

Test report No:

NIE: 74873RAN.002A1

Test report IEEE Std 1528™-2013

	0.21.4124.0.22
(*) Identification of item tested	Genius Link Device
(*) Trademark	PillCam
(*) Model and /or type reference tested	Genius Link Device
(*) Other identification of the product	FCC ID: O8PPATCH, Contains FCC ID: XF6-B001P4V2P1 (redpine chip) HW version: PT00167810 Rev 04, PT00175119 Rev 02 SW version: FW version 9.0.8 Redpine: driver 2.6.0.34, Wireless_fw 1610.2.6.0.0.34
(*) Features	Uplink capsule receiver 435MHz. Downlink transmitter 13.56 MHz, Wifi, BLE
Manufacturer	Given Imaging Inc.
	15 Hampshire Street Mansfield MA 02048, USA.
Test method requested, standard	 IEEE Std 1528[™]-2013. FCC 47 CFR Part 2.1093.
Summary	Considering the results of the performed test, the item under test is IN COMPLIANCE with FCC 47CFR Part 2.1093 exposure limits. The maximum 1g volume averaged SAR found during this test have been 0.990 W/kg, for 802.11b mode.
Approved by (name / position & signature)	Miguel Lacave Antennas Lab Manager
Date of issue	2023-10-05
Report template No	FAN44_00 (*) "Data provided by the client"

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	4
Identification of the client	5
Testing period and place	5
Document history	5
Environmental conditions	5
Remarks and comments	5
Testing verdicts	7
Summary	7
Appendix A: Test configuration	8
Appendix B: Test results	20
Appendix C: Measurement report	27
Appendix D: System Validation Report	29
Appendix E: Calibration data	32
Appendix F: Data for dipole extended calibration period	68
Appendix G: Photographs	70

DEKRA Testing and Certification, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Competences and guarantees

DEKRA Testing and Certification S.A.U. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

DEKRA Testing and Certification is a FCC-recognized accredited testing laboratory with appropriate scope of accreditation that include testing performed in this test report.

In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification S.A.U. has a calibration and maintenance program for its measurement equipment.

DEKRA Testing and Certification S.A.U. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification at the time of performance of the test.

DEKRA Testing and Certification S.A.U. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification S.A.U.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification S.A.U.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification S.A.U. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the following documents:

- 1. DEKRA Testing and Certification S.A.U. internal document PODT000.
- 2. FCC OET KDB 865664 D01 SAR Measurement Requirements for 100 MHz to 6 GHz v01r04 (August 2015).

Data provided by the client

The following data has been provided by the client:

- Information relating to the description of the sample ("Identification of the item tested", "Trademark",
 "Model and/or type reference tested", "Other identification of the product", "Features" and "Test sample
 description").
- 2. Maximum output power, normal use conditions and testing distance information.

DEKRA Testing and Certification S.A.U. declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: the client

Samples are composed of the following elements:

Sample	Control Nº	Description	Model	Serial Nº	Date of reception
S/01	74873_2.1	Circuit board module	PT00175119 Rev 02	230400082	2023-04-10
S/01	74873_5.1	SMA cable			2023-04-10
S/02	74873_4.1	Genius Link Device	PT00167810 Rev 04	230400077	2023-04-10

- 1. Sample S/01 has undergone the test(s) specified in subclause "Test method requested": Conducted average output power.
- 2. Sample S/02 has undergone the test(s) specified in subclause "Test method requested": SAR evaluation for Wi-Fi mode.

Test sample description

Description of product:	Genius Link Device is a new single-use wearable device that replaces				
	the legacy PillCam Data Recorder DR3 and sensor Belt/Array. The DUT				
	will be attached to the patient's abdomen using adhesive for the				
	duration of the pro	cedure, wi	Il receive and store all the images from the		
	capsule, will mana	ige the cap	osule's states, will support showing live		
		•	n a dedicated application and will connect to		
	a PC to download	all the ima	iges and data at the end of the procedure		
Software version:	FW version 9.0.8	Redpine:	driver 2.6.0.34, Wireless_fw 1610.2.6.0.0.34		
Hardware version:	PT00167810 Rev	04, PT001	75119 Rev 02		
Mounting position:	[]	Table top equipment			
	[]	Wall/Ceiling mounted equipment			
	[]	Equipment used next to the ear			
	[]	Hand-hel	d equipment		
	[X]	Other: Body-worn device			
Accessories (not part of the test item):	Description	Type Manufacturer			
,	Charging adapter	er			
	USB cable				

Identification of the client

Given Imaging (A Medtronic company)

Hermon Building, PO Box 258, Yoqneam, 2069204 Israel

Testing period and place

Test Location	DEKRA Testing and Certification S.A.U.
Date (start)	2023-04-18
Date (finish)	2023-04-28

Document history

Report number	Date	Description
74873RAN.002	2023-07-04	First release
74873RAN.002A1 2023-10-05		Second release. Identification of item tested has been updated. This modification test report cancels and replaces the test report 74873RAN.001.

Environmental conditions

Date	Max. Temp.	Min. Temp.	Max. Hum.	Min. Hum.	Limit
	٥C	°C	%	%	
From 2023-04-18 to 2023-04-28	21.15	24.57	55.35	34.59	18-25 °C, 30-70%

Remarks and comments

- 1. Only the plots of the highest SAR for each test position and mode/band are included in appendix C.
- 2. The tests have been performed by the technical personnel: Ismael Gamarro.
- 3. The instrumentation utilized to perform the tests covered in this test report is listed in the following table:

DEKRA Control Number	Equipment	S/N
3630	Dual directional coupler, NARDA model 4227-16	02953
4482	Vector Network Analyzer, Agilent Technologies model N9923A FieldFox	US49470126
4171	Dielectric probe kit, SPEAG model DAK-3.5	1080
4859	DAK software, SPEAG model DAK V1.10.325.10	-
3485	Power amplifier, MITEQ model AMF-4D-00400600-50-30P	1456425
2402	20 dB Attenuator, WEINSCHEL model 75A-20-11	902
3429	Dipole validation kit 2450 MHz, SPEAG model D2450V2	756
3430	Data acquisition device, SPEAG model DAE4	669
4393	Dual Power meter, Agilent model E4419B	MY45103349
8902	Electro-optical converter, SPEAG model EOCip-60	1154
4173	Head Tissue Equivalent Liquid for 1900-3800 MHz band, SPEAG model HBBL1900-3800V3	-
8895	Measurement server, SPEAG model DASY6 SE UMS 028 CA	1602
3525	Oval flat phantom, SPEAG model ELI4	1060
4164	Power Sensor 50 MHz-18GHz, R&S model NRP-Z81	100527
4392	Power sensor, Agilent model E9300A	SG41491189
4391	Power sensor, Agilent model E9300A	SG41491203
8867	Robot, Stäubli model TX60L	F15/5Z0NB1/A
8894	Robot controller, Stäubli model CS8C	F15/5Z0NB1/C/01
8898	SAR measurement software, SPEAG model cDASY6	-
3346	Signal RF Generator, R&S model SMU200A	102234
3453	Temperature and humidity probe, Pico Technology model HUMIDIPROBE	UAL02/077
6125	Dosimetric E-field Probe, SPEAG model EX3DV4	7461
4170	Digital thermometer, LKM Electronics model DTM3000-Spezial	2989

4. References

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093 and the following FCC Published RF exposure KDB procedures:

- FCC OET KDB 447498 D01 General RF Exposure Guidance v06 (October 2015).
- FCC OET KDB 865664 D01 SAR Measurement Requirements for 100 MHz to 6 GHz v01r04 (August 2015).
- FCC OET KDB 865664 D02 RF Exposure Reporting v01r02 (October 2015).
- FCC OET KDB 248227 D01 802.11 Wi-Fi SAR v02r02 (October 2015).

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

Testing verdicts

Not applicable :	N/A
Pass :	Р
Fail :	F
Not measured :	N/M

Summary

FCC 47CFD Dov4 2 4002		VERDICT			
FCC 47CFR Part 2.1093	N/A	Р	F	N/M	
802.11b/g/n		Р			

Appendix A: Test configuration

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

Index

1.	GENERAL INTRODUCTION	10
1.1.	Application Standard	10
1.2.	General requirements	10
1.3.	Measurement system requirements	10
1.4.	Phantom requirements	
1.5.	Measurement Liquids requirements	
2.	MEASUREMENT SYSTEM	12
2.1.	Measurement System	12
2.2.	Device Holder	15
2.3.	Test Positions of device relative to body	15
2.4.	Test to be performed	15
2.5.	Description of interpolation/extrapolation scheme	15
2.6.	Determination of the largest peak spatial-average SAR	16
2.7.	System Check	16
3.	UNCERTAINTY	17
4.	SAR LIMIT	18
5.	DEVICE UNDER TEST	18
5.1.	Dimensions	18
5.2.	Wireless Technology	18
5.3.	Simultaneous Transmission	19
5.4.	Antenna Location	19

1. GENERAL INTRODUCTION

1.1. Application Standard

The Federal Communications Commission (FCC) sets the limits for General Population/Uncontrolled exposure to radio frequency electromagnetic fields for transmitting devices designed to be used within 20 centimetres of the body of the user under FCC 47 CFR Part 2.1093 - "Radiofrequency radiation exposure evaluation: portable devices", paragraph (d)(2).

General requirements 1.2.

The SAR measurement has been performed continuing the following considerations and environment conditions:

The ambient temperature shall be in the range of 18°C to 25°C and the variation shall not exceed +/-2°C during the test.

The ambient humidity shall be in the range of and 30% - 70%.

The device battery shall be fully charged before each measurement.

Measurement system requirements 1.3.

The measurement system used for SAR tests fulfills the procedural and technical requirements described at the reference standards used.

Phantom requirements 1.4.

The phantom model for head measurements is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues in human body. The human model has the following proportions:

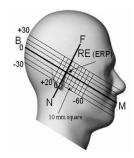


Figure 1: Proportions of Phantom

The shell model is a shaped container and it has the representation shown in the following figure:

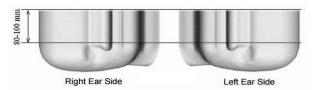


Figure 2: Proportions and shape of Phantom shell

The phantom model for body measurements is an elliptical open-top container with a flat bottom, with the following shape and dimensions:

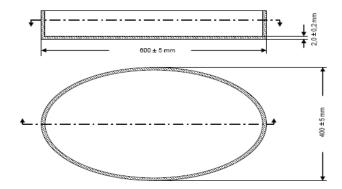


Figure 3: Proportions and shape of Phantom shell

1.5. Measurement Liquids requirements

The liquids used to simulate the human tissues, must fulfill the requirements of the dielectric properties required. These target dielectric properties are indicated into FCC OET KDB 865664 D01 Appendix A.

Frequency	Н	ead	Body		
(MHz)	$\epsilon_{ m r}$	σ (S/m)	$\epsilon_{ m r}$	σ (S/m)	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

Table 1: Liquid material requirements

To minimize the effect of reflections on peak spatial-average SAR values, from the upper surface of the tissue equivalent liquid, the depth of the liquid should be at least 15 cm.

Dielectric porperties values of the Tissue Simulant Liquids used for SAR measurements are included in Appendix B, Section 3, of this document.

2. MEASUREMENT SYSTEM

2.1. **Measurement System**

The DASY6 system for performing compliance tests consists of the following items:

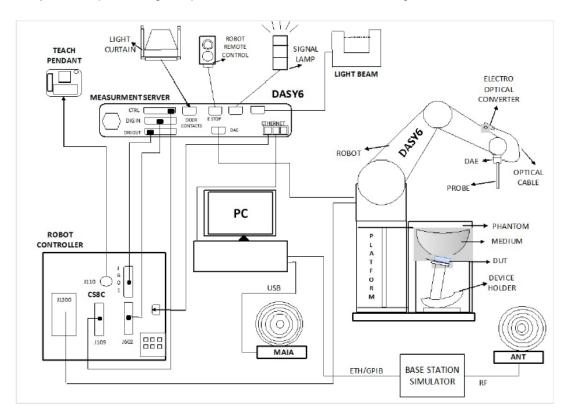
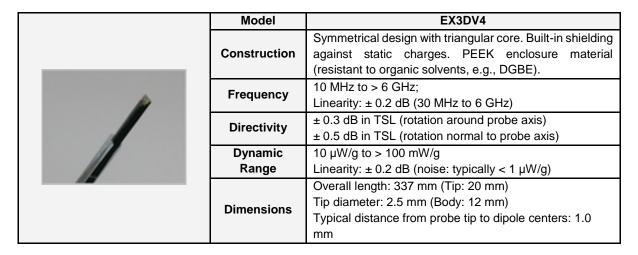
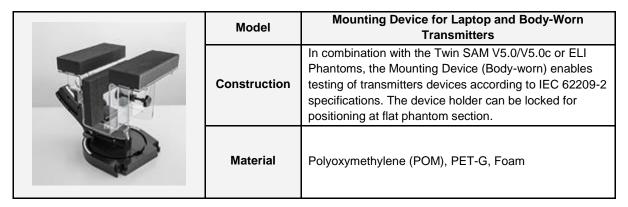



Figure 4: SAR Measurement system/s

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.



	Model	DAE4
	Construction	Signal amplifier, multiplexer, A/D converter, and control logic. Serial optical link communication with DASY4/5 embedded system (fully remote controlled). Two-step probe touch detector for mechanical surface detection and emergency robot stop.
	Measurement	-100 to +300 mV (16 bit resolution and two range
	Range	settings: 4mV, 400mV)
	Input Offset Voltage	< 5 μV (with auto zero)
	Input Resistance	200 MOhm
	Input Blas Current	< 50 fA

Model	ELI
Construction	Phantom for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.
Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm, Minor axis: 400 mm
Filling Volume	Approx. 30 liters
Wooden Support	SPEAG standard phantom table

	Model	System Vali	dations Kits 450	MHz – 6 GHz			
	Construction Symmetrical dipole with I/4 balun. Enables me of feedpoint impedance with NWA. Matched for flat phantoms filled with tissue simulating solu						
	Frequency	450 MHz to 5800 MHz					
	Return Loss	20 dB at specified validation position					
		Product	Dipole length	Overall height			
		D450V3	290.0	330.0			
		D750V3	179.0	330.0			
		D900V2	148.5	340.0			
		D1800V2	72.5	300.0			
10		D2000V2	65.0	300.0			
	Dimensions	D2300V2	56.3	290.0			
	(length and	D2450V2	52.0	290.0			
	overall height	D2600V2	49.2	290.0			
162	in mm)	D3300V2	38.0	285.0			
1		D3500V2	37.0	285.0			
		D3700V2	34.7	285.0			
		D3900V2	32.0	280.0			
		D4200V2	30.1	280.0			
		D4600V2	27.0	280.0			
		D4900V2	25.0	280.0			
		D5GHzV2	20.6	300.0			

DEKRA Testing and Certification, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

2.2. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY Laptop Holder extension is lightweight and made of POM, PET-G acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

2.3. Test Positions of device relative to body

The device under test, Genius Link Device, is a new disposable wearable device that will be used by the patient throughout the PillCam Genius procedure. The DUT will use adhesive layer to be attached to the patient body and will be remove and discarded at the end of the procedure.

Antennas will be used to receive transmitted signal from the capsule, and to transmit operating commands to the capsule from the Recorder.

The DUT will also transmit data to the PillCam Mobile Phone device for uploading the data to the cloud in relevant procedure.

Also, the DUT will have an internal storage to store the data during the procedure, and allow to download the data (in case the data was not uploaded to the cloud during the procedure)

The DUT has been placed with its back face touching the body phantom simulating its normal use once attached to the patient body using its adhesive layer.

2.4. Test to be performed

Test shall be performed for each test position previously described, using the channel producing the highest rated output power.

Additionally the other applicable test frequency channels must be measured for the test configuration providing the highest SAR for each applicable transmitting band.

2.5. Description of interpolation/extrapolation scheme

The local SAR inside the Phantom is measured using small dipole sensing elements inside a probe element. The probe tip must not be in contact with the Phantoms surface in order to minimise measurement errors, but the highest local SAR is obtained from measurements at a certain distances from the shell trough extrapolation. The accurate assessment of the maximum SAR averaged over 10 gr. requires a very fine resolution in the three dimensional scanned data array. Since the measurements have to be performed over a limited time, the measured data have to be interpolated to provide an array of sufficient resolution.

The interpolation of 2D area scan is used after the initial area scan, at a fixed distance from the Phantom shell wall. The initial scan data is collected with approx. 15 mm spatial resolution and this interpolation is used to find the location of the local maximum for positioning the subsequent 3D scanning within a 1mm resolution.

For the 3D scan, data is collected on a spatially regular 3D grid having 5 mm steps in both directions. After the data collection by the SAR probe, the data are extrapolated in the depth direction to assign values to points in the 3D array closer to the shell wall. A notional extrapolation value is also assigned to the first point outside the shell wall so that subsequent interpolation schemes will be applicable right up to the shell wall boundary.

2.6. Determination of the largest peak spatial-average SAR

To determine the maximum value of the peak spatial-average SAR of a DUT, all device positions, configurations and operational modes should be tested for each frequency band.

The averaging volume shall be chosen as 1gr. of contiguous tissue. The cubic volumes, over which the SAR measurements are averaged after extrapolation and interpolation, are chosen in order to include the highest values of local SAR.

The maximum SAR level for the DUT will be the maximum level obtained of the performed measurements indicated in the previous points.

2.7. System Check

Prior to the SAR measurements, system verification is done to verify the system accuracy. As IEEE 1528-2013, Annex paragraph 8.2.1 "System Check - Purpose" specifies, a complete SAR evaluation is done using a half-wavelength dipole as source with the frequency of the mid-band channel of the operating band, or within 10% of this channel, whichever is greater.

The measured 1 gr. and 10 gr. SAR should be within 10% of the expected target values specified in the calibration certificate of the dipole, for the specific tissue and frequency used.

3. UNCERTAINTY

According to FCC OET KDB 865664 D01, if the highest measured 1-g SAR is < 1.5 W/kg, SAR measurement uncertainty analysis is not required to be included into SAR report, but it has been included for ISO 17025 accreditation.

Uncertainty for 300 MHz - 3 GHz

ERROR SOURCES (source of uncertainty)	Uncertainty value (%)	Prob. Dist.	Div.	ci (1g)	ci (10g)	Standard uncertainty (1g) (%)	Standard uncertainty (10g) (%)
Measurement Equipment							
Probe Calibration	13.30%	N	2	1	1	6.65%	6.65%
Probe calibration drift	1.70%	R	√3	1	1	0.98%	0.98%
Axial Isotropy	4.70%	R	√3	0.7	0.7	1.90%	1.90%
Hemisfericall Isotropy	9.60%	R	√3	0.7	0.7	3.88%	3.88%
Boundary effect	1.00%	R	√3	1	1	0.58%	0.58%
Linearity	4.70%	R	√3	1	1	2.71%	2.71%
System Detection limits	0.25%	R	√3	1	1	0.14%	0.14%
Probe modulation response	4.80%	N	1	1	1	4.80%	4.80%
Readout electronics	0.30%	N	1	1	1	0.30%	0.30%
Response time	1.01%	R	√3	1	1	0.58%	0.58%
Integration time	2.60%	R	√3	1	1	1.50%	1.50%
RF Ambient noise	3.00%	R	√3	1	1	1.73%	1.73%
RF Ambient reflections	3.00%	R	√3	1	1	1.73%	1.73%
Probe positioner mech. restrictions	0.40%	R	√3	1	1	0.23%	0.23%
Probe positioning with respect to phantom shell	2.90%	R	√3	1	1	1.67%	1.67%
Max. SAR Eval.	2.00%	R	√3	1	1	1.15%	1.15%
Test Sample Related							
Device holder uncertainty	3.60%	N	1	1	1	3.60%	3.60%
Test sample positioning	2.90%	N	1	1	1	2.90%	2.90%
Drift of output power	2.50%	N	1	1	1	2.50%	2.50%
System Validation source (dipole)							
Deviation of experimental dipole from numerical dipole	0.00%	N	1	0	0	0.00%	0.00%
Input power and SAR drift measurement	2.00%	R	√3	1	1	1.15%	1.15%
Dipole axis to liquid distance	3.40%	R	√3	1	1	1.96%	1.96%
Phantom and Setup Phantom uncertainty (shape and thickness tolerances)	6.10%	R	√3	1	1	3.52%	3.52%
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.90%	N	1	1	0.84	1.90%	1.60%
Liquid conductivity (meas.)	3.57%	N	1	0.78	0.71	2.79%	2.54%
Liquid permittivity (meas.) Liquid conductivity – temperature	3.57%	N	1	0.26	0.26	0.93%	0.93%
uncertainty	2.30%	R	√3	0.78	0.71	1.04%	0.94%
Liquid permittivity – temperature uncertainty	0.36%	R	√3	0.23	0.26	0.05%	0.05%
Combined standard uncertainty (Validation antenna)		$u_c = \sqrt{\sum_{1=1}^{m} c}$	9.88%	9.75%			
Expanded uncertainty (confidence interval of 95%)		ue =2.00				19.77%	19.51%
Combined standard uncertainty (DUT)		$u_c = \sqrt{\sum_{1=1}^{m} c}$		12.68%	12.58%		
Expanded uncertainty (confidence interval of 95%)		ue =2.00	25.36%	25.16%			

Table 2: Uncertainty Assessment for 300 MHz - 3 GHz.

4. SAR LIMIT

Having a worst-case measurement, the SAR limit is valid for general population/uncontrolled exposure.

The SAR values have to be averaged over a mass of 1 gr. (SAR 1 gr.) with the shape of a cube and averaged over a mass of 10 gr (Extremity SAR 10 gr). These levels could not exceed the values indicated in the application Standard:

Standard	Exposure	SAR	SAR Limit (W/kg)
FCC 47 CFR Part 1.1310, Paragraph (c)	General population/Uncontrolled	SAR 1-g.	1.6
FCC 47 CFR Part 1.1310, Paragraph (c)	General population/Uncontrolled Extremity	SAR 10-g.	4.0

Table 3: SAR limit

5. DEVICE UNDER TEST

5.1. Dimensions

Dimensions	Millimetres
Width x Height x Depth	225 x 90 x 10
Overall Diagonal:	235

Table 4: DUT dimensions

5.2. Wireless Technology

Wireless Technolo	Frequency Bands	Modes	Duty Cycle used for SAR testing	
Wi-Fi	2.4 GHz	- 802.11b/g/n (20 MHz)	- 802.11a/n (20 MHz): 100 %	

Table 5: Supported modes

5.3. Simultaneous Transmission

The DUT does not support simultaneous transmission.

5.4. Antenna Location

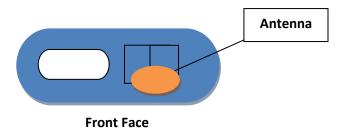


Figure 5: Antenna location sketch.

Appendix B: Test results

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

Index

1.	TEST CONDITIONS	22
1.1.	Power supply (V):	22
1.2.	Temperature (°C):	
	DUT information and test-site configurations	
	Test signal, Output Power and Frequencies	
	CONDUCTED AVERAGE POWER MEASUREMENTS	
2.1.	WLAN	23
3.	TISSUE PARAMETERS MEASUREMENTS	23
4.	SYSTEM CHECK MEASUREMENTS	24
5.	MEASUREMENT RESULTS FOR SAR (SPECIFIC ABSORPTION RATE)	25
5.1.	Summary maximum results for body measurements	25
	WLAN	

DEKRA

1. TEST CONDITIONS

1.1. Power supply (V):

Type of power supply = DC Voltage from battery.

1.2. Temperature (°C):

Tn = +20.00 to +25.00

The subscript n indicates normal test conditions.

1.3. DUT information and test-site configurations

The device has been tested into its normal use position, with its back faced touching the flat phantom at 0 mm test distance.

1.4. Test signal, Output Power and Frequencies

For the 802.11a/b/g/n/ac modes, the device was put into operation by using a proprietary test mode with test commands supplied by the manufacturer, setting the maximum output power for each mode. The duty cycle was set to maximum (aprox. 100%).

In all operating bands and test positions, the measurements were performed using the channel producing the highest rated output power.

In each band, for those positions where the maximum averaged SAR was found, measurements were performed on the other applicable test frequency channels except those with applicable test reductions.

A fully charged battery was used for every test sequence. In all operating bands and test positions, the measurements were performed on the middle channel. In each band, for those positions where the maximum averaged SAR was found, measurements were performed on the remaining required channels except those with applicable test reductions.

The actual SAR sample does not have accessible antenna connectors for conducted measurements, so the conducted average output power was measured using others identical samples (S/01) provided by the manufacturer with auxiliary external connectors that make the measurements representative and applicable for all the tested samples. See 'usage of samples' paragraph of this report.

The maximum conducted time-averaged power of the device for each mode was measured with a power sensor R&S NRP-Z81.

The target power alignments, including tune-up tolerance, for RF components declared by the manufacturer for each supported technology are:

Band	Mode	Channel / Frequency (MHz)	Maximum Output Power (dBm)
		1 / 2412	20.0
	b	6 / 2437	20.0
		11 / 2462	20.0
	g	1 / 2412	15.0
2.4 GHz		6 / 2437	20.0
		11 / 2462	15.0
		1 / 2412	15.0
	n (20MHz)	6 / 2437	20.0
		11 / 2462	15.0

2. CONDUCTED AVERAGE POWER MEASUREMENTS

2.1. WLAN

WLAN Mode	Band	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Duty Cycle (%)	Average Output Power (dBm)
			1.0	2412.0	1 Mbps	100.00	13.23
802.11b		2.4 GHz 20	6.0	2437.0	1 Mbps	100.00	13.51
			11.0	2462.0	1 Mbps	100.00	11.28
			1.0	2412.0	6 Mbps	100.00	6.20
802.11g			6.0	2437.0	6 Mbps	100.00	12.50
	0		11.0	2462.0	6 Mbps	100.00	6.30
			1.0	2412.0	HT0	100.00	6.20
802.11n		6.0	2437.0	HT0	100.00	12.79	
			11.0	2462.0	HT0	100.00	6.45

3. TISSUE PARAMETERS MEASUREMENTS

Frequency	Target He	ead Tissue	Measured	Head Tissue	Devia	Measured	
(MHz)	Permittivity	Conductivity	Permittivity	Conductivity	Permittivity	Conductivity	Date
, ,	3	σ [S/m]	3	σ [S/m]	3	σ [S/m]	
2450	39.20	1.80	39.94	1.77	2.16	-3.36	2023-04-20
2450	39.20	1.80	38.08	1.86	-2.92	3.56	2023-04-28

Note: The dielectric properties have been measured by the contact probe method at 22° C.

DASY5 and DASY6 measurement systems have a SAR error compensation algorithm to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, so the tolerance for εr and σ may be relaxed to \pm 10%.

- Composition / Information on ingredients

Head and Muscle Tissue Simulation Liquids HBBL1900-3800V3/MBBL1900-3800V3

Water 50 - 73 %

Non-ionic detergents 27 – 50 % polyoxyethylenesorbitan monolaurate

NaCl 0 – 2 %

Preservative 0.05 – 0.1% Preventol-D7

Safety relevant ingredients:

CAS-No. 55965-84-9 < 0.1 % aqueous preparation, containing 5-chloro-2-methyl-3(2H)-isothiazolone

and 2-methyyl-3(2H)-isothiazolone

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

4. SYSTEM CHECK MEASUREMENTS

Execution Date	Frequency (MHz)	Exposure Conditions	SAR over	Fast SAR (W/Kg)	SAR (W/Kg)	1 W Target SAR (W/Kg)	1 W Nor. SAR (W/Kg)	Drift (%)
2023-04-20	2450	Head	1-g	12.90	12.70	54.10	50.92	-5.88
2023-04-20	2450	Head	10-g	6.01	5.75	25.30	23.05	-8.88
2023-04-28	2450	Head	1-g	13.80	13.40	54.10	53.54	-1.04
2023-04-28	2450	Head	10-g	6.38	6.11	25.30	24.41	-3.51

5. MEASUREMENT RESULTS FOR SAR (SPECIFIC ABSORPTION RATE)

5.1. Summary maximum results for body measurements.

Mode	Side / Position	Channel (Frequency)	Reported SAR 1-g (W/kg)	Limit SAR 1-g (W/kg)
802.11b	Back face 0 mm	CH 11 (2462 MHz)	0.990	1.6

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

5.2. WLAN

Band	Expos. Cond.	Mode	BW (MHz)	Pos.	Dist (mm)	Ch.	Freq. (MHz)	Duty Cycle (%)	Estim. SAR 1-g (W/kg)	SAR 1-g (W/kg)	Power Drift (%)	Scale factor	Report. SAR 1-g (W/kg)	Limit SAR 1-g (W/kg)	Verdict	Plot No.
		802.11b	20.00	Back Face	0	6.0	2437.00	100.00	0.183	0.180	-1.599	4.457	0.802	1.600	Р	
		802.11g	20.00	Back Face	0	6.0	2437.00	100.00	0.162	0.166	0.000	5.623	0.933	1.600	Р	
2.4 GHz	Body	802.11n	20.00	Back Face	0	6.0	2437.00	100.00	0.160	0.169	-2.389	5.260	0.889	1.600	Р	
		802.11b	20.00	Back Face	0	1.0	2412.00	100.00	0.178	0.180	0.000	4.753	0.856	1.600	Р	
		802.11b	20.00	Back Face	0	11.0	2462.00	100.00	0.142	0.133	-2.725	7.447	0.990	1.600	Р	1

DEKRA Testing and Certification, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Appendix C: Measurement report

Plot Nº1

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Genius Link Device, Given	241.0 x 94.0 x 14.0		Patch PCA
Imaging			

Exposure Conditions

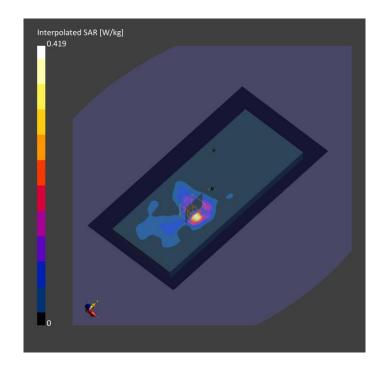
Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Numb	Conversion Factor er	TSL Conductivity [S/m]	TSL Permittivity
Flat,	BACK,	WLAN	WLAN,	2462.0,	7.6	1.88	38.0
HSL	0.00	2.4GHz	10415-AAA	11			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V4.0 (20deg probe tilt) -	HBBL1900-3800V3 - 2450MHz - 2023-	EX3DV4 - SN7461, 2022-08-25	DAE4 Sn669, 2022-08-16
1060	04-28 ,		

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	140.0 x 280.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 10.0	3.4 x 3.4 x 1.4
Sensor Surface	3.0	1.4
[mm]		
Graded Grid	Yes	Yes
Grading Ratio	1.5	1.4
MAIA	Υ	Υ
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured


Measurement Results

	Area Scan	Zoom Scan
Date	2023-04-28, 13:40	2023-04-28, 13:56
psSAR1g [W/kg]	0.142	0.133
osSAR10g [W/kg]	0.058	0.044
Power Drift [dB]	-0.34	0.35
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	Positive only	Positive only
M2/M1 [%]		71.5
Dist 3dB Peak		4.1
[mm]		

Warning(s) / Error(s)

0(-//	- \-7	
Details	Area Scan	Zoom Scan

Warning(s) Error(s)

Appendix D: System Validation Report

Validation results in 2450 MHz Band for Head TSL

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Genius Link Device, Given	50.0 x 10.0 x 14.0		Dipole
Imaging			

Exposure Conditions

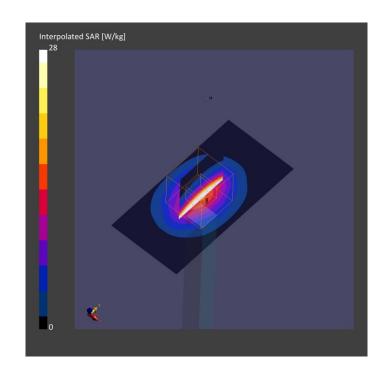
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL	TSL Permittivity
Section, TSL	Distance [mm]		UID	[MHz],	Factor	Conductivity	
				Channel Numb	er	[S/m]	
Flat,	,		CW,	2450.0,	7.64	1.77	39.9
HSL			0	0			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V4.0 (20deg probe tilt) -	HBBL1900-3800V3 - 2450MHz - 2023-	EX3DV4 - SN7766, 2022-10-18	DAE4 Sn1690, 2022-10-13
1060	04-20 ,		

Scan Setup

-	Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5
Sensor Surface	3.0	1.4
[mm]		
Graded Grid	Yes	Yes
Grading Ratio	1.5	1.5
MAIA	N/A	N/A
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured


Measurement Results

	Area Scan	Zoom Scan
Date	2023-04-20, 14:16	2023-04-20, 14:22
psSAR1g [W/kg]	12.9	12.7
psSAR10g [W/kg]	6.01	5.75
Power Drift [dB]	0.01	0.00
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	Positive only	Positive only
M2/M1 [%]		77.9
Dist 3dB Peak		9.0
[mm]		

Warning(s) / Error(s)

Details	Area Scan	Zoom Scar

Warning(s) Error(s)

Validation results in 2450 MHz Band for Head TSL

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Genius Link Device, Given	50.0 x 10.0 x 14.0		Dipole
Imaging			

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Numbe	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	,		CW,	2450.0,	7.6	1.86	38.1
HSL			0	0			

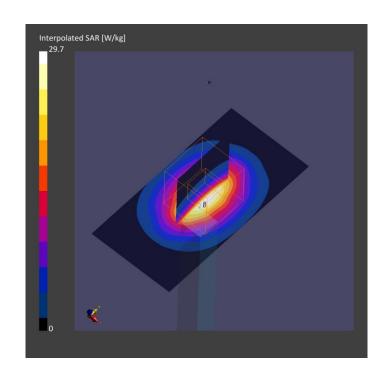
Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
ELI V4.0 (20deg probe tilt) -	HBBL1900-3800V3 - 2450MHz - 2023-	EX3DV4 - SN7461, 2022-08-25	DAE4 Sn669, 2022-08-16
1060	04-28		

Scan Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5
Sensor Surface	3.0	1.4
[mm]		
Graded Grid	Yes	Yes
Grading Ratio	1.5	1.5
MAIA	N/A	N/A
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured

Measurement Results


	Area Scan	Zoom Scan
Date	2023-04-28, 09:44	2023-04-28, 09:50
psSAR1g [W/kg]	13.8	13.4
psSAR10g [W/kg]	6.38	6.11
Power Drift [dB]	-0.00	-0.01
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	Positive only	Positive only
M2/M1 [%]		78.3
Dist 3dB Peak		9.0
[mm]		

Warning(s) / Error(s)

Details	Area Scan	Zoom Scan

Warning(s)

Error(s)

