

REPORT ON THE CERTIFICATION TESTING OF AN IRIDIUM SATELLITE LLC
9602 TRANSCEIVER
WITH RESPECT TO
FCC RULES CFR 47, PART 25
AND
FCC RULES CFR 47, PART 15

TEST REPORT NO: 0F3048WUS1

COPY NO:

ISSUE NO: 2

FCC ID: Q639602

> REPORT ON THE CERTIFICATION TESTING OF AN **IRIDIUM SATELLITE LLC** 9602 TRANSCEIVER WITH RESPECT TO FCC RULES CFR 47, PART 25 **AND** FCC RULES CFR 47, PART 15

24th February – 9th March 2010 TEST DATE:

APPROVED BY:

J CHARTERS **RADIO PRODUCT**

MANAGER

DATE:

22nd March 2010

Distribution:

Copy Nos:

Iridium Satellite LLC

TCB: TRaC EMC & Safety

TRaC Telecoms & Radio

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

The results herein relate only to the sample tested. Full results are contained in the relevant works order file.

CONTENTS

CERTIFICATE OF	CONFORMITY & COMPLIANCE		PAGE	Ī			
APPLICANT'S SU			5				
EQUIPMENT TES			6				
TESTS REQUIRE		6					
	RIPTION & STANDARDS REFERENCES		7				
TEST RESULTS			·				
	ower - Conducted		8				
·	mitations - Conducted		9				
	issions - Conducted		10				
·	issions - Radiated		11				
·	tability -Temperature		12				
	tability -Voltage		13				
	- Unintentional Radiator						
Spurious Em	issions - Radiated		14				
Conducted E	missions –AC Powerline Conduction		15				
			ANNE	X			
PHOTOGRAPHS			Α				
APPLICANT'S SU	JBMISSION OF DOCUMENTATION LIST		В				
TEST EQUIPMEN	NT LIST		С				
EQUIPMENT CAI	LIBRATION		D				
MEASUREMENT	UNCERTAINTY		Е				
DUTY CYCLE			F				
EMISSIONS LIMI	TATIONS		G				
TRANSMITTER S	SPURIOUS EMISSIONS – Conducted		Н				
TRANSMITTER S	SPURIOUS EMISSIONS – Radiated		1				
FREQUENCY ST	ABILITY – Temperature		J				
FREQUENCY ST	ABILITY – Voltage		K				
UNINTENTIONAL	RADIATED EMISSIONS		L				
CONDUCTED EN	IISSIONS – AC POWERLINE CONDUCTION		М				
Notes: 1.	Component failure during test	YES	[]	NO	[X]		
2.	If Yes, details of failure:						

3. The facilities used for the testing of the product contain in this report are FCC Listed.

0F3048WUS1 Page 3 of 64

FCC IDENTITY:

CERTIFICATE OF CONFORMITY & COMPLIANCE

PURPOSE OF TEST:	Certification
TEST SPECIFICATION:	FCC Rules CFR 47, Part 25 & Part 15
TEST RESULT:	Compliant to Specification
ITU EMISSIONS DESIGNATOR	41K7Q7W
EQUIPMENT UNDER TEST:	9602 Transceiver
EQUIPMENT TYPE:	Satellite Communications Module
PEAK OUTPUT POWER:	1.51dBW, 1.41W
MEAN OUTPUT POWER:	-8.81dBw, 0.13mW
CHANNEL SPACING:	41.667 kHz
NUMBER OF CHANNELS:	252 (240 Transmit Channels)
MODULATION TYPE:	Q7W
POWER SOURCE(s):	egu _{+5Vdc} and compliance
TEST DATE(s):	24 th February – 9 th March 2010
APPLICANT:	Iridium Satellite LLC
ADDRESS:	6707 Democracy Blvd. Suite 300 Bethesda United States of America MD 20817
TESTED BY:	D WINSTANLEY
APPROVED BY:	J CHARTERS RADIO PRODUCT
	MANAGER

Q639602

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT): 9602 Transceiver Satellite Communications Module **EQUIPMENT TYPE:** PURPOSE OF TEST: Certification FCC Rules CFR 47, Part 25 & Part 15 TEST SPECIFICATION(s): TEST RESULT: COMPLIANT Yes No APPLICANT'S CATEGORY: **MANUFACTURER IMPORTER** DISTRIBUTOR TEST HOUSE **AGENT** APPLICANT'S CONTACT PERSON(s): Donna Bethea-Murphy E-mail address: donna.bethea-murphyl@iridium.com APPLICANT: Iridium Satellite LLC ADDRESS: 6707 Democracy Blvd. Suite 300 Bethesda United States of America MD 20817 TEL: +1 301 571 6277 FAX: +1 301 571 6250 MANUFACTURER: Iridium Satellite LLC **DEVELOPMENT AGENT:** Cambridge Consultants Limited DEVELOPMENT AGENTS CONTACT PERSON(s): Ms M Campbell E-mail address: marion.campbell@cambridgeconsultants.com ADDRESS: Science Park Milton Road Cambridge CB4 4DW United Kingdom TEL: +44 (0)1223 420024 +44 (0)1223 423373 FAX: EUT(s) COUNTRY OF ORIGIN: **United States** TEST LABORATORY: TRaC Telecoms & Radio, Up Holland UKAS ACCREDITATION No: 0971 24th February – 9th March 2010 TEST DATE(s): TEST REPORT No: 0F3048WUS1

0F3048WUS1 Page 5 of 64

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.	TEST/EXAMINATION	FCC Part 2	FCC Part 25	APPLICABILITY	RESULT
	RF Power Output	-	25.204 (a)	YES	PASS
	Emissions Limitations	-	25.202 (f)	YES	PASS
	Spurious Emissions at Antenna Terminals	2.1051	25.202 (f) 25.213	YES	PASS
	Protection of the Radio Navigation Satellite Service	-	25.216(c) 25.216(f)	YES	PASS
	Spurious Emissions Radiated	2.1053	25.202 (f) 25.213	YES	PASS
	Frequency Stability Temperature	2.1055	25.202 (d)	YES	PASS
	Frequency Stability Voltage	2.1055	25.202 (d)	YES	PASS

Note: The 9602 Transceiver is subject to FCC Part 25 & Part 2 for FCC Certification for units marketed within the United States. The above tests, as specified in FCC Part 2, with limits as defined in FCC Part 25 were performed on the 9602 Transceiver.

2.	Product Use:	Satellite Telephone an	d Data C	ommunications
3.	Emission Designator:	41k7Q7W		
4.	Temperatures:	Ambient (Tnom)		20°C
5.	Supply Voltages:	Vnom		+5Vdc
	Note: Vnom voltages are as stated above	re unless otherwise show	vn on the	test report page
6.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]	
7.	Channel spacing:	Narrowband Wideband	[X] []	41.667 kHz
8.	Test Location:	TRaC Telecoms & Rad Up Holland Hull	dio [X] []	
9.	Modifications made during test program	No modifications were	performe	ed.

0F3048WUS1 Page 6 of 64

Product Description

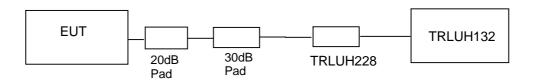
The satellite communications module consists of an L-Band Transceiver (LBT) capable of simultaneous transmit and receive (duplex) operation covering the frequency range of 1616MHz to 1626.5MHz. The frequency accesses used for duplex channels are organised into sub-bands each of which contains eight frequency accesses. Each sub-band, therefore occupies 333.33 kHz (i.e. 8x41.667kHz). Up to 30 sub-bands containing 240 frequency accesses may be used for duplex channels.

Standard References

47 CFR 2 10-1-03 Edition	Code of Federal Regulations, Title 47, Part 2, "Frequency allocations and Radio Telemetry Matters; General Rules and Regulations"
47 CFR 25 10-1-03 Edition	Code of Federal Regulations, Title 47, Part 25, "Satellite Communications" Subpart C, "Technical Matters"
47 CFR 15 20-09-07 Edition	Code of Federal Regulations, Title 47, Part 15,"Radio Frequency Devices" Subpart B, "Unintentional Radiators"
C63.4-2003	American National Standards Institute (ANSI), "Methods of Measurement of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range 9 kHz to 40 GHz"

0F3048WUS1 Page 7 of 64

COMPLIANCE TESTS


TRANSMITTER TESTS

RF OUTPUT POWER - CONDUCTED - PART 25.204 (a)

Ambient temperature = 16°C Radio Laboratory

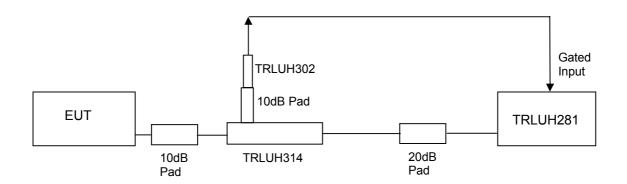
Relative humidity = 51% Supply voltage = +5Vdc

Channel number = See test results

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB. The antenna gain, included in the table below, represents the highest gain of any antennas that are used with this system.

Frequency MHz	Attenuator and cable loss dB	Level at Power Meter dBm	Antenna Gain dB	Mean Carrier Power dBm	Duty Cycle Factor dB	Peak Carrier power dBm	Carrier power dBW	Limit dBW
Channel 1	50.6	-32.54	3	21.06	10.32	31.38	1.38	40
Channel 75	50.6	-32.52	3	21.08	10.32	31.40	1.40	40
Channel 150	50.6	-32.45	3	21.15	10.32	31.47	1.47	40
Channel 240	50.6	-32.41	3	21.19	10.32	31.51	1.51	40


Notes:

- 1. Duty Cycle Factor = $10 \times \log (1/X)$ Where X = (Ton / Tframe). See Annex E for duty cycle plots
- 2. Correction Factor for dBm to dBW = -30dB
- 3. Antenna gain of 3dBi is the worst case gain over an isotropic antenna

EMISSIONS LIMITATIONS - CONDUCTED - PART 25.202 (f)

Ambient temperature = 16°C Radio Laboratory

Relative humidity = 51%Supply voltage = +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB.

To enable an average measurement to be taken the gated input trigger of the spectrum analyser was used.

The Spurious limit is as follows:

On any frequency removed from the assigned frequency by the following percentage of the authorised bandwidth

±50% - 100% -25 dBc ±100% - 250 % -35 dBc

> ±250% At least 43 + 10 log PdB

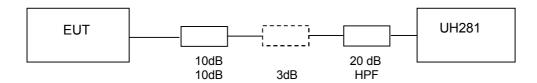
 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

Where the Authorised Bandwidth = 41.667 kHz

Note

1. The 3 kHz to 4 kHz bandwidth correction, cable and attenuator losses and antenna gain have been taken into account in the Ref level offset figure.

The 9602 Transceiver was found to comply with the limits


See plots in Annex G.

0F3048WUS1 Page 9 of 64

SPURIOUS EMISSIONS - CONDUCTED - PART 25.202 (f) & 25.216

Ambient temperature = 14°C Radio Laboratory

Relative humidity = 46% Supply voltage = +5Vdc

For measurements between 1559 MHz and the band edge of 1610MHz the same test setup as per emissions limitations test was used. For measurements below 1559 MHz and above the band edge of 1628.5MHz the above test setup was used. 10 dB and 20 dB attenuators was used for measurements below 3GHz and 10dB and 3dB attenuators and high pass filter for measurements above 3GHz.

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on two channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB.

The Spurious limit was calculated as follows:

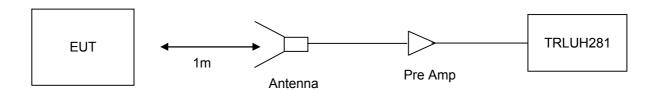
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log (P)dB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS

Frequency Range (MHz)	Ch N°	Freq. of Emission	Spectrum Analyser Level (dBm)	Attenuator & Cable Losses (dB)	Spurious Emission Level (dBm)	Limit dBm	
30MHz – 1559MHz		No Significant emissions within 20 dB of the Limit					
1559MHz – 1605MHz	1	1600.666	-82.97	31.25	-51.54 (Note 7)	-40 (note 6)	
1605MHz – 1610MHz	1 240	1605.000 1605.000	-85.27 -85.88	31.28 31.28	-53.99 -54.60	-40 (Note 4)	
1628.5MHz – 16.3 GHz	1 240 1 240 1 240	3231.847 3252.196 4847.995 4878.062 6464.432 6503.190	-52.83 -52.10 -59.54 -60.98 -59.99 -59.59	15.41 15.42 16.98 17.61 18.39 17.16	-37.42 -36.68 -42.56 -43.37 -41.60 -42.43	-13 -13 -13 -13 -13	


Notes:

- 1. Emissions Checked up to 10 times Fc
- Reference level offset of Scan plots in Annex H already have approximate attenuator losses taken into account
- Average measurement in a carrier on state were taken in the bands 1599MHz to 1605MHz and 1605MHz -1610MHz. All other scans were peak hold for worst case.
- 4. -40 to -10 Linearly interpolated in dBm Vs frequency offset.
- 5. Correction Factor for dBm to dBW = -30dB.
- 6. This limit reduces to -50 dBm for discrete emissions of less than 700Hz bandwidth.
- 7. Spurious level meets the -50 dBm requirement.

The 9602 Transceiver was found to comply with the limits. See Annex H for plots

SPURIOUS EMISSIONS - RADIATED - PART 25.202 (f) & 25.216

Ambient temperature = 17°C
Relative humidity = 38%
Conditions = OATS
Supply voltage = +5Vdc
Supply Frequency = N/A

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on two channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the TIC PCB. The unit was mounted on a turntable and rotated through 360° to find the worst case emission.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB

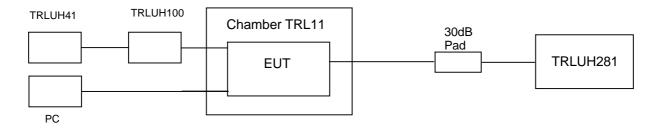
 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS

FREQUENCY RANGE	CHANNEL NUMBER	FREQ. (MHz)	ERP/EIRP (dBm)	LIMIT (dBm)
100kHz – 1559MHz	No Significan	-13		
1559MHz – 1605MHz	No Significan	-40 Note 6		
1605MHz – 1610MHz	No Significan	-40 to 10 Note 4		
1628.5MHz – 16.3 GHz	3231.891 3251.827 4847.948 4878.030 6464.070 6503.944	1 240 1 240 1 240	-36.9 -36.6 -38.2 -39.1 -31.7 -32.5	-13 -13 -13 -13 -13 -13

Notes:

- 1. Emissions Checked up to 10 times Fc.
- 2. Scan plots of channels 1 & 240 with receive antenna in vertical polarization in annex H.
- 3. The unit was mounted on a turntable and rotated through 360⁰ and in 3 orthogonal planes to find the worst case emission.
- 4. -40 to -10 Linearly interpolated in dBm Vs frequency offset.
- 5. Correction Factor for dBm to dBW = -30dB.
- 6. This limit reduces to -50 dBm for discrete emissions of less than 700Hz bandwidth.


The 9602 Transceiver was found to comply with the limits. See annex I for plots

0F3048WUS1 Page 11 of 64

FREQUENCY STABILITY - CONDUCTED - TEMPERATURE - PART 25.202 (d)

Ambient temperature = 20°C Radio Laboratory Relative humidity = 54%

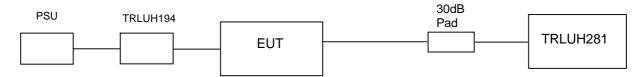
Supply voltage = 54% +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the TIC PCB. The Analyser was set to max hold.

RESULTS

TEMP	Frequency (MHz)							
°C	Channel 1	Channel 75	Channel 150	Channel 240				
+60	1616.02351	1619.10688	1622.23184	1625.98192				
+50	1616.02284	1619.10616	1622.23116	1625.98124				
+40	1616.02265	1619.10599	1622.23052	1625.98092				
+30	1616.02291	1619.10628	1622.23137	1625.98132				
+20	1616.02369	1619.10739	1622.23243	1625.98205				
+10	1616.02119	1619.10748	1622.22994	1625.98009				
0	1616.02277	1619.10609	1622.23114	1625.98112				
-10	1616.02268	1619.10590	1622.23076	1625.98079				
-20	1616.02264	1619.10605	1622.23107	1625.98090				
-30	1616.02221	1619.10561	1622.23060	1625.98068				


Notes: 1.Limit ± 10ppm (See Annex J for frequency stability plots verses limit)

The 9602 Transceiver was found to comply with the limits

FREQUENCY STABILITY - CONDUCTED - VOLTAGE - PART 25.202 (d)

Ambient temperature = 20°C Radio Laboratory

Relative humidity = 62% Supply voltage = +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the MAMBO Box. The Analyser was set to max hold.

RESULTS

VOLTAGE	Frequency (MHz)							
%	Channel 1	Channel 75	Channel 150	Channel 240				
85	1616.02371	1619.10742	1622.23239	1625.98199				
90	1616.02377	1619.10735	1622.23240	1625.98206				
95	1616.02382	1619.10736	1622.23239	1625.98207				
100	1616.02369	1619.10739	1622.23243	1625.98205				
105	1616.02387	1619.10737	1622.23223	1625.98208				
110	1616.02395	1619.10738	1622.23219	1625.98213				
115	1616.02395	1619.10743	1622.23223	1625.98208				

Notes: 1.Limit ± 10ppm (See Annex K for plots verses limit)

The 9602 Transceiver was found to comply with the limits

UNINTENTIONAL TRANSMITTER TESTS

UNINTENTIONAL TRANSMITTER SPURIOUS EMISSIONS - RADIATED - PART 15.109

Ambient temperature = 22° C(<1GHz) 3m measurements <1GHz [X] Relative humidity = 65% (<1GHz), 3m measurements >1GHz [X] Conditions = Open Area Test Site (OATS) 3m extrapolated from 1m []

Supply voltage = +5Vdc

	FREQ. (MHz)	MEAS Rx (dBμV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (µV/m)	LIMIT (µV/m)
0.009MHz - 0.49MHz									
0.49MHz - 1.705MHz									
1.705MHz - 30MHz									
30MHz - 88MHz			No Signif	icant Emiss	ions With	nin 20 dB of tl	ne limit.		
88MHz - 216MHz									
216MHz - 960MHz									
960MHz - 1GHz									
1GHz - 16.3GHz	1399.118 1409.083	63.65 65.22	26.21 26.21	1.6 1.6	37.0 37.0	54.46 56.03	9.54 9.54	176.20 211.10	500 500
	0.0091	MHz to 0.4	9 MHz		2400/f	(kHz) μV/m	@ 300m		
	0.49 M	Hz to 1.70	5 MHz		24000/f	(kHz) μV/m	@ 30m		
	1.705	MHz to 30	MHz			30μV/m	@ 30m		
Limits	30M	1Hz to 88M	1Hz			100μV/m	@ 3m		
Limits	88MHz to 216MHz 150μV/m @ 3m								
	216MHz to 960MHz 200μV/m @ 3m				@ 3m				
	960MHz to 1GHz 500μV/m @ 3ι					@ 3m			
	1GH	lz to 16.30				500μV/m	@ 3m		

Notes: 1 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a

2 Extrapolation of 9.54 dB as per Part 15.

- Receiver detector <1GHz = CISPR, Quasi-Peak, 120kHz bandwidth
- 4 Receiver detector >1GHz = Average, 1MHz resolution bandwidth
- 5 Only emissions within 20 dB of the limit are recoded.
- 6 See annex L for emissions plots

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003

- 2 Measuring distances as Notes 1 to 4 above
- 3 EUT 0.8 metre above ground plane
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes.

Maximum results recorded.

0F3048WUS1 Page 14 of 64

RECEIVER TESTS

CONDUCTED EMISSIONS – AC POWER LINE Part 15.107

SIGNIFICANT EMISSIONS

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	DETECTOR	CONDUCTOR (L or N)	LIMIT (dBµV)
	No Significan	nt Emissions Within 20 d	B of the Limit	

Notes:

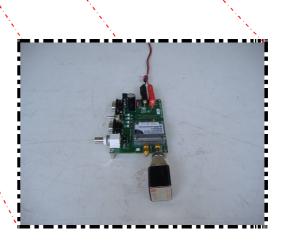
See attached plots annex M
 EUT in normal operation mode.
 Worst case result recorded.

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003

The test equipment used for the Transmitter Conducted Emissions – AC Power Line Part 15.207 test was:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	863906/018	UH05	
RECEIVER	ROHDE & SCHWARZ	ESHS 10	841429/012	UH187	
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	8407 31/015	UH195	

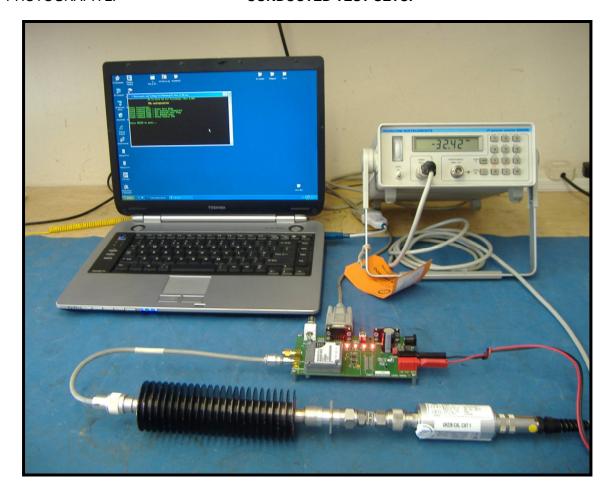
0F3048WUS1 Page 15 of 64


ANNEX A PHOTOGRAPHS

RU1502/8789 Page 16 of 61

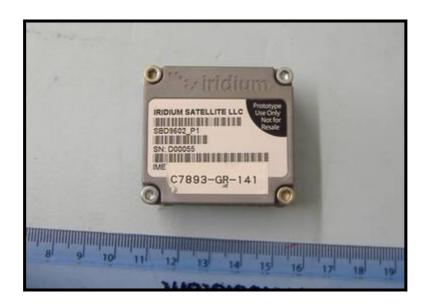
PHOTOGRAPH 1.

RADIATED TEST SETUP



RU1502/8789 Page 17 of 61

PHOTOGRAPH 2.


CONDUCTED TEST SETUP

RU1502/8789 Page 18 of 61

PHOTOGRAPH 3.

TOP OVERVIEW

RU1502/8789 Page 19 of 61

PHOTOGRAPH 4.

CONNECTOR OVERVIEW

RU1502/8789 Page 20 of 61

ANNEX B APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

RU1502/8789 Page 21 of 61

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	-	APPLICATION FEE	[X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[] [] []
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[] [] []
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[] [] []
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RU1502/8789 Page 22 of 61

ANNEX C TEST EQUIPMENT LIST

RU1502/8789 Page 23 of 61

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No
ENVIRONMENTAL CHAMBER	SHARTREE	TCC 125-815P	CS 203	11
20dB ATTENUATOR	BIRD	8308-200	N/A	103
10dB ATTENUATOR	BIRD	8308-100	N/A	112
ATTENUATOR	SHUNER	68030.17.A	N/A	135
HORN	EMCO	3115	9010-3580	138
HORN	EMCO	3115	9010-3581	139
SIGNAL GENERATOR	MARCONI	2042	119388/080	176
TEMPERATURE INDICATOR	FLUKE	52 SERIES II	74700044	426
PRE AMPLIFIER	AGILENT	8449B	2118	572
MULTIMETER	AVOMeter	M3004	M3270006	UH41
ANTENNA	CHASE	CBL6112B	2803	UH93
PSU	THANDAR	PL32QMD	044749	UH100
POWER METER	MARCONI	6960B	237036/001	UH132
RECEIVER	R&S	ESVS10	841431/014	UH186
BILOG ANTENNA	YORK	CBL611/A	1618	UH191
POWER SENSOR	MARCONI	6920	1564	UH228
SPECTRUM ANALYSER	R&S	FSU 46	200034	UH281
CRYSTAL DETECTOR	HP	8472A	1822Z00897	UH302
DIRECTIONAL COUPLER	SINGER	117310	26	UH314
PRE AMPLIFIER	WATKINS JONSON	6201-69	2740	UH372
HIGH PASS FILTER	AFL	N/A	N/A	N/A

RU1502/8789 Page 24 of 61

ANNEX D TEST EQUIPMENT CALIBRATION

RU1502/8789 Page 25 of 61

REF	Equipment		Last Cal	Calibration	Due For
Number	Type	Manufacturer	Calibration	Period	Calibration
UH06/07	IC OATS Submission	TRL	02/07/2009	24	02/07/2011
UH06/07	NSA Calibration	TRL	19/06/2009	12	19/06/2010
UH028	Log Periodic Ant	Schwarbeck	14/08/2009	24	14/08/2011
UH029	Bicone Antenna	Schwarbeck	13/08/2009	24	13/08/2011
UH041	Multimeter	AVOmeter	25/01/2010	12	25/01/2011
UH093	Bilog	Chase	03/06/2009	24	03/06/2011
UH100	PSU	Thandar		alibrated Mult	
UH122	Oscilloscope	Tektronix	18/12/2009	24	18/12/2011
UH129	Power Sensor	Marconi	28/01/2010	12	28/01/2011
UH132	Power meter	Marconi	27/01/2010	12	27/01/2011
UH186	Receiver	R&S	10/12/2009	12	10/12/2010
UH191	Bilog	York	01/10/2008	24	01/10/2010
UH228	Power Sensor	Marconi	28/01/2010	12	28/01/2011
UH253	1m Cable N type	TRL	15/07/2009	12	15/07/2010
UH254	1m Cable N type	TRL	15/07/2009	12	15/07/2010
UH269	1m Cable N type	TRL	15/07/2009	12	15/07/2010
UH270	1m Cable N type	TRL	15/07/2009	12	15/07/2010
UH271	1.5m Cable N type	TRL	15/07/2009	12	15/07/2010
UH272	1.5m Cable N type	TRL	15/07/2009	12	15/07/2010
UH273	2m Cable N type	TRL	15/07/2009	12	15/07/2010
UH274	2m Cable N type	TRL	15/07/2009	12	15/07/2010
UH281	Spectrum Analyser	R&S	29/01/2010	12	29/01/2011
UH288	1m Cable N type	TRL	15/07/2009	12	15/07/2010
UH291	K-Type Cable	Succoflex	15/07/2009	12	15/07/2010
UH293	K-Type Cable	Megaphase	15/07/2009	12	15/07/2010
UH302	Crystal Detector	HP	For Information Only		
UH314	Bi-Directional Coupler	Narda	Calibrate In Use		e
UH365	Harmonic Mixer (33-50)	Agilent	16/07/2008	24	16/07/2010
UH366	Harmonic Mixer (50-75)	Agilent	21/07/2008	24	21/07/2010
UH367	Harmonic Mixer (75-110)	Agilent	02/07/2008	24	02/07/2010
UH368	Horn (50-75)	Flann	02/07/2008	24	02/07/2010
UH369	Horn (75-110)	Flann	02/07/2008	24	02/07/2010
UH372	Pre Amplifier	Watkins Johnson	19/03/2009	24	19/03/2010
L011	Temperature Chamber	Shartree		ted Temperat	
L103	Attenuator	Bird		Calibrate in Us	
L112	Attenuator	Bird		Calibrate in Us	
L135	Attenuator	Shuner		Calibrate in Us	
L138	1-18GHz Horn	EMCO	10/09/2009	24	10/09/2011
L139	1-18GHz Horn	EMCO	17/08/2009	24	17/08/2011
L176	Signal Generator	Marconi	23/06/2009	12	23/06/2010
L193	Bicone Antenna	Chase	06/05/2008	24	06/05/2010
L203	Log Periodic Ant	Chase	06/05/2008	24	06/05/2010
L426	Temperature Indicator	Fluke	25/01/2010	12	25/01/2011
L572	Pre Amp	Agilent	15/07/2009	12	15/07/2010
N/A	High Pass Filter	BSC	04/12/2009	12	04/12/2010

RU1502/8789 Page 26 of 61

ANNEX E MEASUREMENT UNCERTAINTY

RU1502/8789 Page 27 of 61

Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

```
Uncertainty in test result (Equipment - TRLUH120) = 2.18dB
Uncertainty in test result (Equipment – TRL05) = 1.08dB
Uncertainty in test result (Equipment – TRL479) = 2.48dB
```

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

```
Uncertainty in test result (Equipment - TRLUH120) = 119ppm
Uncertainty in test result (Equipment – TRL05) = 0.113ppm
Uncertainty in test result (Equipment – TRL479) = 0.265ppm
```

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz-18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

```
Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = 3.31dB
Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = 4.43dB
Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = 5.34dB
Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = 3.14dB
```

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = **2.1dB**, Uncertainty in time measurement = **0.59%**, Uncertainty in Amplitude measurement = **0.82%**

[11] Power Line Conduction

Uncertainty in test result = 3.4dB

RU1502/8789 Page 28 of 61

[12] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

[13] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[14] Receiver Blocking - Listen Mode, Radiated

Uncertainty in test result = 3.42dB

[15] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = 3.36dB

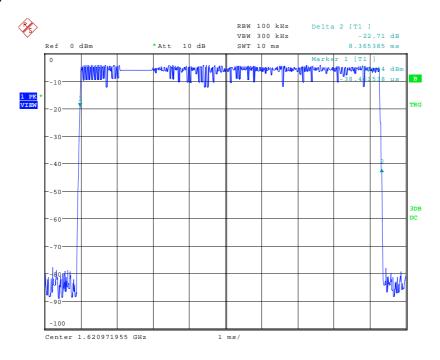
[16] Receiver Blocking - Talk Mode, Conducted

Uncertainty in test result = 1.24dB

[17] Receiver Threshold

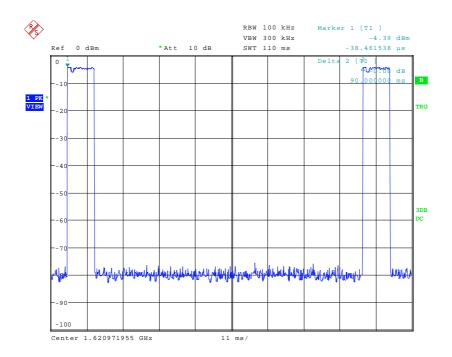
Uncertainty in test result = 3.23dB

[18] Transmission Time Measurement


Uncertainty in test result = 7.98%

RU1502/8789 Page 29 of 61

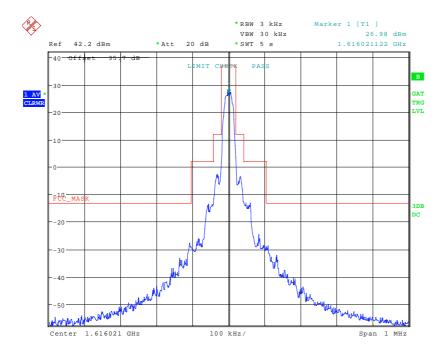
ANNEX F DUTY CYCLE


RU1502/8789 Page 30 of 61

Duty Cycle Plots

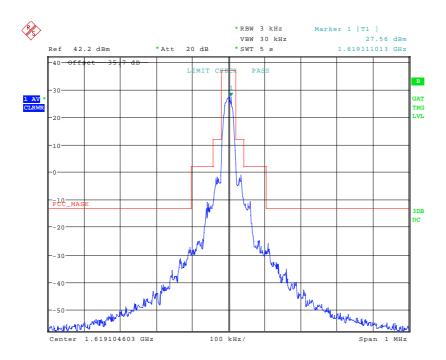
Date: 4.MAR.2010 11:13:28

 $T_{on} = 8.36 mS$


Date: 4.MAR.2010 11:17:44

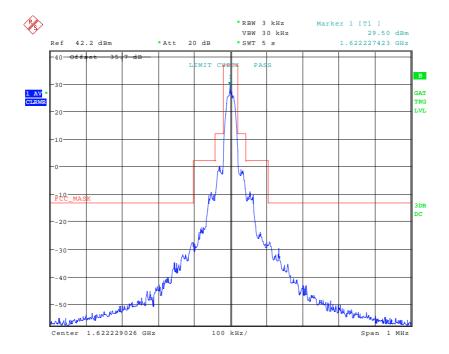
 $T_{frame} = 90.00 \text{mS}$

RU1502/8789 Page 31 of 61

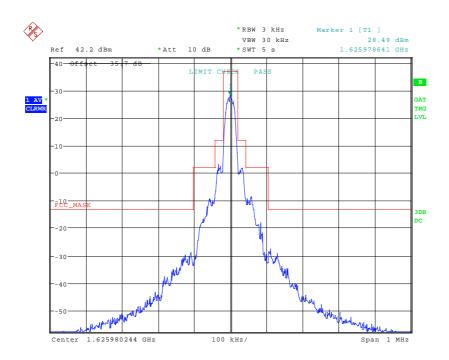

ANNEX G EMISSIONS LIMITATIONS

RU1502/8789 Page 32 of 61

Date: 4.MAR.2010 15:38:00


Channel 1

Date: 4.MAR.2010 15:14:52


Channel 75

RU1502/8789 Page 33 of 61

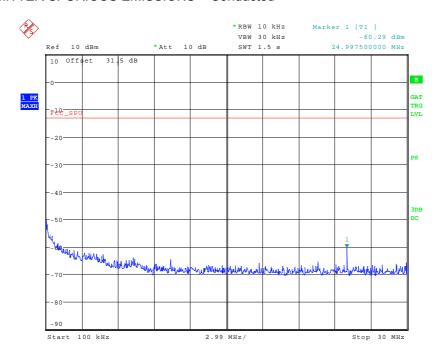
Date: 4.MAR.2010 15:29:39

Channel 150

Date: 4.MAR.2010 14:52:57

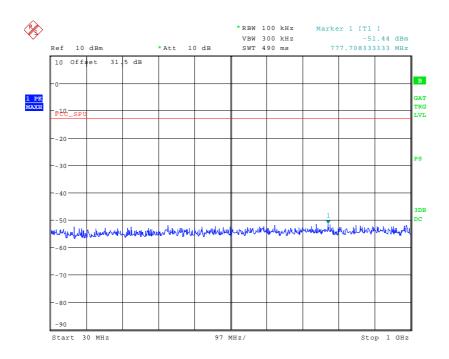
Channel 240

RU1502/8789 Page 34 of 61


ANNEX H

TRANSMITTER SPURIOUS EMISSIONS - Conducted

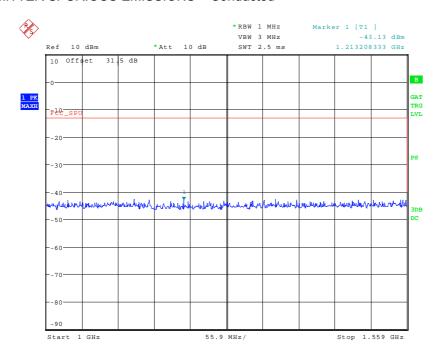
RU1502/8789 Page 35 of 61


TRANSMITTER SPURIOUS EMISSIONS - Conducted

Channel 1

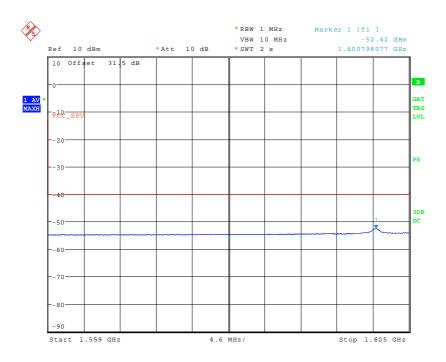
Date: 5.MAR.2010 12:13:41

100 kHz - 30MHz



Date: 5.MAR.2010 12:14:05

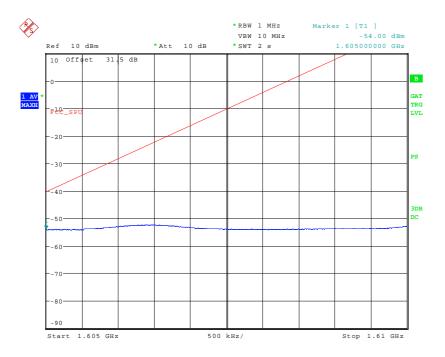
30MHz - 1000MHz


RU1502/8789 Page 36 of 61

Channel 1

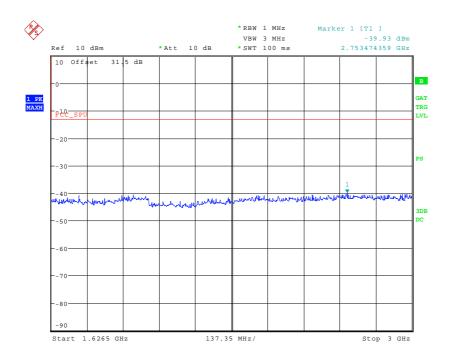
Date: 5.MAR.2010 12:14:24

1000MHz - 1559MHz



Date: 5.MAR.2010 12:11:30

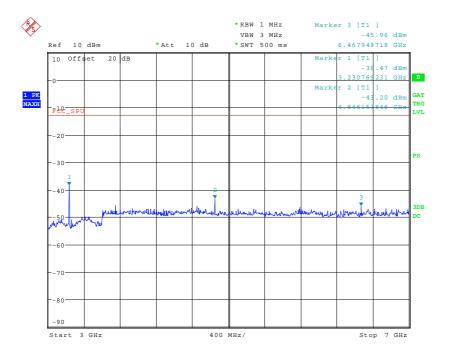
1559MHz - 1605MHz


RU1502/8789 Page 37 of 61

Channel 1

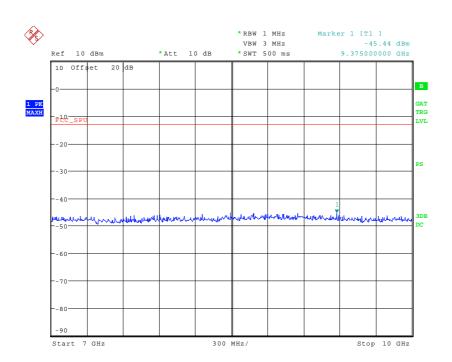
Date: 5.MAR.2010 12:09:16

1605MHz - 1610MHz



Date: 5.MAR.2010 12:15:26

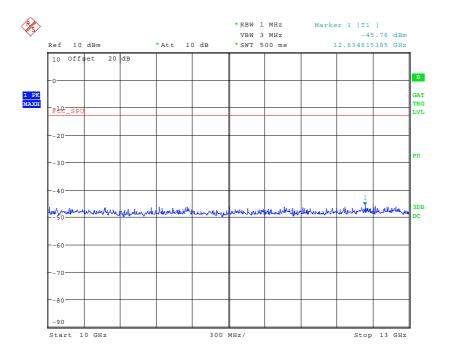
1626.5MHz - 3000MHz


RU1502/8789 Page 38 of 61

Channel 1

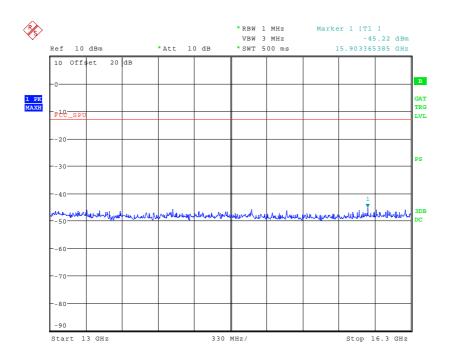
Date: 5.MAR.2010 12:34:14

3GHz - 7GHz



Date: 5.MAR.2010 12:33:41

7GHz - 10GHz


RU1502/8789 Page 39 of 61

Channel 1

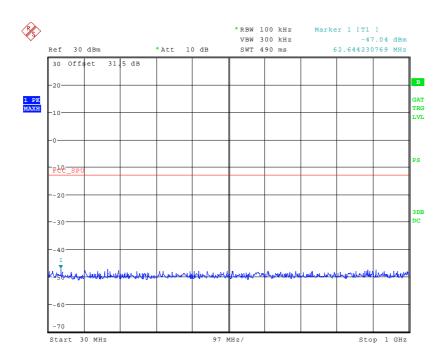
Date: 5.MAR.2010 12:33:02

10GHz - 13 GHz



Date: 5.MAR.2010 12:32:35

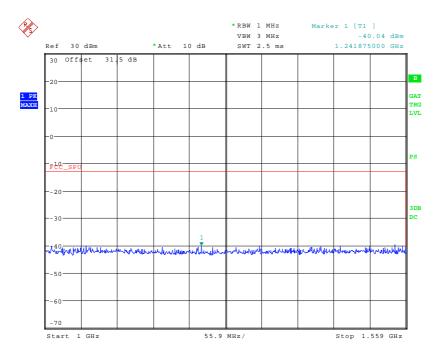
13GHz - 16.3GHz


RU1502/8789 Page 40 of 61

Channel 240

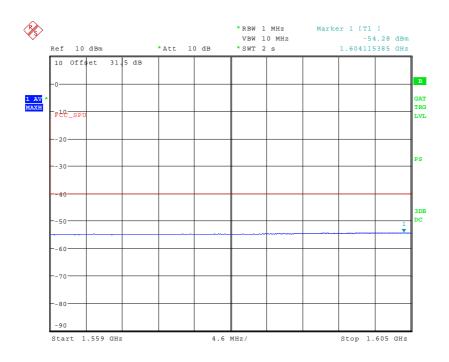
Date: 5.MAR.2010 12:21:29

100 kHz - 30MHz



Date: 5.MAR.2010 12:23:03

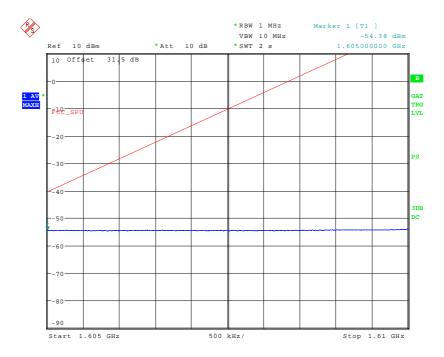
30MHz - 1000MHz


RU1502/8789 Page 41 of 61

Channel 240

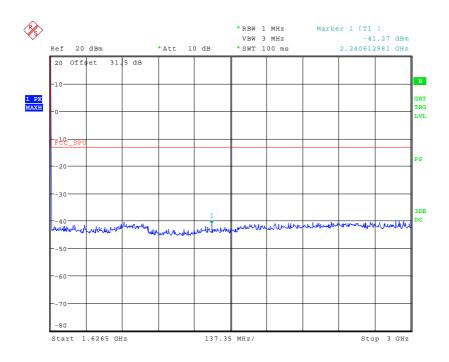
Date: 5.MAR.2010 12:23:21

1000MHz - 1559MHz



Date: 5.MAR.2010 12:05:50

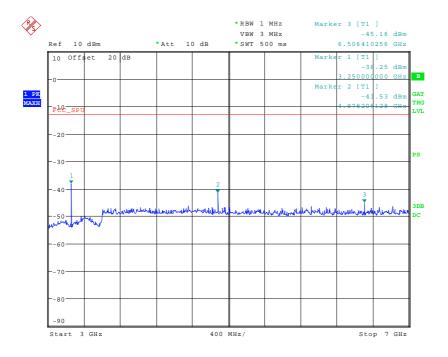
1559MHz - 1605MHz


RU1502/8789 Page 42 of 61

Channel 240

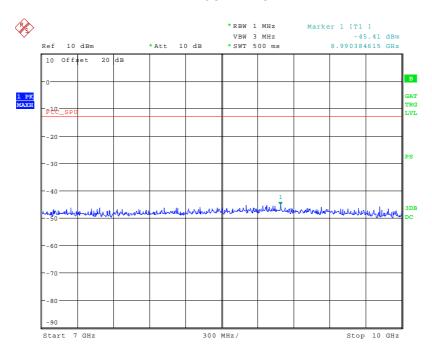
Date: 5.MAR.2010 12:07:15

1605MHz - 1610MHz



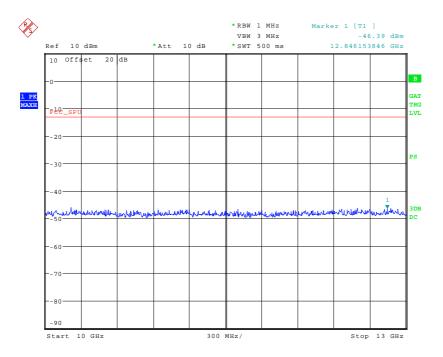
Date: 5.MAR.2010 12:16:21

1626.5MHz - 3000MHz

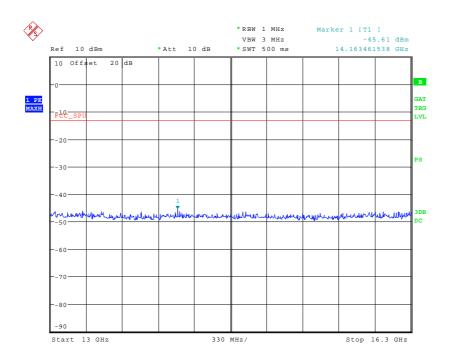

RU1502/8789 Page 43 of 61

Channel 240

Date: 5.MAR.2010 12:30:24


3GHz - 7GHz

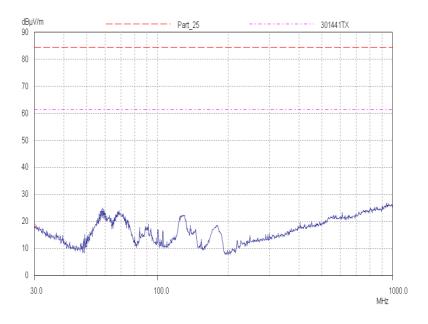
Date: 5.MAR.2010 12:30:51


7GHz - 10GHz

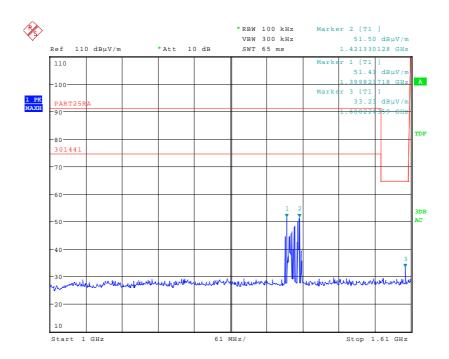
Channel 240

Date: 5.MAR.2010 12:31:17

10GHz - 13 GHz

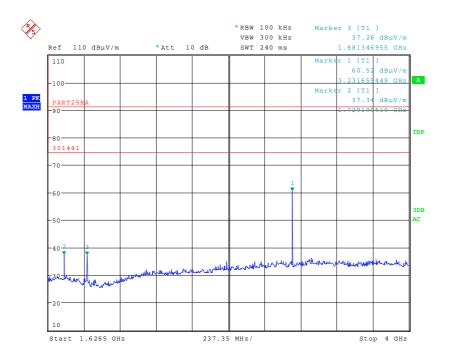


Date: 5.MAR.2010 12:31:50

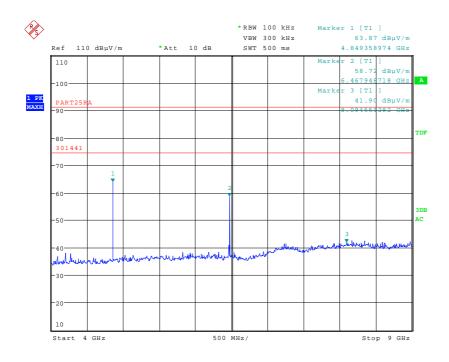

13GHz - 16.3GHz

ANNEX I TRANSMITTER SPURIOUS EMISSIONS – Radiated

RU1502/8789 Page 46 of 61

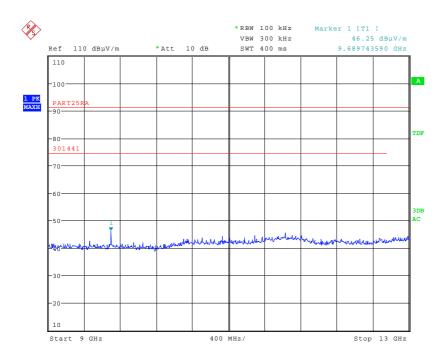

30MHz - 1000MHz

Date: 24.FEB.2010 16:34:47

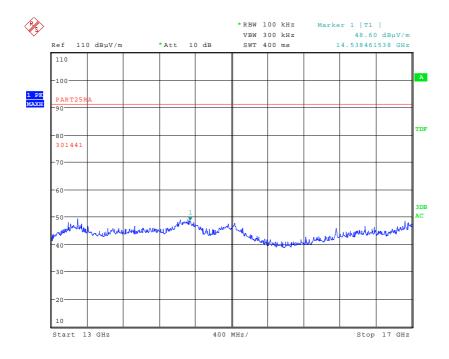

1000MHz - 1610MHz

RU1502/8789 Page 47 of 61

Date: 24.FEB.2010 16:29:18

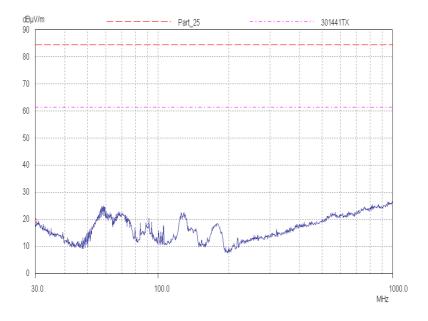

1626.5MHz - 4000MHz

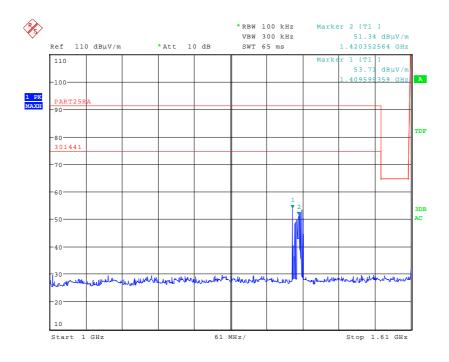
Date: 24.FEB.2010 16:33:48


4GHz - 9GHz

RU1502/8789 Page 48 of 61

Date: 24.FEB.2010 16:31:04

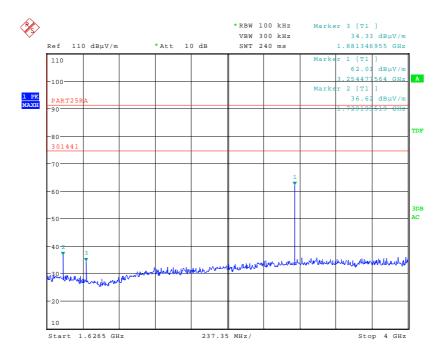

9GHz - 13GHz


Date: 24.FEB.2010 16:32:09

13GHz - 16.3GHz

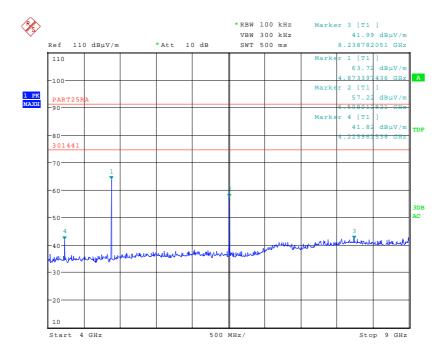
RU1502/8789 Page 49 of 61

30MHz - 1000MHz



Date: 24.FEB.2010 16:19:31

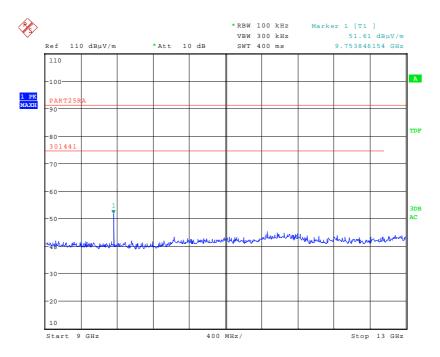
1000MHz - 1610MHz


TRANSMITTER SPURIOUS EMISSIONS - Radiated

Channel 240

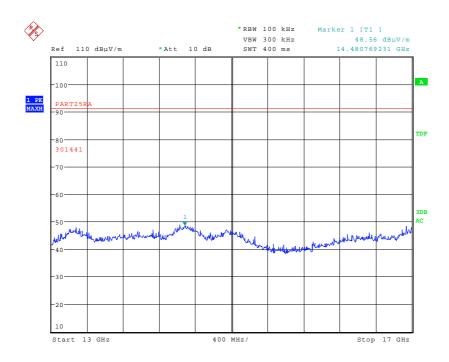
Date: 24.FEB.2010 16:27:03

1626.5MHz - 4000MHz


Date: 24.FEB.2010 16:21:43

4GHz - 9GHz

RU1502/8789 Page 51 of 61

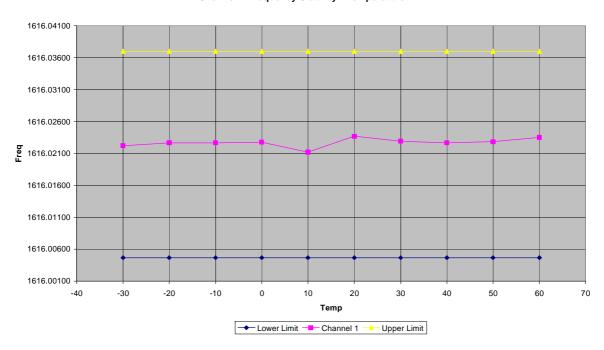

TRANSMITTER SPURIOUS EMISSIONS - Radiated

Channel 240

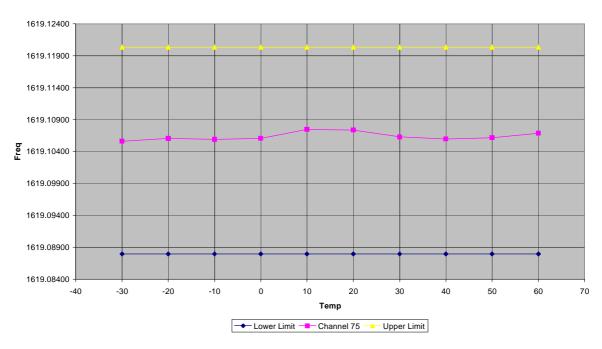
Date: 24.FEB.2010 16:22:10

9GHz - 13GHz

Date: 24.FEB.2010 16:23:14

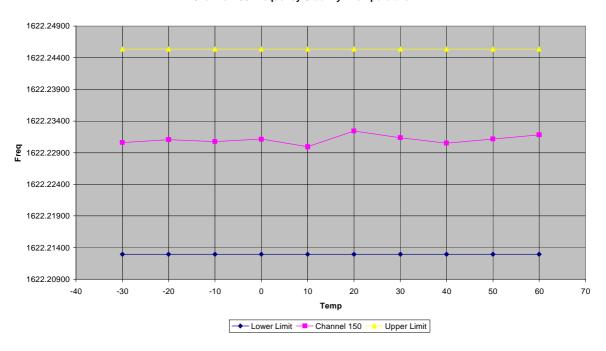

13GHz - 17GHz

RU1502/8789 Page 52 of 61

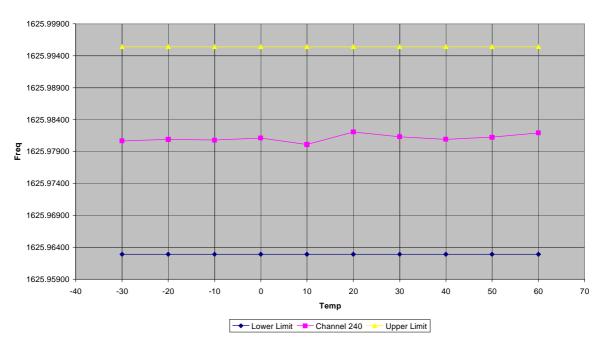

ANNEX J FREQUENCY STABILITY – Temperature

RU1502/8789 Page 53 of 61

Channel 1 Frequency Stability - Temperature



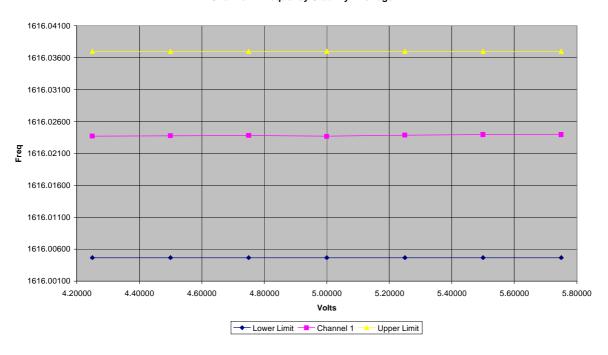
Channel 75 Frequency Stability - Temperature



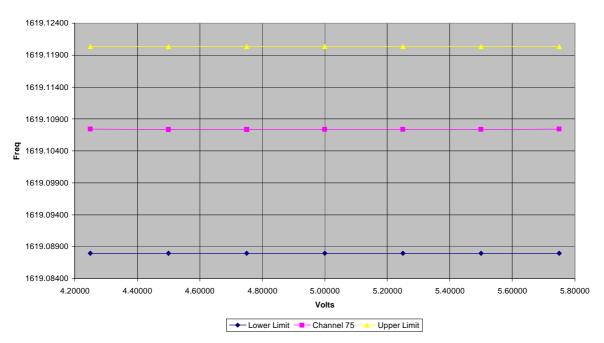
RU1502/8789 Page 54 of 61

Channel 150 Frequency Stability - Temperature

Channel 240 Frequency Stability - Temperature

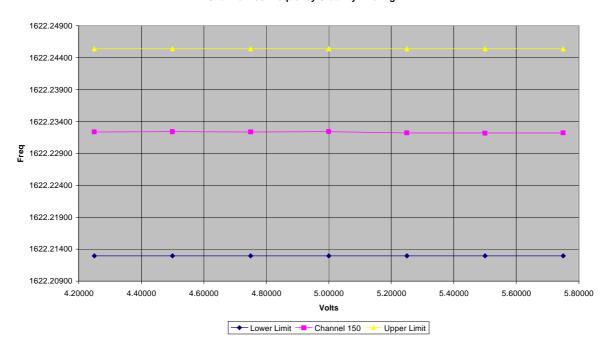


RU1502/8789 Page 55 of 61

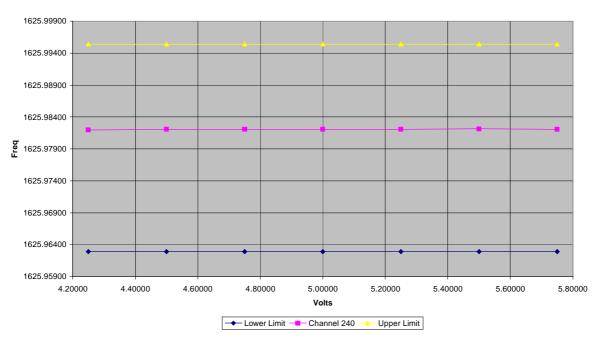

ANNEX K FREQUENCY STABILITY – Voltage

RU1502/8789 Page 56 of 61

Channel 1 Frequency Stability - Voltage



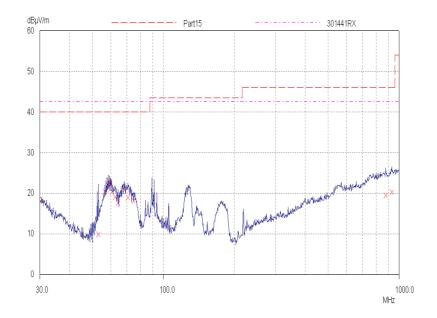
Channel 75 Frequency Stability - Voltage



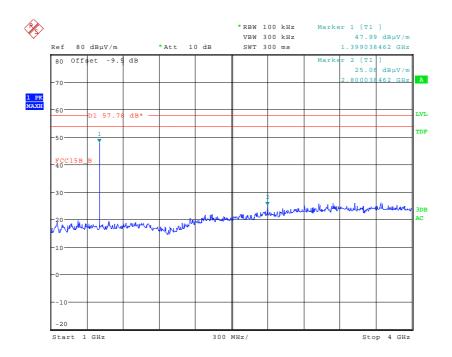
RU1502/8789 Page 57 of 61

Channel 150 Frequency Stability - Voltage

Channel 240 Frequency Stability - Voltage

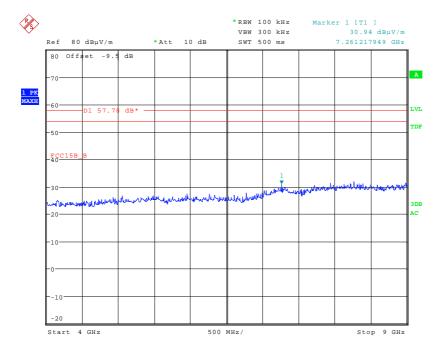


RU1502/8789 Page 58 of 61

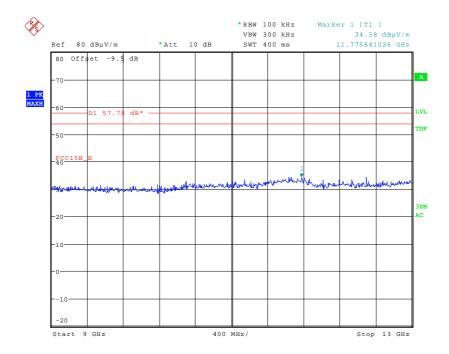

ANNEX L

UNINTENTIONAL TRANSMITTER SPURIOUS EMISSIONS – Radiated

RU1502/8789 Page 59 of 61

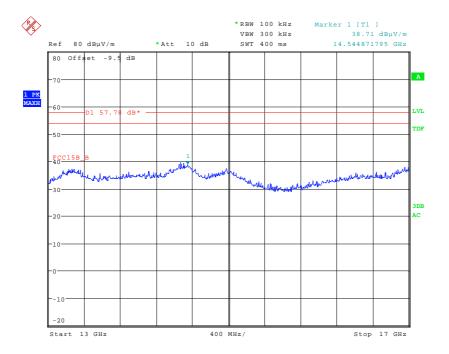

30MHz - 1000MHz

Date: 24.FEB.2010 15:36:55


1GHz – 4GHz

RU1502/8789 Page 60 of 61

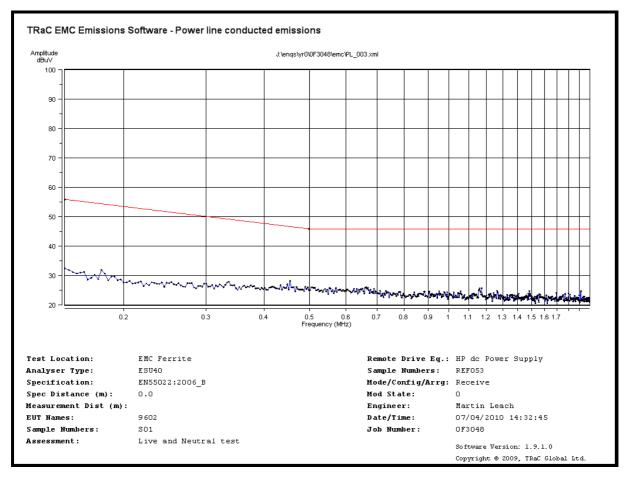
Date: 24.FEB.2010 15:40:02

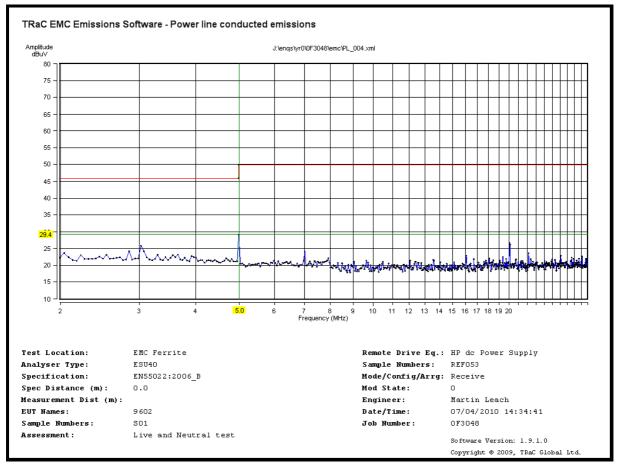

4GHz - 9GHz

Date: 24.FEB.2010 15:39:42

9GHz - 13GHz

RU1502/8789 Page 61 of 61




Date: 24.FEB.2010 15:38:42

13GHz – 17GHz

ANNEX M CONDUCTED EMISSIONS – AC POWERLINE CONDUCTION

RU1502/8789 Page 63 of 61

