

Test Report

FCC ID: XDQ-G101

Date of issue: Feb. 13, 2017

Sample Description:	PIN PAD
Model(s):	G101
Applicant:	Shenzhen Xinguodu Technology Co., Ltd.
Address:	17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, China
Date of Test:	Dec. 28, 2016 to Feb. 13, 2017

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

- Page 2 of 15 -

Report No.: MTi161221E122

Table of Contents

1.	General description	5
1.1	Feature of equipment under test (EUT)	5
	PEUT operation mode	
	Test conditions	
1.4	Ancillary equipment list	5
1.5	Measurement uncertainty	5
2.	Testing site	6
3.	List of test equipment	7
4.	Test Result	8
4.1	Conducted emission	8
4.2	? Antenna requirement	. 11
4.3	3 20dB emission bandwidth	. 12
4.4	Radiated emission	. 13
4 5	5 Frequency stability	15

- Page 3 of 15 - Report No.: MTi161221E122

Test Result Certification			
Applicant's name:	Shenzhen Xinguodu Technology Co., Ltd.		
Address:	17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, China		
Manufacture's Name:	Shenzhen Xinguodu Technology Co., Ltd.		
Address:	17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, China		
Product name:	PIN PAD		
Trademark:	NEXGO		
Model name:	G101		
Standards:	FCC Part 15.225		
Test Procedure:	ANSI C63.10-2013		

This device described above has been tested by Shenzhen Toby Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	Sang di Hovang	
	Sangdi Huang	Feb. 13, 2017
Reviewed by:	(em	chan
	Leon Chen	Feb. 13, 2017
Approved by:	Tom Xue	
	Tom Xue	Feb. 13, 2017

- Page 4 of 15 - Report No.: MTi161221E122

SUMMARY OF TEST RESULT

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	Pass
3	15.231(c)	20dB bandwidth	Pass
4	15.225	Radiated emission	Pass
5	15.225	Frequency stability	Pass

- Page 5 of 15 - Report No.: MTi161221E122

1. General description

1.1 Feature of equipment under test (EUT)

Product name:	PIN PAD
Model name:	G101
Operating frequency:	13.56MHz
Modulation type:	subcarrier load modulation
Power supply:	DC 5V
Antenna designation:	Loop antenna (Antenna Gain: 0dBi)

1.2 EUT operation mode

During testing, the EUT is operated in a keeping TX mode.

1.3 Test conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 20°C~30°CHumidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

1.4 Ancillary equipment list

Equipment	Model	S/N	Manufacturer
POS Terminal	NX1200C	5523X15296	Shenzhen Xinguodu Technology Co., Ltd.

1.5 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

- Page 6 of 15 - Report No.: MTi161221E122

2. Testing site

Test Site	Shenzhen Toby Technology Co., Ltd.	
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China	
FCC Registration No.:	811562	
CNAS Registration No.:	CNAS L5813	

- Page 7 of 15 - Report No.: MTi161221E122

3. List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2017.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2017.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2017.12.25
Test Cable	N/A	N/A	C01	2017.12.06
EMI Test Receiver	R&S	ESCI	101160	2017.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS-ELEKTRO NIK	VULB 9160	3058	2017.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2017.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2017.12.05
Loop Antenna	Schwarzbeck	FMZB 1519 B	00005	2017.12.05
Test Cable	United Microwave	57793	1m	2017.12.05
Test Cable	United Microwave	A30A30-5006	10m	2017.12.05
Microwave Pre_amplifier	Agilent	8449B	3008A01714	2017.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2017.12.05
EMI Test Receiver	R&S	ESPI-7	101318	2017.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 8 of 15 - Report No.: MTi161221E122

4. Test Result

4.1 Conducted emission

4.1.1 Limit

Frequency	Li	Limit		
(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56	56 50 46		
0.5-5	56	46		
5-30	60	50		

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

4.1.2 Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

4.1.3 Test Result

- Page 9 of 15 - Report No.: MTi161221E122

Temperature:		26°C		Relative		51%		
Pressure:		101kPa		Polarization:		L		
Test voltage:		AC 120V/60Hz		Test mode:		Transmitting		
90.0 d	BuV							
80								
70								
70					ECCP	art15 ClassB AC Conduction(QP)		
60					500000000000000000000000000000000000000			
50 X					FCCPar	rt15 ClassB AC Conduction(AVG)		
40	W.	Sa.						
20,000	" My	*						
30	WW.	M _r				y		
20	M. II	My washing the		La Marth deproduction Proprofession	n alter April 10 and	ather many many many many many many many many		
10	' WWY/W////	I II	A SAN PARAMETER	ubline	ha naka askazonezanak z	make make the same way and the sales of the same of th		
22		AMA AM	Philosophylliamphiliphoco	Addition population of the second	of hilbs and all all he			
0						Mayor and what I'm		
-10 0.150		0.5		(MHz)	5	30,000		
		Reading	Correct Measu	ıre-				
No	. Mk. Freq.	Level	Factor men	t Limit Over				
	MHz * 0.1638	dBuV 44.23	dB dBuV		Detector	Comment		
		20.18	-0.03 20.15		AVG			
3	0.2271	36.41	-0.03 36.38	62.55 -26.17	QP			
4		13.37	-0.03 13.34		AVG			
		32.53	-0.03 32.50		QP			
— 6		23.93 18.70	-0.03 23.90 -0.03 18.67		AVG QP			
		10.76	-0.03 10.53		AVG			
	2.9991	17.03	-0.04 16.99		QP			
5				46.00 20.42	AV/C			
10	2.9991	7.62	-0.04 7.58	3 46.00 -38.42	AVG			
		7.62 21.01	-0.04 7.58 -0.07 20.94		QP			

- Page 10 of 15 - Report No.: MTi161221E122

Temperature:		26°C		F	Relative			51%					
Pressure:		101kPa		F	Polarization:		:	N					
Test voltage:		AC 120V/60Hz		Hz T	Test mode:		Transmitting						
90.0 dBuV		75.2 75.1° 75.1°		477	- 100	575		z	SIL - 201	~. ~.		417	
80													
70													
70							FCCI	Part15 I	*IaceR	ልሮ ሮል	nduction(G	ıpı	
50		-						aitis	riassn	AC CO	nauction	6. 1	-
50							FCCP	art15 C	assB A	C Con	duction(A\	/G)	_
W/W X	5,320												
40 77	_x												
30	w.A	M											-
na 1/2/	Jun 1/1)	17 Jahren	والمراجع المراجع المراجع	الملاحدين الملكم	×		2.0	5		X	10		
20 1	0.01	Washington Control	an Markathan	And Halland Strategick	armental bright	hipport to a pha	through the same	The work of the	MANAGER	S - 1917-1	and an analysis of the	half at	
10	WM NAM	1 John Mile	AND MAKE	AND HOLLOW HEAD	water Hope with	waterick	-thirtipareturniphor	44VM	A STATE	n/Addition	mandemoney	" MANAGERIA	pea
	N Y I	Joseph .	MAN		1			Aprilan	WANT			Yemman stre	AL AVE
		2.1											
0.150		0.5			(MHz)			5				30	.000
90 350 000 500005		2004/303			2020101		*					92588	3802840
		Reading	Correct	Measure-									
No. Mk.	Freq.	Level	Factor	ment	Limit	Over							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Con	nment				
1 *	0.1651	44.71	-0.03	44.68		-20.52	QP						
2	0.1651	20.45	-0.03	20.42		-34.78	AVG						
- 3 - 4	0.2095	37.77 15.79	-0.03 -0.03	37.74 15.76		-25.48 -37.46	QP AVG						
- 5	0.2784	31.91	-0.03	31.88		-28.98	QP						
- 6	0.2784	14.65	-0.03	14.62		-36.24	AVG						
7	0.4073	29.23	-0.03	29.20		-28.50	QP						
- 8	0.4073	19.22	-0.03	19.19		-28.51	AVG						
9	0.9910	19.23	-0.04	19.19	56.00	-36.81	QP						
10	0.9910	11.93	-0.04	11.89	46.00	-34.11	AVG						
- 4.4	9.1899	18.20	-0.07	18.13	60.00	-41.87	QP						
11													

- Page 11 of 15 - Report No.: MTi161221E122

4.2 Antenna requirement

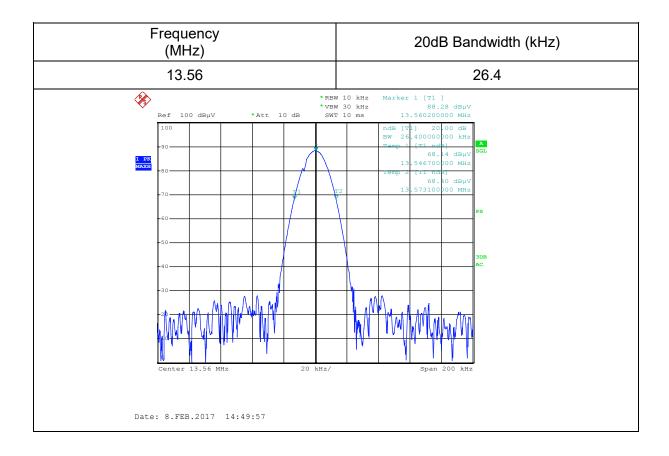
4.2.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.2.2 EUT antenna description

The radio antenna of EUT is an internal permanently attached antenna, the maximum gain is 0dBi. So the antenna meets the requirement of this part.

- Page 12 of 15 - Report No.: MTi161221E122


4.3 20dB emission bandwidth

4.3.1 Test method

Set Spectrum Analyzer centre Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 200 kHz

Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.3.2 Test result

- Page 13 of 15 - Report No.: MTi161221E122

4.4 Radiated emission

4.4.1 Limit

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209, the field strength of emissions from intentional radiators shall not exceed the following:

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance
1.705-30	30	29.54	QP	
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	3m
960-1000	500	46	QP	
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

Note: the measurement distance is 30m for 1.705MHz to 30MHz, 3m for above 30MHz.

4.4.2 Test method

The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground; the table was rotated 360 degrees to determine the position of the highest radiation.

For test frequency up to 30MHz, a loop antenna is used; the centre of the loop antenna is 1m above the ground.

For test frequency above 30MHz, he Test antenna shall vary between 1m and 4m, both Horizontal and Vertical polarizations are set to make measurement.

For the actual test configuration, please see the test setup photos.

4.4.3 Test Result

- Page 14 of 15 - Report No.: MTi161221E122

Frequency	Ant. Polarization	Emission level	Limits	Detector	Result
(MHz)	H/V	dBµV/m	dBµV/m		
13.56	1	48.8	124	Peak	
13.56	1	48.1	124	QP	
13.553	1	44.3	69.54	QP	
13.567	1	44.5	69.54	QP	
13.11	/	27.7	69.54	QP	
13.41	/	28.5	69.54	QP	
13.71	1	29.6	69.54	QP	Pass
14.01	1	27.2	69.54	QP	
27.12	1	39.5	69.54	QP	
40.68	V	35.94	40.00	QP	
40.68	Н	33.62	40.00	QP	
54.24	V	34.87	40.00	QP	
54.24	Н	32.69	40.00	QP	

- Page 15 of 15 - Report No.: MTi161221E122

4.5 Frequency stability

4.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.5.2 Test Result

Voltage (Vac)	Temp. (℃)	Frequency (MHz)	Deviation (%)	Limit (%)
120	-20	13.560346	0.002%	
120	-10	13.560264	0.001%	
120	0	13.560538	0.003%	
120	10	13.560672	0.004%	
120	20	13.560469	0.003%	+/-0.01%
120	30	13.560583	0.004%	+/-0.01%
120	40	13.560588	0.004%	
120	50	13.560264	0.001%	
102	20	13.560683	0.005%	
138	20	13.560395	0.002%	

----END OF REPORT----