

 Project No.:
 TM-2212000413P
 FCC ID:
 XEG-MZ123BT-Q
 Page:
 1 / 112

Report No.: TMTN2212001732NR Rev.: 00

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10: 2013

TEST REPORT

For

INSTALLATION MIXER

Model: MZ-123BT

Brand: TASCAM

Issued for

TEAC CORPORATION

1-47 Ochiai, Tama-shi, Tokyo 206-8530, Japan

Issued by

Compliance Certification Services Inc.

Tainan Lab.

No.8, Jiucengling, Xinhua Dist., Tainan City, Taiwan

Issued Date: March 01, 2023

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留 90 天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 112 Rev.: 00

W

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 01, 2023	Initial Issue	ALL	Gina Lin

Page: 3 / 112

Rev.: 00

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. TEST RESULT SUMMARY	5
3. EUT DESCRIPTION	6
3.1 DESCRIPTION OF EUT & POWER	6
4. DESCRIPTION OF TEST MODES	7
5. TEST METHODOLOGY	8
6. FACILITIES AND ACCREDITATIONS	8
6.1 FACILITIES	8
6.2 EQUIPMENT	8
6.3 LABORATORY ACCREDITATIONS LISTINGS	8
6.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6.5 MEASUREMENT EQUIPMENT USED	10
7. CALIBRATION AND UNCERTAINTY	11
7.1 MEASURING INSTRUMENT CALIBRATION	11
7.2 MEASUREMENT UNCERTAINTY	11
8. SETUP OF EQUIPMENT UNDER TEST	12
8.1 SETUP CONFIGURATION OF EUT	12
8.2 SUPPORT EQUIPMENT	13
8.3 EUT OPERATING CONDITION	14
9. APPLICABLE LIMITS AND TEST RESULTS	16
9.1 6DB BANDWIDTH	16
9.2 MAXIMUM PEAK OUTPUT POWER	22
9.3 DUTY CYCLE	34
9.4 POWER SPECTRAL DENSITY	40
9.5 CONDUCTED SPURIOUS EMISSION	46
9.6 RADIATED EMISSIONS	57
9.7 POWERLINE CONDUCTED EMISSIONS	80
10. ANTENNA REQUIREMENT	88
10.1 STANDARD APPLICABLE	
10.2 ANTENNA CONNECTED CONSTRUCTION	88
APPENDIX I SETUP PHOTOS	89
ADDENDIY II DHOTOGDDHS OF FIIT	0.4

Page: 4 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

1. TEST REPORT CERTIFICATION

Applicant : TEAC CORPORATION

1-47 Ochiai, Tama-shi, Tokyo 206-8530, Japan

Manufacturer : 1.Ya Horng Electronic Co., Ltd

No. 35, Shalun, Jon Sha Village, Anding Dist., Tainan City

745, Taiwan

2. Ya Horng (Dongguan) Electronic Co.,Ltd.

Room 201, Building #9, No.84 Gaoyu South Road, Tangxia

Town, Dong Guan, Guangdong, China

Equipment Under Test : INSTALLATION MIXER

Model Number : MZ-123BT

Brand Name : TASCAM

Date of Test : December 27, 2022 ~ January 06, 2023

APPLICABLE STANDARD	
STANDARD	TEST RESULT
FCC Part 15 Subpart C AND ANSI C63.10: 2013	No non-compliance noted

Statements of Conformity

Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Approved by:

John Chen

Supervisor

Page: 5 / 112 Rev.: 00

2. TEST RESULT SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.247(a)	9.1	6dB BANDWIDTH	Pass
15.247(b)	9.2	MAXIMUM PEAK OUTPUT POWER	Pass
-	9.3	DUTY CYCLE	-
15.247(e)	9.4	POWER SPECTRAL DENSITY	Pass
15.247(d)	9.5	CONDUCTED SPURIOUS EMISSION	Pass
15.209(a)	9.6	RADIATED EMISSIONS	Pass
15.207(a)	9.7	POWERLINE CONDUCTED EMISSIONS	Pass
15.203	10	ANTENNA REQUIREMENT	Pass

Page: 6 / 112 Rev.: 00

3. EUT DESCRIPTION

3.1 DESCRIPTION OF EUT & POWER

Product Name	INSTALLATION MIXER
Product Name	INSTALLATION MIXER
Model Number	MZ-123BT
Brand Name	TASCAM
Received Date	December 22, 2022
Reported Date	January 30, 2023
Operating Frequency Range	GFSK(5.1) Mode: 2402MHz~2480MHz
Transmit Power	GFSK(4.0) Mode: 3.21dBm (2.093mW) GFSK(5.1) Mode: 3.24dBm (2.107mW)
Channel Spacing	GFSK(5.1) Mode: 2 MHz
Channel Number	GFSK(5.1) Mode: 40 Channels
Transmit Data Rate	GFSK(4.0) Mode: 1 Mbps GFSK(5.1) Mode: 2 Mbps
Type of Modulation	GFSK
Antenna Type	Manufacturer: BRITO TECHNOLOGY Type: Dipole Antenna Model: WF1DI-2AB(C) Gain: 2.0 dBi
Power Source	AC 100-240V, 50/60Hz
Firmware Version	PC18M001
Software Version	N/A

REMARK:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>XEG-MZ123BT-Q</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the user manual.

Page: 7 / 112 Rev.: 00

4. DESCRIPTION OF TEST MODES

The EUT is a INSTALLATION MIXER.

The RF Chip is manufactured by BRITO TECHNOLOGY

The antenna peak gain 2.0 dBi (highest gain) were chosen for full testing.

GFSK(5.1) mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2402
Middle	2442
High	2480

GFSK(5.1) mode: 1Mbps long data rates (worst case) were chosen for full testing.

Page: 8 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

5. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10 and FCC CFR 47 15.207, 15.209 and 15.247 and KdB 558074.

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

☐ No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

No. 168, Ln. 523, Sec. 3, Zhongzheng Rd., Rende Dist., Tainan City 717, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7:1992, ANSI C63.10: 2013 and CISPR Publication 22.

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW1109).

Page: 9 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

6.4 TABLE OF ACCREDITATIONS AND LISTINGS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada (ISED#: 2324H)

Germany TUV NORD

Taiwan BSMI

USA FCC

Page: 10 / 112 Rev.: 00

6.5 MEASUREMENT EQUIPMENT USED

For §9.7

-	Chamber 1166 Room (Radiation Test)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Active Loop Antenna	ETS-LINDREN	6502	8905-2356	08/29/2022	08/28/2023	
Attenuator	MCL	BW-S15W5	0535	01/28/2022	01/27/2023	
Band Reject Filter	MICRO-TRONICS	HPM13525	006	01/28/2022	01/27/2023	
Band Reject Filter	MICRO-TRONICS	HP50107-01	001	01/28/2022	01/27/2023	
Bilog Antenna With 6dB Attenuator	SUNOL SCIENCES & EMCI	JB1 & N-6-06	A021306 & AT-N0682	10/11/2022	10/10/2023	
Cable	EMCI	EM102-KMKM	CB1166-01	06/20/2022	06/19/2023	
Double Ridged Guide Horn Antenna	ETS-LINDGREN	3116	00078900	03/18/2022	03/17/2023	
EMI Test Receiver	R&S	ESCI 7	100856	06/21/2022	06/20/2023	
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	08/11/2022	08/10/2023	
Double Ridged Guide Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-788(98006)	04/19/2022	04/18/2023	
Notch Filter	MICRO-TRONICS	BRM50702-01	018	01/28/2022	01/27/2023	
Pre-Amplifier	EMCI	EMC012645	980098	01/28/2022	01/27/2023	
Pre-Amplifier	Com-Power	PAM-840A	461378	06/28/2022	06/27/2023	
Software	Excel(ccs-o6-2020 v1.1) · e3(v6.101222)					

For §9.1~9.6

1 01 3011 010					
Chamber 1166 Room (Conducted Test)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	08/11/2022	08/10/2023
SMA Cable+10dB Attenuator	ccs	SMA+10dB ATT	SMA/10dB	01/28/2022	01/27/2023
Software	Excel(ccs-o6-2020 v1.1)				

For §9.8

1 01 39.0						
	Conducted Emission room #1					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
BNC Coaxial Cable	ccs	BNC50	11	01/20/2022	01/19/2023	
EMI Test Receiver	R&S	ESCS30	100348	12/09/2022	12/08/2023	
LISN	FCC	FCC-LISN-50-32-2	08009	07/15/2022	07/14/2023	
LISN	SCHWARZBECK	NNLK8130	8130124	01/14/2022	01/13/2023	
Pulse Limiter	R&S	ESH3-Z2	100116	01/20/2022	01/19/2023	
Test S/W	e3(v6.101222)					

Page: 11 / 112 Rev.: 00

7. CALIBRATION AND UNCERTAINTY

7.1 MEASURING INSTRUMENT CALIBRATION

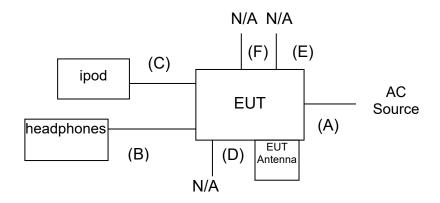
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

7.2 MEASUREMENT UNCERTAINTY

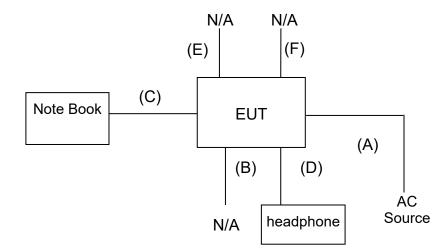
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 9kHz~30MHz Test Site : CB1166	±2.7dB
Radiated Emission, 30 MHz ~1GHz Test Site : CB1166	±3.76dB
Radiated Emission, 1GHz ~18GHz Test Site : CB1166	±4.43dB
Radiated Emission, 18GH~26.5GHz Test Site : CB1166	±4.79dB
Radiated Emission, 26.5GH~40GHz Test Site : CB1166	±4.72dB
Power Line Conducted Emission, 9kHz~30MHz	±1.83dB
Band Width	0.025%
Peak Output Power MU	±1.9dB
Band Edge MU	±0.264dBuV
Channel Separation MU	±361.69Hz
Duty Cycle MU	±0.2%
Frequency Stability MU	±0.493Hz
Temperature	±0.5
Humidity	±3%

This measurement uncertainty is confidence of approximately 95%, k=2



Page: 12 / 112 Rev.: 00


8. SETUP OF EQUIPMENT UNDER TEST

8.1 SETUP CONFIGURATION OF EUT

EMI

RF

Page: 13 / 112 Rev.: 00

8.2 SUPPORT EQUIPMENT

For EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	headphone	audio-technica	ATH-250AV	N/A	N/A
2	ipod	apple	A1199	N/A	N/A

No.	Signal cable description		
Α	AC Power Cable	Unshielded, 2.0m, 1 pcs.	
В	Audio	Shielded, 3.2m, 1 pcs.	
С	Audio	Shielded, 0.5m, 1 pcs.	
D	Audio	Shielded, 2.5m, 1 pcs.	
Е	Audio	Shielded, 1.2m, 8 pcs.	
F	Audio	Shielded, 1.0m, 2 pcs.	

For RF test

No.	Product	Manufacturer	Model No.	Certify No.	Power cable
1	headphone	audio-technica	ATH-250AV	N/A	N/A
2	Note Book	Acer	Z5WE1	N/A	Unshielded, 1.8m 1 pcs with 1 core

No.	Signal cable description		
Α	AC Power Cable	Unshielded, 2.0m, 1 pcs.	
В	Audio	Shielded, 3.2m, 1 pcs.	
С	USB	Unshielded, 1.8m, 1 pcs.	
D	Audio	Unshielded, 3.2m, 1 pcs.	
Е	Audio	Shielded, 1.2m, 8 pcs.	
F	Audio	Shielded, 1.0m, 2 pcs.	

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3) shd. = shielded; unshd. = unshielded

Page: 14 / 112 Rev.: 00

8.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. The "Blue Test 3.3.9" software was used for testing
- 3. Choose Transport "DEBUG" and Device "USB DBG(100)"

BT1.0 \ 3.0

TX Mode:

TXDATA1

GFSK(DH1):

CFG PKT > Packet Size 27

Power(Atn,Mag,Exp) > 2,5,0

GFSK(DH3):

CFG PKT > Packet Size 183

Power(Atn,Mag,Exp) > 2,5,0

GFSK(DH5):

CFG PKT > Packet Size 339

Power(Atn,Mag,Exp) > 2,5,0

8-DPSK(3DH1):

CFG PKT > Packet Size 83

Power(Atn,Mag,Exp) > 2,5,0

8-DPSK(3DH3):

CFG PKT > Packet Size 552

Power(Atn,Mag,Exp) > 2,5,0

8-DPSK(3DH5):

CFG PKT > Packet Size 1021

Power(Atn,Mag,Exp) > 2,5,0

RX Mode:

RXDATA1

Page: 15 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

BT4.0 \ 5.0

TX Mode:

BLE TEST TX

Channel > 0 (0-39)

Length > 37

Bit pattern > Pseudo-rdm 9

PHY > 1M (2M)

RX Mode:

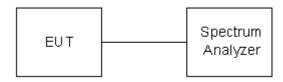
BLE TEST RX

Channel > 0 (0-39)

PHY > 1M (2M)

- 4. All of the function are under run.
- 5. Start test.

Page: 16 / 112 Rev.: 00


9. APPLICABLE LIMITS AND TEST RESULTS

9.1 6dB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST SETUP

TEST PROCEDURE

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Page: 17 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

TEST RESULTS

No non-compliance noted.

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27

GFSK(4.0) mode

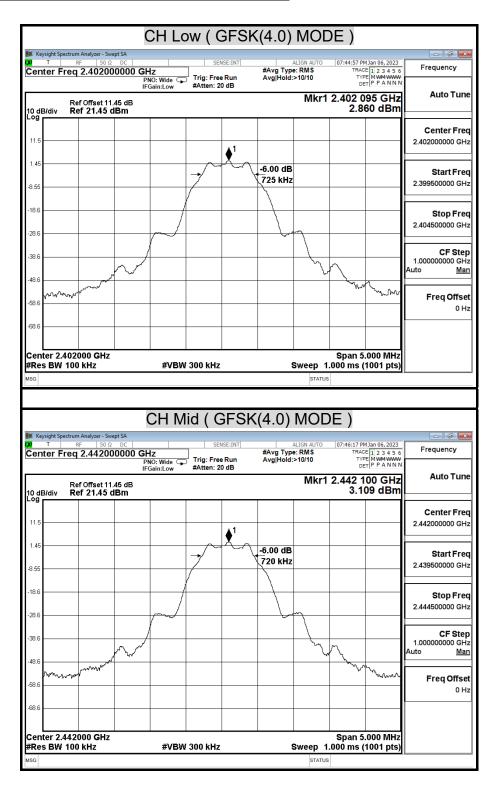
Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	725.00	500	PASS
Middle	2442	720.00	500	PASS
High	2480	715.00	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

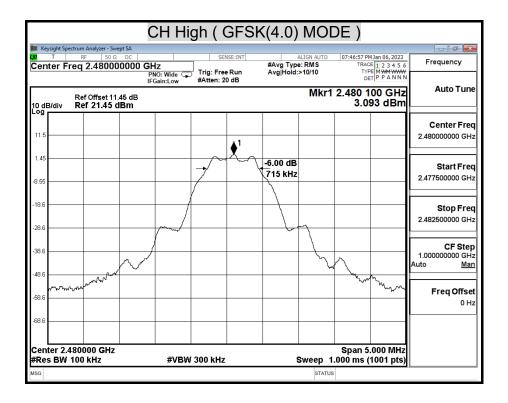
GFSK(5.1) mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	1280.00	500	PASS
Middle	2442	1270.00	500	PASS
High	2480	1275.00	500	PASS


NOTE:

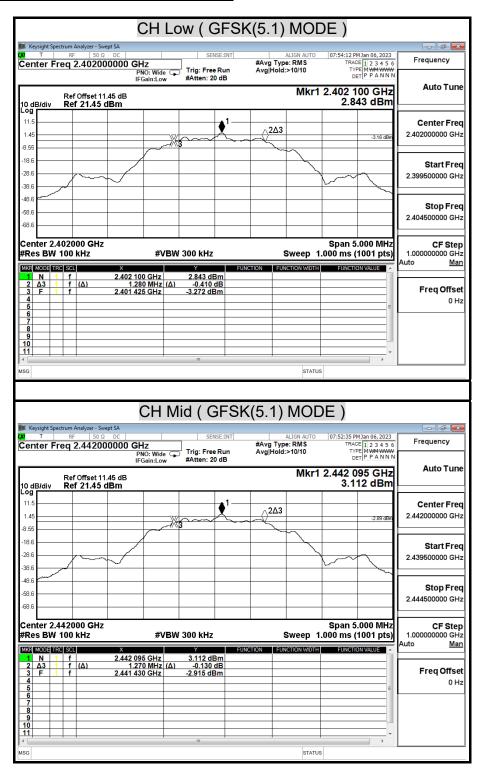
- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Page: 18 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

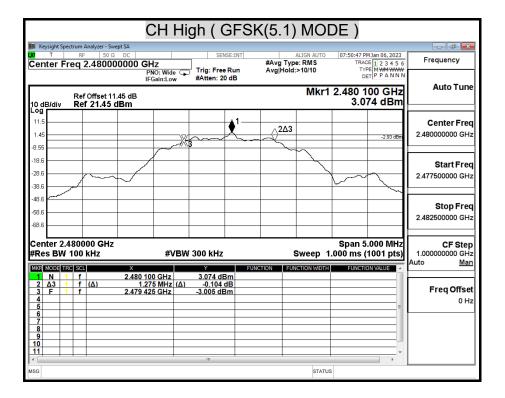

6dB BANDWIDTH (GFSK(4.0) MODE)

Page: 19 / 112

Rev.: 00



Page: 20 / 112


Report No.: TMTN2212001732NR Rev.: 00

6dB BANDWIDTH (GFSK(5.1) MODE)

Page: 21 / 112 Rev.: 00

Page: 22 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

9.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST SETUP

Page: 23 / 112

Report No.: TMTN2212001732NR Rev.: 00

TEST PROCEDURE

The tests were performed in accordance with KDB 558074 9.1.1

9.2.1 Measurement Procedure PK2:

Peak Power set:

- 1. Set the RBW = 1 MHz.
- Set the VBW ≥ [3 × RBW].
- 3. Set the span \geq [1.5 × DTS bandwidth].
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6.Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8.Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

Average Power

Connect the EUT to power meter, set the center frequency of the power meter to the channel center frequency.

Average power set:

- 1. Measure the duty cycle D of the transmitter output signal
- 2. Set span to at least 1.5 times the OBW.
- 3.Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- Set VBW ≥ [3 × RBW].
- 5. Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so that narrowband signals are not lost between frequency bins.)
- 6.Manually set sweep time \geq [10 × (number of points in sweep) × (total ON/OFF period of the transmitted signal)].
- 7. Set detector = RMS (power averaging).
- 8. Perform a single sweep.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW.
- 10. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Page: 24 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

TEST RESULTS

No non-compliance noted.

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27

GFSK(4.0) mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	2.96	30.00	PASS
Middle	2442	3.21	30.00	PASS
High	2480	3.18	30.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 1Mbps long.

2. The cable assembly insertion loss of 11.45dB was entered as an offset in the power meter to allow for direct reading of power.

GFSK(5.1) mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	2.99	30.00	PASS
Middle	2442	3.24	30.00	PASS
High	2480	3.23	30.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 2Mbps long.

2. The cable assembly insertion loss of 11.45dB was entered as an offset in the power meter to allow for direct reading of power.

Page: 25 / 112

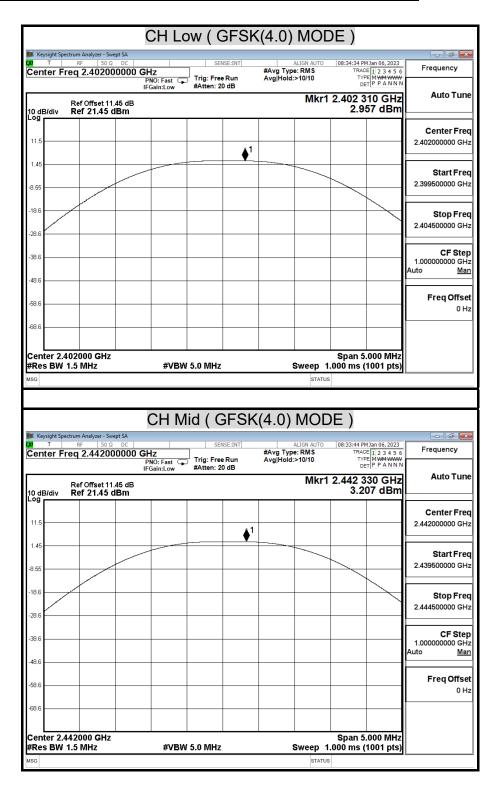
Rev.: 00

Average Power Data

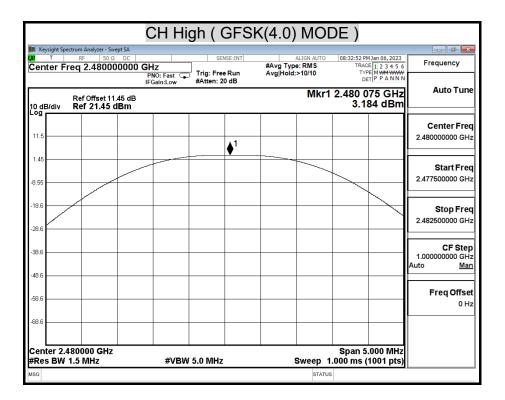
Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27

GFSK(4.0) mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2402	2.55
Middle	2442	2.79
High	2480	2.79

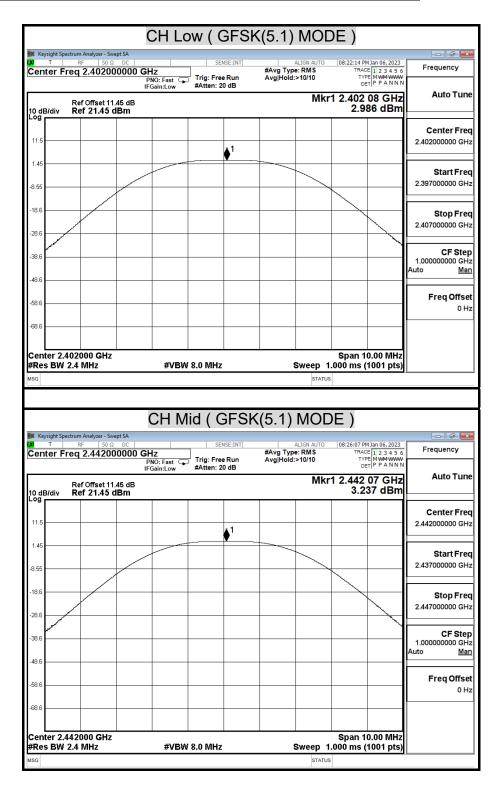

GFSK(5.1) mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2402	2.40
Middle	2442	2.66
High	2480	2.63

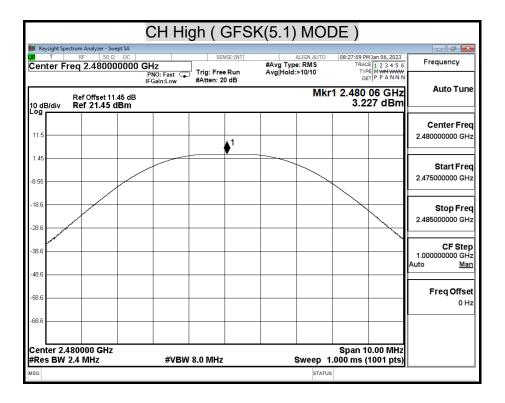

Page: 26 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

MAXIMUM PEAK OUTPUT POWER (GFSK(4.0) MODE)

Page: 27 / 112 Rev.: 00

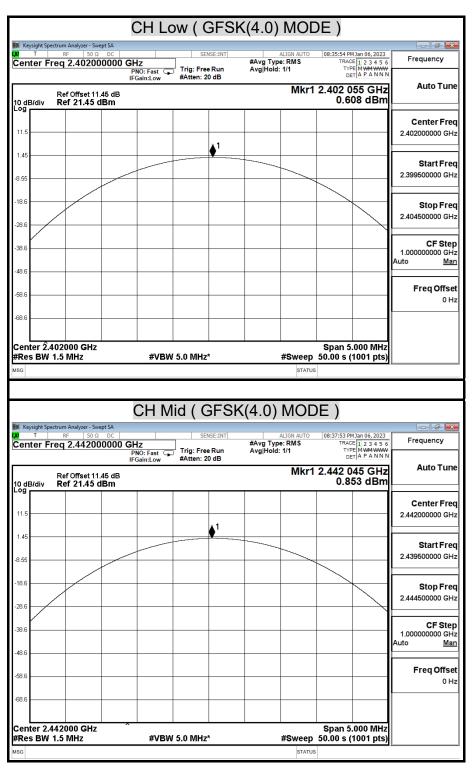


MAXIMUM PEAK OUTPUT POWER (GFSK(5.1) MODE)


Page: 28 / 112

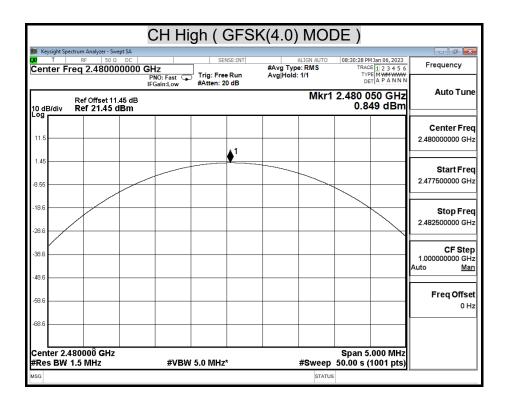
Rev.: 00

Page: 29 / 112 Rev.: 00



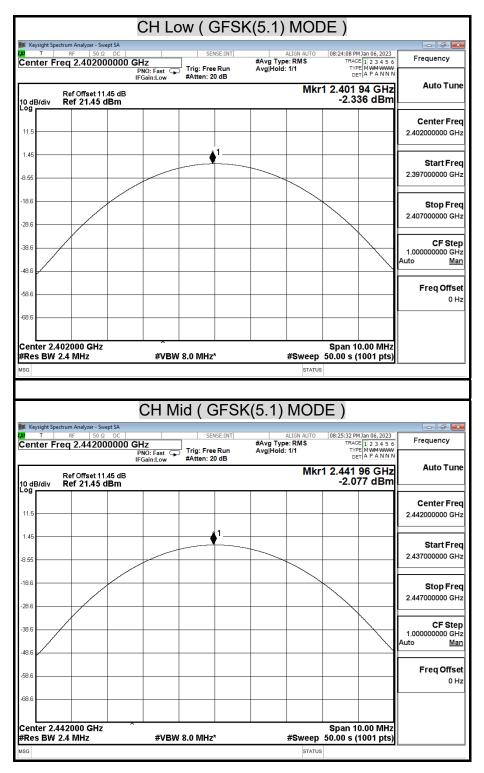
Page: 30 / 112

Rev.: 00

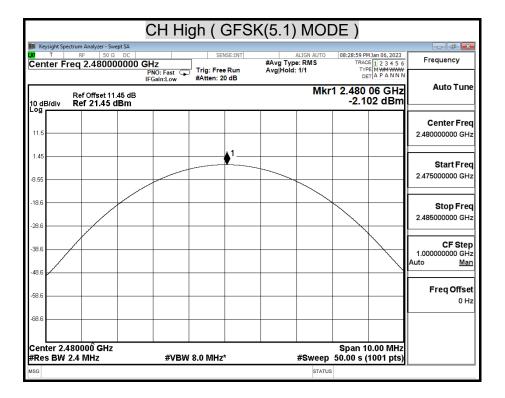

MAXIMUM AVERAGE OUTPUT POWER (GFSK(4.0) MODE)

Page: 31 / 112

Rev.: 00



Page: 32 / 112


Rev.: 00

MAXIMUM AVERAGE OUTPUT POWER (GFSK(5.1) MODE)

Page: 33 / 112 Rev.: 00

Page: 34 / 112 Rev.: 00

9.3 DUTY CYCLE

LIMIT

Nil (No dedicated limit specified in the Rules)

TEST SETUP

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

Page: 35 / 112

Rev.: 00

TEST RESULTS

No non-compliance noted.

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27

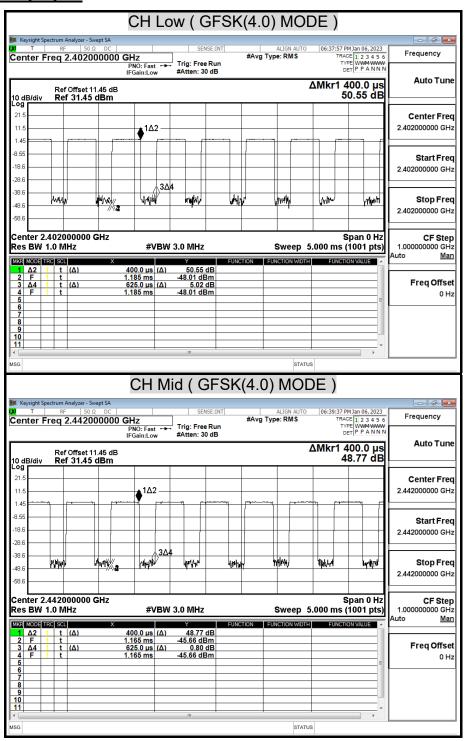
GFSK(5.1) Mode

	us	Times	Ton Time(us)	Total Ton time(ms)
Ton1	400.000	1	400	
Ton2		0	0	
Ton3			0	0.4
Тр				0.625

Ton	0.4	
Tp(Ton+Toff)	0.625	
Duty Cycle	0.64	
Duty Factor	1.938	

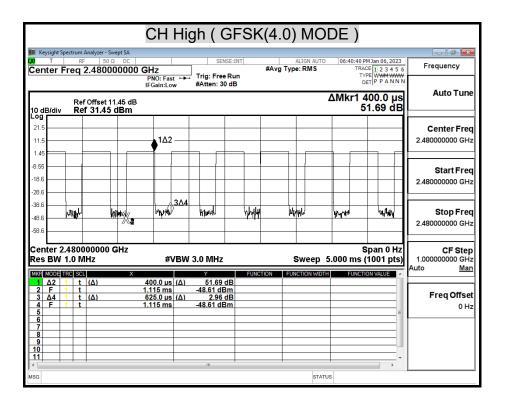
GFSK(5.1) Mode

	us	Times	Ton Time(us)	Total Ton time(ms)
Ton1	210.000	1	210	
Ton2		0	0	
Ton3			0	0.21
Тр				0.625


Ton	0.21	
Tp(Ton+Toff)	0.625	
Duty Cycle	0.34	
Duty Factor	4.737	

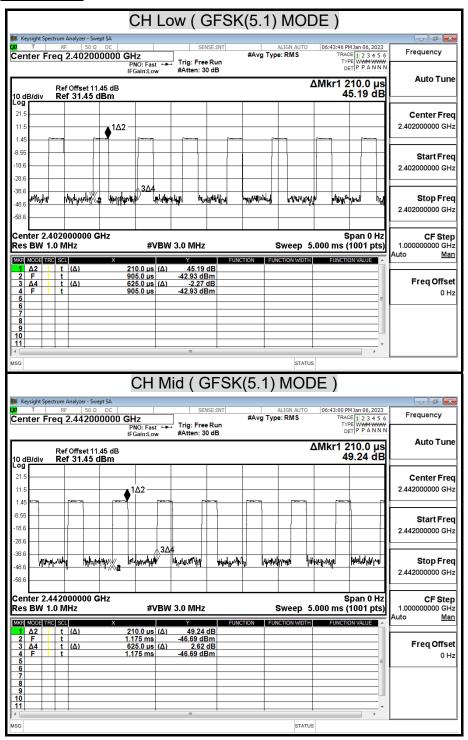
Page: 36 / 112 Rev.: 00

TEST PLOT


Duty Cycle

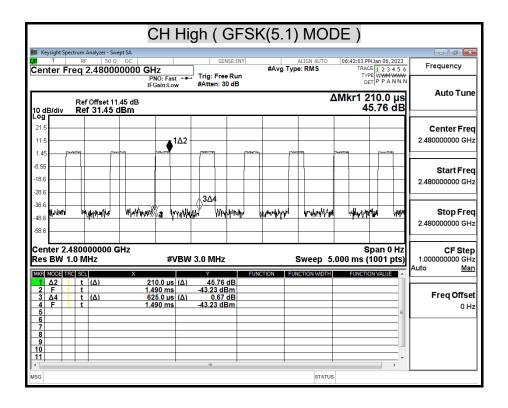
Page: 37 / 112

Rev.: 00



Page: 38 / 112

Rev.: 00


Duty Cycle

Page: 39 / 112

Rev.: 00

Page: 40 / 112 Rev.: 00

9.4 POWER SPECTRAL DENSITY

LIMIT

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST SETUP

TEST PROCEDURE

The tests were performed in accordance with 558074 D01 15.247 Meas Guidance v05

10.2 Method PKPSD (peak PSD):

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Page: 41 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

TEST RESULTS

No non-compliance noted.

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27

GFSK(4.0) mode

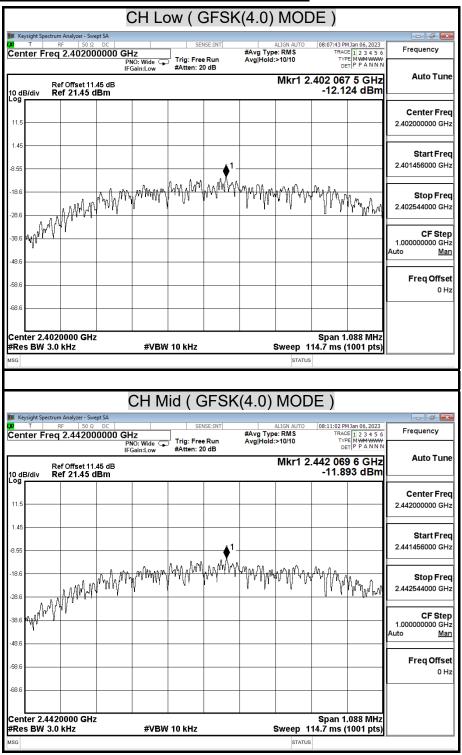
Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Result
Low	2402	-12.12	8.00	-20.12	PASS
Middle	2442	-11.89	8.00	-19.89	PASS
High	2480	-11.92	8.00	-19.92	PASS

NOTE: 1. At finial test to get the worst-case emission at 1Mbps long.

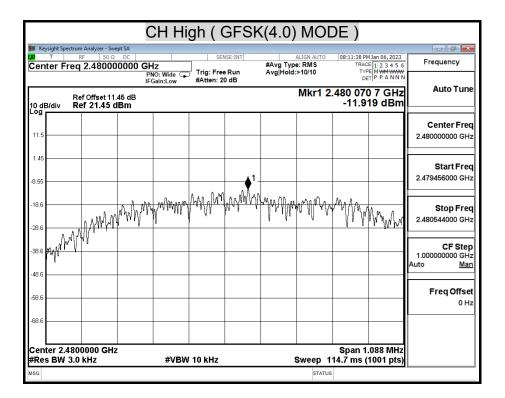
2. The cable assembly insertion loss of 11.45dB was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

GFSK(5.1) mode

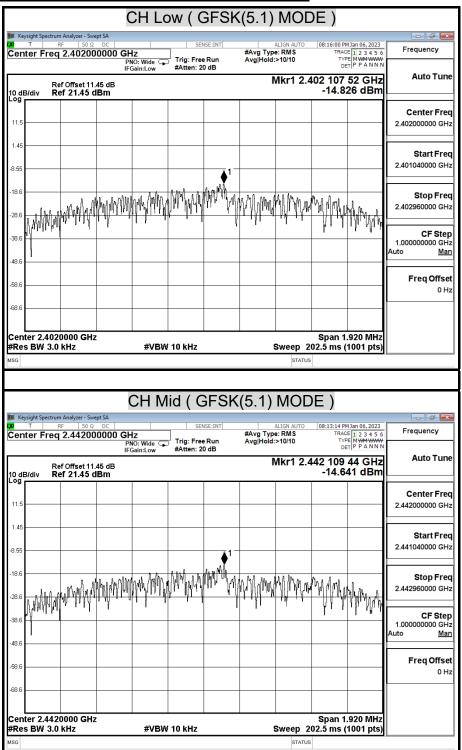
Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Result
Low	2402	-14.83	8.00	-22.83	PASS
Middle	2442	-14.64	8.00	-22.64	PASS
High	2480	-11.85	8.00	-19.85	PASS

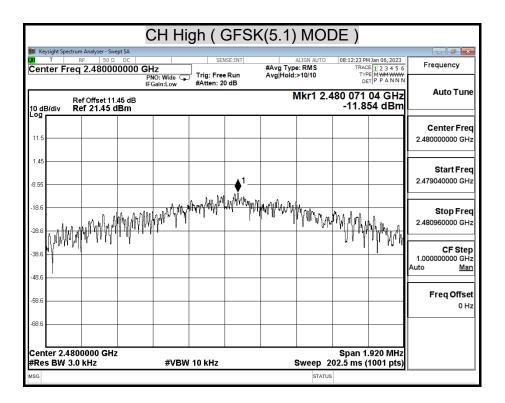

NOTE: 1. At finial test to get the worst-case emission at 2Mbps long.

2. The cable assembly insertion loss of 11.45dB was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


Page: 42 / 112 Rev.: 00

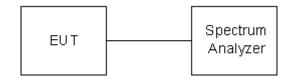
POWER SPECTRAL DENSITY (GFSK(4.0) MODE)


Page: 43 / 112 Rev.: 00


Page: 44 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

POWER SPECTRAL DENSITY (GFSK(5.1) MODE)

Page: 45 / 112 Rev.: 00


Page: 46 / 112 Rev.: 00

9.5 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST SETUP

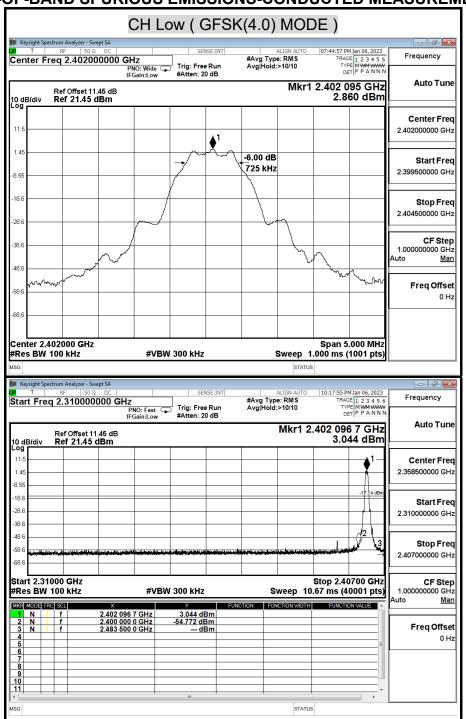
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100kHz, the video bandwidth is set to 300kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

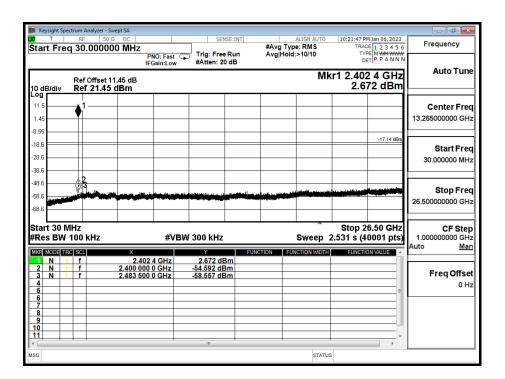
No non-compliance noted.


Page: 47 / 112

Rev.: 00

TEST DATA

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27


OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Page: 48 / 112

Rev.: 00

CH Mid (GFSK(4.0) MODE) Center Freq 2.442000000 GHz

PNO: Wide Freak Trig: Free Run

| PNO: Wide Free Run | PNO: Wide #Avg Type: RMS TXACE | 1 2 3 4 5 6 Avg|Hold:>10/10 TYPE M WHAVWAY DET | P P A N N N Auto Tune Mkr1 2.442 100 GHz Ref Offset 11.45 dB Ref 21.45 dBm 3.109 dBm 10 dB/div Log Center Freq 2.442000000 GHz -6.00 dB Start Freq 720 kHz 2.439500000 GHz 2.444500000 GHz **CF Step** 1.000000000 GHz Man Freq Offset 0 Hz Center 2.442000 GHz #Res BW 100 kHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) **#VBW** 300 kHz 10:27:11 PM Jan 06, 2023 TRACE 1 2 3 4 5 6 TYPE M WM WWW DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Start Freq 30.000000 MHz Frequency PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.442 1 GHz 2.815 dBm **Auto Tune** Ref Offset 11.45 dB Ref 21.45 dBm 10 dB/div Log Center Freq 13.265000000 GHz -16.89 dE 18.8 Start Freq -28.6 30.000000 MHz -38.6 48 F Stop Freq 26.500000000 GHz -68.6 Stop 26.50 GHz Sweep 2.531 s (40001 pts) Start 30 MHz #Res BW 100 kHz **CF Step** 1.000000000 GHz #VBW 300 kHz Auto <u>Man</u> 2.815 dBm -56.068 dBm -57.728 dBm Freq Offset 0 Hz

Page: 49 / 112

00

Rev.:

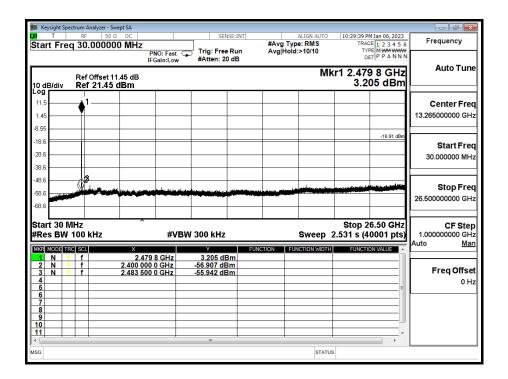
STATUS

CH High (GFSK(4.0) MODE) Keysight Spectrum Analyzer - Swept SA TRACE 1 2 3 4 5 6 TYPE M WM WWW DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Frequency Center Freq 2.480000000 GHz
PNO: Wide PRO: Wide IFGain:Low Auto Tune Mkr1 2.480 100 GHz Ref Offset 11.45 dB Ref 21.45 dBm 3.093 dBm 10 dB/div Center Freq 2.480000000 GHz -6.00 dB Start Freq 715 kHz 2.477500000 GHz Stop Freq 2.482500000 GHz -28.6 CF Step 1.000000000 GH Man Freq Offset 0 Hz Center 2.480000 GHz Span 5.000 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 1.000 ms (1001 pts) STATUS | Keyaight Spectrum Primy
| T | RF | 50 Ω DC |
| Start Freq 2.475000000 GHz
| PNO: Fast | FGain:Low |
| FGain:Low | FGA - 6 X 10:30:33 PM Jan 06, 2023

TRACE 1 2 3 4 5 6

TYPE M WM WWW

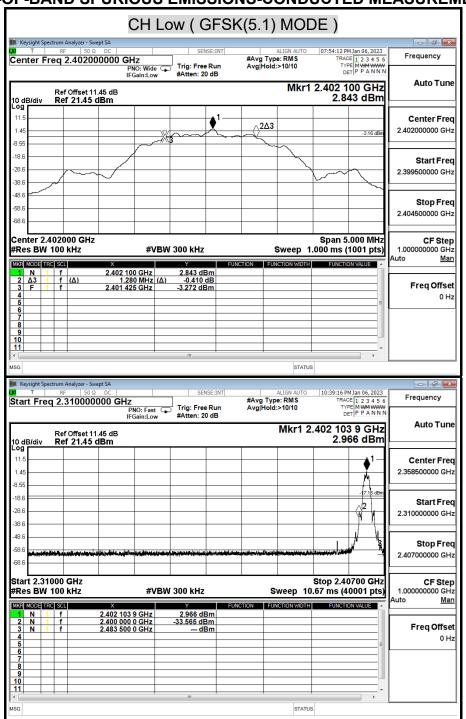
DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Frequency Trig: Free Run #Atten: 20 dB Auto Tune Mkr1 2.480 104 375 GHz Ref Offset 11.45 dB Ref 21.45 dBm 3.275 dBm 10 dB/div Log Center Freq 2.487500000 GHz -8.55 -16.91 dE -18.6 Start Freq 2.475000000 GHz -38.6 48.6 Stop Freq -58.6 2.500000000 GHz -68.6 Stop 2.50000 GHz Sweep 2.667 ms (40001 pts) Start 2.47500 GHz #Res BW 100 kHz **CF Step** 1.000000000 GHz #VBW 300 kHz Auto Man MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 2.480 104 375 GHz 2.400 000 0 GHz 2.483 500 0 GHz 3.275 dBm --- dBm -58.182 dBm Freq Offset STATUS


Page: 50 / 112

Rev.: 00

Page: 51 / 112

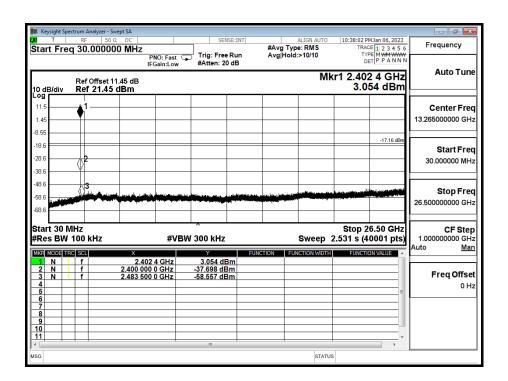
Rev.: 00



Page: 52 / 112

Rev.: 00

Model Name	MZ-123BT	Test By	Peter Chu
Temp & Humidity	21.5°C, 45%	Test Date	2022/12/27


OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Page: 53 / 112

Rev.: 00

CH Mid (GFSK(5.1) MODE) 07:52:35 PM Jan 06, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Center Freq 2.442000000 GHz PNO: Wide Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.442 095 GHz 3.112 dBm Auto Tune Ref Offset 11.45 dB Ref 21.45 dBm 11.5 Center Freq 2Δ3 2.442000000 GHz -8.55 18.8 Start Freq -28.6 2.439500000 GHz -38. -58 E 2.444500000 GHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) Center 2.442000 GHz **CF Step** 1.000000000 GHz **#VBW 300 kHz** #Res BW 100 kHz Man MKR MODE TRC SCL 2.442 095 GHz 1.270 MHz (Δ) 2.441 430 GHz 3.112 dBm -0.130 dB -2.915 dBm Freq Offset 0 Hz 10:37:06 PM Jan 06, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Start Freq 30.000000 MHz Frequency PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.442 1 GHz 1.532 dBm **Auto Tune** Ref Offset 11.45 dB Ref 21.45 dBm 10 dB/div Log Center Freq 13.265000000 GHz -16.89 dE 18.8 Start Freq -28.6 30.000000 MHz -38.6 48 F Stop Freq 26.500000000 GHz -68.6 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.531 s (40001 pts) **CF Step** 1.000000000 GHz #VBW 300 kHz Auto <u>Man</u> 1.532 dBm -58.263 dBm -57.634 dBm Freq Offset 0 Hz

Page: 54 / 112

Rev.: 00

STATUS

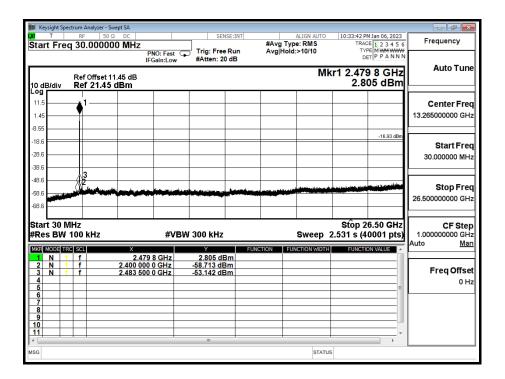
CH High (GFSK(5.1) MODE) Keysight Spectrum Analyzer - Swept SA 1:47 PMJan 06, 2023 TRACE 1 2 3 4 5 6 TYPE MWMWWW DET P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Frequency Mkr1 2.480 100 GHz 3.074 dBm **Auto Tune** Ref Offset 11.45 dB Ref 21.45 dBm 11.5 Center Freq ∆2Δ3 2.480000000 GHz -2.93 dE -8.55 Start Freq -28.6 2.477500000 GHz 38.8 48.6 Stop Freq -58.6 2.482500000 GHz Center 2.480000 GHz Span 5.000 MHz CF Step #Res BW 100 kHz **#VBW** 300 kHz Sweep 1.000 ms (1001 pts) 1.000000000 GH Man 2.480 100 GHz 1.275 MHz (Δ) 2.479 425 GHz Freq Offset 0 Hz Keysight Spectrum Palary.

T RF SO Q DC

Start Freq 2.475000000 GHz

PNO: Fast Program: PNO: Fast PNO: Fast Program: PNO: Fast P 10:31:17 PM Jan 06, 2023 TRACE 1 2 3 4 5 6 TYPE M WM WWW P P P A N N N #Avg Type: RMS Avg|Hold:>10/10 Frequency Trig: Free Run #Atten: 20 dB Auto Tune Mkr1 2.480 101 250 GHz Ref Offset 11.45 dB Ref 21.45 dBm 3.258 dBm 10 dB/div Log Center Fred 2.487500000 GHz -8.55 -16.93 dE -18.6 Start Freq 2.475000000 GHz -38.6 48.6 Stop Freq -58.6 2.500000000 GHz -68.6 Stop 2.50000 GHz Sweep 2.667 ms (40001 pts) Start 2.47500 GHz #Res BW 100 kHz **CF Step** 1.000000000 GHz #VBW 300 kHz Auto Man MKR MODE TRC SCL 3.258 dBm --- dBm -54.260 dBm 1 N 1 f 2 N 1 f 3 N 1 f 2.480 101 250 GHz 2.400 000 0 GHz 2.483 500 0 GHz Freq Offset

Page: 55 / 112


Rev.: 00

STATUS

Page: 56 / 112

Rev.: 00

Page: 57 / 112 Rev.: 00

9.6 RADIATED EMISSIONS

9.6.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

 Report No.:
 TMTN2212001732NR
 Page: 58 / 112

 Rev.:
 00

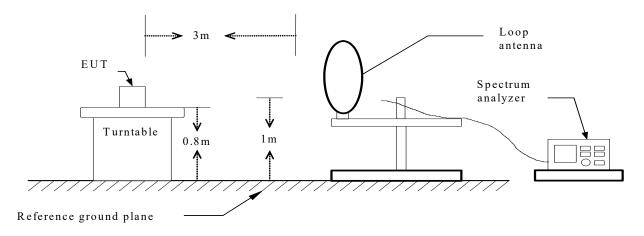
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

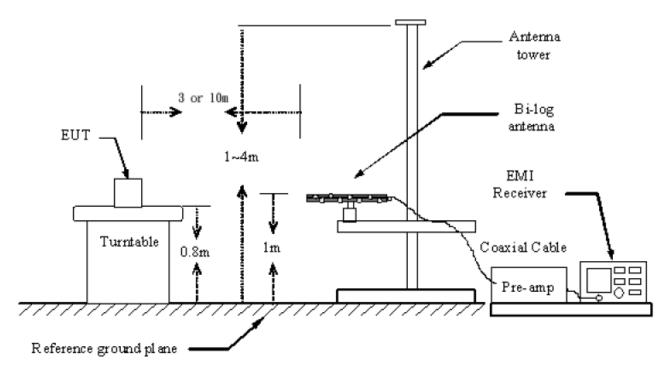
^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Report No.: TMTN2212001732NR Page: Rev.:

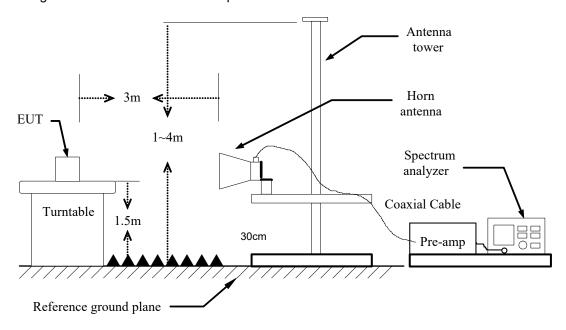

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.


59 / 112

00

9kHz ~ 30MHz


30MHz ~ 1GHz

Page: 60 / 112 Rev.: 00

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8/1.5 meters above the ground at a 3 meter chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The tests were performed in accordance with 558074 D01 15.247 Meas Guidance v05

Page: 61 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

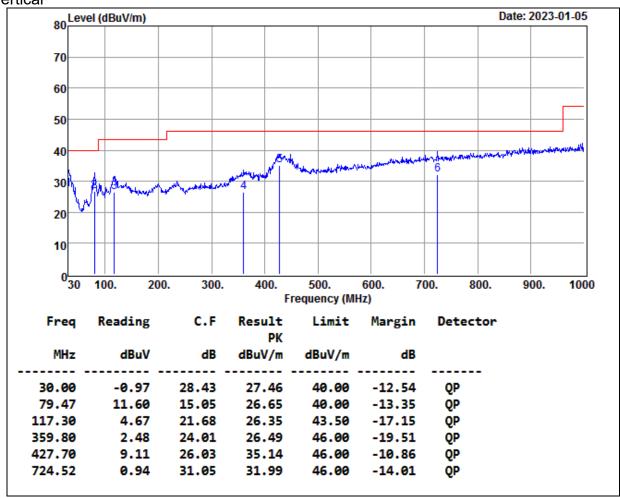
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

- 2. The resolution bandwidth of test spectrum analyzer is 1MHz, the video bandwidth is 3MHz and detector is Peak for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test spectrum analyzer is 1 MHz and the video bandwidth is more than 1/T for Average detection (AV) at frequency above 1GHz.
- 4. No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)

TEST RESULTS

No non-compliance noted.


Page: 62 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

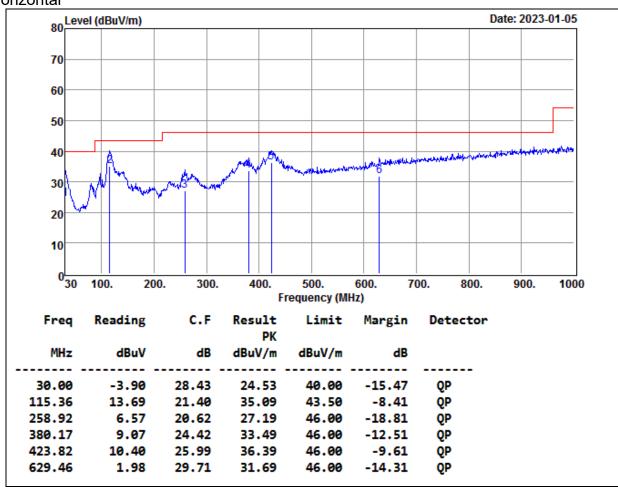
9.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Test Voltage: AC 120V, 60Hz

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	TX	Temp & Humidity	23.4°C, 50%

Vertical

Note: 1. QP= Quasi-peak Reading.


2. The other emission levels were very low against the limit

Page: 63 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	TX	Temp & Humidity	23.4°C, 50%

Horizontal

Note: 1. QP= Quasi-peak Reading.

2. The other emission levels were very low against the limit

Page: 64 / 112


Report No.: TMTN2212001732NR Rev.: 00

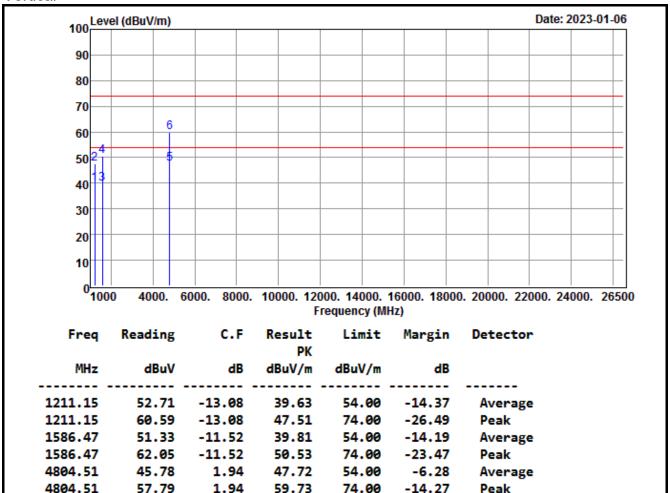
9.6.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Test Voltage: AC 120V, 60Hz

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH Low)	TEMP& Humidity	21.4°C, 45%

Horizontal

REMARK:

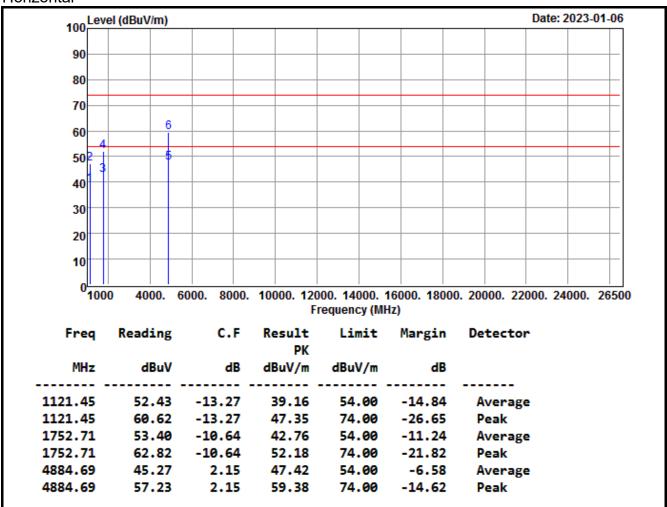

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz,A(Average): RBW=1MHz, VBW ≥ 1/T
- The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 65 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH Low)	TEMP& Humidity	21.4°C, 45%

Vertical

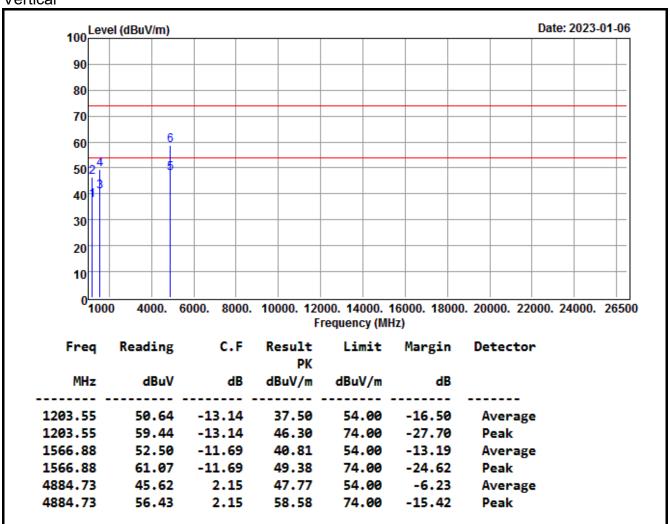
REMARK:


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz,A(Average): RBW=1MHz, VBW ≥ 1/T
- The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 66 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH Middle)	TEMP& Humidity	21.4°C, 45%

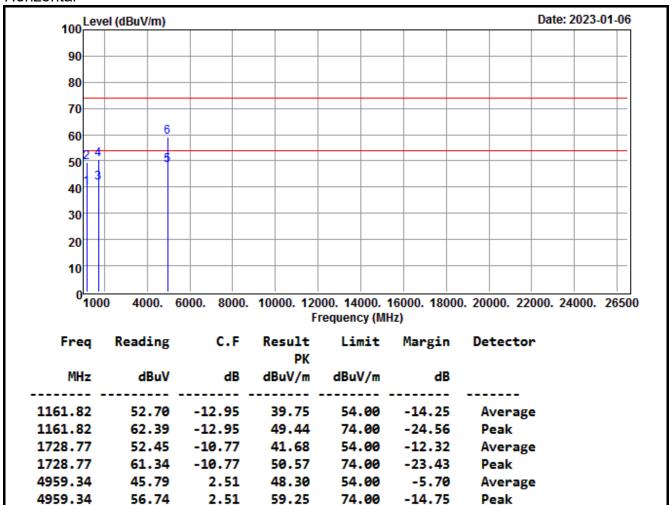
Horizontal


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 67 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH Middle)	TEMP& Humidity	21.4°C, 45%

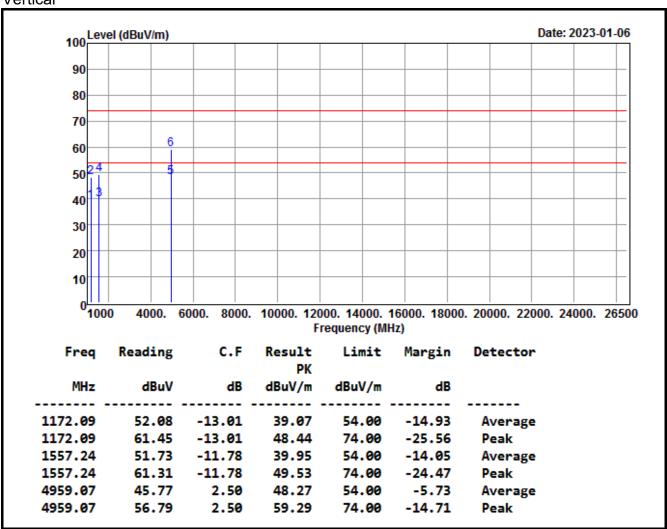
Vertical


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 68 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH High)	TEMP& Humidity	21.4°C, 45%

Horizontal

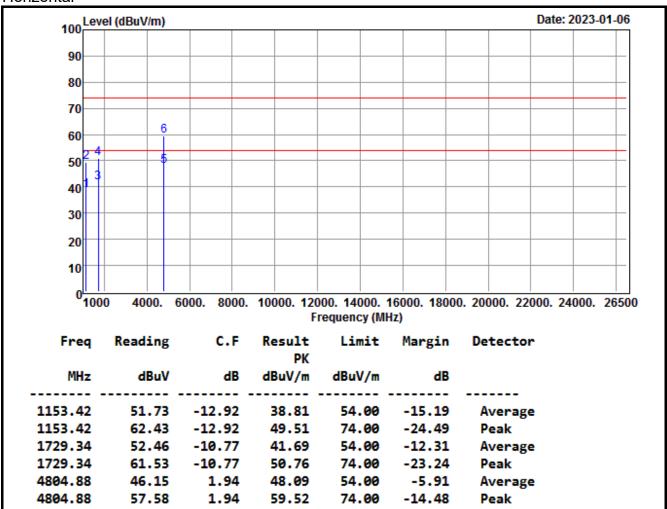

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 69 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH High)	TEMP& Humidity	21.4°C, 45%

Vertical

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

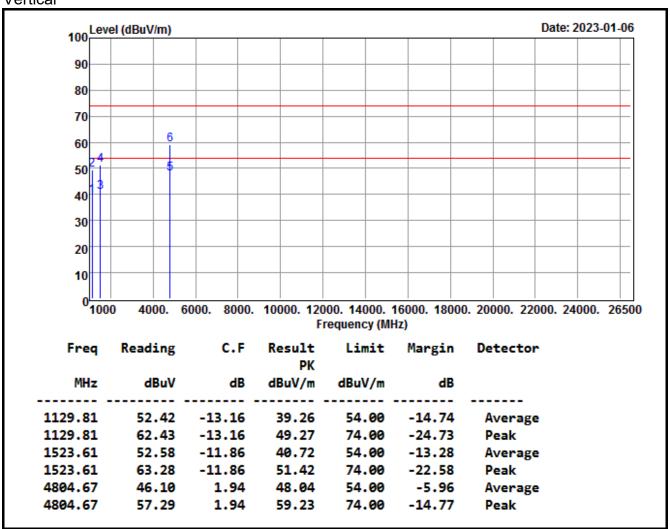


Page: 70 / 112

Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH Low)	TEMP& Humidity	21.4°C, 45%

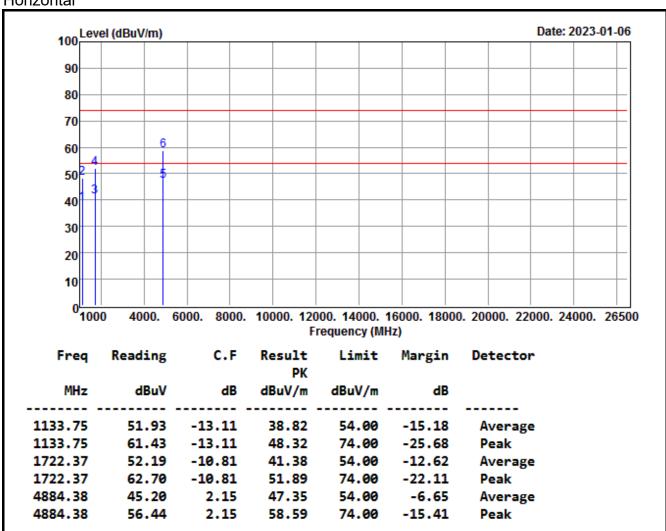
Horizontal


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 71 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH Low)	TEMP& Humidity	21.4°C, 45%

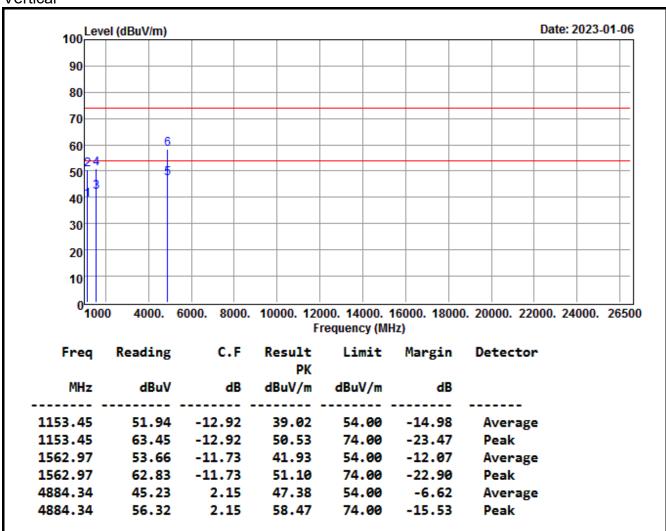
Vertical


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 72 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH Middle)	TEMP& Humidity	21.4°C, 45%

Horizontal

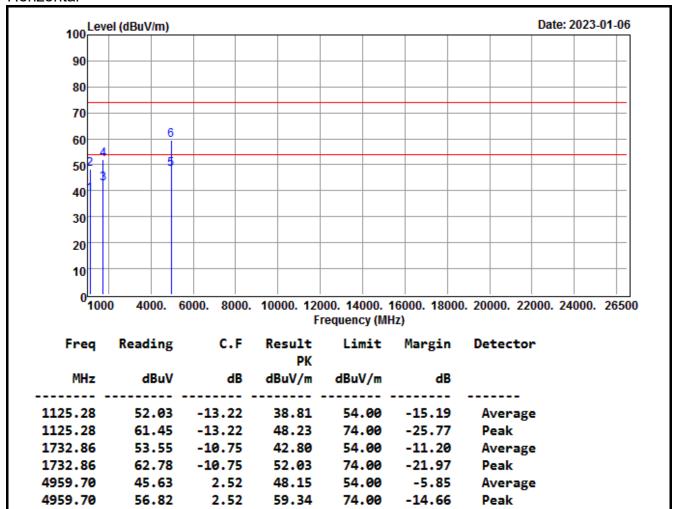

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 73 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH Middle)	TEMP& Humidity	21.4°C, 45%

Vertical

Remark:

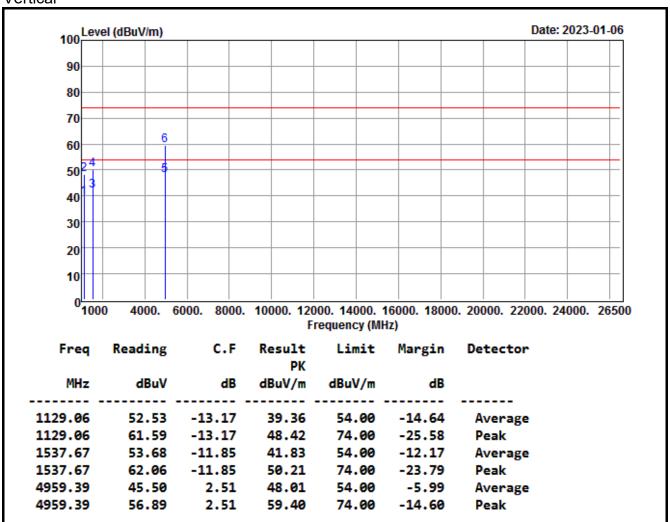

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

Page: 74 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH High)	TEMP& Humidity	21.4°C, 45%

Horizontal

Remark:


- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow:
 Level = Reading + AF + Cable Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

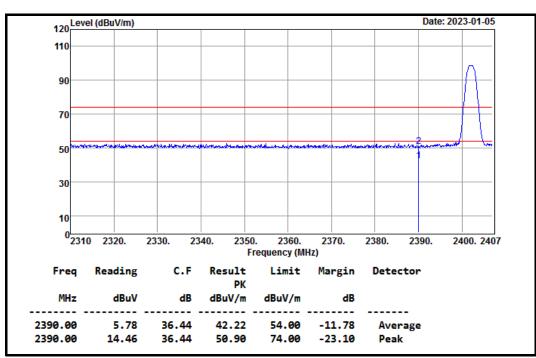
Page: 75 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/06
Model	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH High)	TEMP& Humidity	21.4°C, 45%

Vertical

Remark:

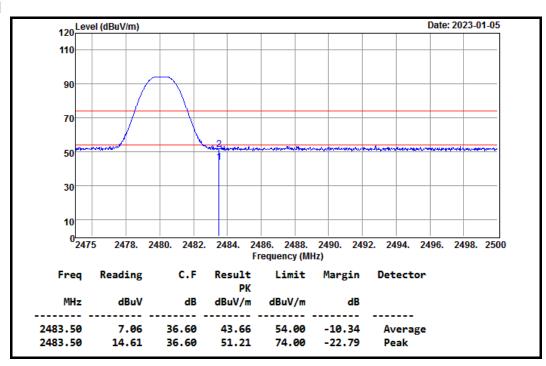
- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW≥1/T
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter, Margin = Level-Limit
- 4. The other emission levels were 10dB below the limit
- 5. The test distance is 3m.
- 6. *=Restricted bands of operation

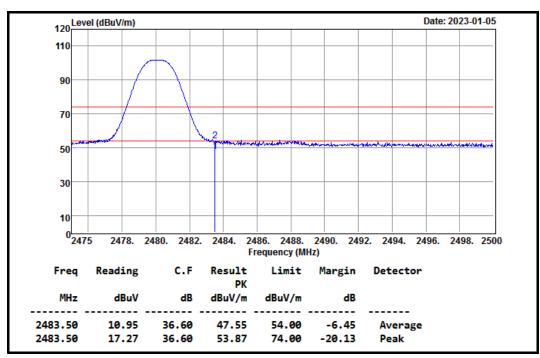

Page: 76 / 112 Rev.: 00

9.6.4 RESTRICTED BAND EDGES

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH Low)	Temp & Humidity	23.4°C, 50%

Horizontal

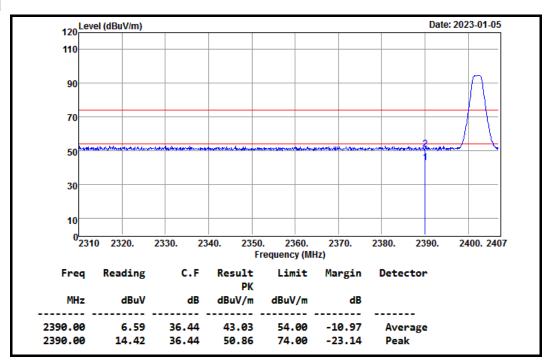




Page: 77 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(4.0) TX (CH High)	Temp & Humidity	23.4°C, 50%

Horizontal

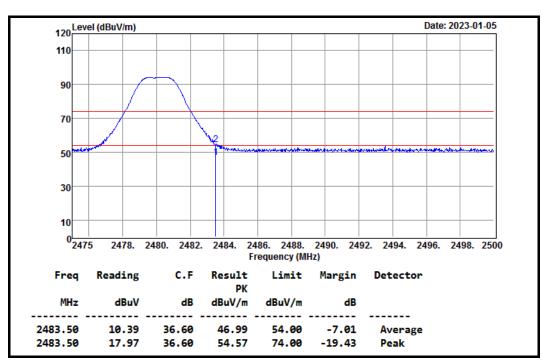


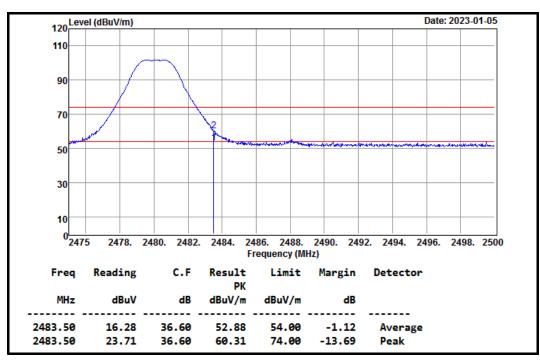


Page: 78 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH Low)	Temp & Humidity	23.4°C, 50%

Horizontal





Page: 79 / 112 Rev.: 00

Product Name	INSTALLATION MIXER	Test Date	2023/01/05
Model Name	MZ-123BT	Test By	Peter Chu
Test Mode	GFSK(5.1) TX (CH High)	Temp & Humidity	23.4°C, 50%

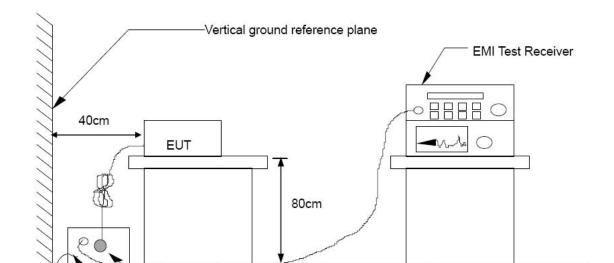
Horizontal

Page: 80 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

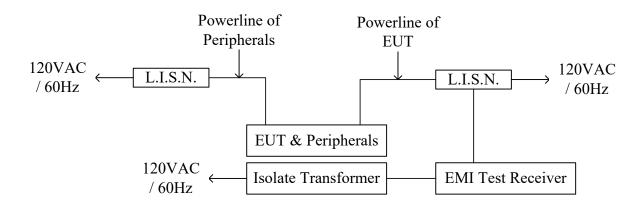
9.7 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.


The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.5 - 5	56	46
5 - 30	60	50


Report No.: TMTN2212001732NR **TEST SETUP**

Page: 81 / 112 Rev.: 00

Horizontal ground reference plane

Bonded to horizontal ground reference plane

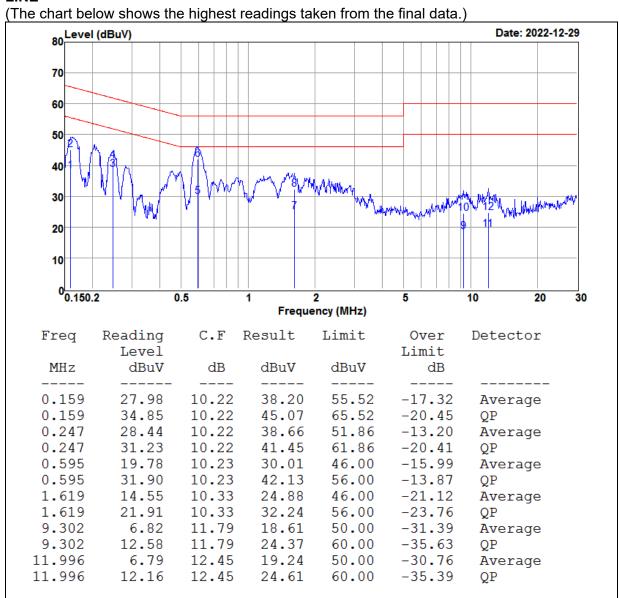
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.10.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

Page: 82 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

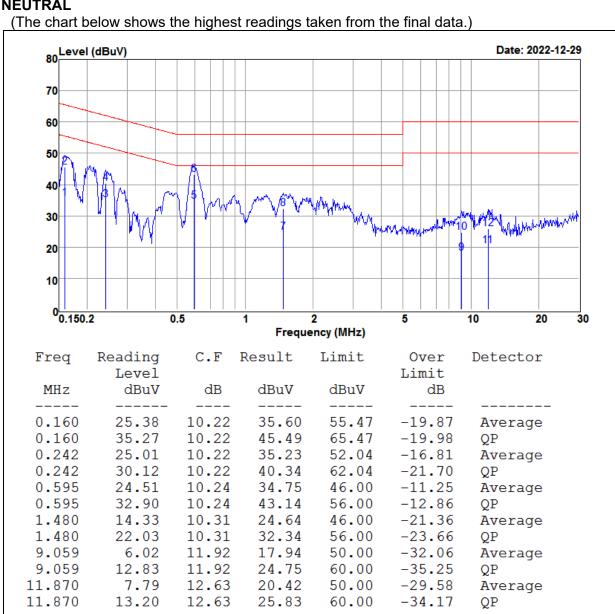

TEST RESULTS

No non-compliance noted.

Test Voltage: AC 120V, 60Hz

Model No.	MZ-123BT	Test Mode	Aux in
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

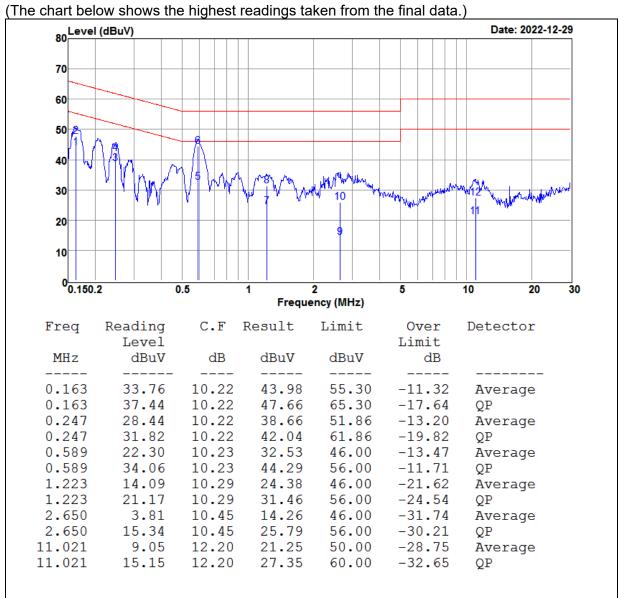
LINE



Page: 83 / 112 Report No.: TMTN2212001732NR Rev.: 00

Model No.	MZ-123BT	Test Mode	Aux in
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

NEUTRAL

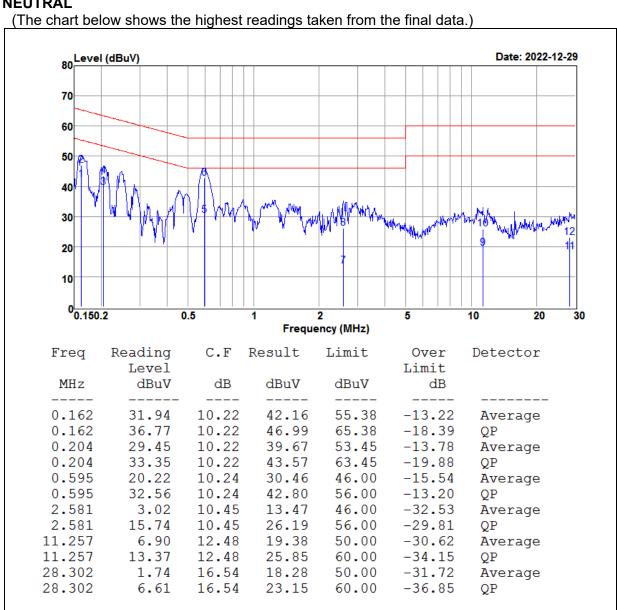


Page: 84 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

Test Voltage: AC 120V, 60Hz

Model No.	MZ-123BT	Test Mode	Bluetooth
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

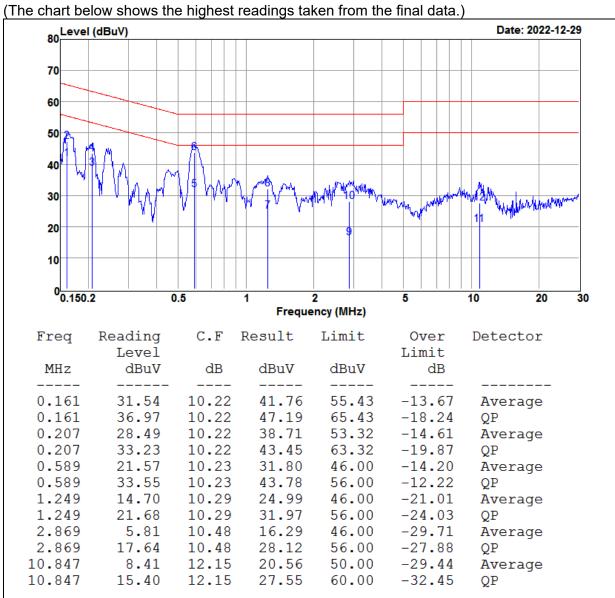
LINE



Page: 85 / 112 Report No.: TMTN2212001732NR Rev.: 00

Model No.	MZ-123BT	Test Mode	Bluetooth
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

NEUTRAL

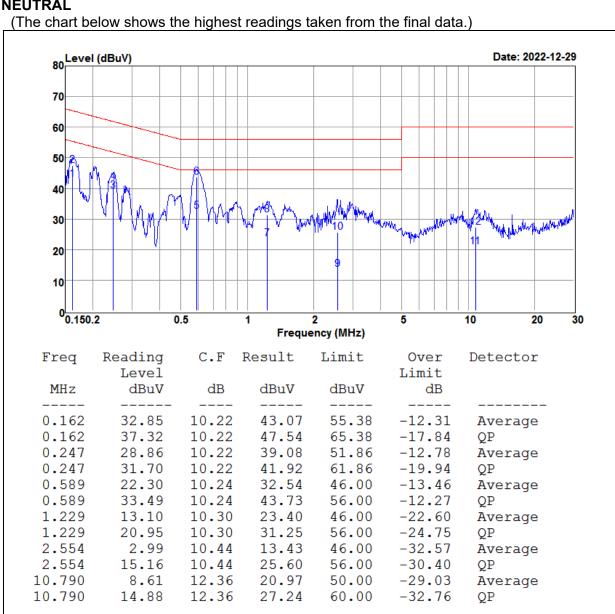


Page: 86 / 112 **Report No.:** TMTN2212001732NR Rev.: 00

Test Voltage: AC 120V, 60Hz

Model No.	MZ-123BT	Test Mode	Line input
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

LINE



Page: 87 / 112 Rev.: 00

Model No.	MZ-123BT	Test Mode	Line input
Environmental Conditions	25℃, 56% RH	Resolution Bandwidth	9 kHz
Tested by	Jeremy Zhong		

NEUTRAL

Page: 88 / 112 Rev.: 00

10. ANTENNA REQUIREMENT

10.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

10.2 ANTENNA CONNECTED CONSTRUCTION

Manufacturer: BRITO TECHNOLOGY

Type: Dipole Antenna Model: WF1DI-2AB(C)

Gain: 2.0 dBi

=== END of Report ===