December 18, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

 $^{^{\}mathsf{E}}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

BTL

Guangdong

Certificate No.

EX-7693 Oct23

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7693

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

October 31, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name

Function

Calibrated by

Claudio Leubier

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: October 31, 2023

Sia

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7693 Oct23

Page 1 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization ω

 φ rotation around probe axis

Polarization #

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is

normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900MHz in TEM-cell; f > 1800MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:7693

Sensor Model Parameters

	C1	C2	α	T1 _	T2	Т3	T4_	T5	T6
	fF	fF	V ⁻¹	msV ⁻²	ms V ⁻¹	ms	V-2	V ⁻¹	
Х	7.6	53.16	31.84	4.84	0.00	4.91	0.71	0.00	1.00
У	7.2	50.85	31.80	4.39	0.00	4.90	0.64	0.00	1.00
Z	9.7	70.02	33.50	2.79	0.00	4.90	0.62	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	90.6°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Parameters of Probe: EX3DV4 - SN:7693

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	Сопу Т	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	10.74	10.74	10.74	0.40	0.94	±12.0%
835	41.5	0.90	10.38	10.38	10.38	0.28	1.18	±12.0%
1750	40.1	1.37	8.51	8.51	8.51	0.26	0.86	±12.0%
1900	40.0	1.40	8.42	8.42	8.42	0.24	0.86	±12.0%
2100	39.8	1.49	8.41	8.41	8.41	0.23	0.86	±12.0%
2300	39.5	1.67	8.37	8.37	8.37	0.27	0.90	±12.0%
2450	39.2	1.80	8.33	8.33	8.33	0.25	0.90	±12.0%
2600	39.0	1.96	8.20	8.20	8.20	0.12	0.90	±12.0%
3300	38.2	2.71	7.45	7.45	7.45	0.30	1.35	±14.0%
3500	37.9	2.91	7.38	7.38	7.38	0.30	1.35	±14.0%
3700	37.7	3.12	7.21	7.21	7.21	0.30	1.35	±14.0%
3900	37.5	3.32	7.18	7.18	7.18	0.40	1.60	±14.0%
4100	37.2	3.53	6.96	6.96	6.96	0.40	1.60	±14.0%
4200	37.1	3.63	6.72	6.72	6.72	0.40	1.70	±14.0%
4400	36.9	3.84	6.52	6.52	6.52	0.40	1.70	±14.0%
4600	36.7	4.04	6.35	6.35	6.35	0.40	1.70	±14.0%
4800	36.4	4.25	6.34	6.34	6.34	0.40	1.80	±14.0%
4950	36.3	4.40	6.09	6.09	6.09	0.40	1.80	±14.0%
5250	35.9	4.71	5.56	5.56	5.56	0.40	1.80	±14.0%
5600	35.5	5.07	4.85	4.85	4.85	0.40	1.80	±14.0%
5750	35.4	5.22	5.11	5.11	5.11	0.40	1.80	±14.0%
5850	35.2	5.32	4.96	4.96	4.96	0.40	1.80	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-7693_Oct23

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

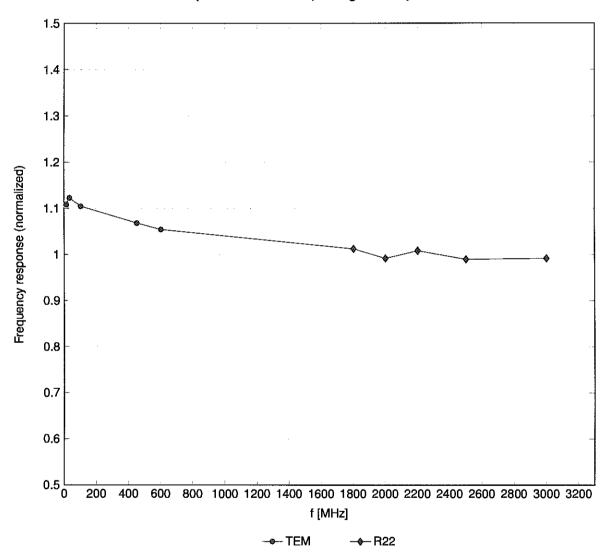
October 31, 2023 EX3DV4 - SN:7693

Parameters of Probe: EX3DV4 - SN:7693

Calibration Parameter Determined in Head Tissue Simulating Media

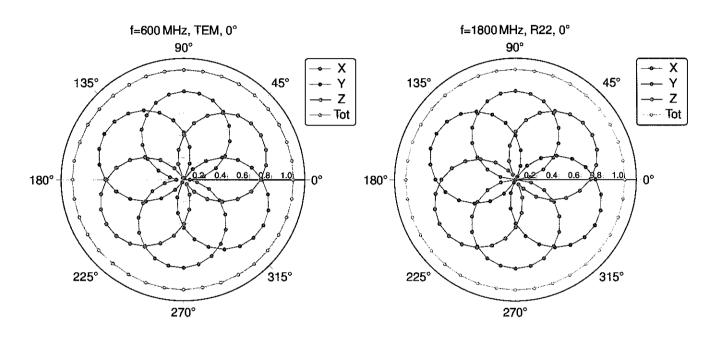
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.80	5.80	5.80	0.20	2 .50	±18.6%

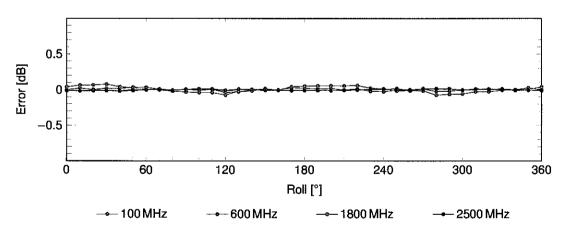
C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration


Certificate No: EX-7693_Oct23 Page 6 of 22

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30 1.87	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3) IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth Bluetooth	1.16	±9.6 ±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	ÇAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PV4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
	CAC	UMTS-FDD (HSDPA) UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10098	CAC	EDGE-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	GSM LTE-FDD	9.55 5.67	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 ±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10102	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6
	,	1		1	

October 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10.112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDÐ	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.35 6.65	±9.6 ±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	5.82	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.43 6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	ÇAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177 10178	CAL	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	5.73	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52 6.50	±9.6 ±9.6
101/9	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz. 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10 185	ÇAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195 10196	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, 16-QAM)	WLAN WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 59 Mbps, 16-QAM)	WLAN	8.13 8.27	±9.6 ±9.6
10138	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.27	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 7.2 Mipps, 16-QAM)	WLAN	8.13	±9.6
10221	CAD	IEEE 802.11n (HT Mixed, 72.2Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	ÇAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6
			<u> </u>	1	

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH		LTE-TDD	9.48	±9.6
10233	CAH	, , , , , , , , , , , , , , , , , , , ,	LTE-TDD	10.25	±9.6
10234	CAH		LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TOD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 ±9.6
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TOD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TOD	10.08	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.34	±9.6 ±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	(LTE-TDD	10.07	±9.6
10267	CAH		LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	, , , , , , , , , , , , , , , , , , , ,	LTE-TDD	10.13	±9.6
10270	CAG	LITE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274 10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	4.87	±9.6
10275	CAC	PHS (QPSK)	WCDMA PHS	3.96	±9.6
10277	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WiMAX	15.24	±9.6
.0000	1,170	THE SOLUTION THINKING (CO.TO, TOTHS, TOTHINIZ, UNIQUIN, FUGU, TO SYMBOLS)	AAIIAIVV	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	IDEN 1:3	iDEN	10.51	±9.6
10314	AAA	iDEN 1:6	iDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7,2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10 ms, 1 ms)	WCDMA	7.59	±9.6
10453	AAE		Test	10.00	±9.6
10456 10457	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) UMTS-FDD (DC-HSDPA)	WLAN	8.63	±9.6
	AAB		WCDMA	6.62	±9.6
10458 10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	6.55	±9.6
10459	AAA	UMTS-FDD (WCDMA, AMR)	CDMA2000	8.25	±9.6
10460	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	WCDMA	2.39	±9.6
10461	AAC		LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAD	LTE-TDD (SC-PDMA, 1 RB, 1.4MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.56	±9.6
10464	AAD		LTE-TOD	7.82	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10466 10467	AAD AAG	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10467	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.82	±9.6
10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.82	±9.6
104/1	~~0	LIE-100 (GO-FDIMA, I RD, IUMAZ, IO-GAMI, UE SUDIRAME=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74 8.41	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6 ±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10513 10514	AAG AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAA	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	LTE-TDD	8.45	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN WLAN	1.58	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23 8.39	±9.6 ±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538 10540	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.54	±9.6
10340	AAC	TELE OCE. I Tab WIFT (40 MIEZ, MICOO, 99PC QULY CYCIE)	WLAN	8.39	±9.6

October 31, 2023

LZID	D 1	A	Group	PAR (dB)	Unc ^E $k=2$
UID 10541	Rev	Communication System Name IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	Group WLAN	8.46	±9.6
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569 10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN WLAN	8.10 8.30	±9.6 ±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79 8.64	±9.6 ±9.6
10593	AAC	IEEE 802.11n (H1 Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10608	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636 10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN WLAN	8.79	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.86 8.85	±9.6 ±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672 10673	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN WLAN	8.90 8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.77	±9.6 ±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6
				_	

October 31, 2023

UID Rev Communication System Name Group PAR (dB) UID 10687 AAC IEEE 802.11ax (20 MHz, MCS6, 99c duty cycle) WILAN 8.45 10689 AAC IEEE 802.11ax (20 MHz, MCS6, 99c duty cycle) WILAN 8.29 10689 AAC IEEE 802.11ax (20 MHz, MCS6, 99c duty cycle) WILAN 8.29 10689 AAC IEEE 802.11ax (20 MHz, MCS7, 99c duty cycle) WILAN 8.29 10689 AAC IEEE 802.11ax (20 MHz, MCS8, 99c duty cycle) WILAN 8.29 10689 AAC IEEE 802.11ax (20 MHz, MCS8, 99c duty cycle) WILAN 8.29 10689 AAC IEEE 802.11ax (20 MHz, MCS8, 99c duty cycle) WILAN 8.25 10684 AAC IEEE 802.11ax (20 MHz, MCS10, 99c duty cycle) WILAN 8.25 10684 AAC IEEE 802.11ax (20 MHz, MCS11, 99c duty cycle) WILAN 8.57 10895 AAC IEEE 802.11ax (40 MHz, MCS11, 99c duty cycle) WILAN 8.57 10896 AAC IEEE 802.11ax (40 MHz, MCS1, 90c duty cycle) WILAN 8.91 10697 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.91 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.61 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.61 10699 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.89 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86 10700 AAC IEEE 802.11ax (40 MHz, MCS3, 90c duty cycle) WILAN 8.86	±9.6 ±9.6
10688 AAC IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) WILAN 8.29	
10689	
10690	±9.6
10691 AAC IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) WLAN 8.25 10692 AAC IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) WLAN 8.25 10693 AAC IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) WLAN 8.25 10694 AAC IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) WLAN 8.25 10695 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.76 10696 AAC IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) WLAN 8.91 10697 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.91 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.91 10699 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10700 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.86 10703 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10706 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.89 10707 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.89 10708 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.89 10709 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10701 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10703 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10707 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10708 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.80 10710 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN	±9.6
10692 AAC IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) WLAN 8.29 10693 AAC IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) WLAN 8.25 10694 AAC IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) WLAN 8.57 10695 AAC IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) WLAN 8.78 10696 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.91 10697 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.91 10698 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.61 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.82 10700 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.80 10704 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.86 10706 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.86 10707 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10708 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10708 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10709 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10710 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.33 10711 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.39 10713 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.48 10714 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN	±9.6
10693	±9.6
10694 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	±9.6
10695 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.78 10696 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.91 10697 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.89 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.89 10700 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10706 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.69 10707 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.69 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.32 10709 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.32 10709 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.33 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.36 10713 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.36 10716 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.36 10717 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.36 10718 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.45 10719 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8	±9.6
10696 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.91 10697 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.61 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.82 10700 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.32 10709 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.35 10710 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10711 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.31 10713 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.36 10715 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10717 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10718 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.48 10720 AA	±9.6
10697 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.61 10698 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.82 10700 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.76 10702 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.69 10708 AAC IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) WLAN 8.32 10709 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.35 10709 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.39 10711 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.39 10713 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.31 10714 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.36 10715 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.36 10716 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.46 10717 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.46 10718 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.81 10720 AAC	±9.6
10698 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.89 10699 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.82 10700 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.86 10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.69 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.69 10708 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.32 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.39 10714 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.36 10715 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.45 10717 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.45 10719 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.45 10719 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.46 10719 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.81 10720 AAC	±9.6
10700 AAC IEEE 802.11ax (40 MHz, MCSS, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) WLAN 8.35 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.39 10711 AAC IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) WLAN 8.39 10713 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.37 10714 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.67 10715 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.26 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.46 10716 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.46 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.46 10719 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) WLAN 8.87	±9.6
10700 AAC IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) WLAN 8.73 10701 AAC IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) WLAN 8.86 10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.35 10709 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10711 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10712 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.36 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.67 10715 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.26 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.46 10717 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle) WLAN 8.87	±9.6
10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.26	±9.6
10702 AAC IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) WLAN 8.70 10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45	±9.6
10703 AAC IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) WLAN 8.82 10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.26	±9.6
10704 AAC IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) WLAN 8.56 10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.35 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45	±9.6
10705 AAC IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) WLAN 8.69 10706 AAC IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) WLAN 8.66 10707 AAC IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.48	±9.6
10707 AAC IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) WLAN 8.32 10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10719 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.81	±9.6
10708 AAC IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) WLAN 8.55 10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81	±9.6
10709 AAC IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) WLAN 8.33 10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87 <	±9.6
10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10710 AAC IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) WLAN 8.29 10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10711 AAC IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) WLAN 8.39 10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10712 AAC IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) WLAN 8.67 10713 AAC IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) WLAN 8.33 10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10714 AAC IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) WLAN 8.26 10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10715 AAC IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) WLAN 8.45 10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10716 AAC IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) WLAN 8.30 10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10717 AAC IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) WLAN 8.48 10718 AAC IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) WLAN 8.24 10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10719 AAC IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) WLAN 8.81 10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
10720 AAC IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) WLAN 8.87	±9.6
	±9.6
10721 AAC IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle) WI AN 9.76	±9.6
1	±9.6
10722 AAC IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle) WLAN 8.55	±9.6
10723 AAC IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle) WLAN 8.70	±9.6
10724 AAC IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle) WLAN 8.90	±9.6
10725 AAC IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) WLAN 8.74	±9.6
10726 AAC IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle) WLAN 8.72	±9.6
10727 AAC IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle) WLAN 8.66	±9.6
10728 AAC IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle) WLAN 8.65	±9.6
10729 AAC IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle) WLAN 8.64	±9.6
10730 AAC IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) WLAN 8.67	±9.6
10731 AAC IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle) WLAN 8.42	±9.6
10732 AAC IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle) WLAN 8.46	±9.6
10733 AAC IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle) WLAN 8.40	±9.6
10734 AAC IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle) WLAN 8.25	±9.6
10735 AAC IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle) WLAN 8.33	±9.6
10736 AAC IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle) WLAN 8.27	±9.6
10737 AAC IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle) WLAN 8.36	±9.6
10738 AAC IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle) WLAN 8.42	±9.6
10739 AAC IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle) WLAN 8.29	±9.6
10740 AAC IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle) WLAN 8.48	±9.6
10741 AAC IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle) WLAN 8.40	±9.6
10742 AAC IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle) WLAN 8.43	±9.6
10743 AAC IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle) WLAN 8.94	±9.6
10744 AAC IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle) WLAN 9.16	±9.6
10745 AAC IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle) WLAN 8.93	±9.6
10746 AAC IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle) WLAN 9.11	±9.6
10747 AAC IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) WLAN 9.04	±9.6
10748 AAC IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) WLAN 8.93	±9.6
10749 AAC IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) WLAN 8.90	±9.6
10750 AAC IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle) WLAN 8.79	±9.6
10751 AAC IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle) WLAN 8.82	
10752 AAC IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle) WLAN 8.81	±9.6

UID	Do.	Communication Custom Name	Graun	DAD (dD)	Unc ^E k = 2
UID 10753	Rev	Communication System Name IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	Group WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	WLAN 5G NR FR1 TDD	8.51 7.99	±9.6 ±9.6
10767	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99 8.01	±9.6
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAD	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25MHz, QPSK, 15kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781 10782	AAD AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAE	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.43 8.31	±9.6 ±9.6
10784	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795 10796	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 KHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.82 8.01	±9.6
10798	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAE	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MRz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41 8.41	±9.6
10823	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

16829 AAD 36 RR (CP-OPDM, 1007, RS, 100MHz, QPSK, 50MHz) 55 NR FRH TIDD 7.83 ±9.8 16831 AAD 56 NR (CP-OPDM, 1 RR, 1 0 MHz, QPSK, 50MHz) 55 NR FRH TIDD 7.73 ±9.6 16831 AAD 56 NR (CP-OPDM, 1 RR, 1 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.77 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.77 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 50 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 50 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 50 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 50 NR FRH TIDD 7.70 ±9.6 16832 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 50 NR FRH TIDD 7.70 ±9.6 16941 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.70 ±9.6 16941 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.70 ±9.6 16941 AAD 56 NR (CP-OPDM, 1 RR, 2 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.71 ±9.6 16941 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.71 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 7.71 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 50 RR, 8 0 MHz, QPSK, 50MHz) 56 NR FRH TIDD 5.34 ±9.6 16943 AAD 56 NR (CP-OPDM, 5	UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
1082 AAD 56 NR (CP-OPEN, 1 RR, 2 5MHz, CPEK, 60Hz) 50 NR FRT TOD 7.74 49.6			· · · · · · · · · · · · · · · · · · ·	5G NR FR1 TDD	8.40	±9.6
10825 ADD 69 NR (CP-OPEN, 1 RR, 2 8MEV, CPSK, 6014t)	10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
TORSEL AND SEN INC (POP OFFER). THE SUMPLY COPEN, 601-bit) SEN INFERT TIDD 7.70 59.6	10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
1985 ADD SG NPT (CPC PFEM, 1 FB, 40 MHz, CPSK, 60 MHz)	10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
TOBSE AAD SC NIN (CP-OFEM, 178, 30MHz, OPSK, 60MHz) SC NIN FRI TIDD 7.70 5.8	10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD		
1988 AAD SG NR (PCP-OFEM, 1 RB, 80 MHz, CPSK, 60 MHz) SG NR FRH TIDD 7.66 ±9.8						
1985 ADD 50 NIN (CP-OPEM, 1 RB, 50 MHz, OPSK, 50 MHz)						
1888 AAD 50 NR (CP-OFDM, 1R9, 80MHz, OPSK, 60MHz)		1				1
16981 AD SN R (PO-POIL 1R), SOME, OPSK (SOME) SS NR FFI TOD 7.71						
10941 AAD SO NR (CP-OFDM, 198, 100MHz, OPSK, 60HHz) 50 MR FRI TIDD 7.71 ±9.6 10943 AAD 50 NR (CP-OFDM, 50% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.49 ±9.6 10944 AAD 50 NR (CP-OFDM, 50% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.41 ±9.6 10954 AAD 50 NR (CP-OFDM, 50% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.41 ±9.6 10955 AAD 50 NR (CP-OFDM, 100% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.34 ±9.6 10955 AAD 50 NR (CP-OFDM, 100% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.38 ±9.6 10955 AAD 50 NR (CP-OFDM, 100% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.38 ±9.6 10055 AAD 50 NR (CP-OFDM, 100% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.37 ±9.5 10055 AAD 50 NR (CP-OFDM, 100% RB, 20MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.37 ±9.5 10055 AAD 50 NR (CP-OFDM, 100% RB, 30MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.35 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 30MHz, OPSK, 60HHz) 50 MR FRI TIDD 8.35 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 30MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.35 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.34 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.34 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.40 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.40 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.40 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.41 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.41 ±9.6 10056 AAD 50 NR (CP-OFDM, 100% RB, 50MHz, OPSK, 60HHz) 50 NR FRI TIDD 8.41 ±9.6 10056 AAD 50 NR (CPF-OFDM, 100% RB, 50MHz, OPSK, 50HHz) 50 NR FRI TIDD 8.41 ±9.6 10056 AAD 50 NR (CPF-OFDM, 100% RB, 50MHz, OPSK, 50MHz) 50 NR FRI TIDD 5.68 ±9.6 10056 AAD 50 NR (CPF						
1998 ADD SO NR (ICP-OFDM, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR (ICP-OFDM, 50% RB, 70 MHz, CPSK, 600 Hz) SO NR (ICP-OFDM, 50% RB, 70 MHz, CPSK, 600 Hz) SO NR (ICP-OFDM, 50% RB, 70 MHz, CPSK, 600 Hz) SO NR (ICP-OFDM, 50% RB, 70 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 70 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 50% RB, 15 MHz, CPSK, 600 Hz) SO NR ICP-OFDM, 50% RB, 50						
1994 AAD GR NR (CP-CPEM, 50% RB, 20ME), CPSK, 60ME) SS NN FRH TDD 8.41 ±9.6 1994 AAD GR NR (CP-CPEM, 50% RB, 20ME), CPSK, 60ME) SS NN FRH TDD 8.41 ±9.6 1995 AAD GR NR (CP-CPEM, 100% RB, 10ME), CPSK, 60ME) SS NN FRH TDD 8.34 ±9.6 1995 AAD GR NR (CP-CPEM, 100% RB, 10ME), CPSK, 60ME) SS NN FRH TDD 8.36 ±9.6 1995 AAD SG NR (CP-CPEM, 100% RB, 20ME), CPSK, 60ME) SS NR FRH TDD 8.37 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 20ME), CPSK, 60ME) SS NR FRH TDD 8.37 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 20ME), CPSK, 60ME) SS NR FRH TDD 8.37 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 20ME), CPSK, 60ME) SS NR FRH TDD 8.38 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SS NR FRH TDD 8.38 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.38 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.34 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 30ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 50ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 50ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 50ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM, 100% RB, 50ME), CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM), 100% RB, 50ME, CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM), 100% RB, 50MHz, CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM), 100% RB, 50MHz, CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM), 100% RB, 50MHz, CPSK, 60ME) SG NR FRH TDD 8.41 ±9.6 AAD SG NR (CP-CPEM), 100% RB, 50MHz, CPSK, 50MHz,						
1996 AAD 5G NR (CP-OFDM, 50% RB, 30MHz, OPSK, 60Hz) 5G NN FRH TDD 8.44 49.6 1955 AAD 5G NR (CP-OFDM, 100% RB, 100Hz, OPSK, 60Hz) 5G NN FRH TDD 8.36 49.6 1955 AAD 5G NR (CP-OFDM, 100% RB, 100Hz, OPSK, 60Hz) 5G NR FRH TDD 8.37 49.6 1955 AAD 5G NR (CP-OFDM, 100% RB, 50Hz, OPSK, 60Hz) 5G NR FRH TDD 8.37 49.6 1955 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, OPSK, 60Hz) 5G NR FRH TDD 8.36 49.6						
10955 AAD 60 RN (CP-OFDM, 100% RB, 10MHz, OPSK, 60 MHz) 50 RN FRI TIDD 8.34 ±9.6						
10855 AAD 60 RN (CP-OFDM, 100% RB, 15MHz, OPSK, 60 MHz) 56 NN FRI TIDD 8.39 ±9.6					8.34	±9.6
1985 AAD 66 NR (GP-GFDM, 100% RB, 29MHz, QPSK, 69MHz) 56 NR FRI TDD 8.35 9.86 10859 AAD 56 NR (GP-GFDM, 100% RB, 30MHz, QPSK, 69MHz) 56 NR FRI TDD 8.35 9.86 10859 AAD 56 NR (GP-GFDM, 100% RB, 40MHz, QPSK, 69MHz) 56 NR FRI TDD 8.34 9.86 10850 AAD 56 NR (GP-GFDM, 100% RB, 40MHz, QPSK, 69MHz) 56 NR FRI TDD 8.41 9.96 10851 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.41 9.96 10853 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.40 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.41 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.47 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.41 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 8.41 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 50MHz, QPSK, 69MHz) 56 NR FRI TDD 5.88 9.96 10858 AAD 56 NR (GP-GFDM, 100% RB, 100MHz, QPSK, 50MHz) 56 NR FRI TDD 5.89 9.96 10858 AAD 56 NR (GPF-GFDM, 100% RB, 100MHz, QPSK, 50MHz) 56 NR FRI TDD 5.89 9.96 10859 AAD 56 NR (GPF-GFDM, 100% RB, 100MHz, QPSK, 50MHz) 56 NR FRI TDD 5.75 9.96 10870 AAE 56 NR (GPF-GFDM, 178 RB, 100MHz, QPSK, 120MHz) 56 NR FRZ TDD 5.75 9.96 10870 AAE 56 NR (GPF-GFDM, 178 RB, 100MHz, 100KHz, 100KHz) 56 NR FRZ TDD 5.75 9.96 10873 AAE 56 NR (GPF-GFDM, 178 RB, 100MHz, 100KMz, 100KHz) 56 NR FRZ TDD 5.89 9.96 10873 AAE 56 NR (GPF-GFDM, 178 RB, 100MHz, 100KMz, 100KHz) 56 NR FRZ TDD 5.80 9.96 9.9			A commence of the commence of	5G NR FR1 TDD	8.36	±9.6
1985 AAD SG NR (CP-CPEM, 100% RB, 30MHz, CPSK, 60 Mtz)	10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
1985 AAD GG NR (CP-CFDM, 100% RB, 50MHz, CPSK, 60Hz) 56 NR FRI TDD 8.44 49.6 10860 AAD 56 NR (CP-CFDM, 100% RB, 50MHz, CPSK, 60Hz) 56 NR FRI TDD 8.44 49.6 49.	10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10860 AAD SG NR (CP-CFOM, 100% RB, 50MHz, CPSK, 600Hz) SG NR FR1 TDD 8.41 ±9.6 10861 AAD SG NR (CP-CFOM, 100% RB, 60MHz, CPSK, 600Hz) SG NR FR1 TDD 8.41 ±9.6 10868 AAD SG NR (CP-CFOM, 100% RB, 80MHz, CPSK, 600Hz) SG NR FR1 TDD 8.41 ±9.6 10868 AAD SG NR (CP-CFOM, 100% RB, 80MHz, CPSK, 600Hz) SG NR FR1 TDD 8.37 ±9.6 10868 AAD SG NR (CP-CFOM, 100% RB, 100MHz, CPSK, 600Hz) SG NR FR1 TDD S.61 ±9.6 10868 AAD SG NR (CP-CFOM, 100% RB, 100MHz, CPSK, 500Hz) SG NR FR1 TDD S.68 ±9.6 10868 AAD SG NR (CPT-CFOM, 100% RB, 100MHz, CPSK, 500Hz) SG NR FR1 TDD S.68 ±9.6 10868 AAD SG NR (CPT-CFOM, 100% RB, 100MHz, CPSK, 500Hz) SG NR FR1 TDD S.68 ±9.6 10869 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, CPSK, 120MHz) SG NR FR1 TDD S.68 ±9.6 10870 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, CPSK, 120MHz) SG NR FR2 TDD S.75 ±9.6 10871 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, CPSK, 120MHz) SG NR FR2 TDD S.75 ±9.6 10872 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.90 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.90 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.90 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.90 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD S.90 ±9.6 10873 AAE SG NR (CPT-CFOM, 100% RB, 100MHz, 10CAM, 120Mtz) SG NR FR2 TDD	10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10861 AAD SG NR (CP-CPOM, 100% RB, 80 MHz, CPSK, 60 Hz) SG NR FR1 TDD 8.40 4.9.6 10883 AAD SG NR (CP-CPOM, 100% RB, 80 MHz, CPSK, 60 Hz) SG NR FR1 TDD 8.41 4.9.6 10886 AAD SG NR (CP-CPOM, 100% RB, 80 MHz, CPSK, 60 Hz) SG NR FR1 TDD 8.41 4.9.6 10886 AAD SG NR (CP-CPOM, 100% RB, 100 MHz, CPSK, 60 Hz) SG NR FR1 TDD S.58 4.9.6 10886 AAD SG NR (CP-CPOM, 100% RB, 100 MHz, CPSK, 60 Hz) SG NR FR1 TDD S.58 4.9.6 10886 AAD SG NR (CP-CPOM, 100% RB, 100 MHz, CPSK, 50 Hz) SG NR FR1 TDD S.59 4.9.6 10880 AAD SG NR (DFT-CPCM), 178 No MHz, CPSK, 30 Hz) SG NR FR1 TDD S.59 4.9.6 10880 AAE SG NR (DFT-CPCM), 178 No MHz, CPSK, 30 Hz) SG NR FR1 TDD S.59 4.9.6 10870 AAE SG NR (DFT-CPCM), 178 No MHz, CPSK, 30 Hz) SG NR FR2 TDD S.56 4.9.6 10871 AAE SG NR (DFT-CPCM), 178 NO MHz, CPSK, 120 Hz) SG NR FR2 TDD S.56 4.9.6 10872 AAE SG NR (DFT-CPCM), 108 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (DFT-CPCM), 1078 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (DFT-CPCM), 1078 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (DFT-CPCM), 1078 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (DFT-CPCM), 108 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (DFT-CPCM), 108 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (CP-CPCM, 108 RB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (CP-CPCM, 108 NB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (CP-CPCM, 108 NB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.52 4.9.6 10873 AAE SG NR (CP-CPCM, 108 NB, 100 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.51 4.9.6 10873 AAE SG NR (CP-CPCM, 108 NB, 50 MHz, CPSK, 120 Hz) SG NR FR2 TDD S.51 4.9.6 10873 AAE SG NR (CP-CPCM, 108 NB, 50 MHz, CPSK, 120 Hz) SG N	10859	AAD				
1988 AAD 5G NR (CP-CPOM, 190% RB, 90 MHz, CPSK, 60 MHz) 5G NR FRI TOD 8.41 49.6 1986 1986 AAD 5G NR (CP-CPOM, 190% RB, 90 MHz, CPSK, 60 MHz) 5G NR FRI TOD 8.47 49.6 1988 AAD 5G NR (CP-CPOM, 190% RB, 100 MHz, CPSK, 50 MHz) 5G NR FRI TOD 5.83 49.6 1988 AAD 5G NR (CP-CPOM, 190% RB, 100 MHz, CPSK, 50 MHz) 5G NR FRI TOD 5.89 49.6 1988 AAD 5G NR (CP-CPOM, 190% RB, 100 MHz, CPSK, 50 MHz) 5G NR FRI TOD 5.89 49.6 1988 AAE 5G NR (CPT-CPCM, 190% RB, 100 MHz, CPSK, 120 MHz) 5G NR FRI TOD 5.89 49.6 1989 49.6 1989 AAE 5G NR (CPT-CPCM, 190% RB, 100 MHz, CPSK, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 190% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 6.61 49.6 1987 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 6.65 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 7.78 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 7.78 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 7.78 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 60CAM, 120 MHz) 5G NR FRI TOD 7.78 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 16CAM, 120 MHz) 5G NR FRI TOD 7.78 49.6 10873 AAE 5G NR (CPT-CPCM, 100% RB, 100 MHz, 16CAM, 120 MHz) 5G NR FRI TOD 5.75 49.6 10880 AAE 5G NR (CPT-CPCM, 100% RB, 50 MHz, 100 MHz, 100 MHz) 5G NR FRI TOD 5.75 49.6 10880 AAE 5G N						
10885 AAD SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) SG NR FRI TIDD 8.41 49.6 10885 AAD SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) SG NR FRI TIDD S.68 49.6 10886 AAD SG NR (CPF-SOFDM, 18, 100 MHz, QPSK, 30 kHz) SG NR FRI TIDD S.68 49.6 10886 AAD SG NR (DFFs-SOFDM, 18, 100 MHz, QPSK, 30 kHz) SG NR FRI TIDD S.89 49.6 10888 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, QPSK, 20 kHz) SG NR FRI TIDD S.89 49.6 10870 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, QPSK, 120 kHz) SG NR FRI TIDD S.86 49.6 10870 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, QPSK, 120 kHz) SG NR FRI TIDD S.86 49.6 10872 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, QPSK, 120 kHz) SG NR FRI TIDD S.86 49.6 10872 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, SG NR, 120 kHz) SG NR FRI TIDD S.86 49.6 10872 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD S.86 49.6 10873 AAE SG NR (DFFs-SOFDM, 18, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD S.87 49.6 10873 AAE SG NR (DFFs-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD S.87 49.6 10873 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD S.87 49.6 10873 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.78 49.6 10873 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.78 49.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.95 49.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.95 49.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.95 49.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.95 49.6 10880 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD T.95 49.6 10881 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, SG ADAM, 120 kHz) SG NR FRI TIDD S.88 49.6 10881 AAE					.	
10885 AAD SG NR (CP-CFDM, 100% RE, 100 MHz, QPSK, 30 NHz) SG NR FR1 TDD S.68 ±9.6 10886 AAD SG NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 NHz) SG NR FR1 TDD S.68 ±9.6 10889 AAE SG NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 NHz) SG NR FR1 TDD S.75 ±9.6 10889 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10870 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10870 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10872 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10872 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10873 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10874 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.75 ±9.6 10875 AAE SG NR (DFTs-OFDM, 188, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.78 ±9.6 10876 AAE SG NR (DFTs-OFDM, 188, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.95 ±9.6 10877 AAE SG NR (CP-OFDM, 188, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.99 ±9.6 10877 AAE SG NR (CP-OFDM, 188, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.99 ±9.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 040 AM, 120 NHz) SG NR FR2 TDD S.91 ±9.6 10880 AAE SG NR (CP						
10886 AAD SG NR (DFTs-OFDM, 108, 100 MHz, QPSK, 30 M+z) SG NR FR1 TDD 5.68 ±9.6 10888 AAD SG NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 M+z) SG NR FR2 TDD 5.75 ±9.6 10870 AAE SG NR (DFTs-OFDM, 178, 100 MHz, QPSK, 120 M+z) SG NR FR2 TDD 5.86 ±9.6 10870 AAE SG NR (DFTs-OFDM, 178, 100 MHz, QPSK, 120 M+z) SG NR FR2 TDD 5.86 ±9.6 10872 AAE SG NR (DFTs-OFDM, 178, 100 MHz, QPSK, 120 M+z) SG NR FR2 TDD 5.86 ±9.6 10872 AAE SG NR (DFTs-OFDM, 178, 100 MHz, GAGAM, 120 M+z) SG NR FR2 TDD 6.52 ±9.6 10872 AAE SG NR (DFTs-OFDM, 178, 100 MHz, GAGAM, 120 M+z) SG NR FR2 TDD 6.52 ±9.6 10873 AAE SG NR (DFTs-OFDM, 178, 100 MHz, GAGAM, 120 M+z) SG NR FR2 TDD 6.61 ±9.6 10874 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, GAGAM, 120 M+z) SG NR FR2 TDD 6.65 ±9.6 10875 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, GAGAM, 120 M+z) SG NR FR2 TDD 7.78 ±9.6 10875 AAE SG NR (CP-OFDM, 178, 100 MHz, 100 M+z, 100 M+z) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 100 M+z, 100 M+z) SG NR FR2 TDD 7.79 ±9.6 10877 AAE SG NR (CP-OFDM, 178, 100 MHz, 100 M+z, 100 M+z						
10888 AAD SG NR (DFT-s-OFDM, 109% RB, 100MHz, QPSK, 20KHz) SG NR FR1 TOD 5.89 ±9.6 10870 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10871 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10872 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10872 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, 160AM, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, 160AM, 120KHz) SG NR FR2 TDD 6.52 ±9.6 10874 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 6.61 ±9.6 10875 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 6.65 ±9.6 10876 AAE SG NR (DFT-SOFDM, 100% RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 7.78 ±9.8 10876 AAE SG NR (DP-OFDM, 1 RB, 100 MHz, GPSK, 120KHz) SG NR FR2 TDD 7.78 ±9.8 10876 AAE SG NR (DP-OFDM, 1 RB, 100 MHz, GPSK, 120KHz) SG NR FR2 TDD 7.79 ±9.6 10877 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, GPSK, 120KHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 8.11 ±9.6 10879 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 8.12 ±9.6 10880 AAE SG NR (DP-OFDM, 100% RB, 100 MHz, GAOAM, 120KHz) SG NR FR2 TDD 8.38 ±9.6 10881 AAE SG NR (DP-OFDM, 100% RB, 500 MHz, GAOAM, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10881 AAE SG NR (DP-SOFDM, 100% RB, 500 MHz, DASK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10882 AAE SG NR (DP-SOFDM, 100% RB, 500 MHz, DASK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10883 AAE SG NR (DP-SOFDM, 100% RB, 500 MHz, DASK, 120KHz) SG NR FR2 TDD 5.75 ±9.6 10883 AAE SG NR (DP-SOFDM, 100% RB, 500 MHz, DASK, 120KHz) SG NR FR2 TDD 5.65 ±9.6 10883 AAE SG NR (DP-SOFDM, 108, SG NMHz, 100 MHz,		ļ			!	
10899 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 NHz) SG NR FR2 TDD 5.75 ±9.6 10870 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 NHz) SG NR FR2 TDD 5.78 ±9.6 10871 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, GAM, 120 NHz) SG NR FR2 TDD 5.75 ±9.6 10872 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, GAM, 120 NHz) SG NR FR2 TDD 5.75 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, GAM, 120 NHz) SG NR FR2 TDD 6.51 ±9.6 10874 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, GAM, 120 NHz) SG NR FR2 TDD 6.61 ±9.6 10874 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, GAM, 120 NHz) SG NR FR2 TDD 6.65 ±9.6 10875 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, GPSK, 120 NHz) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, GPSK, 120 NHz) SG NR FR2 TDD 7.78 ±9.6 10877 AAE SG NR (DF-OFDM, 1 RB, 100 MHz, 16CAM, 120 NHz) SG NR FR2 TDD 7.79 ±9.6 10878 AAE SG NR (DF-OFDM, 1 RB, 100 MHz, 16CAM, 120 NHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DF-OFDM, 1 RB, 100 MHz, 16CAM, 120 NHz) SG NR FR2 TDD 8.39 ±9.6 10878 AAE SG NR (DF-OFDM, 1 RB, 100 MHz, 16CAM, 120 NHz) SG NR FR2 TDD 8.41 ±9.6 10880 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, 16CAM, 120 NHz) SG NR FR2 TDD 8.12 ±9.6 10880 AAE SG NR (DF-OFDM, 100% RB, 50 MHz, 100 NHz, 100 NHz						<u> </u>
10870 AAE SG NR (DFT-s-OFDM, 100%, RB, 100MHz, QPSK, 120KHz) SG NR FR2 TDD 5.86 ±9.6 10872 AAE SG NR (DFT-s-OFDM, 1 RB, 100MHz, 16QAM, 120KHz) SG NR FR2 TDD 6.52 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 16QAM, 120KHz) SG NR FR2 TDD 6.52 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 6QAM, 120KHz) SG NR FR2 TDD 6.61 ±9.6 10874 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 6QAM, 120KHz) SG NR FR2 TDD 6.65 ±9.6 10875 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 6QAM, 120KHz) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (DFT-S-OFDM, 100% RB, 100MHz, 100KHz) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 100KHz) SG NR FR2 TDD 7.78 ±9.6 10877 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 100KHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 100KHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 100KHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 20KHz) SG NR FR2 TDD 8.41 ±9.6 10879 AAE SG NR (DF-OFDM, 100% RB, 100MHz, 20KHz) SG NR FR2 TDD 8.12 ±9.8 10880 AAE SG NR (DF-S-OFDM, 110Kz, 6QAM, 120KHz) SG NR FR2 TDD 8.12 ±9.8 10881 AAE SG NR (DFT-S-OFDM, 110Kz, 6QAM, 120KHz) SG NR FR2 TDD S.75 ±9.6 10883 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10883 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10884 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR FR2 TDD S.75 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100KHz) SG NR	-					
10871 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10872 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 6.52 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10874 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10875 AAE SG NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, QFSK, 120 kHz) SG NR FR2 TDD 5.39 ±9.8 10877 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, QFSK, 120 kHz) SG NR FR2 TDD 5.39 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, 160AM, 120 kHz) SG NR FR2 TDD 8.11 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 8.11 ±9.6 10880 AAE SG NR (DF-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) SG NR FR2 TDD 8.12 ±9.6 10881 AAE SG NR (DF-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10881 AAE SG NR (DF-S-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10882 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10884 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10885 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 5.75 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 6.63 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 100% RB, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DFT-s-OFDM, 18B, 50 MHz, 0PSK, 120 kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG N			<u> </u>			
10872 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 16QAM, 120kHz) SG NR FR2 TDD 6.52 ±9.6 10873 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 64QAM, 120kHz) SG NR FR2 TDD 6.55 ±9.6 10875 AAE SG NR (DFT-s-OFDM, 100% RB, 100MHz, 64QAM, 120kHz) SG NR FR2 TDD 6.55 ±9.6 10875 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 7.78 ±9.6 10876 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 7.75 ±9.6 10877 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 7.95 ±9.6 10879 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 8.41 ±9.6 10879 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 8.41 ±9.6 10880 AAE SG NR (DF-OFDM, 100% RB, 100MHz, QFSK, 120kHz) SG NR FR2 TDD 8.38 ±9.6 10881 AAE SG NR (DF-DF-OFDM, 100% RB, 50MHz, QFSK, 120kHz) SG NR FR2 TDD 8.38 ±9.6 10881 AAE SG NR (DF-S-OFDM, 100% RB, 50MHz, QFSK, 120kHz) SG NR FR2 TDD 5.75 ±9.6 10883 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, QFSK, 120kHz) SG NR FR2 TDD 5.96 ±9.6 10885 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 5.96 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 5.95 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 5.95 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 6.57 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 160AM, 120kHz) SG NR FR2 TDD 6.65 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 100% RB, 50MHz, 100AM, 120kHz) SG NR FR2 TDD 6.80 ±9.6 10886 AAE SG NR (DFT-S-OFDM, 18, 50MHz, 100AM,		ļ				
10873 AAE 5G NR (DFT-9-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10874 AAE 5G NR (DFT-9-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10875 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16CAM, 120 kHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16CAM, 120 kHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16CAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10878 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16CAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16CAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64CAM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10881 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10881 AAE 5G NR (CPF-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10883 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10884 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10885 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10886 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 180AM, 120 kHz) 5G NR FR2 TDD 6.51 ±9.6 10886 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 120 kHz) 5G NR FR2 TDD 6.55 ±9.6 10887 AAE 5G NR (DFT-8-OFDM, 100% RB, 50 MHz, 120 kHz) 5G NR FR2 TDD 6.56 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 20 KHz) 5G NR FR2 TDD 6.56 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 20 KHz) 5G NR FR2 TDD 6.56 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 20 KHz) 5G NR FR2 TDD 6.57 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 20 KHz) 5G NR FR2 TDD 5.66 ±9.						
10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 18, 100 MHz, GADM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 18, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10800 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 640 AM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 5.66 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 5.66 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 5.66 ±9.6 1		-			6.61	±9.6
10876 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, QPSK, 120Hz) 5G NR FR2 TDD 8.39 ±9.6 10877 AAE 5G NR (CP-OFDM, 1 RB, 100MHz, 16QAM, 120kHz) 5G NR FR2 TDD 7.95 ±9.6 10878 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (CP-OFDM, 100% RB, 100MHz, 64QAM, 120kHz) 5G NR FR2 TDD 5.75 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 100% RB, 50MHz, QPSK, 120kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.57 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.57 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.6 10887 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10888 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20kHz) 5G NR FR2 TDD 5.66	10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10877 AAE SG NR (CP-OFDM, 10 RB, 100 MHz, 16QAM, 120 kHz) SG NR FR2 TDD 7.95 ±9.6 10878 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) SG NR FR2 TDD S.12 ±9.6 10880 AAE SG NR (CP-OFDM, 10 RB, 100 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.12 ±9.6 10881 AAE SG NR (CP-OFDM, 100% RB, 100 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.38 ±9.6 10881 AAE SG NR (DFTs-OFDM, 100% RB, 100 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.75 ±9.6 10881 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) SG NR FR2 TDD S.96 ±9.6 10883 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) SG NR FR2 TDD S.96 ±9.6 10884 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.96 ±9.6 10885 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.57 ±9.6 10886 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.56 ±9.6 10887 AAE SG NR (DFTs-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.65 ±9.6 10888 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.65 ±9.6 10889 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 6AQAM, 120 kHz) SG NR FR2 TDD S.65 ±9.6 10889 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 100 kHz) SG NR FR2 TDD S.35 ±9.6 10889 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 100 kHz) SG NR FR2 TDD S.35 ±9.6 10889 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, 100 kHz) SG NR FR2 TDD S.60 kHz SG NR FR2 TDD S.60 kHz SG NR SG N	10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10878 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10879 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10881 AAE 5G NR (CP-SOFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-S-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-S-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DF-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10889 AAE 5G NR (DF-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10891 AAE 5G NR (DF-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 6QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10891 AAE 5G NR (DF-OFDM, 1 RB, 50 MHz, 6QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DF-S-OFDM, 1 RB, 50 MHz, 6QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DF-S-OFDM, 1 RB, 50 MHz, 6QAM, 120 kHz) 5G NR FR1 TDD 5.66 ±9.6 10892 AAB 5G NR (DF-S-OFDM, 1 RB, 50 MHz, 6QAM, 120 kHz) 5G NR FR1 TDD 5.66 ±9.6 10892 AAB 5G NR (DF-S-OFDM, 1 RB, 50 MHz, 6QAM,	10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10879 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz) 5G NR FR2 TDD 8.12 ±9.6 10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QFSK, 120 KHz) 5G NR FR2 TDD 5.75 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 KHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 KHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 160 AM, 120 KHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 160 AM, 120 KHz) 5G NR FR2 TDD 6.57 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 160 AM, 120 KHz) 5G NR FR2 TDD 6.51 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 20 KSK, 120 KHz) 5G NR FR2 TDD 6.65 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 10 KHz) 5G NR FR2 TDD 6.83 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 10 KHz) 5G NR FR2 TDD 6.83 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 10 KHz) 5G NR FR2 TDD 6.80 ±9.6 10890 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 10 KHz) 5G NR FR2 TDD 6.80 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.80 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.80 ±9.6 10893 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.80 ±9.6 10894 AAE 5G NR (CPT-S-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.80 ±9.6 10895 AAE 5G NR (CPT-S-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR2 TDD 6.80 ±9.6 10896 AAE 5G NR (CPT-S-OFDM, 1 RB, 50 MHz, 640 AM, 120 KHz) 5G NR FR1 TDD 5.66 ±9.6 10897 AAE 5G NR (CPT-S-OFDM, 1 RB, 50 MHz	10877	AAE		5G NR FR2 TDD	7.95	±9.6
10880 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.38 ±9.6 10881 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 100 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 100 kHz) 5G NR FR2 TDD 6.57 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 100 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 100 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 100 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 7.78 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 20 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAB 5G NR (CP-OFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR2 TDD 5.66 ±9.6 10893 AAB 5G NR (CP-OFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR1 TDD 5.67 ±9.6 10904 AAB 5G NR (CP-SOFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (CP-SOFDM, 1 RB, 50 MHz, 40AM, 120 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-S-O			•			
10881 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.75 ±9.6 10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10886 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DFT-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10888 AAE 5G NR (DFT-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFTs-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10899 AAB 5G NR (DFTs-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900 AAB 5G NR (DFTs-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10900			, , , , , , , , , , , , , , , , , , , ,			
10882 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 5.96 ±9.6 10883 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 04CAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10888 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 04CAM, 120kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.35 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.40 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR1 TDD 5.66 ±9.6 10893 AAB 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 05K, 30kHz) 5G NR FR1 TDD 5.67 ±9.6 10893 AAB 5G NR (DFTs-OFDM, 1 RB, 15 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.67 ±9.6 10893 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFTs-OFDM, 1 RB, 20 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFTs-OFDM, 1 RB, 40 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFTs-OFDM, 1 RB, 40 MHz, 075K, 30kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AA						
10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.57 ±9.6 10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 6.53 ±9.8 10885 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.02 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6						
10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 6.53 ±9.6 10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 18B, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 160% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 18B, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6		1			ļ	
10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 6.61 ±9.6 10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 18B, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 30kHz) 5G NR FR1 TDD 5.66 ±9.6 10893 AAE 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30kHz) 5G NR FR1 TDD 5.67 ±9.6 10894<		1	Land to the state of the state		 	
10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 6.65 ±9.6 10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10990 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6	-				1	
10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 7.78 ±9.6 10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 18B, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFTs-OFDM, 100% RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAB 5G NR (DFTs-OFDM, 1 RB, 50 MHz, 64QAM, 120kHz) 5G NR FR1 TDD 5.66 ±9.6 10990<					}	<u> </u>
10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2 TDD 8.35 ±9.6 10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.02 ±9.6 10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10893 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6						
10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2 TDD 8.40 ±9.6 10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 T				.		·
10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.13 ±9.6 10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD	10889	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10892 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2 TDD 8.41 ±9.6 10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 T	10890	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10897 AAC 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.66 ±9.6 10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD						
10898 AAB 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1	-				1	
10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.67 ±9.6 10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6	<u> </u>					
10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6					1	
10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6			· · · · · · · · · · · · · · · · · · ·			
10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6					+	
10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6		 			.	
10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6	1		· · · · · · · · · · · · · · · · · · ·			
10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6	1	_	· · · · · · · · · · · · · · · · · · ·			
10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.68 ±9.6 10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.78 ±9.6 10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6		1	1 1 1 1		1	
10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.93 ±9.6 10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
10909 AAB 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 5.96 ±9.6						
		AAB		5G NR FR1 TDD	5.96	
	10910	AAB			5.83	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86 5.87	±9.6 ±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.84	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10922	AAB AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51 5.90	±9.6 ±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.77	±9.6
10937 10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87 5.94	±9.6 ±9.6
10950 10951	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5MHz, 64-QAM, 15kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15kHz)	5G NR FR1 TDD	9.36	±9.6
10962 10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	9.40 9.55	±9.6
10963	AAC	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.33	±9.6
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9.6
10979	AAA	ULLA HDR4	ULLA	8.58	±9.6
10980	AAA	ULLA HDR8	ULLA	10.32	±9.6
10981	AAA	ULLA HDRp4	ULLA	3.19	±9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	±9.6

October 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	.8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

 $^{^{\}mathsf{E}}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Certificate No:

Z21-60218

CALIBRATION CERTIFICATE

BTL Inc .

Object D835V2 - SN: 4d160

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

Client

June 1, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	多
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	2a

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY52	V52.10.4
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.52 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.14 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9Ω- 5.07jΩ		
Return Loss	- 25.8dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.350 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d160

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.894$ S/m; $\varepsilon_r = 41.44$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

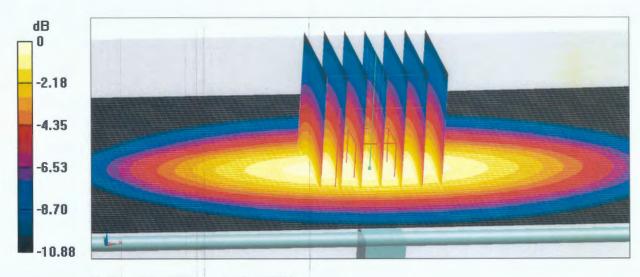
Date: 06.01.2021

 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 56.07 V/m; Power Drift = -0.04 dB

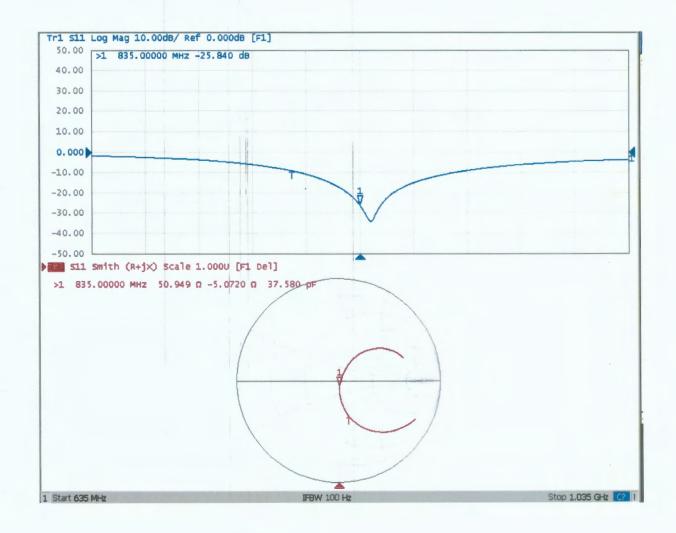

Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Smallest distance from peaks to all points 3 dB below = 20.6 mm

Ratio of SAR at M2 to SAR at M1 = 62.6%

Maximum value of SAR (measured) = 3.26 W/kg



0 dB = 3.26 W/kg = 5.13 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Asset No.:	E-437	Model No.:	D835V2	Serial No.:	4d160
Convironmental	21.9°C, 55%	Original Cal. Date:	June 1, 2021	Next Cal. Date:	June 1, 2024
	<u> </u>	Standa	rd List		
1	IEEE Std 1528-2013		n Head from Wireless Co	he Peak Spatial-Average ommunication Devices: M 2013	
2	IEC 62209-2		1 1	otion Rate (SAR) for wi	
3	KDB865664	SA	AR Measurement Requirem	ents for 100 MHz to 6 G	Hz
		Equipment	Information	1	
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	1teck	IT6154	006104126768201001	N/A	July 8, 2023
Vector Network Anal	Agilent	E5071C	MY46102965	N/A	February 11, 202
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 202
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
Dielectric Assessment	Speag	DAK-3.5	1226	N/A	January 24, 2022
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 202
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 202
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 2023
Model No			For Head Tissue		
	Item	Original Cal. Result	Verified on 2023/12/14	Deviation	Result
	Impedance, transformed to feed	50. 9 Ω –5. 07 j Ω	50. 93 Ω -5. 09 j Ω	<5 Ω	Pass
D835V2	Return Loss(dB)	-25.8	-25.92	0.5%	Pass
	SAR Value for 1g(mW/g)	2. 37	2. 37	0.0%	Pass
	SAR Value for 10g(mW/g)	1. 53	1.53	0.0%	Pass
	Impedance Test-Head			Return Loss-Head	
E5071C Network Analyzer			ESO71C Network Analyzer		
			1 Active Ch/Trace 2 Response 3 Stinutus 4 Mir/Analysis 5 Ins	tr 9 de	:: UX Mate
	dr 9.ace	Format	Market 1 835 0000000 MHz		
Active ClyTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 Inst		Smith (keyk)	Merker 1 835,0000000 MHz	1]	J Marker
Active CVTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 Ind 771 S11 Smith (R+jX) Scale 1.000U [F1]		Smith (Kryd) Log Mag		11	J Market
Active ClyTrace 2 Response 3 Stimulus 4 Mir/Acalysis 5 Ins Fr1 S11 Smith (R+jx) Scale 1.000U [F1]		Smith (keyk)	Tel Sil Log Mag 10.00dB/ Ref -20.00dB [F	u .	J Market Market
kthe Chiroce 2 Response 3 Standus 4 Merianalysis 5 Ins 1 Sil Smith (R+jX) Scale 1.000U [F1]		Smith (Kryd) Log Mag	30.00 s1 835.0000 MHz -25.918 80	u .	J. Starker Marker Marker
ctive Chirace 2 Response 3 Stimulus 4 Mer(Analysis 5 Inst r1 511 Smith (R+jX) Scale 1.000U [F1]		Log Meg Phice	10.00 10.00 (F -20.000) (F -20	u .	J. Starker Marker Marker
ctive Chirace 2 Response 3 Stimulus 4 Mer(Analysis 5 Inst r1 511 Smith (R+jX) Scale 1.000U [F1]		Log Mag Price Group Delay Smet	77. 731 Log Mag 10.0000/ Ref -70.0001 (F 70.001) 51 815.00000 MHz -25.918 db 20.00	ii.	J. Markov Markov Massico Soskie
ctive Chirace 2 Response 3 Stimulus 4 Mer(Analysis 5 Inst r1 511 Smith (R+jX) Scale 1.000U [F1]		Log Mag Price Group Delay Smet	10.00 10.00 (F -20.000) (F -20	ar .	J Murkov Marios Marios Moren Mo
ctive Chirace 2 Response 3 Stimulus 4 Mer(Analysis 5 Inst r1 511 Smith (R+jX) Scale 1.000U [F1]		Log Meg Price Group Delay Smith E = p	10.00 11.00 Mag 10.0000/ MeF -20.0000 (F 30.00 151 815.00000 MHz -25.918 00 20.00 15.000 MHz -25.918 00 20.00 15.0	air air	J Murkov Markov Maskov Morkov
kthe Chiroce 2 Response 3 Standus 4 Merianalysis 5 Ins 1 Sil Smith (R+jX) Scale 1.000U [F1]		Log Mag Priore Group Pelay Smith # # p Polar Lin Mag	10.00 51 Edg Mag 10.0000/ SeF -20.0000 (5 20.00 51 815.00000 Merg -25.918 cm 20.00 50 50 50 50 50 50 50 50 50 50 50 50 5	ii e e e e e e e e e e e e e e e e e e	J. Municipal Market
kthe Chiroce 2 Response 3 Standus 4 Merianalysis 5 Ins 1 Sil Smith (R+jX) Scale 1.000U [F1]		Log Mag Prise Group Delay Smith 8+ Is Polar Lin Mag SWR Roal	10.00 11.00 Mag 10.0000/ MeF -20.0000 (F 30.00 151 815.00000 MHz -25.918 00 20.00 15.000 MHz -25.918 00 20.00 15.0	ii e	J Municip Marker Marker Marker Montese Motion Mon Ref Mon Montese Montese Montese Ref Montese Ref Montese Ref Montese Ref Montese
kthe Chiroce 2 Response 3 Standus 4 Merianalysis 5 Ins 1 Sil Smith (R+jX) Scale 1.000U [F1]		Log Mag Prises Group Delay Smet Smet Smet Signary Foliar Lin Mag Iswa Fool	10.00 11.00 Mag 10.00m/ Sef -20.00m (6 30.00 15 31.00 10 Mag -25.918 mm 20.00 16 10.	ii e e e e e e e e e e e e e e e e e e	J Marker Marker Marker More More More More Grif More More More More More More More More
Active ClyTrace 2 Response 3 Stimulus 4 Mir/Acalysis 5 Ins Fr1 S11 Smith (R+jx) Scale 1.000U [F1]		Log Mag Prise Group Delay Smith 8+ Is Polar Lin Mag SNIR Roal	10.00 11.00 Mag 10.00m/ MeF -20.00m (F 30.00 15 1 815.00000 Meg -25.918 mm 20.00 16 10.00 16	ii d	J Market Market Market Market More More See More Chee More More More More More Ref Market Ref Market Ref Market
Active OVTrace 2 Response 3 Stimulus 4 Mir/Acalysis 5 Ind 771 511 Smith (R+jx) Scale 1.000U [F1]		Log Mag Prince Group Delay Smith R + Ip Poter Lin Mag SWR Final Imagnary Expand Protter Protter Frace	10.00 -10.00 -20.000 -10.000 -20.000 -10.00 -20.000 -10.00 -20.00 -10.00 -20.00	ii e e e e e e e e e e e e e e e e e e	J Marker Marker Marker More More More More Grif More More More More More More More More
Active ClyTrace 2 Response 3 Stimulus 4 Mir/Acalysis 5 Ins Fr1 S11 Smith (R+jx) Scale 1.000U [F1]		Log Mag Prince Group Delay Smith R + jp Poter Lin Mag SWR Fool Imaginary Expand Proter Positive	10.00 11.00 Mag 10.00m/ MeF -20.00m (F 30.00 15 1 815.00000 Meg -25.918 mm 20.00 16 10.00 16	ar and a second	J Markov
Active ClyTrace 2 Response 3 Stimulus 4 Mir/Acalysis 5 Ins Fr1 S11 Smith (R+jx) Scale 1.000U [F1]		Log Mag Prince Group Delay Smith R + Ip Poter Lin Mag SWR Final Imagnary Expand Protter Protter Frace	10.00 -10.00 -10.000 -10.000 -10.000 -10.00	ar and a second	Market Market More Mo Ref Market Chee Mo Mere Mo Ref Market
ctive Chirace 2 Response 3 Stimulus 4 Mer(Analysis 5 Inst r1 511 Smith (R+jX) Scale 1.000U [F1]		Log Mag Prince Group Delay Smith R + Ip Poter Lin Mag SWR Final Imagnary Expand Protter Protter Frace	10.00 10.000 10.0000 10.0000 10.000 10	31 3500 70 loc	Market Market More Mo Ref Market Chee Mo Mere Mo Ref Market

Validation Report for Head TSL

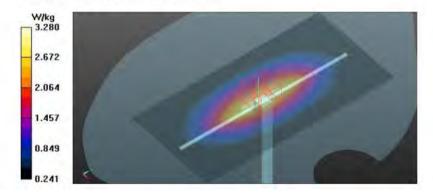
Test Laboratory: BTL Inc.

Date: 2023/12/14

System Check_H835_1214

DUT: Dipole 835 MHz D835V2;SN:4d160;

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.909 S/m; ϵ_r = 41.439; ρ = 1000 kg/m³


Ambient Temperature: 21.9 °C; Liquid Temperature: 21.7 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(10.09, 10.09, 10.09) @ 835 MHz; Calibrated:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 Electronics: DAE4 Sn1423; Calibrated: 2023/3/17 Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.30 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.10 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 3.28 W/kg

Calibrator:

Justin Huang,

Approver:

Herbort Lin

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, Ch Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60220

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1101

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 1, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Power Meter NRP2 106277 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Power sensor NRP8S 104291 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22				10.00
Power sensor NRP8S 104291 23-Sep-20 (CTTL, No.J20X08336) Sep-21 Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Reference Probe EX3DV4 SN 3846 26-Apr-21(CTTL-SPEAG,No.Z21-60084) Apr-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibratio Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Secondary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22	DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
	Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
NetworkAnalyzer E5071C MY46110673 14-Jan-21 (CTTL, No.J21X00232) Jan-22	Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
	NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Calibrated by:

Name

Function

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60220

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8Ω- 2.01jΩ	
Return Loss	- 30.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.124 ns
Electrical Delay (one direction)	1.124115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1101

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26

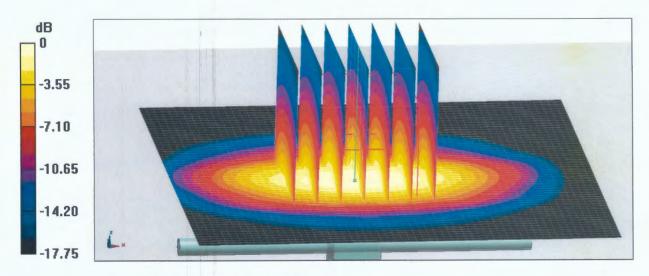
Date: 06.01.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.22 V/m; Power Drift = -0.04 dB

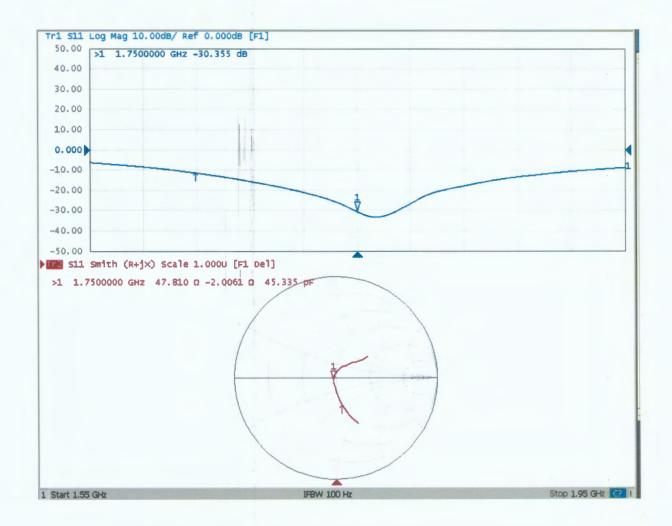

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.69 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 14.5 W/kg


0 dB = 14.5 W/kg = 11.61 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Asset No.:	E-438	Model No.:	D1750V2	Serial No.:	1101
nvironmental		Original Cal. Date:	June 1, 2021	Next Cal. Date:	June 1, 2024
			rd List	none sair bacc.	, , , , , , , , , , , , , , , , , , , ,
1	IEEE Std 1528-2013	IEEE Recommended Pra	ctice for Determining than Head from Wireless Co		
1	1EEE 500 1020 2010	Rate (SIR) III the name		2013	easarement reximiqu
2	IEC 62209-2		nine the Specific Absorp		
3	KDB865664	S	AR Measurement Requireme	ents for 100 MHz to 6 G	Hz
		Equipment	Information		
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal.Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	lteck	IT6154	006104126768201001	N/A	July 8, 2023
ector Network Anal	Agilent	E5071C	MY46102965	N/A	February 11, 202
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 20
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
Dielectric Assessment	Speag	DAK-3.5	1226	N/A	January 24, 202
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 202
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 20
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 202
Model No			For Head Tissue		1
	Item	Original Cal. Result	Verified on 2023/12/15	Deviation	Result
	Impedance, transformed to feed	47.8Ω-2.01jΩ	47. 83 Ω -1. 99 j Ω	<5 Ω	Pass
D1750V2	Return Loss(dB)	-30. 4	-30. 1	-1.0%	Pass
	SAR Value for 1g(mW/g)	9. 04	8. 95	-1.0%	Pass
	SAR Value for 10g(mW/g)	4. 69	4. 74	1.1%	Pass
	Impedance Test-Head			Return Loss-Head	
ESOTTIC Nativork Analyzar ktive Chiltone - 2 Response - 3 Stimulus - 4 Miril Analysis - 5 Irr	it Sala		E5071C Network Analyzer 1 Active Chilinee 2 Response 3 Stradus 4 Min/Analysis 5 Institution	n Oubs	
77] 511 Smith (R+jx) Scale 1.0000 [F1]		Smith R + 90	Market 1.750000000 GHz	· /m	Mark Mark
>1 1.7500000 GHz 47.851 € -1.9879 €	45c751 pr	Lin / Phase	772 S11 Log Mag 10.00dB/ Ref -20.00dB [F1	1	J Marin
		Log / Phase	51 1.7500000 GH2 -30.000 dB		Mark
		Real / Imag	10/00		Marki
		• R+JC	10.00		Marks
		G+B Carcel	0.000		Acre M
					RefM
			-10.00		1 Clear I
	V		-20.00		Mark
			-30.00	4	Ref M
			+10,00		Ref Mark
		3/	-40.00		Rea
			-50.00		
			-60.00		
Start 1.55 Ge	FEW YORK	Step 1.05 Get Cor II	-60,00 +70,00 1 Sut 135 94	PSW TO MC	State 1 to 9 cm

Validation Report for Head TSL

Test Laboratory: BTL Inc.

Date: 2023/12/15

System Check_H1750_1215

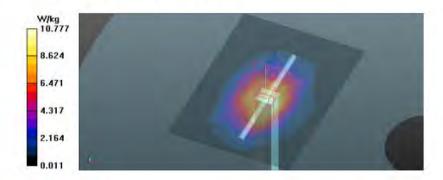
DUT: Dipole 1750 MHz D1750V2;SN:1101;

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.398 S/m; ϵ_r = 40.036; ρ = 1000 kg/m³ Ambient Temperature: 22.6 °C; Liquid Temperature: 21.9 °C

DASY Configuration:

- Probe: EX3DV4 SN7693; ConvF(8.51, 8.51, 8.51) @ 1750 MHz; Calibrated: 2023/10/31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1717; Calibrated: 2023/4/10
- Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 10.8 W/kg

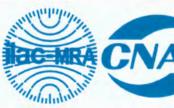
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 8.95 W/kg; SAR(10 g) = 4.74 W/kg Maximum value of SAR (measured) = 14.0 W/kg

Calibrator: Justin Huang,


Approver:

Herbort Lin

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60221

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d179

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 31, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP	3S 104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3	3DV4 SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E44	38C MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E50	71C MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
			•

Calibrated by:

Name

Function

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60221

Page 1 of 6

lossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.0 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8Ω+ 2.66jΩ
Return Loss	- 28.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.105 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	1

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.25$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN3846; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 2021-04-26

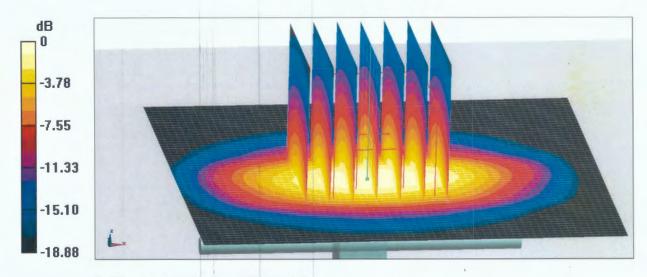
Date: 05.31.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.89 V/m; Power Drift = -0.09 dB

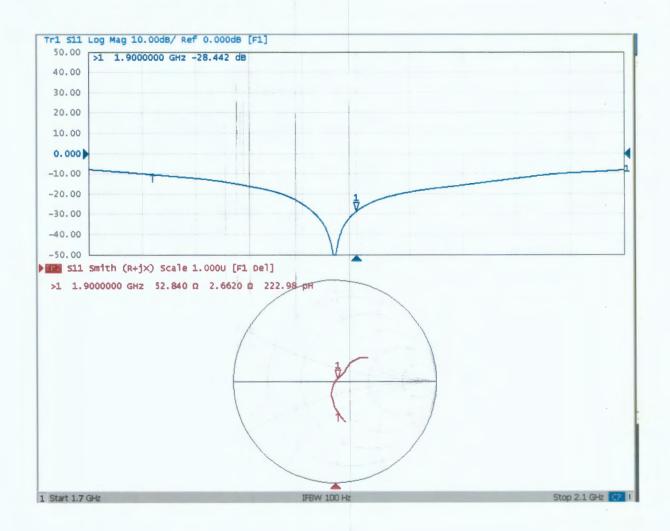

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 9.79 W/kg; SAR(10 g) = 4.97 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 50.5%

Maximum value of SAR (measured) = 15.7 W/kg


0 dB = 15.7 W/kg = 11.96 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

sset No.:	E-431	Model No.:	D1900V2	Serial No.:	5d179
nvironmental	22.6℃, 66%	Original Cal. Date:	June 1, 2021	Next Cal. Date:	June 1, 2024
		Standa	rd List		
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpi Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniq June 2013			
2	IEC 62209-2	Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz),			
3	KDB865664		AR Measurement Requirem	ents for 100 MHz to 6 G	SHz
	T	* *	Information	T	1
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	lteck	IT6154	006104126768201001	N/A	July 8, 2023
ector Network Anal	Agilent	E5071C	MY46102965	N/A	February 11, 2023
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 2023
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
Dielectric Assessment	Speag	DAK-3. 5	1226	N/A	January 24, 2022
Directional Coupler	Woken	TS-PCCOM-05 0110A056010-10	0107090019 COM5BNW1A2	N/A N/A	February 11, 2023
Coupler Digital Themometer	Woken TES	TES-1310	210706071	N/A N/A	February 11, 2023 November 3, 2023
Model No	ILO	125 1010	For Head Tissue	IV/ II	November 3, 2023
MODEL 110	Item	Original Cal Regult	Verified on 2023/12/15	Deviation	Result
	Impedance, transformed to feed	52. 8 Ω +2. 66 j Ω	52. 76 Ω +2. 68 j Ω	<5Ω	Pass
D1900V2	Return Loss(dB)	-28.4	-29	2. 1%	Pass
D1300V2	SAR Value for 1g(mW/g)	9. 79	9. 45	-3.5%	Pass
	SAR Value for 10g(mW/g)	4. 97	5	0.6%	Pass
	Impedance Test-Head			Return Loss-Head	
5071C Network Analyzar	Impedance lest nead		ES071C Network Analyzer	Return Loss nead	
0/Rx 15 to 1 State 1.000u [F1]	546-	Smith	1 Active Chilfrace - 2 Response - 3 Standas 1992/Arrolpss 5 Jris Marwer 1 1,900000000 GHz	tr State	* * Marker
1.5000000 GHZ 52.758 B 2.0756 B 3		Liri / Phose Log / Phose Real / Shose Real / Shose Carcel Carcel	131 Log Mag 10.000m/ set -70.0000 (5: 30.00) 10.00 10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00		Marker Ma

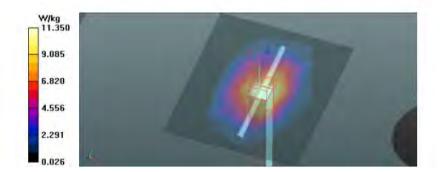
Validation Report for Head TSL

Test Laboratory: BTL Inc.

Date: 2023/12/15

System Check_H1900_1215

DUT: Dipole 1900 MHz D1900V2;SN:5d179;


Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.353 S/m; ϵ_r = 41.148; ρ = 1000 kg/m³ Ambient Temperature : 22.6 °C; Liquid Temperature : 21.9 °C

DASY Configuration:

- Probe: EX3DV4 SN7693; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 2023/10/31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1717; Calibrated: 2023/4/10
- Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.3 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 107.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5 W/kg Maximum value of SAR (measured) = 14.5 W/kg

Calibrator: Justin Huang,

Approver:

Herbort Liv

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60224

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 919

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

	200		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	6-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	8-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
		lei	

Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

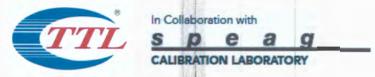
TSL

tissue simulating liquid

ConvF N/A sensitivity in T\$L / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6Ω+ 2.17jΩ	
Return Loss	- 24.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.070 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	1.5		1
3.0 0 1 13		SPEAG	
Manufactured by	1	SPEAG	
Manufactured by		0, 5,0	
		1	

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\varepsilon_r = 38.82$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

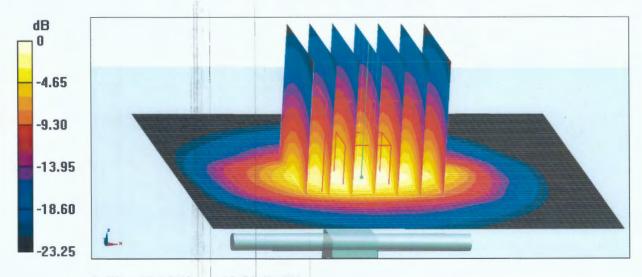
 Probe: EX3DV4 - SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: 2021-04-26

Date: 05.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.10 V/m; Power Drift = -0.09 dB

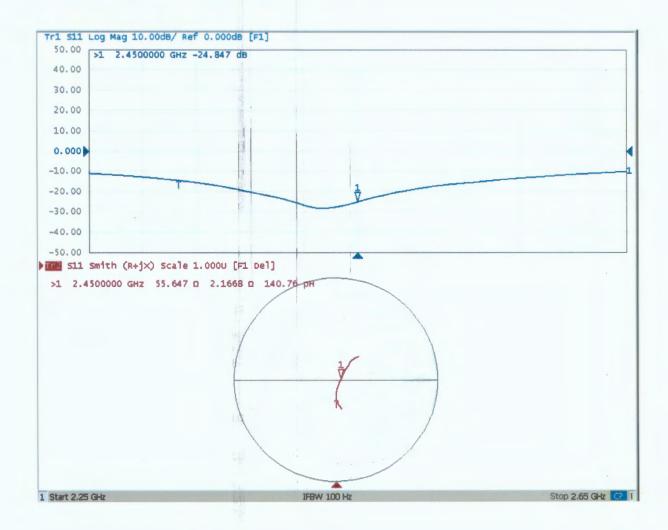

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.95 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 45.9%

Maximum value of SAR (measured) = 22.6 W/kg


0 dB = 22.6 W/kg = 13.54 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Impedance Measurement Plot for Head TSL

aget No	E 494	Madal Na	D2450V2	Comical No	919
sset No.:		Model No.: Original Cal.	May 28, 2021	Serial No.: Next Cal. Date:	May 28, 2024
nvironmentai	22.20, 00 %			Next Cal. Date:	may 28, 2024
	_	Standar		D 1 0 . 1 1	1.0 .0. 41
1	IEEE Std 1528-2013		tice for Determining the Human Head from Wirele		
1	TEEE 5tu 1526 2015	Rate (SAR) III the	Texhniques,		ices. measurement
		Procedure to determi	ne the Specific Absorpt:		ireless communicatio
2	IEC 62209-2	devices used in close	e proximity to the human	body(frequency rang	e of 30 MHz to 6 GHz
3	KDB865664	SA	R Measurement Requiremen	ts for 100 MHz to 6	GHz
		Equipment I	nformation		
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	1teck	IT6154	006104126768201001	N/A	July 8, 2023
ector Network Anal	Agilent	E5071C	MY46102965	N/A	February 11, 2023
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 2023
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
ielectric Assessment	Speag	DAK-3.5	1226	N/A	January 24, 2022
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 2023
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 2023
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 2023
Model No			For Head Tissue		
	Item	Original Cal. Result	Verified on 2023/12/13	Deviation	Result
	Impedance, transformed	55. 6 Ω +2. 17 j Ω	55. 59 Ω +2. 14 j Ω	<5Ω	Pass
	to feed point				
D2450V2	Return Loss(dB)	-24. 8	-24. 91	0.4%	Pass
	SAR Value for 1g(mW/g)	13. 1	12.7	-3.1%	Pass
	SAR Value for				
	10g (mW/g)	5. 95	5. 86	-1.5%	Pass
	Impedance Test-Head			Return Loss-Head	
SOTTC Network Analyzer tve Chi(Trace - 2 Response - 3 Stimulus - 4 Mir/Analysis - 5 Instr	Sala -		■ 1507AC Network Analyzer 1 Active Chilinace 2 Response 3 Stimulus 4 Min/Analysis 5 Instr St.		E
Sil Smith (R+jX) Scale 1.0000 [Fl]		Format Smith (R+bt)	Marker 1 2.450000000 GHz	8.0	÷ : ↓× Mela
>1 2.4500000 GHz 55.598 ft 2.1435 ft 1	39:25 pH	Log Mag	30.00 51 7,4500000 GHZ -24,910 dB		1 Market
		Phase	20.00		Marke
		Group Delay			Marin
		■ Smith R+pt	10.00		Marke
		Polar	0.000		More Ma
		Lin Mag	-30.00		a Ref Ma
	/ 🖖	SWR			Clear M Marx
		Réal	-20,00	j	Market Ref Ma
		Imaginary	-10.00		Kelf Market
		Erpand Phase	-40.00		Retn
		Positive Phase	-50,00		
		Roturn			
			-80.00		
tort 2.25 GHz	IFBW 70 kre	Stop 2.65 GHz (G) 1	-76.60 I Stat 2-25 G/s	FEW 70 Mg	Stop 2.65 Gre Time

Validation Report for Head TSL

Test Laboratory: BTL Inc.

System Check_H2450_1213

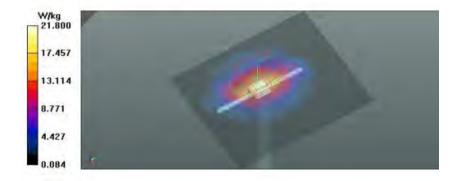
DUT: Dipole 24500 MHz D2450V2;SN:919;

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.826 S/m; ε = 39.336; ρ = 1000 kg/m³ Ambient Temperature: 22.2 °C; Liquid Temperature: 22.1 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(7.57, 7.57, 7.57) @ 2450 MHz; Calibrated: 2023/2/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 2023/11/20
- Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 20.9 W/kg

Zoom Scan (5x5x7) /Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 94.65 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 21.8 W/kg

Calibrator:

Justin Huang

Approver:

Date: 2023/12/13

Herbort lin

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn

BTL Inc . Client

Z21-60225 **Certificate No:**

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1067

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	装置1
Reviewed by:	Lin Hao	SAR Test Engineer	THE STATE OF THE S
Approved by:	Qi Dianyuan	SAR Project Leader	Sia

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

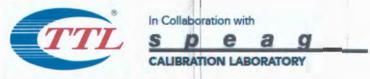
- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	4
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	


Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 18.7 % (k=2)

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω- 6.74jΩ	
Return Loss	- 23.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.057 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	13-1		
Manufactured by		SPEAG	

Sign

the

In Collaboration with

S P E A G

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1067

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.957$ S/m; $\varepsilon_r = 39.33$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

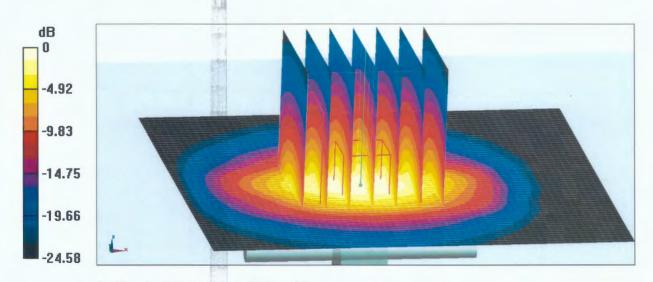
 Probe: EX3DV4 - SN3846; ConvF(7.3, 7.3, 7.3) @ 2600 MHz; Calibrated: 2021-04-26

Date: 05.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY 52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.7 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 31.6 W/kg

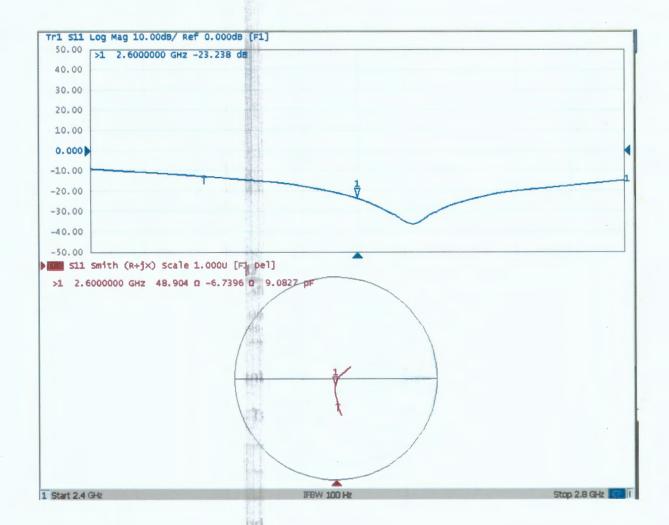
SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.22 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 44.5%

Maximum value of SAR (measured) = 24.7 W/kg

0 dB = 24.7 W/kg = 13.93 dBW/kg



In Collaboration with

S P e a g CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

护钳

BLL		Dipole Internal C	Calibration Record		
Asset No.:	E-435	Model No.:	D2600V2	Serial No.:	1067
Environmental	22.2°C, 60 %	Original Cal. Date:	May 28, 2021	Next Cal. Date:	June 1, 2024
		Standa	rd List		
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013			
2	IEC 62209-2	Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz),			
3	KDB865664	Si	AR Measurement Requirem	ents for 100 MHz to 6 0	Hz
		Equipment	Information	1	1
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal.Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	1teck	IT6154	006104126768201001	N/A	July 8, 2023
ector Network Analy	Agilent	E5071C	MY46102965	N/A	February 11, 2023
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 2023
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
Dielectric Assessment	Speag	DAK-3. 5	1226	N/A	January 24, 2022
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 2023
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 2023
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 2023
Model No			For Head Tissue		-
D2600V2	Item Impedance, transformed	-	Verified on 2023/12/15		Result
	to feed point	48. 9 Ω -6. 74 j Ω	48. 67 Ω –6. 69 j Ω	<5 Ω	Pass
	Return Loss(dB)	-23. 2	-23.38	0.8%	Pass
	SAR Value for 1g(mW/g)	14. 2	14. 2	0.0%	Pass
	SAR Value for 10g(mW/g)	6. 22	6. 23	0.2%	Pass
Impedance Test-Head			Return Loss-Head		
50 MC Network Analysis	-0.5	_ F N	E5071C Network Analyzer 1 Addy Oh/Trace 2 Response 3 Streidus 4 Mir/Analysis 5 Ins	etr State	<u> </u>
7-8 511 Smith (R/SK) Scale 1.0000 (F1) >1 2.6000000 OHz 48.668 0 -6.6855 0 9.2501 pf			Marker 1 2,60000000 GHz Marker 1 2,600000000 GHz Marker 1 2,6000000000 GHz Marker 1 2,6000000000 GHz		
		Lin / Phuse Log / Phuse elosi / Enog • R+ pc G+ p Cancel	30.00		A Marker of Mark
Start 2.4 GHz	1FBW 70 Hz	Stop 2.8 9-k [Gall] Mage: Stop Stop Stop 2023-12-15 14:29	1 Start 2 4 GHz	35W 70 MC	Stop 2.8 (94) (2017) Mates 1 1 1 1 1 2 2023-12-15 1 1 1 1 2 2023-12-15 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Validation Report for Head TSL

Test Laboratory: BTL Inc.

Date: 2023/12/15

System Check_H2600_1215

DUT: Dipole 2600 MHz D2600V2;SN:1067;

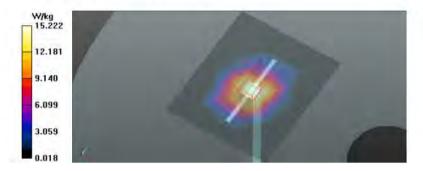
Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.007 S/m; ϵ_r = 39.261; ρ = 1000 kg/m³ Ambient Temperature : 22.2 °C; Liquid Temperature : 21.7 °C

DASY Configuration:

- Probe: EX3DV4 SN7693; ConvF(8.2, 8.2, 8.2) @ 2600 MHz; Calibrated: 2023/10/31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- . Electronics: DAE4 Sn1717; Calibrated: 2023/4/10
- Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 15.2 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 110.7 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.23 W/kg

Maximum value of SAR (measured) = 25.2 W/kg

Calibrator:

Justin Huang,

Approver:

Horbort lin