

FCC Part 15.247

RSS-247 Issue 2, Feb 2017; RSS-Gen Issue 5, Mar 2019 TEST REPORT

For

Redpine Signals Inc

2107 N First Street, Suite 540, San Jose, CA 95131-2019, USA

FCC ID: XF6-M7DB7 IC: 8407A-M7DB7

Report Type	CIIPC Report			
Product Name:	Dual Band 802.11 a/b/g/n, Bluetooth 5.0 SIP Module			
Model Name:	M7DB			
Report Number :	RLK200519001-00C			
Report Date :	2020/07/02			
Reviewed By :	Zeus Chen Zaus Chan			

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)

No. 6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.)

Tel: +886 (3)3961072; Fax: +886 (3) 3961027

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Revision History

Revision	Report Number	Issue Date	Description
1.0	RLK200519001-00C	2020/07/02	CIIPC ReportNote1

Note1: The original report number is RLK200203002-00D, and the CIIPC report is for adding antenna (PIFA Antenna (MARS-31A8 WiFi Antenna))

Page 2 of 31

TABLE OF CONTENTS

1	GEN	IERAL INFORMATION	
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	OPERATION CONDITION OF EUT	
	1.3	OBJECTIVE AND TEST METHODOLOGY	
	1.4	MEASUREMENT UNCERTAINTY	
	1.5 1.6	ENVIRONMENTAL CONDITIONS AND TEST DATE	
_	_		
2		TEM TEST CONFIGURATION	
	2.1	Test Channels and Description of Worst Test Configuration	
	2.2	SUPPORT EQUIPMENT LIST AND EXTERNAL CABLE LIST	
	2.3 2.4	BLOCK DIAGRAM OF TEST SETUP	
2		MMARY OF TEST RESULTS	
3			
4		§15.247(I), §1.1310, § 2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
	4.1	APPLICABLE STANDARD	
	4.2	RF EXPOSURE EVALUATION RESULT	
5	RSS	-102 SEC 2.5.2- EXEMPTION LIMITS FOR ROUTINE EVALUATION — RF EXPOSURE EVALUATION	10
	5.1	APPLICABLE STANDARD	
	5.2	RF EXPOSURE EVALUATION RESULT	10
6	FCC	§15.203 AND RSS-247 SEC 6.8 - ANTENNA REQUIREMENTS	11
	6.1	Applicable Standard	11
	6.2	Antenna List and Details	11
7	FCC	§15.209, §15.205, §15.247, RSS-GEN SEC 8.9, 8.10 AND RSS-247 SEC 5.5 (D) – SPURIOUS EMISSIONS	12
	7.1	APPLICABLE STANDARD	12
	7.2	EUT SETUP AND TEST PROCEDURE	15
	7.3	TEST EQUIPMENT LIST AND DETAILS	
	7.4	TEST RESULT	
8	FCC	§15.247(B) (3) AND RSS-247 SEC 5.4(D) – MAXIMUM OUTPUT POWER	23
	8.1	APPLICABLE STANDARD	
	8.2	TEST PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST RESULTS	
9	FCC	§15.247(D) AND RSS-247 SEC 5.5 – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
	9.1	APPLICABLE STANDARD	
	9.2	Test Procedure	
	9.3 9.4	TEST EQUIPMENT LIST AND DETAILS	
10		§15.247(E) AND RSS-247 SEC 5.2(B)— POWER SPECTRAL DENSITY	
	10.1	APPLICABLE STANDARD	
	10.2 10.3	TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
	10.3 10.4	TEST REQUIPMENT LIST AND DETAILS	26 29

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	Redpine Signals Inc 2107 N First Street, Suite 540, San Jose, CA 95131-2019, USA
Manufacturer	Redpine Signals Inc 2107 N First Street, Suite 540, San Jose, CA 95131-2019, USA
Brand Name	REDPINE SIGNALS DRIVING WIRELESS CONVERGENCE 9
Product (Equipment)	Dual Band 802.11 a/b/g/n, Bluetooth 5.0 SIP Module
Model Name	M7DB
Frequency Range	IEEE 802.11b/g/n HT20: 2412-2462 MHz IEEE 802.11n HT40: 2422-2452 MHz
Number of Channels	IEEE 802.11b/g/n HT20: 11 Channels IEEE 802.11n HT40: 9 Channels
Output Power	<pifa antenna="" antenna:="" mars-31a8="" wifi=""> IEEE 802.11b: 17.21 dBm (0.0526 W) IEEE 802.11g: 24.56 dBm (0.2858 W) IEEE 802.11n HT20: 24.74 dBm (0.2979 W) IEEE 802.11n HT40: 21.26 dBm (0.1337 W)</pifa>
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11 g/n HT20/n HT40: OFDM
Related Submittal(s)/Grant(s)	FCC Part 15.247 DTS with FCC ID: XF6-M7DB7 FCC Part 15.247 DSS with FCC ID: XF6-M7DB7 FCC Part 15.247 NII with FCC ID: XF6-M7DB7 IC RSS-247 DTS with IC: 8407A-M7DB7 IC RSS-247 FHSS with IC: 8407A-M7DB7 IC RSS-247 LE-LAN with IC: 8407A-M7DB7
Received Date	2020-05-19
Date of Test	2020-06-02 – 2020-06-23

^{*}All measurement and test data in this report was gathered from production sample serial number: 190914002(Assigned by BACL, Linkou Laboratory).

1.2 Operation Condition of EUT

Power Operation (Voltage Range)	AC 120 V/60 Hz Adapter By Power Cord.
	DC Type DC Power Supply: 3.3V Battery: External from USB Cable External DC Adapter
	☐ Host System

Page 4 of 31

1.3 Objective and Test Methodology

The Objective of this Test Report was to document the compliance of the Redpine Signals Inc. Appliance (Model:, M7DB) to the requirements of the following Standards:

- Part 2, Subpart J, Part 15, Subparts A and C, section 15.247 of the Federal Communication Commission's rules.
- ANSI C63.10-2013 of t American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- RSS-Gen Issue 5, Mar 2019 General Requirements for Compliance of Radio Apparatus
- RSS-247 Issue 2, Feb 2017 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
RF output power	± 1.488 dB
Occupied Channel Bandwidth	± 453.927 Hz
RF Conducted Emission test	± 2.77 dB
AC Power Line Conducted Emission	± 2.66 dB
Radiated Below 1G	± 3.57 dB
Radiated Above 1G	± 5.32 dB

The test results with statement of conformity, the decision rules are based on the specifications and standards. The test results will not take the measurement uncertainty into account.

1.5 Environmental Conditions and Test Date

Test Site	Test Date	Temperature (°C)	Relative Humidity (% RH)	Test Engineer
Radiated (966A)	2020-06-02 to 2020-06- 15	19.8-20.6	49-56	Leo Cheng
Conducted (TH-02)	2020-06-06 to 2020-06- 23	23.1-23.5	56-61	Blake Wang

1.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou Laboratory) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) by Mutual Recognition Agreement (MRA). The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW3546. The Test Firm Registration No.: 181430.

Page 5 of 31

2 System Test Configuration

2.1 Test Channels and Description of Worst Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

For Wi-Fi, there are totally 11 channels.

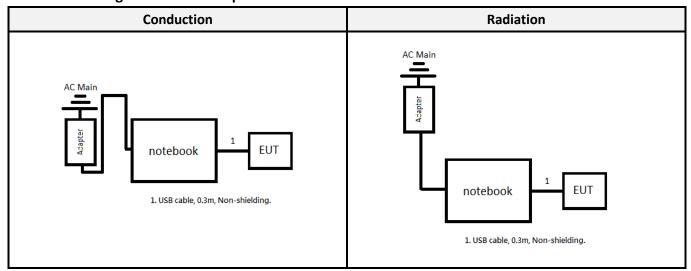
Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417 ^{Note1}	8	2447
3	2422	9	2452
4	2427	10	2457 Note1
5	2432	11	2462
6	2437	-	-

For IEEE802.11b/g/n HT20: Channel 1, 6 and 11 were tested. For IEEE802.11n HT40: Channel 3, 6 and 9 were tested.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the Peak power and PSD across all date rates bandwidths, and modulations. Radiated below 1G were tested worst output power.

Modulation Used for Conformance Test					
Configuration NTX Data Rate Worst Data Rate					
IEEE 802.11b 1		1-11 Mbps	1 Mbps		
IEEE 802.11g	1	6-54 Mbps	6 Mbps		
IEEE 802.11n HT 20	1	MCS 0-7	MCS 0		
IEEE 802.11n HT 40	1	MCS 0-7	MCS 0		

Worst Case of Power Setting						
EUT Exercise Softwa	are		FCC_PER_TEST_GUI.py			
PIFA Antenna (MARS-31A8 WiFi Antenna)						
Configuration	NTX	Low CH Mid CH High CH				
IEEE 802.11b	1	13	14	14		
IEEE 802.11g	1	17	22	18		
IEEE 802.11n HT 20	1	16	22	17		
IEEE 802.11n HT 40	1	13	22	15		


Page 6 of 31

2.2 Support Equipment List and External Cable List

No.	Description	Manufacturer Model Number	
Α	Notebook	DELL	Inspiron 15
В	Adapter	Chicony Power	HA65NS5-00 (DELL)

No.	Cable Description	Shielding Type	Length (m)	From	То
1	USB Cable	Non-Shielded	1	EUT	NB

2.3 Block Diagram of Test Setup

2.4 Duty Cycle

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum power transmission duration, T, are required for each tested mode of operation.

Configuration	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)
IEEE 802.11b	100	100	100	0.00
IEEE 802.11g	100	100	100	0.00
IEEE 802.11n HT 20	100	100	100	0.00
IEEE 802.11n HT 40	100	100	100	0.00

Note1: Adding antenna not affect the duty result, please refer to the original report. (Report No.: RLK200203002-00D)

Page 7 of 31

3 Summary of Test Results

FCC/ISED Rules	Description of Test	Result
§15.247(i), §1.1310, §2.1091	Maximum Permissible Exposure (MPE)	Compliance
ISEDC RSS-102 Sec 2.5.2	Exemption Limits for Routine Evaluation – RF Exposure Evaluation	Compliance
§15.203 ISEDC RSS-Gen Sec 6.8	Antenna Requirement	Compliance
§15.207(a) ISEDC RSS-Gen Sec 6.8	AC Line Conducted Emissions	Compliance ^{Note1}
§15.205, §15.209, §15.247(d) ISED RSS-Gen Sec 8.9 and 8.10 ISEDC RSS-247 Sec 5.5	Spurious Emissions	Compliance Note3
§15.247(a)(2) ISEDC RSS-247 Sec 5.2 ISEDC RSS-Gen Sec 6.7	6 dB Emission Bandwidth	Compliance Note2
§15.247(b)(3) ISED RSS-247 Sec5.4(d)	Maximum Peak Output Power	Compliance
§15.247(d) ISEDC RSS-247 Sec 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e) ISEDC RSS-247 Sec 5.2(b)	Power Spectral Density	Compliance

Note1: Adding antenna not affect the conducted emission test rule, please refer to the original report. (Report No.: RLK200203002-00D)

Note2: The power reduce is not affect the result, please refer to the original report. (Report No.: RLK200203002-00D)

Note3: It is not affect the conducted Spurious Emissions, please refer to the original report. (Report No.: RLK200203002-00D)

Page 8 of 31

4 FCC§15.247(i), §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)

4.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure										
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)							
0.3-1.34	614	1.63	*(100)	30							
1.34–30	824/f	2.19/f	*(180/f²)	30							
30–300	27.5	0.073	0.2	30							
300–1500	/	/	f/1500	30							
1500-100,000	/	/	1.0	30							

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310, and §2.1091 RF exposure is calculated.

Calculated Formulary: Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

4.2 RF Exposure Evaluation Result

	Mode	Frequency Range	Anto	enna Gain	Targe	t Power	Evaluation Distance	Power Density (mW/cm²)	MPE Limit (mW/cm²)
L		(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	()	()
	BLE	2402-2480	2.00	1.5849	17.00	50.1187	20	0.0158	1
	BR/EDR	2402-2480	2.00	1.5849	21.00	125.8925	20	0.0397	1
	Wi-Fi 2.4G	2412-2462	2.00	1.5849	25.00	316.2278	20	0.0998	1
	Wi-Fi 5G	5150-5850	2.00	1.5849	14.50	28.1838	20	0.0089	1

Note: Wi-Fi and BT can't simultaneously.

Result: MPE evaluation meet 20 cm the requiremen t of standard.

Page 9 of 31

5 RSS-102 Sec 2.5.2- Exemption Limits for Routine Evaluation – RF Exposure Evaluation

5.1 Applicable Standard

According to subpart RSS-102 Sec 2.5.2,

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

5.2 RF Exposure Evaluation Result

BLE Max tune-up conducted output power is 17.00 dBm (50.1187 mW) at 2402 MHz, Antenna Gain = 2.00 dBi, EIRP = 19.00 dBm (0.0794 W), so the maximum conducted and E.I.R.P. source-based, time-averaged output is less than 2.68 W for general public use.

BR/EDR Max tune-up conducted output power is 21.00 dBm (125.8925mW) at 2402 MHz, Antenna Gain = 2.00 dBi, EIRP = 23.00 dBm (0.1995 W), so the maximum conducted and E.I.R.P. source-based, time-averaged output is less than 2.68 W for general public use.

Wi-Fi 2.4G Max tune-up conducted output power is 25.00 dBm (316.2278 mW) at 2437 MHz, Antenna Gain = 2.00 dBi, EIRP = 27.00 dBm (0.5012 W), so the maximum conducted and E.I.R.P. source-based, time-averaged output is less than 2.70 W for general public use.

Wi-Fi 5G Max tune-up conducted output power is 14.50 dBm (28.1839 mW) at 5825 MHz, Antenna Gain = 2.00 dBi, EIRP = 16.45 dBm (0.0442 W), so the maximum conducted and E.I.R.P. source-based, time-averaged output is less than 4.90 W for general public use.

Note: Wi-Fi and BT can't simultaneously.

Result: MPE test exempted.

Page 10 of 31

6 FCC §15.203 and RSS-247 Sec 6.8 - Antenna Requirements

6.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi

According to RSS-Gen 6.3: Transmitter Antenna for Licence-Exempt Radio Apparatus

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. Footnote8 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

6.2 Antenna List and Details

Brand	Model	Antenna Type	Antenna Gain (dBi)	Result
JOINSOON ELECTRONICS MFG .CO,LTO	MARS-31A8 WiFi Antenna	PIFA	2.00	Compliance

The EUT has an antenna arrangement, which was permanently attached, fulfill the requirement of this section.

7 FCC §15.209, §15.205, §15.247, RSS-Gen Sec 8.9, 8.10 and RSS-247 Sec 5.5 (d) – Spurious Emissions

7.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6

Page 12 of 31

Report No.: RLK200519001-00C

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

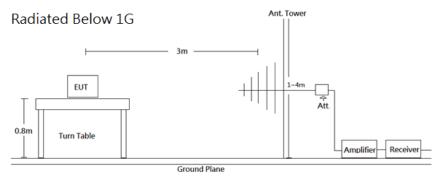
As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

Page 13 of 31

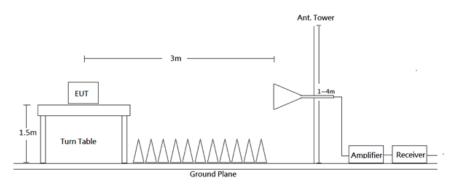
As per RSS-Gen 8.9,

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Table 4 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Above 30 MHz


Frequency (MHz)	Field Strength (μν/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.


Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

As per RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 EUT Setup and Test Procedure

Radiated Above 1G

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	1	QP
	1 MHz	3 MHz	-	PK
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

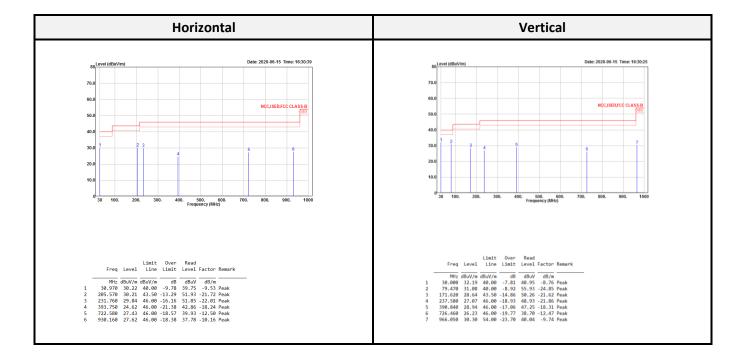
Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

Page 15 of 31

7.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		Radiation 3M Room	m (966A)		
Active Loop	EMCO	6502	0001-3322	2020/03/16	2021/03/15
Bilog Antenna/6 dB Attenuator	SUNOL SCIENCES & EMEC /EMCI	JB3/N-6-06	A111513/AT-N0668	2020/03/19	2021/03/18
Horn Antenna	ETS-Lindgren	3115	00109141	2019/07/05	2020/07/04
Horn Antenna	ETS-Lindgren	3160-09	00123852	2019/07/11	2020/07/10
Preamplifier	A.H. Systems	PAM-0118	470	2020/03/16	2021/03/15
Preamplifier	A.H. Systems	PAM-1840VH	174	2020/03/25	2021/03/24
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101456	2019/07/12	2020/07/11
Microflex Cable (1m)	EMCI	EMC106-SM-SM-2000	180515	2019/08/07	2020/08/06
Microflex Cable (2m)	MTJ	H0919	00000-MT28A-100	2019/08/07	2020/08/06
Microflex Cable (8m)	UTIFLEX	UFA210A-1-3149- 300300	MFR 64639 232490- 001	2019/08/07	2020/08/06
Turn Table	Chaintek	T-200-S-1	003501	N.C.R	N.C.R
Antenna Tower	Chaintek	MBD-400-1	003504	N.C.R	N.C.R
Controller	Chaintek	3000-1	003507	N.C.R	N.C.R
Software	Audix	e3 v9	E3LK-01	N.C.R	N.C.R

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


Page 16 of 31

7.4 Test Result

PIFA Antenna (MARS-31A8 WiFi Antenna)

Transmitting mode (Pre-scan with three orthogonal axis, and worse case as Z axis)

Below 1G (30 MHz-1 GHz) test the worst mode

Level = Reading Level + Correct Factor

Over Limit = Level - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

Report No.: RLK200519001-00C

Above 1G (1 GHz-26.5 GHz)

IEEE 802.11b:

						Lov	/ CH							
		Н	orizon	ital						,	Vertica	ıl		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz 2369.920 2369.920 2411.248 2411.248	37.77 52.03 93.96		39.96	dBuV 47.54 61.80 103.62 106.62	-9.77 -9.66	Average Peak Average	2	MHz 2373.728 2373.728 2411.248 2411.248	35.53 49.84	54.00		90.62	-9.76 -9.76	Average Peak Average
3216.000 3216.000 4824.000 4824.000 7236.000 7236.000	40.34 52.91 55.06 53.60	74.00 54.00 74.00 54.00	-33.66	47.45 55.95 58.10 49.78	-7.11 -3.04 -3.04 3.82	. Average . Peak ! Average ! Peak ! Average ! Peak	4	3216.000 3216.000 4824.000 4824.000 7236.000 7236.000	47.43 51.38 53.56 52.34	74.00 54.00 74.00 54.00	-26.57	54.54 54.42 56.60 48.52	-7.11 -3.04 -3.04 3.82	Average

Middle CH													
	Horizontal						Vertical						
Freq	Level	Limit Line			Factor	Remark	Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
2366.628	36.46	54.00	-17.54	46.24	-9.78	Average	2319.196	35.53	54.00	-18.47	45.45	-9.92	Average
2366.628	49.54	74.00	-24.46	59.32	-9.78	Peak	2319.196	49.28	74.00	-24.72	59.20	-9.92	Peak
2436.324	94.49			104.06	-9.57	Average	2438.260	83.94			93.50	-9.56	Average
2436.324	97.28			106.85	-9.57	Peak	2438.260	86.66			96.22	-9.56	Peak
2528.526	36.78	54.00	-17.22	46.03	-9.25	Average	2539.900	36.48	54.00	-17.52	45.67	-9.19	Average
2528.526	50.29	74.00	-23.71	59.54	-9.25	Peak	2539.900	50.03	74.00	-23.97	59.22	-9.19	Peak
4874.000	51.67	54.00	-2.33	54.55	-2.88	Average	4874.000	50.41	54.00	-3.59	53.29	-2.88	Average
4874.000	53.66	74.00	-20.34	56.54	-2.88	Peak	4874.000	52.43		-21.57			
7311.000	51.93	54.00	-2.07	47.95	3.98	Average	7311.000	53.50	54.00	-0.50	49.52	3.98	Average
7311.000	56.93	74.00	-17.07	52.95	3.98	Peak	7311.000	57.94	74.00	-16.06	53.96	3.98	Peak

						Hig	igh CH						
		Н	lorizor	ntal					'	Vertica	ı		
Freq	Level	Limit Line		Read Level	Factor	Remark	Freq	Level	Limit Line			Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
2461.200	95.84			105.34	-9.50	Average	2461.200	81.84			91.34	-9.50	Average
2461.200	98.57			108.07	-9.50	Peak	2461.200	84.59			94.09	-9.50	Peak
2488.300	41.04	54.00	-12.96	50.44	-9.40	Average	2526.500	36.25	54.00	-17.75	45.50	-9.25	Average
2488.300	52.33	74.00	-21.67	61.73	-9.40	Peak	2526.500	50.67	74.00	-23.33	59.92	-9.25	Peak
4924.000	49.21	54.00	-4.79	51.87	-2.66	Average	4924.000	51.84	54.00	-2.16	54.50	-2.66	Average
4924.000	52.31	74.00	-21.69	54.97	-2.66	Peak	4924.000	54.02	74.00	-19.98	56.68	-2.66	Peak
7386.000	51.92	54.00	-2.08	47.80	4.12	Average	7386.000	53.47	54.00	-0.53	49.35	4.12	Average
7386.000	56.11	74.00	-17.89	51.99	4.12	Peak	7386.000	57.64	74.00	-16.36	53.52	4.12	Peak

Page 18 of 31

IEEE 802.11g:

						Lo	ow CH	ı						
		Н	orizor	ital							Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
		dBuV/m	dB	dBuV	dB/m		-			dBuV/m		dBuV		
2389.968 2389.968			-1.39 -2.97	62.32 80.74		Average Peak		2389.408 2389.408		54.00 74.00		50.50 66.88		Average Peak
2409.456 2409.456				99.78 110.68		Average Peak		2409.904 2409.904	78.30 89.21			87.96 98.87		Average Peak
3216.000	39.47	54.00	-14.53	46.58	-7.11	Average		3216.000	39.79	54.00	-14.21	46.90	7.11	l Average
3216.000 4824.000		74.00 54.00				Peak Average		3216.000 4824.000			-25.21 -13.14			l Peak 1 Average
4824.000 7236.000		74.00 54.00		58.42 43.71		Peak Average		4824.000 7236.000	55.56	74.00	-18.44 -5.53	58.60	-3.04	Peak Average
7236.000						Peak		7236.000			-12.27			2 Peak

						Mi	ddle (СН						
		Н	orizon	tal							Vertica	al		
MHz 2388.408 2388.408 2434.388 2434.388 2483.998	62.41 92.16 102.51 39.68	dBuV/m 54.00 74.00	dB -13.18 -11.59	dBuV 50.53 72.12 101.74 112.09 49.10	dB/m -9.71 -9.71 -9.58 -9.58	Average Peak Average			50.54 78.65 89.45	dBuV/m 54.00 74.00	Over Limit dB -17.85 -23.46	dBuV 45.86 60.25 88.21 99.01	AB/m -9.71 -9.71 -9.56 -9.56	Average Peak Average
2483.998 3249.300 3249.300 4874.000 4874.000 7311.000	35.62 44.80 41.35 55.38 46.83	54.00 74.00 54.00 74.00 54.00	-18.38 -29.20	42.62 51.80 44.23 58.26 42.85	2 -7.06 -7.06 -2.88 -2.88 -3.98	Peak Average Peak Average Peak Average Average Peak Peak		2484.240 3249.300 3249.300 4874.000 4874.000 7311.000	47.56 40.89 54.88 47.63	54.00 74.00 54.00 74.00 54.00	-23.61 -15.10 -26.44 -13.11 -19.12 -6.37 -11.30	45.90 54.56 43.77 57.76 43.65	-7.00 -7.00 -2.88 -2.88 3.98	Average Peak Average

						Hig	gh CH							
		Н	orizon	tal						,	Vertica	ıl		
Freq	Level	Limit Line				Remark	F	req	Level	Limit Line				Remark
MHz 2459.700 2459.700 2483.600 2483.600	90.35 101.32 50.30		-3.70	99.85 110.82	-9.50 -9.50 -9.42	Average Peak Average	2459. 2459. 2483. 2483.	300 300 600	76.60 87.56 37.98	54.00	-16.02 -18.07	47.40	-9.50 -9.50 -9.42	Average Peak Average
3282.700 3282.700 4924.000 4924.000 7386.000	43.15 37.74 52.51 43.30	54.00 74.00 54.00 74.00 54.00 74.00	-30.85 -16.26 -21.49 -10.70	50.05 40.40 55.17 39.18	-6.90 -2.66 -2.66 4.12	Peak Average	3282. 3282. 4924. 4924. 7386.	700 000 000 000	46.63 38.55 52.65 44.76	74.00 54.00 74.00 54.00	-16.21 -27.37 -15.45 -21.35 -9.24 -13.90	53.53 41.21 55.31 40.64	-6.90 -2.66 -2.66 4.12	Average

Page 19 of 31

IEEE 802.11n HT20:

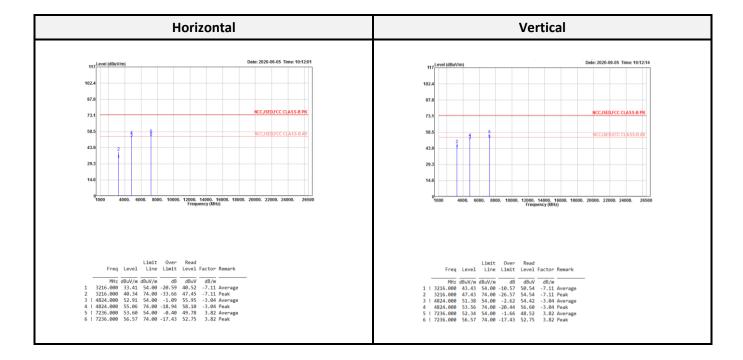
						Lo	ow CH							
		Н	orizon	tal							Vertica	al		
Freq	Level	Limit Line			Factor	Remark	Fre	eq	Level	Limit Line	Over Limit	Read Level		Remark
MHz 2389.408 2389.408 2410.464	52.93 71.62 89.21	74.00	-1.07 -2.38	62.64	-9.71 -9.66	Average Peak Average		58 58 54		54.00 74.00	dB -12.99 -15.56	dBuV 50.72 68.15 86.34 97.50	-9.71 -9.71 -9.66	Average Peak Average
3282.700 3282.700 4924.000 4924.000 7386.000	36.95 43.90 37.22 52.13 41.90	54.00	-17.05 -30.10 -16.78 -21.87 -12.10	43.85 50.80 39.88 54.79 37.78	-6.90 -6.90 -2.66 -2.66	Average Peak Average Peak Average	3282.7 3282.7 4924.0 4924.0 7386.0 7386.0	00 00 00 00	46.56 38.73 52.29 43.63	74.00 54.00 74.00 54.00	-27.44 -15.27 -21.71	53.46 41.39 54.95 39.51	-6.90 -2.66 -2.66 4.12	Average Peak Average Peak Average Peak

						Mi	ddle C	Н						
		H	orizon	tal						,	Vertica	al		
	63.77 92.30 102.65	dBuV/m 54.00 74.00	dB -12.11 -10.23	dBuV 51.61 73.49 101.87 112.22	dB/m -9.72 -9.72 -9.57	Average Peak Average	-		51.11 78.28 88.69	54.00 74.00		Read Level dBuV 46.20 60.82 87.86 98.27 45.71	AB/m -9.71 -9.71 -9.58 -9.58	Average Peak Average
2483.514 3249.300 3249.300 4874.000 4874.000 7311.000	36.61 44.70 42.01 57.52 47.48	54.00 74.00 54.00 74.00 54.00	-13.51 -17.39 -29.30 -11.99 -16.48 -6.52 -13.11	43.61 51.70 44.89 60.40 43.50	-7.06 -7.06 -2.88 -2.88 3.98	Peak Average Peak Average Peak Average Average Peak Average Peak		2508.682 3249.300 3249.300 4874.000 4874.000 7311.000	39.38 48.67 39.81 54.92	54.00 74.00 54.00 74.00 54.00	-23.19 -14.62 -25.33 -14.19 -19.08 -5.34 -11.22	55.67 42.69 57.80 44.68	7 -7.00 7 -7.00 9 -2.88 9 -2.88 3.98	Peak Average Peak Average Peak Average Peak Peak

						High	n CH						
		Н	orizon	tal						Vertica	al		
Freq	Level	Limit Line			Factor	Remark	Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz 2463.600 2463.600 2483.700 2483.700	89.73 100.79 51.89	54.00 74.00	-2.11	99.22 110.28 61.31	-9.49	Average Peak Average	MHz 2460.500 2460.500 2484.500 2484.500	76.00 87.00 38.23	54.00	-15.77	dBuV 85.50 96.50 47.65 65.52	-9.50 -9.42	Average Peak Average
3216.000 3216.000 4824.000 4824.000 7236.000 7236.000	44.22 40.52 54.86 45.73	54.00	-29.78 -13.48 -19.14 -8.27	51.33 43.56 57.90 41.91	-7.11 -3.04 -3.04 3.82	Average	3216.000 3216.000 4824.000 4824.000 7236.000 7236.000	45.34 38.49 53.78 45.83	74.00 54.00 74.00	-28.66 -15.51 -20.22 -8.19	52.45 41.53 56.82 41.99	-7.11 -3.04 -3.04 3.82	L Average L Peak 1 Average 1 Peak 2 Average 2 Peak

Page 20 of 31

IEEE 802.11n HT40:


						Lo	w CH	ł						
		Н	orizon	tal						,	Vertica	al		
Freq	Level	Limit Line			Factor	Remark		Freq	Level	Limit Line	Over Limit			Remark
MHz 2389.200 2389.200 2406.492 2406.492	52.84 68.81 82.89	74.00	-1.16 -5.19	62.55 78.52 92.56	-9.71 -9.71	Average Peak Average		MHz 2382.072 2382.072 2405.700 2405.700	40.68 55.70 70.84	54.00 74.00	dB -13.32 -18.30	50.42 65.44 80.51	-9.74 -9.74	Average Peak Average
! 3229.300 3229.300 4844.000 4844.000 ! 7266.000	45.63 31.57 45.63 37.47	74.00 54.00 74.00 54.00	-28.37 -22.43 -28.37 -16.53	52.70 34.54 48.60 33.57	-7.07 -2.97 -2.97 3.90	Peak Average Peak Average		3229.300 3229.300 4844.000 4844.000 7266.000 7266.000	46.63 32.83 47.94 39.46	74.00 54.00 74.00 54.00	-27.37	53.70 35.80 50.91 35.56	-7.07 -2.97 -2.97 3.90	Average

						Mid	ddle CH						
		Н	orizon	tal					,	Vertica	al		
Freq	Level	Limit Line		Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit	Read Level		Remark
MHz 2389.860	dBuV/m	•			dB/m -9 71	Average	MHz 2389.376	dBuV/m		dB -13.51	dBuV 50.20		Average
2389.860 2431.242	66.81	74.00			-9.71		2389.376	57.11		-16.89	66.82	-9.71	_
2431.242	96.58	54.00		106.17	-9.59	Peak	2430.274	83.15		45.04	92.74	-9.59	Peak
2484.724 2484.724			-3.05 -5.42			Average Peak	2486.418 2486.418			-16.24 -20.53	47.17 62.88		Average Peak
3249.300			-12.70			_	3249.300						Average
3249.300 4874.000		74.00 54.00	-28.39 -16.58	52.61 40.30	-7.00 -2.88	Peak Average	3249.300 4874.000			-26.11 -17.68			Peak Average
4874.000 7311.000			-22.31 -13.24		-2.88 3.98	Peak Average	4874.000 7311.000			-23.30 -11.51			Peak Average
7311.000				49.77	3.98	_	7311.000			-18.15			Peak

						Hi	gh CH						
		Н	lorizon	ital						Vertica	al		
Freq	Level	Limit Line	Over Limit		Factor	Remark	Freq	Level	Limit Line		Read Level		Remark
2455.160 2455.160 2484.080 2484.080 3269.300 3269.300 4904.000 7356.000	85.11 95.87 53.45 72.94 40.36 44.91 32.10 46.75 37.51	54.00 74.00	-0.55 -1.06 -13.64 -29.09 -21.90 -27.25 -16.49	94.62 105.38 62.87 82.36	-9.51 -9.42 -9.42 -6.94 -6.94 -2.76	Average Peak Average Peak Average Peak Average Peak Average Peak Average	MHz 2435.600 2435.600 2484.800 2484.800 3269.300 3269.300 4904.000 7356.000	70.75 81.44 39.03 53.75 42.91 47.66 33.82 48.10 38.68	54.00 74.00 54.00 74.00 54.00 74.00 54.00	-14.97 -20.25 -11.09 -26.34 -20.18 -25.90 -15.32 -21.39	54.60 36.58 50.86 34.62	-9.57 -9.57 -9.42 -9.42 -6.94 -6.94 -2.76 -2.76	Average Peak Average Peak Average Peak Average

Page 21 of 31

Above 1G (1 GHz-26.5 GHz): The worst mode: 802.11b Low CH.

Level = Reading Level + Correct Factor

Over Limit = Level - Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

8 FCC §15.247(b) (3) and RSS-247 Sec 5.4(d) – Maximum Output Power

8.1 Applicable Standard

According to FCC §15.247(b) (3),

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to RSS-247 §5.4(d).

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

8.2 Test Procedure

- (1) Place the EUT on a bench and set it in transmitting mode.
- (2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment. (3). Add a correction factor to the display.

8.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		Conducted Room	(TH-02)		
USB Wideband Power Sensor	Agilent	U2021XA	MY56120026	2019/09/06	2020/09/05
RF Cable	MTJ	MT40S	MT40S-001	Each Use	/

*Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 23 of 31

8.4 Test Results

PIFA Antenna (MARS-31A8 WiFi Antenna)

Mode	СН	Freq.	Pe: Output		Ant Gain	EIRP Output		Limit	EIRP Limit
		(MHz)	(dBm)	(W)	(dBi)	(dBm)	(W)	(dBm)	(dBm)
	Low	2412	16.44	0.0441	2.00	18.44	0.0698	30	36
IEEE 802.11b	Middle	2437	17.39	0.0548	2.00	19.39	0.0869	30	36
	High	2462	16.67	0.0465	2.00	18.67	0.0736	30	36
	Low	2412	24.13	0.2588	2.00	26.13	0.4102	30	36
IEEE 802.11g	Middle	2437	24.52	0.2831	2.00	26.52	0.4487	30	36
	High	2462	24.11	0.2576	2.00	26.11	0.4083	30	36
IEEE	Low	2412	23.97	0.2495	2.00	25.97	0.3954	30	36
802.11n	Middle	2437	24.27	0.2673	2.00	26.27	0.4236	30	36
HT20	High	2462	23.86	0.2431	2.00	25.86	0.3855	30	36
IEEE	Low	2422	20.21	0.1050	2.00	22.21	0.1663	30	36
802.11n	Middle	2437	22.26	0.1683	2.00	24.26	0.2667	30	36
HT40	High	2452	21.34	0.1361	2.00	23.34	0.2158	30	36

Note1: Conducted Power Limit: 1W = 30 dBm, 4W = 36 dBm

Mode	СН	Freq. (MHz)	Average Output Power		Ant Gain	EIRP Average Output Power		Limit	EIRP Limit
			(dBm)	(W)	(dBi)	(dBm)	(W)	(dBm)	(dBm)
IEEE 802.11b	Low	2412	14.14	0.0259	2.00	16.14	0.0411	30	36
	Middle	2437	15.11	0.0324	2.00	17.11	0.0514	30	36
	High	2462	14.33	0.0271	2.00	16.33	0.0430	30	36
	Low	2412	16.53	0.0450	2.00	18.53	0.0713	30	36
IEEE 802.11g	Middle	2437	14.49	0.0281	2.00	16.49	0.0446	30	36
	High	2462	15.96	0.0394	2.00	17.96	0.0625	30	36
IEEE	Low	2412	15.26	0.0336	2.00	17.26	0.0532	30	36
802.11n HT20	Middle	2437	17.61	0.0577	2.00	19.61	0.0914	30	36
	High	2462	15.32	0.0340	2.00	17.32	0.0540	30	36
IEEE 802.11n HT40	Low	2422	11.54	0.0143	2.00	13.54	0.0226	30	36
	Middle	2437	14.55	0.0285	2.00	16.55	0.0452	30	36
	High	2452	13.08	0.0203	2.00	15.08	0.0322	30	36

Note1: Conducted Power Limit: 1W = 30 dBm, 4W = 36 dBm

Note2: Duty Cycle is 100% and Duty Factor is 0 dB $\,$

Page 24 of 31

9 FCC §15.247(d) and RSS-247 Sec 5.5 – 100 kHz Bandwidth of Frequency Band Edge

9.1 Applicable Standard

According to FCC §15.247(d),

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

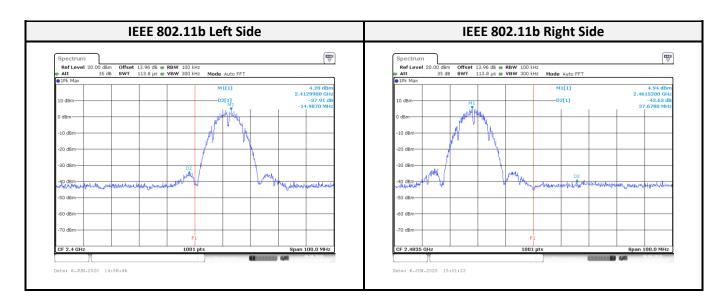
According to RSS-247 §5.5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

9.2 Test Procedure

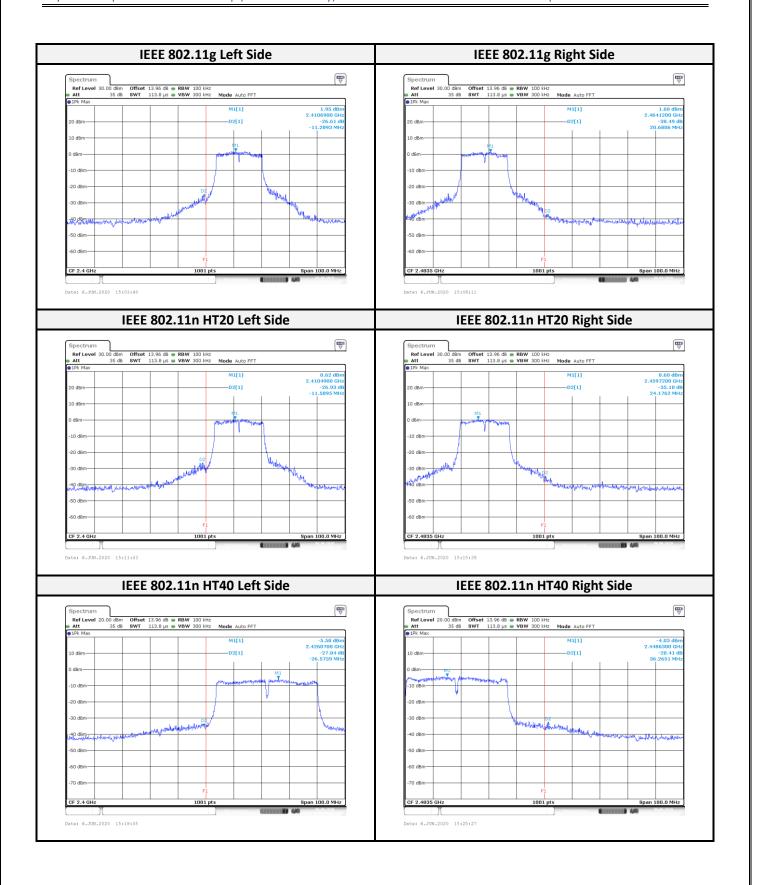
- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- (3) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- (4) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Page 25 of 31

9.3 Test Equipment List and Details


Description Manufacture		Model Serial No.		Cal. Date.	Cal. Due.			
Conducted Room(TH-02)								
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40-N	102248	2019/09/11	2020/09/10			
RF Cable	MTJ	MT40S	MT40S-001	Each Use	/			

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


9.4 Test Results

PIFA Antenna (MARS-31A8 WiFi Antenna)

Configuration	Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result
IEEE 802.11b	Low	2412	37.91	≥ 20	Compliance
	High	2462	43.63	≥ 20	Compliance
IEEE 802.11g	Low	2412	26.61	≥ 20	Compliance
	High	2462	38.49	≥ 20	Compliance
IEEE 802.11n HT20	Low	2412	26.93	≥ 20	Compliance
	High	2462	35.10	≥ 20	Compliance
IEEE 802.11n HT40	Low	2422	27.84	≥ 20	Compliance
1EEE 802.11N H140	High	2452	28.41	≥ 20	Compliance

Page 26 of 31

10 FCC §15.247(e) and RSS-247 Sec 5.2(b) – Power Spectral Density

10.1 Applicable Standard

According to FCC §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2(b).

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

10.2 Test Procedure

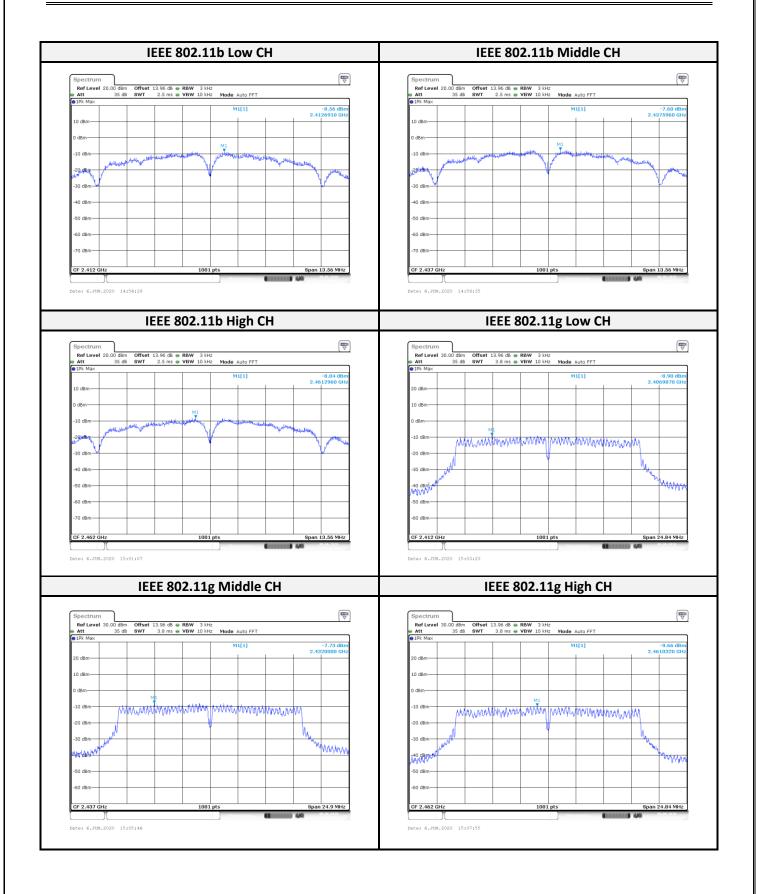
According to ANSI C63.10-2013,

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth. (3) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- (4) Set the VBW \geq [3 × RBW]. (5) Detector = peak. (6) Sweep time = auto couple.
- (7) Trace mode = max hold. (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- (10) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.3 Test Equipment List and Details

Description Manufacture		Model Serial No.		Cal. Date.	Cal. Due.			
Conducted Room(TH-02)								
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40-N	102248	2019/09/11	2020/09/10			
RF Cable	MTJ	MT40S	MT40S-001	Each Use	/			

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


Page 28 of 31

10.4 Test Results

PIFA Antenna (MARS-31A8 WiFi Antenna)

Configuration	Channel	Frequency (MHz)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Result
	Low	2412	-8.56	8	Compliance
IEEE 802.11b	Mid	2437	-7.60	8	Compliance
	High	2462	-8.04	8	Compliance
	Low	2412	-8.90	8	Compliance
IEEE 802.11g	Mid	2437	-7.73	8	Compliance
	High	2462	-9.66	8	Compliance
IEEE 802.11n HT20	Low	2412	-9.28	8	Compliance
	Mid	2437	-6.54	8	Compliance
	High	2462	-9.50	8	Compliance
	Low	2422	-16.56	8	Compliance
IEEE 802.11n HT40	Mid	2437	-14.26	8	Compliance
	High	2452	-15.11	8	Compliance

Page 29 of 31

CF 2.412 GH

-20 dBm

-50 dBm

Date: 6.JUN.2020 15:15:23

Date: 6.JUN.2020 15:10:47

IEEE 802.11n HT20 Low CH

MANAGEMENT TO THE TOTAL PROPERTY OF THE PROPER

IEEE 802.11n HT20 High CH

when which the second property of the second

IEEE 802.11n HT40 Middle CH

potratar mantal and property and for the property of the prope

 Ref Level
 30.00 dBm
 Offset
 13.96 dB
 ● RBW
 3 kHz

 Att
 35 dB
 SWT
 3.8 ms
 • VBW
 10 kHz
 Mode
 Auto FFT

why

MANA

70 dBm