions.

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
	High Char	nnel (0x12) -Z	Axis (Vertic	al) Set Pov	ver 1 (Ac	tual Pov	wer = 1 dBr	n) WIFI CH1	1, POWER	=13	
2483.5	Peak	Horz	52.5	30.7	4.2	10.0	35.8	61.6	74.0	12.4	PASS
2483.5	Avg	Horz	40.7	30.7	4.2	10.0	35.8	49.8	54.0	4.2	PASS
2483.5	Peak	Vert	56.8	30.7	4.2	10.0	35.8	65.9	74.0	8.1	PASS
2483.5	Avg	Vert	43.0	30.7	4.2	10.0	35.8	52.1	54.0	1.9	PASS
Low Ch	annel (0xF) -	Z axis (Vertic	cal) Setpowe	er 0x1 (Actu	al Powe	r = 1 dE	3m) WIFI Se	etpower = 13	3, Ch 3		
2390	Peak	Horz	46.9	30.7	4.2	10.0	35.8	56.0	74.0	18.0	PASS
2390	Avg	Horz	35.3	30.7	4.2	10.0	35.8	44.4	54.0	9.6	PASS
2390	Peak	Vert	49.7	30.7	4.2	10.0	35.8	58.8	74.0	15.2	PASS
2390	Avg	Vert	37.9	30.7	4.2	10.0	35.8	47.0	54.0	7.0	PASS

Note 7: Co-location band edges data were measured with the WIFI as the outer most transmitter.

Page 157 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

WIFI N-Mode and Zigbee co-location harmonics and band edge

Test Frequency (MHz)	Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
Low Ch	nannel (11) -	Zaxis (Vertic	al) Setpowe	r 0x1 (Actua	al Power	= 1 dB	m) WIFI Se	tpower = 13	, Ch 3		
2390	Peak	Horz	52.0	30.7	4.2	10.0	35.8	61.1	74.0	12.9	PASS
2390	Avg	Horz	33.3	30.7	4.2	10.0	35.8	42.4	54.0	11.6	PASS
2390	Peak	Vert	51.5	30.7	4.2	10.0	35.8	60.6	74.0	13.4	PASS
2390	Avg	Vert	32.8	30.7	4.2	10.0	35.8	41.9	54.0	12.1	PASS
4810	Peak	Horz	47.4	33.5	5.8	0.0	35.3	51.4	74.0	22.6	PASS
4810	Avg	Horz	28.7	33.5	5.8	0.0	35.3	32.7	54.0	21.3	PASS
4810	Peak	Vert	46.1	33.5	5.8	0.0	35.3	50.1	74.0	23.9	PASS
4810	Avg	Vert	27.4	33.5	5.8	0.0	35.3	31.4	54.0	22.6	PASS
7215	Peak	Horz	51.6	38.2	7.1	0.0	35.5	61.4	74.0	12.6	PASS
7215	Avg	Horz	32.9	38.2	7.1	0.0	35.5	42.7	54.0	11.3	PASS
7215	Peak	Vert	51.5	38.2	7.1	0.0	35.5	61.3	74.0	12.7	PASS
7215	Avg	Vert	32.8	38.2	7.1	0.0	35.5	42.6	54.0	11.4	PASS
9620	Peak	Horz	49.7	39.4	8.7	0.0	36.1	61.7	74.0	12.3	PASS
9620	Avg	Horz	31.0	39.4	8.7	0.0	36.1	43.0	54.0	11.0	PASS
9620	Peak	Vert	50.0	39.4	8.7	0.0	36.1	62.0	74.0	12.0	PASS
9620	Avg	Vert	31.3	39.4	8.7	0.0	36.1	43.3	54.0	10.7	PASS

	High Chanr	nel (0x19) - Z	axis (Vertic	al) - set po	wer 1 (Ad	ctual Po	wer = 1 dB	m) WIFI CH	11, POWEF	R=13	
2483.5	Peak	Horz	60.6	30.7	4.2	10.0	35.8	69.7	74.0	4.3	PASS
2483.5	Avg	Horz	41.9	30.7	4.2	10.0	35.8	51.0	54.0	3.0	PASS
2483.5	Peak	Vert	59.9	30.7	4.2	10.0	35.8	69.0	74.0	5.0	PASS
2483.5	Avg	Vert	41.2	30.7	4.2	10.0	35.8	50.3	54.0	3.7	PASS
H	ligh Channel	(0x1A) -Z Ax	is (Vertical)	Set Power	-0x1A (A	ctual Po	ower = -26	dBm) WIFI (CH11, POW	'ER=13	
2483.5	Peak	Horz	57.7	30.7	4.2	10.0	35.8	66.8	74.0	7.2	PASS
2483.5	Avg	Horz	39.0	30.7	4.2	10.0	35.8	48.1	54.0	5.9	PASS
2483.5	Peak	Vert	58.9	30.7	4.2	10.0	35.8	68.0	74.0	6.0	PASS
2483.5	Avg	Vert	40.2	30.7	4.2	10.0	35.8	49.3	54.0	4.7	PASS

Note 8: Co-location band edges data were measured with the Zigbee as the outer most transmitter. A duty cycle correction factor of -18.7 dB was used to derive average emissions from peak emissions.

Detection mode	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Atten uator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB	Result
High Char	nnel (0x13) -Z	Axis (Vertic	al) Set Pow	ver 1 (Ac	tual Po	wer = 1 dBr	n) WIFI CH1	1, POWER	=13	
Peak	Horz	51.5	30.7	4.2	10.0	35.8	60.6	74.0	13.4	PASS
Avg	Horz	37.7	30.7	4.2	10.0	35.8	46.8	54.0	7.2	PASS
Peak	Vert	62.5	30.7	4.2	10.0	35.8	71.6	74.0	2.4	PASS
Avg	Vert	44.8	30.7	4.2	10.0	35.8	53.9	54.0	0.1	PASS
annel (0xF) -	Zaxis (Vertic	cal) Setpowe	er 0x1 (Actu	al Powe	r = 1 dE	3m) WIFI Se	etpower = 13	3, Ch 1		
Peak	Horz	47.9	30.7	4.2	10.0	35.8	57.0	74.0	17.0	PASS
Avg	Horz	36.0	30.7	4.2	10.0	35.8	45.1	54.0	8.9	PASS
Peak	Vert	51.9	30.7	4.2	10.0	35.8	61.0	74.0	13.0	PASS
Avg	Vert	37.3	30.7	4.2	10.0	35.8	46.4	54.0	7.6	PASS
	mode High Char Peak Avg Peak Avg Peak Avg Peak	Detection mode polarity (Horz/Vert) High Channel (0x13) -Z Peak Horz Avg Horz Peak Vert Avg Vert avg Vert Avg Vert Avg Vert Avg Vert Avg Horz Peak Horz Peak Horz Peak Vert	Detection modepolarity (Horz/Vert)signal dB(µV)High Channel (0x13) -Z Axis (Vertic PeakHorz51.5AvgHorz37.7PeakVert62.5AvgVert44.8annel (0xF) - Z axis (Vertical) Setpower PeakHorz47.9AvgHorz36.0PeakVert51.9	Detection mode polarity (Horz/Vert) signal dB(µV) factor dB High Channel (0x13) -Z Axis (Vertical) Set Powertal Peak Horz 51.5 30.7 Avg Horz 37.7 30.7 Peak Vert 62.5 30.7 Avg Vert 44.8 30.7 annel (0xF) - Z axis (Vertical) Setpower 0x1 (Actu Peak Horz 47.9 30.7 Avg Horz 36.0 30.7 30.7 Avg Horz 51.9 30.7	Detection modepolarity (Horz/Vert)signal dB(µV)factor dBloss dBHigh Channel (0x13) -Z Axis (Vertical)Set Power 1 (Action Set Power 1 (Action AvgHorz51.530.74.2AvgHorz37.730.74.2PeakVert62.530.74.2AvgVert44.830.74.2annel (0xF) - Z axis (Vertical)Setpower 0x1 (Actual Power PeakHorz47.9AvgHorz36.030.74.2AvgHorz36.030.74.2AvgHorz31.930.74.2	Detection mode polarity (Horz/Vert) signal dB(µV) factor dB loss dB uator dB High Channel (0x13) -Z Axis (Vertical) Set Power 1 (Actual Power Peak Nor 51.5 30.7 4.2 10.0 Avg Horz 37.7 30.7 4.2 10.0 Peak Vert 62.5 30.7 4.2 10.0 Avg Vert 44.8 30.7 4.2 10.0 Avg Vert 24.8 10.0 10.0 Avg Vert 62.5 30.7 4.2 10.0 Avg Vert 24.8 30.7 4.2 10.0 Avg Vert 44.8 30.7 4.2 10.0 Avg Horz 47.9 30.7 4.2 10.0 Avg Horz 36.0 30.7 4.2 10.0 Peak Vert 51.9 30.7 4.2 10.0	Detection mode polarity (Horz/Vert) signal dB(μV) factor dB loss dB uator dB Pre-Amp Gain dB High Channel (0x13) -Z Axis (Vertical) Set Power 1 (Actual Power = 1 dBr Peak Horz 51.5 30.7 4.2 10.0 35.8 Avg Horz 37.7 30.7 4.2 10.0 35.8 Peak Vert 62.5 30.7 4.2 10.0 35.8 Avg Vert 44.8 30.7 4.2 10.0 35.8 avg Vert 44.8 30.7 4.2 10.0 35.8 avg Vert 44.8 30.7 4.2 10.0 35.8 Avg Horz 36.0 30.7 4.2 10.0 35.8 Avg Horz 36.0 30.7 4.2 10.0 35.8 Avg Horz 36.0 30.7 4.2 10.0 35.8 Avg Horz 31.9 30.7 4.2 10.0 35.8	Detection mode polarity (Horz/Vert) signal dB(μV) factor dB loss dB uator dB Pre-Amp Gain dB signal dB(μV/m) High Channel (0x13) -Z Axis (Vertical) Set Power 1 (Actual Power = 1 dBm) WIFI CH1 Peak Horz 51.5 30.7 4.2 10.0 35.8 60.6 Avg Horz 37.7 30.7 4.2 10.0 35.8 46.8 Peak Vert 62.5 30.7 4.2 10.0 35.8 71.6 Avg Vert 44.8 30.7 4.2 10.0 35.8 53.9 annel (0xF) - Z axis (Vertical) Setpower 0x1 (Actual Power = 1 dBm) WIFI Setpower = 13 74.2 10.0 35.8 57.0 Avg Horz 36.0 30.7 4.2 10.0 35.8 57.0 Avg Horz 36.0 30.7 4.2 10.0 35.8 45.1 Peak Horz 36.0 30.7 4.2 10.0 35.8 45.1 Peak Vert 51.9	Detection mode polarity (Horz/Vert) signal dB(µV) factor dB loss dB uator dB Pre-Amp Gain dB signal dB(µV/m) limit dB(µV/m) High Channel (0x13) -Z Axis (Vertical) Set Power 1 (Actual Power = 1 dBm) WIFI CH11, POWER Peak Horz 51.5 30.7 4.2 10.0 35.8 60.6 74.0 Avg Horz 37.7 30.7 4.2 10.0 35.8 60.6 74.0 Avg Horz 37.7 30.7 4.2 10.0 35.8 60.6 74.0 Avg Vert 62.5 30.7 4.2 10.0 35.8 71.6 74.0 Avg Vert 44.8 30.7 4.2 10.0 35.8 53.9 54.0 Innel (0xF) - Z axis (Vertical) Setpower 0x1 (Actual Power = 1 dBm) WIFI Setpower = 13, Ch 1 Peak Horz 47.9 30.7 4.2 10.0 35.8 57.0 74.0 Avg Horz 36.0 30.7 4.2 10.0 35.8 45.1	Detection mode polarity (Horz/Vert) signal dB(μV) factor dB loss dB uator dB Pre-Amp Gain dB signal dB(μV/m) limit dB(μV/m) Margin dB High Chamel (0x13) -Z Axis (Vertical) Set Power 1 (Actual Power = 1 dBm) WIFI CH11, POWER=13 Peak Horz 51.5 30.7 4.2 10.0 35.8 60.6 74.0 13.4 Avg Horz 37.7 30.7 4.2 10.0 35.8 46.8 54.0 7.2 Peak Vert 62.5 30.7 4.2 10.0 35.8 71.6 74.0 2.4 Avg Vert 44.8 30.7 4.2 10.0 35.8 53.9 54.0 0.1 annel (0xF) - Z axis (Vertical) Setpower 0x1 (Actual Power = 1 dBm) WIFI Setpower = 13, Ch 1 10.0 35.8 57.0 74.0 17.0 Peak Horz 47.9 30.7 4.2 10.0 35.8 57.0 74.0 17.0 Avg Horz 36.0 30.7

Note 9: Co-location band edges data were measured with the WIFI as the outer most transmitter.

Page 158 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	8566B	HP	Nov 27, 2015	Nov 27, 2017	GEMC 190
Quasi Peak Adapter	85650A	HP	Nov 27, 2015	Nov 27, 2017	GEMC 191
Loop Antenna	EM 6871	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 3, 2015	Feb 5, 2017	GEMC 71
Bilog Antenna	CBL6111	Chase	Dec 17, 2015	Dec 17, 2017	GEMC 201
Attenuator 10 dB	8493B	Agilent	Feb 11, 2016	Feb 11, 2017	GEMC 133
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000- 0/0	K & L Microwave	Apr 9, 2015	Apr 9, 2016	GEMC 119
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Sept 9, 2014	Sept 9, 2016	GEMC 6403
Q-Par Horn Antenna (2 to 18 GHz)	WBH218HN	Q-par	Feb 12, 2016	Feb 12, 2018	GEMC 6375
Double Ridge Guide Horn Antenna 1-18 GHz	AH-118	Com-Power Corporation	July 1, 2015	July 1, 2017	GEMC 214
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	Sept 9, 2014	Sept 9, 2016	GEMC 6371
18.0-26.5 GHz Harmonic Mixer	11970K	HP	Feb 8, 2016	Feb 8, 2018	GEMC 158
1-26G pre-amp	HP 8449B	HP	Sept 9, 2014	Sept 9, 2016	GEMC 6351
2.0-8.0 GHz Amplifier	11975A	HP	Feb 8, 2016	Feb 8, 2018	GEMC157
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 500HM-MN- MN	LexTec	Feb 1, 2016	Feb 1, 2017	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev1.doc"

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Power Spectral Density – 15.247 DM

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

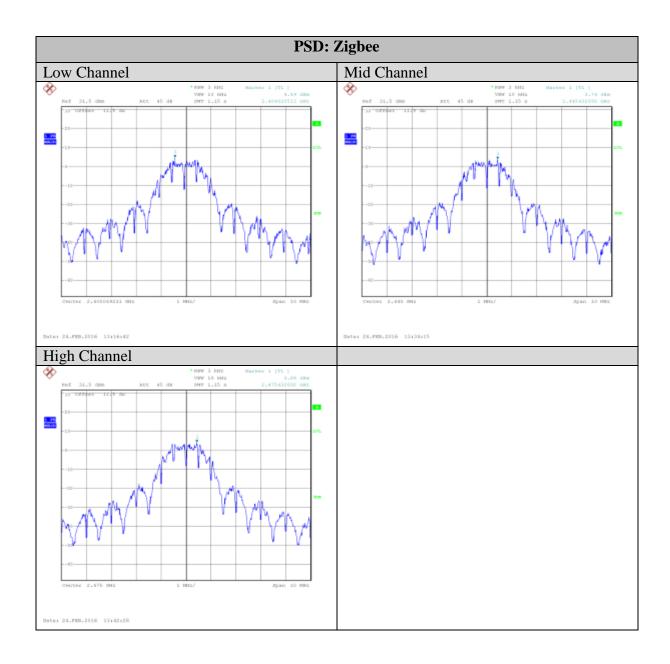
Limits and Methods

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The method is given in Section 10.2 of FCC KDB 558074.

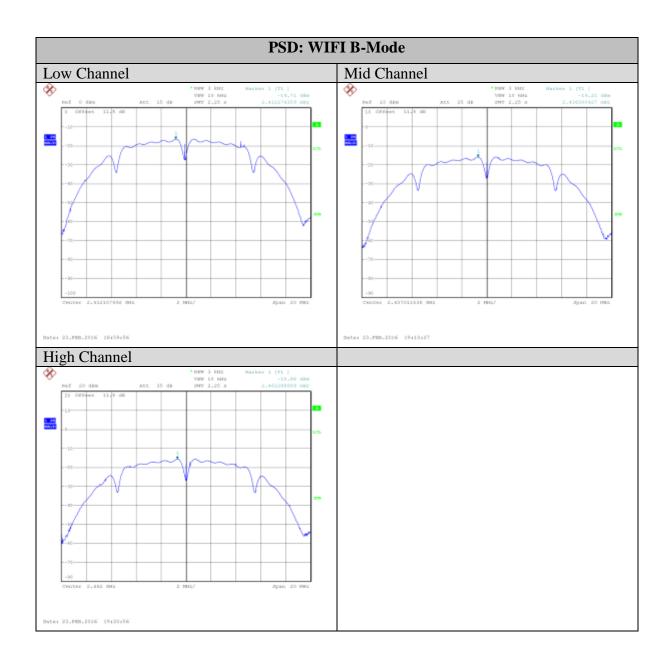
Results

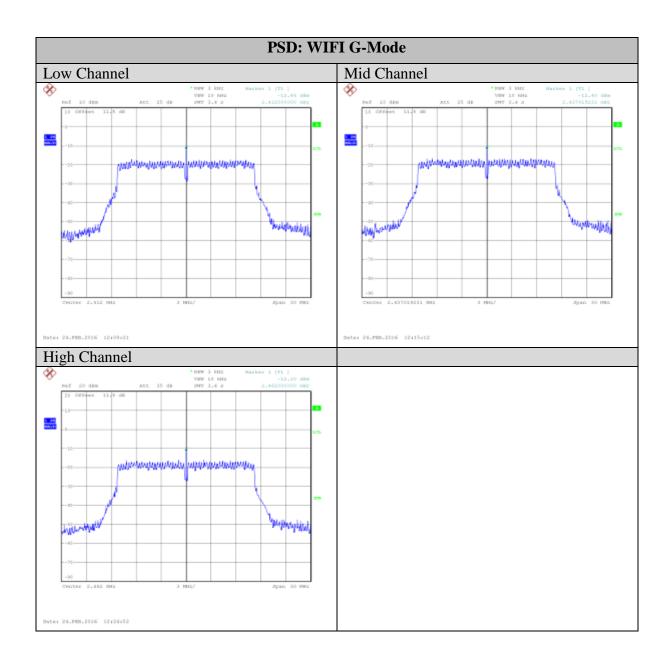

The EUT passed. Low, medium, and high band was tested. The worst case PSD for each transmitter/more are:

Zigbee: 4.49 dBm/3kHz WIFI B-Mode: -15.88 dBm/3kHz WIFI G-Mode: -12.10 dBm/3kHz

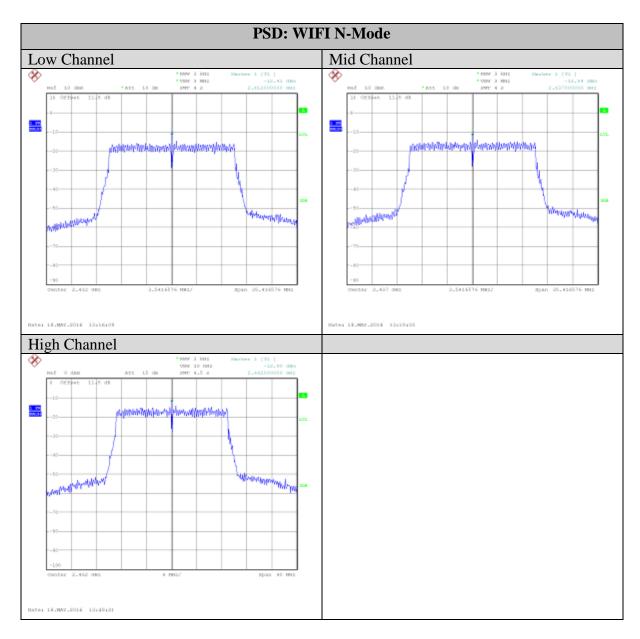
Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode, with the worst case being presented. The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada


Page 161 of 177

Report issue date: 6/4/2016


Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration/ Verification due date	Asset #
Spectrum Analyzer	FSU	Rohde & Schwarz	Jan 19, 2015	Jan 19, 2017	GEMC 198
Attenuator 10 dB	8493B	Agilent	Feb-11, 2016	Feb-11, 2017	GEMC133

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Page 165 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

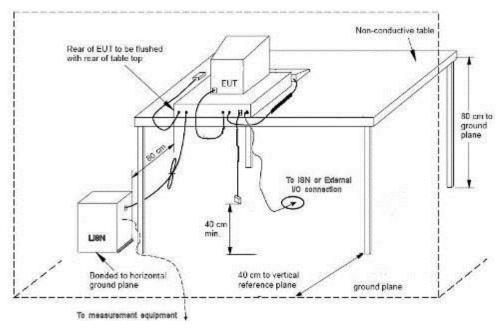
Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207 Method is as defined in ANSI C64.10:2013


Average	e Limits	QuasiPeak Limits		
150 kHz – 500 kHz	56 to 46 dBuV	150 kHz – 500 kHz	66 to 56 dBuV	
500 kHz – 5 MHz	46 dBuV	500 kHz – 5 MHz	56 dBuV	
5 MHz – 30 MHz	50 dBuV	500 kHz – 30 MHz	60 dBuV	
The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.				

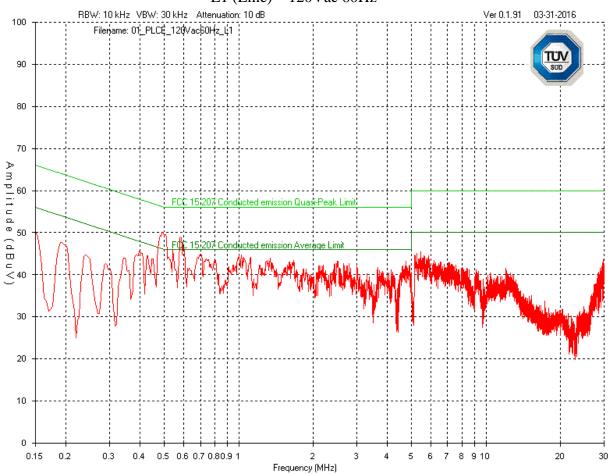
Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth.

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Typical Setup Diagram

Measurement Uncertainty

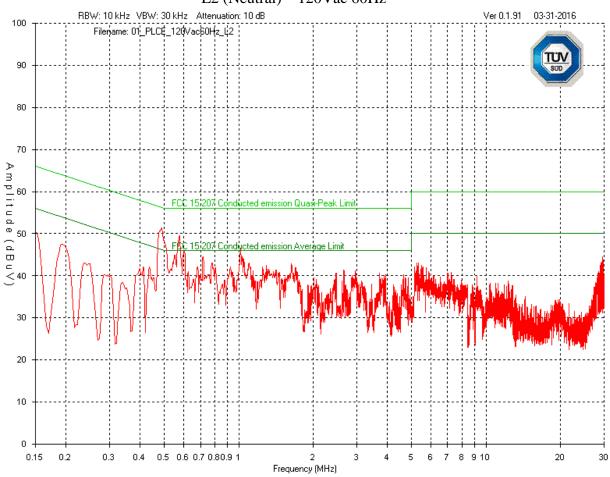

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is \pm -3.6 dB with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater then or equal to the final required detector. These graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Power line conducted emissions were performed with the transmitter transmitting at 100% duty cycle.

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada



L1 (Line) – 120Vac 60Hz

Page 168 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

L2 (Neutral) – 120Vac 60Hz

Page 169 of 177

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Final Measurements

I mai mee							
Product Ca	tegory	Class B					
Produ	ct	Tripoli					
Suppl	у			120 \	VAC 60 Hz		
			Line Em	ission Tab	ole		
Frequency (MHz)	Detecto	or Raw (dBuV)	Factors	Level (dBuV)	Limit (dB)	Margin (dB)	Pass/Fail
0.4923	AVG	21.5	10.0	31.5	46.1	14.6	Pass
0.582	AVG	14.1	10.0	24.1	46.0	21.9	Pass
0.6984	AVG	14.4	10.0	24.4	46.0	21.6	Pass
1.0274	AVG	14.0	10.1	24.1	46.0	21.9	Pass
1.3398	AVG	13.4	10.1	23.5	46.0	22.5	Pass
0.3993	AVG	17.5	10.0	27.5	47.9	20.4	Pass
Neutral Emission Table							
0.489	AVG	17.8	10.0	27.8	46.2	18.4	Pass
0.5754	AVG	12.2	10.0	22.2	46	23.8	Pass
1.0174	AVG	11.8	10.1	21.9	46	24.1	Pass
0.7183	AVG	11.9	10.0	21.9	46	24.1	Pass

Notes:

1. No peak emissions exceeded power line conducted emission Quasi-Peak limits; therefore, the unit was deemed to meet Quasi-Peak requirements base on peak emissions.

2. See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup for the highest line conducted emission

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration / Verification date	Next calibration / Verification due date	Asset #
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Nov 25, 2015	Nov 25, 2017	GEMC 160
LISN	FCC-LISN- 50/250-16- 2-01	FCC	Jan-15, 2015	Jan-15, 2017	GEMC 65
RF Cable 7m	LMR-400- 7M- 500HM- MN-MN	LexTec	Feb-11, 2015	Feb-11, 2017	GEMC 28

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Page 171 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

RF Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limits for the frequency ranges 300 MHz to 1.5 GHz and 1.5 GHz to 100 GHz was applied. The limits are $f/1500 \text{ mW/cm}^2$ and 1.0 mW/cm² respectively.

As per FCC KDB 447498, Clause 4.3.1 b), the 1-g SAR exclusion threshold for 200 mm test distance is 1597 mW (see below for calculations).

For RSS 102 the RF exposure exemption limit for a 2400 MHz transmitter is 1.31×10^{-2} f $^{0.6834}$ W which is 2.65 W.

The distance used for calculations was 20 cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Results

The EUT meets the requirements.

The EUT passed the requirements. The worst case calculated power density was 0.061 mW/cm^2 , this is significantly under the 1.0 mW/cm^2 requirement.

For FCC SAR exemption, the maximum power the WIFI transmits is 160 mW which is less than 1597mW; therefore, the EUT meets individual SAR testing exclusion requirements.

For FCC SAR exemption, the maximum power the Zigbee transmits is 88 mW which is less than 1597mW; therefore, the EUT meets individual SAR testing exclusion requirements.

As per FCC KDB 447498, Clause 4.3.2 b), a standalone SAR value of 0.4 W/kg is used as the estimated 1-g SAR. The sum of the SAR value for both transmitters is 0.8 W/kg which is less than the 1.6 W/kg limit.

Page 172 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

For RSS 102, the E.I.R.P of the Zigbee is 19.43 dBm + 5 dBi = 24.43 dBm (0.277 W) which is significantly less than the 2.65 W RF Exposure exemption limit.

For RSS 102, the E.I.R.P of the WIFI is 22.05 dBm + 2.8 dBi = 24.85 dBm (0.205 W) which is significantly less than the 2.65 W RF Exposure exemption limit.

Calculations – Power Density

Zigbee

Method 1 (conducted power)

 $P_d = (P_t * G) / (4*pi * R^2)$ Where Pt = 19.43 dBm or 87.70 mW as per Peak power conducted output Where G = 5 dBi, or numerically 3.16 Where R = 20 cm

$$\begin{split} P_d &= (87.79 \text{ mW} * 3.16) \ / \ (4 * pi * 20 \text{cm}^2) \\ P_d &= 277.33 \ \text{mW} \ / \ 5026 \ \text{cm}^2 \\ P_d &= 0.055 \ \text{mW/cm}^2 \end{split}$$

WIFI

Method 1 (conducted power)

 $\label{eq:pd} \begin{array}{l} P_d = (P_t ^* G) \ / \ (4^* pi^* R^2) \\ \mbox{Where Pt} = 22.05 \ dBm \ or \ 160.32 \ mW \ as \ per \ Peak \ power \ conducted \ output \\ \mbox{Where G} = 2.8 \ dBi, \ or \ numerically \ 1.90 \\ \mbox{Where R} = 20 \ cm \end{array}$

$$\begin{split} P_d &= (160.32 \text{ mW} * 1.90) \, / \, (4 * pi * 20 \text{cm}^2) \\ P_d &= 205.49 \text{ mW} \, / \, 5026 \text{ cm}^2 \\ P_d &= 0.061 \text{ mW/cm}^2 \end{split}$$

Antenna Co-location

The MPE requirement for collocated antennas are that the sum of ratios should be less than 1.

The sum of ratios (P_d / Limit) for each transmitter is (P_d(WIFI)/Limit(WIFI)) + (P_d(Zigbee)/Limit (Zigbee))

Page 173 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

(0.061/1.0) + (0.055/1.0) = 0.116 < 1

The EUT meets the antenna collocation MPE requirements.

Calculations – SAR Exclusion Limit

According to FCC KDB 447498, Clause 4.3.1 a) the exclusion power for up to 50 mm is

Power @ 50 mm= (3 * distance)/ $\sqrt{f(GHz)}$ Power @ 50 mm= (3 * 50)/ $\sqrt{(2.4)}$ Power @ 50 mm= 97 mW

According to FCC KDB 447498, Clause 4.3.1 b), the test exclusion power for above 50 mm is

Power @ 50 mm + (dist - 50 mm) \times 10

The exclusion power for 200 mm is therefore

97 mW + ((200 mm - 50 mm)*10) = 1597 mW

Client	MMB Research Inc	
Product	GWY10	
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

Appendix A – EUT Summary

Page 175 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

For further details for filing purposes, refer to filing package.

General EUT Description

Client				
Organization	MMB Research Inc.			
Contact	Mark Borins			
Phone	416.636.3145			
Email	mark.borins@mmbresearch.com			
EUT Details				
EUT Model number	Communication Gateway			
EUT Model / SN (if known)	GWY10			
Equipment Category	Wireless			
Basic EUT Functionality	The GWY10 contains a ZigBee radio transceiver with integrated microcontroller operating in the 2.4GHz ISM band. The radio operates according to the IEEE 802.15.4 standard. The GWY10 also contains 802.11 b/g transceiver that operates in the 2.4 GHz ISM band. ZigBee Gateway to communicate data between smart meter and inverter			
Input Voltage and Frequency	120-240 Vac 50/60 Hz			
Connectors available on EUT	Ethernet (RJ45) and USB			
Peripherals Required for Test	Laptop			
Release type	Final			
Intentional Radiator	2405 – 2480.0 MHz for Zigbee			
Frequency	2412 – 2462 MHz for 802.11 b/g transceiver.			

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B - EUT & Test Setup Photographs'.

Page 176 of 177

Report issue date: 6/4/2016

Client	MMB Research Inc	
Product	GWY10	SUD
Standard(s)	RSS 247:2015 / FCC Part 15 Subpart C 15:2015	Canada

EUT Configuration

Please see Appendix B for a picture of the unit running in normal conditions.

- Wireless were configured to transmit at 100% duty cycle;
- For Zigbee, the power output for channel 0xB to 0x19 were set using settxpower 0x1 and for channel 0x1A were set using settxpower -0x1A;
- For WIFI, the power output were set using client provided instruction 22 [channel] [power] [mode] with power = 13.

Operational Setup

No additional device were required to be attached to the EUT for its normal operation.