

849 NW STATE ROAD 45 NEWBERRY, FL 32669 USA

PH: 888.472.2424 OR

352.472.5500

FAX: 352.472.2030

EMAIL: lnfo@timcoengr.com
HTTP://WWW.TIMCOENGR.COM

RF Exposure Evaluation Report

APPLICANT	VERDANT ENVIRONMENTAL TECHNOLOGIES
	1850 55E AVENUE
	LACHINE QUEBEC H8T 3J5 CANADA
FCC ID	XEYV
IC	8410A-V
MODEL NUMBER	V
PRODUCT DESCRIPTION	THERMOSTAT
STANDARD APPLIED	CFR 47 Part 2.1091
PREPARED BY	Cory Leverett

We, TIMCO ENGINEERING, INC. would like to declare that the device has been evaluated in accordance with 47 CFR Part 2.1091 and meets the requirements.

The attached report shall not be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

GENERAL REMARKS

Attestations

This equipment has been evaluated in accordance with the standards identified in this report. To the best of my knowledge and belief, these evaluations were performed using the procedures described in this report.

I attest that the necessary evaluations were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, FL 32669

Cory Leverett

Engineering Project Manager

Date: 1/30/2017

Applicant: VERDANT ENVIRONMENTAL TECHNOLOGIES

FCC ID: XEYV IC: 8410-V

Report: 58AUT17RF EXP MPE RPT

RF Exposure Requirements

General information

Device type: THERMOSTAT

Antenna

Configuration	Antenna p/n	Туре	Max. Gain (dBi)
Integral	Any	Wire	2.15

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

The limit for general uncontrolled exposure environment is shown in FCC rule Part 1.11310, Table 1.

Applicant: VERDANT ENVIRONMENTAL TECHNOLOGIES

FCC ID: XEYV IC: 8410-V

Report: 58AUT17RF EXP MPE RPT

Max Power	0.008	W	equals	Max Power	8	mW	
Duty Cycle	100	%	equals	Duty Factor	1	numeric	
Antenna Gain	2.15	dBi	equals	Gain numeric	1.64059	numeric	
Coax Loss	0	dB		Gain - Coax Lo	1.64059	numeric	
Power Density	0.6	mW/cm ²					
Enter power Density f	rom the cl	hart to the	right	Rule Par	t 1.1310, Ta	able 1 (B)	
	927.6	MHz		Frequency ran	Power de	Enter this valu	ie
				MHz	mW/cm ²	mW/cm ²	
				0.3-1.34	100	100	
				1.34-30	180/f ²	0.0	
				30-300	0.2	0.2	
				300-1,500	f/1500	0.6	/
				1,500-100,000	1	1	
				f = frequency i			
Minimum Se	parati	on Dist	tance	f = frequency i		0.01	m
Minimum Se	parati	on Dist	tance	f = frequency i	in MHz	0.01	m
Minimum Se Minimum Seperation		on Dist		f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m
				f = frequency i	in MHz	0.01	m

Applicant: VERDANT ENVIRONMENTAL TECHNOLOGIES FCC ID: XEYV

FCC ID: XEYV IC: 8410-V

Report: 58AUT17RF EXP MPE RPT