

Impedance Measurement Plot for Body TSL

Certificate No: D2300V2-1018_Jul20

Page 8 of 8

©Copyright. All rights reserved by CTTL.

2450 MHz Dipole Calibration Certificate

Engineering AG eughausstrasse 43, 8004 Zurich	/ Of , Switzerland		Service suisse d'étalonnage Servizio svizzero di taratura
ccredited by the Swiss Accreditation he Swiss Accreditation Service Iultilateral Agreement for the rea	is one of the signatorie	es to the EA	Accreditation No.: SCS 0108
Client CTTL-BJ (Aude	n)	Certificate N	lo: D2450V2-853_Jul20
CALIBRATION C	D2450V2 - SN:8		
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Source	s between 0.7-3 GHz
Calibration date:	July 21, 2020		
The measurements and the uncert All calibrations have been conduct	ainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE	ainties with confidence p	robability are given on the following pages a ry facility: environment temperature (22 \pm 3)'	nd are part of the certificate. °C and humidity < 70%.
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards	ainties with confidence p ed in the closed laborato E critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP	ainties with confidence p ed in the closed laborato E critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-21
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ¹ Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	nd are part of the certificate. ^c C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ¹ Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	nd are part of the certificate. ² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21 Apr-21
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20)	nd are part of the certificate. ² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	color Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	nd are part of the certificate. ^a C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH3394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ¹ O1-Apr-20 (No. 217-03100/03101) O1-Apr-20 (No. 217-03100) O1-Apr-20 (No. 217-03100) O1-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: BH3394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19)	nd are part of the certificate. ² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 <u>Scheduled Check</u> In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 31982 / 06327 SN: 31982 / 06327 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: US31080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37282783 SN: MY41092317 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: US31080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20

Certificate No: D2450V2-853_Jul20

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
 - Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853_Jul20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.17 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.22 W/kg

Certificate No: D2450V2-853_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 4.9 jΩ	
Return Loss	- 23.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 5.6 jΩ	
Return Loss	- 25.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
mananaotarea by	SPEAG

Certificate No: D2450V2-853_Jul20

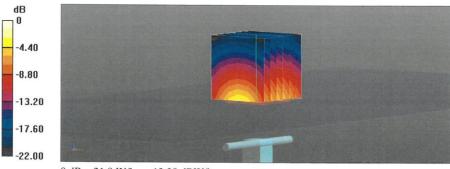
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 38.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

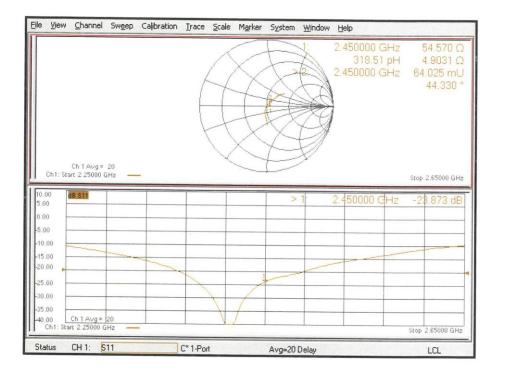
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.2 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg


Certificate No: D2450V2-853_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul20

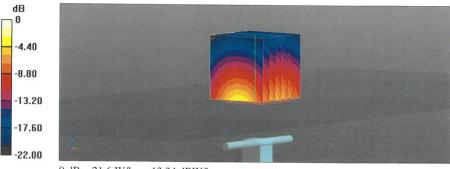
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

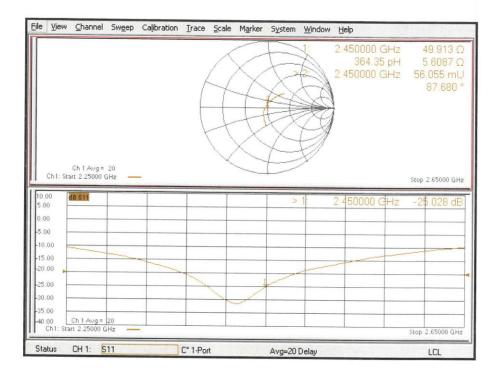
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 111.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 52.9% Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg


Certificate No: D2450V2-853_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul20

Page 8 of 8

5G Dipole Calibration Certificate

Calibration Laboratory Schmid & Partner Engineering AG Reughausstrasse 43, 8004 Zurich,			 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service in Multilateral Agreement for the rec	s one of the signatorie		Accreditation No.: SCS 0108
Client CTTL-BJ (Auder	1)	Certifica	ate No: D5GHzV2-1060_Jul20
CALIBRATION CI	ERTIFICATE		
Object	D5GHzV2 - SN:1	060	
Calibration procedure(s)	QA CAL-22.v5 Calibration Proce	dure for SAR Validation Sou	rces between 3-10 GHz
Calibration date:	July 27, 2020		
Calibration Equipment used (M&TE Primary Standards		ry facility: environment temperature (22 Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4 DAE4	SN: 3503 SN: 601	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20 Dec-20
UAE4	SN. 001	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Milleser
Approved by:	Katja Pokovic	Technical Manager	Millets
This setting the set			Issued: July 28, 2020
This calibration certificate shall not	be reproduced except in	full without written approval of the labo	ratory.

Certificate No: D5GHzV2-1060_Jul20

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060_Jul20

Page 2 of 23

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.26 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 3 of 23

22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg

normalized to 1W

Head TSL parameters at 5300 MHz

SAR for nominal Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.42 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.37 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 5 of 23

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 6 of 23

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

to tonowing parameters and the second s	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.04 W/kg

Body TSL parameters at 5250 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.09 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 7 of 23

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.60 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.06 W/kg

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	6.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.15 W/kg

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 9 of 23

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.04 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 10 of 23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.8 Ω - 6.5 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 4.6 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2 Ω - 3.5 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.8 Ω - 3.6 jΩ
Return Loss	- 28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.4 Ω + 0.4 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ
Return Loss	- 32.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 3.1 jΩ
Return Loss	- 29.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.4 Ω - 5.5 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.2 Ω - 3.2 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.0 Ω - 2.0 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ
Return Loss	- 32.3 dB

Certificate No: D5GHzV2-1060_Jul20

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.5 Ω + 0.4 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.5 Ω - 0.8 jΩ	
Return Loss	- 32.0 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.1 Ω - 2.4 jΩ	
Return Loss	- 30.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1060_Jul20

Page 13 of 23

DASY5 Validation Report for Head TSL

Date: 20.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.57$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.77$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.77$ S/m; $\varepsilon_r = 35.9$ $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.03$ S/m; $\varepsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.09$ S/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Mez; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.61 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.7% Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.07 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.5% Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 14 of 23

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

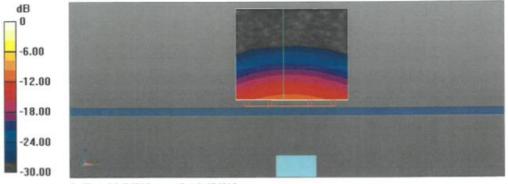
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.56 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 20.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 20.2 W/kg

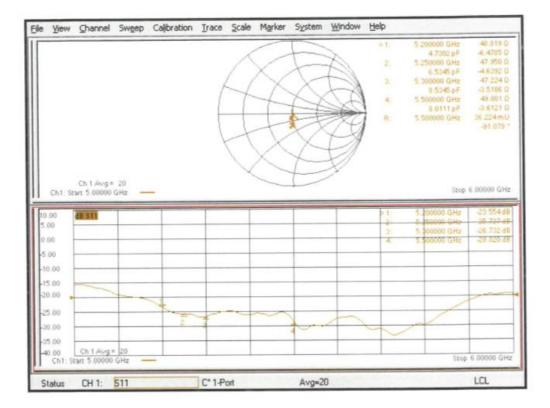
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.69 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.9 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.77 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: D5GHzV2-1060_Jul20

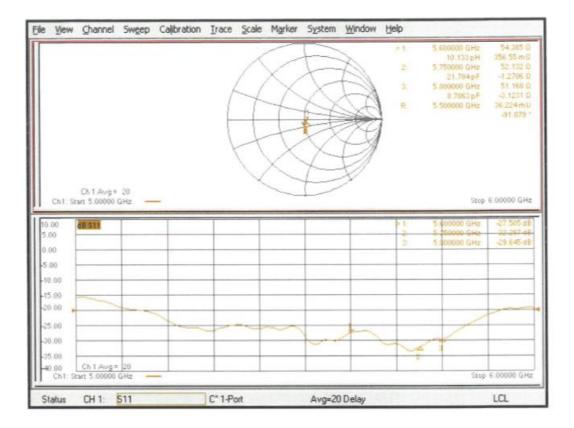
Page 15 of 23

0 dB = 20.7 W/kg = 13.16 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 16 of 23

Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 17 of 23

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 18 of 23

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.46 S/m; ε_r = 47.8; ρ = 1000 kg/m³, Medium parameters used: f = 5250 MHz; σ = 5.53 S/m; ε_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 5.6 S/m; ε_r = 47.6; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.87 S/m; ε_r = 47.2; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 6.01 S/m; ε_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.22 S/m; ε_r = 46.8; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.29 S/m; ε_r = 46.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.58 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.59 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 17.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

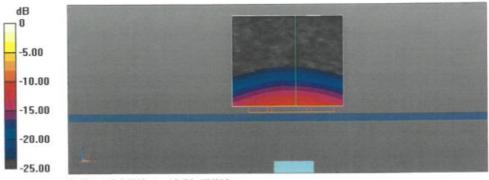
Page 19 of 23

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.12 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.25 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.7 W/kg

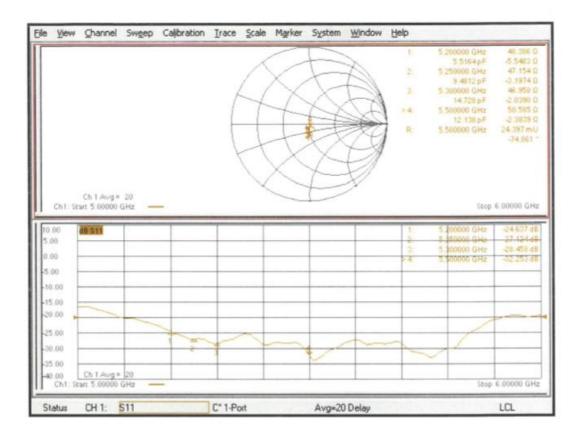
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.67 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 18.7 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.5% Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1060_Jul20

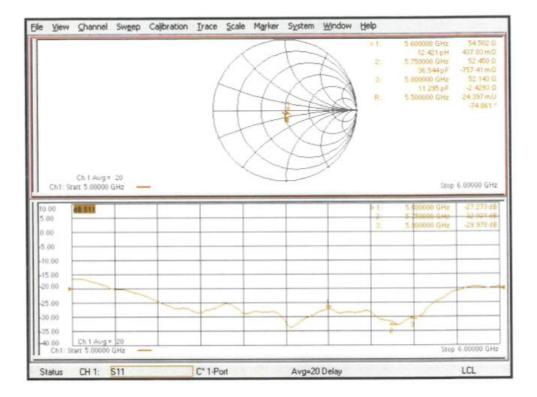
Page 20 of 23

0 dB = 19.0 W/kg = 12.79 dBW/kg


Certificate No: D5GHzV2-1060_Jul20

Page 21 of 23

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)


Certificate No: D5GHzV2-1060_Jul20

Page 22 of 23

Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 23 of 23

ANNEX J SPOT CHECK

J.1 Dielectric Performance

Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2021/2/27	750 MHz	Head	41.93	-0.02	0.908	2.02
2021/2/27	835 MHz	Head	41.27	-0.55	0.89	-1.11
2021/2/27	1750 MHz	Head	40.13	0.12	1.345	-1.82
2021/2/27	1900 MHz	Head	39.77	-0.57	1.413	0.93
2021/2/27	2300 MHz	Head	39.59	0.23	1.671	0.06
2021/2/28	2450 MHz	Head	39.79	1.51	1.813	0.72
2021/2/28	5250 MHz	Head	35.52	-1.14	4.677	-0.70
2021/2/28	5600 MHz	Head	35.39	-0.39	5.025	-0.89
2021/2/28	5750 MHz	Head	35.87	1.44	5.236	0.31
2021/4/14	835 MHz	Head	41.63	0.31	0.907	0.78
2021/4/14	1900 MHz	Head	39.95	-0.12	1.375	-1.79

TableJ.1-1: Dielectric Performance of Tissue Simulating Liquid

Note: The liquid temperature is 22.0° C

J.2 System Verification

Table J.2-1. System vernication of Head								
Measurement Date	Fromionov	Target valueMeasured value(W/kg)(W/kg)		Deviation				
(yyyy-mm- dd)	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
2021/2/27	750 MHz	5.53	8.47	5.6	8.48	1.27%	0.12%	
2021/2/27	835 MHz	6.25	9.60	6.32	9.44	1.12%	-1.67%	
2021/2/27	1750 MHz	19.1	36.5	19.04	35.8	-0.31%	-1.92%	
2021/2/27	1900 MHz	20.6	39.6	20.36	39.6	-1.17%	0.00%	
2021/2/27	2300 MHz	23.8	49.7	23.8	50.28	0.00%	1.17%	
2021/2/28	2450 MHz	24.5	52.5	24.64	51.68	0.57%	-1.56%	
2021/2/28	5250 MHz	22.9	80.5	22.7	81.7	-0.96%	1.47%	
2021/2/28	5600 MHz	23.6	83.3	24.0	84.8	1.69%	1.85%	
2021/2/28	5750 MHz	22.7	80.4	22.8	81.7	0.62%	1.59%	
2021/4/14	835 MHz	6.25	9.60	6.36	9.56	1.76%	-0.42%	
2021/4/14	1900 MHz	20.6	39.6	20.4	39.92	-0.97%	0.81%	

Table J.2-1: System Verification of Head

J.3 Conducted power of selected case

Table J.3-5: The conducted Power for LTE-Low Power							
LTE Band2	1RB-Middle	1900(19100)	18.66				
LTE Band5	1RB-Middle	844(20600)	21.15				
LTE Band12	1RB-Middle	704(23060)	21.09				
LTE Band14	1RB-Middle	793(23330)	20.15				
LTE Band30	1RB-Middle	2310(27710)	17.16				
LTE Band66	1RB-Middle	1770 (132572)	17.33				

TableJ.3-5: The conducted Power for LTE-Low Power

Table J.3-6: The conducted Power for LTE-Normal Power

LTE Band2	1RB-Middle	1900(19100)	22.84
LTE Band5	1RB-Middle	844(20600)	23.09

TableJ.3-7: The conducted Power for WLAN

Mode / data rate	Channel	Measured Power (dBm)
802.11b	1	15.7
5G	144	11.39

J.4 Measurement results for spot check

Frequenc y Band	Channel Number	Frequenc y (MHz)	Test setup	EUT Measure d Power (dBm)	Tune up (dBm)	Measure d SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measur ed SAR 10g (W/kg)	Calculate d SAR 10g (W/kg)	Power Drift
LTE Band2	19100	1900	1RB-Mid Front 5mm	18.66	19	0.639	0.69	0.373	0.40	-0.02
LTE Band2	19100	1900	1RB-Mid Bottom 5mm	22.84	23	0.397	0.41	0.222	0.23	-0.07
LTE Band5	20600	844	1RB-Mid Rear 5mm	21.15	22	0.642	0.78	0.38	0.46	-0.01
LTE Band5	20600	844	1RB-Mid Bottom 5mm	23.09	24	0.406	0.50	0.274	0.34	0.03
LTE Band12	23060	704	1RB-MId Front 5mm	21.09	22	0.561	0.69	0.392	0.48	0.08
LTE Band14	23330	793	1RB-Mid Rear 5mm	20.15	21.5	0.479	0.65	0.364	0.50	-0.15
LTE Band30	27710	2310	1RB-Mid Front 5mm	17.16	18.5	0.663	0.90	0.317	0.43	0.12
LTE Band66	132572	1770	1RB-Mid Front 5mm	17.33	18	0.551	0.64	0.322	0.38	0.09
WLAN	1	2412	Top 5mm	15.7	17	0.401	0.54	0.179	0.24	-0.08
WLAN	144	5720	Front 5mm	11.39	12	0.369	0.42	0.115	0.13	0.01

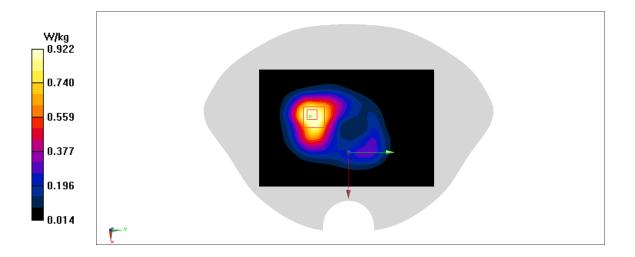
J.5 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): original	Reported SAR 1g (W/Kg): spot check
	LTE Band2	0.91	0.69
	LTE Band5	0.97	0.78
	LTE Band12	0.73	0.69
Death	LTE Band14	0.72	0.65
Body	LTE Band30	0.96	0.90
	LTE Band66	0.75	0.64
	WLAN 2.4 GHz	0.54	0.54
	WLAN 5 GHz	0.53	0.42

Note: All the original result are larger than the spot check results. So we share all of the original results.

J.6 List of Main Instruments

No.	Name	Туре	Serial	Calibration Date	Valid Period	
	Name	туре	Number	Calibration Date	Valia i orioù	
01	Network analyzer	E5071C	MY46110673	January 14, 2021	One year	
02	Power meter	NRP2	101919	June 16, 2020		
03	Power sensor	NRP-Z91	101547	Julie 10, 2020	One year	
04	Signal Generator	E4438C	MY49071430	February 1, 2021	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	CMW500	159889	January 13, 2021	One year	
07	E-field Probe	SPEAG EX3DV4	7307	May 29, 2020	One year	
08	DAE	SPEAG DAE4	536	November 6, 2020	One year	
09	Dipole Validation Kit	SPEAG D750V3	1017	July 24,2020	One year	
10	Dipole Validation Kit	SPEAG D835V2	4d069	July 24,,2020	One year	
11	Dipole Validation Kit	SPEAG D1750V2	1003	July 24, 2020	One year	
12	Dipole Validation Kit	SPEAG D1900V2	5d101	July 28,2020	One year	
13	Dipole Validation Kit	SPEAG D2450V2	853	July 21,2020	One year	
14	Dipole Validation Kit	SPEAG D2300V2	1018	July 21,2020	One year	
15	Dipole Validation Kit	SPEAG D5GHzV2	1060	July 27,2020	One year	



J.7 GRAPH RESULTS

LTE1900-FDD2_CH19100 1RB-Middle Front5mm Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: body 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.388 mho/m; ϵ r = 39.89; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.33,8.33,8.33)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.373 W/kg Maximum value of SAR (measured) = 0.922 W/kg

LTE850-FDD5_CH20600 1RB-Mid Rear 5mm Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: body 835 MHz Medium parameters used: f = 844 MHz; σ = 0.912 mho/m; ϵ r = 42.11; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.2,10.2,10.2)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.957 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.45 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.38 W/kg Maximum value of SAR (measured) = 0.96 W/kg

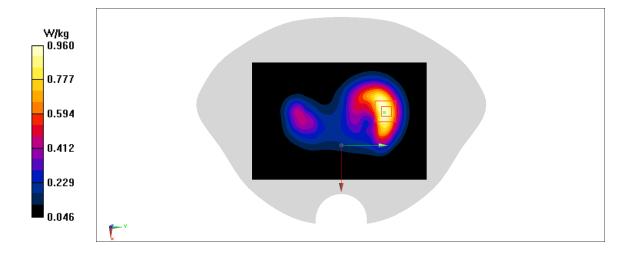
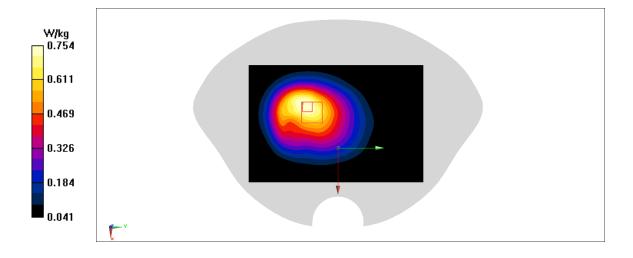


Fig J.2



LTE700-FDD12_CH23060 1RB-MID Front 5mm

Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: body 750 MHz Medium parameters used: f = 704 MHz; σ = 0.84 mho/m; ϵ r = 41.85; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.753 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.72 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.904 W/kg SAR(1 g) = 0.561 W/kg; SAR(10 g) = 0.392 W/kg Maximum value of SAR (measured) = 0.754 W/kg

LTE700-FDD14_CH23330 1RB-Mid Rear 5mm Date: 2/27/2021

Electronics: DAE4 Sn536 Medium: body 750 MHz Medium parameters used: f = 793 MHz; σ = 0.925 mho/m; ϵ r = 41.74; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.592 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.92 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.649 W/kg SAR(1 g) = 0.479 W/kg; SAR(10 g) = 0.364 W/kg Maximum value of SAR (measured) = 0.578 W/kg

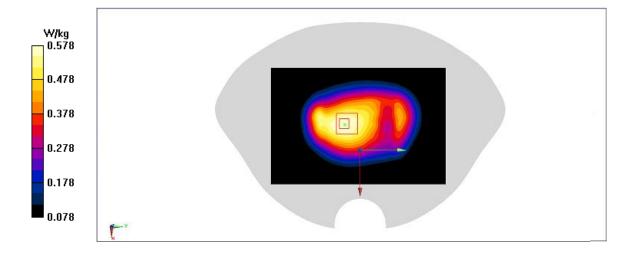


Fig J.4

LTE2300-FDD30_CH27710 1RB-Mid Front 5mm Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: body 2300 MHz Medium parameters used: f = 2310 MHz; σ = 1.711 mho/m; ϵ r = 40.14; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE2300-FDD30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.15,8.15,8.15)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.09 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.451 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.317 W/kg Maximum value of SAR (measured) = 1.08 W/kg

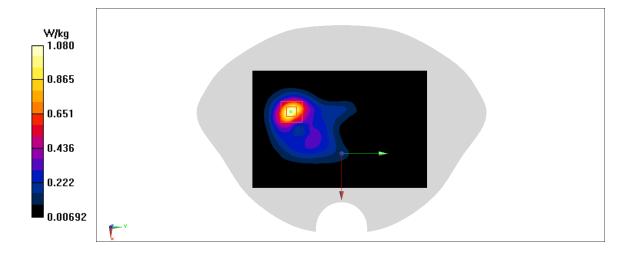


Fig J.5

LTE1700-FDD66_CH132572 1RB-Mid Front 5mm Date: 2/27/2021

Electronics: DAE4 Sn536 Medium: head 1750 MHz Medium parameters used: f =1770 MHz; σ = 1.365 mho/m; ϵ r = 39.93; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD66 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.64,8.64,8.64)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.863 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.686 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.965 W/kg SAR(1 g) = 0.551 W/kg; SAR(10 g) = 0.322 W/kg Maximum value of SAR (measured) = 0.786 W/kg

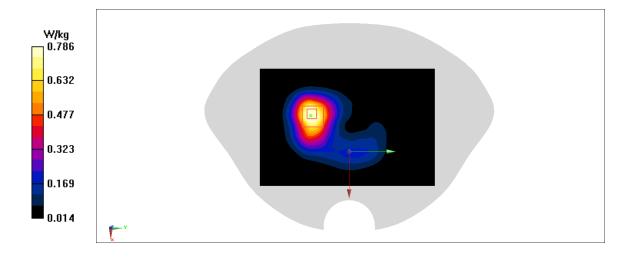


Fig J.6

WLAN2450_CH1 Top Edge 5mm 14dB 2000 Date: 2/28/2021 Electronics: DAE4 Sn536 Medium: body 2450 MHz Medium parameters used: f = 2412; σ = 1.793 mho/m; ϵ r = 39.12; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2412 Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(7.77,7.77,7.77)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.77 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.13 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.918 W/kg SAR(1 g) = 0.401 W/kg; SAR(10 g) = 0.179 W/kg Maximum value of SAR (measured) = 0.717 W/kg

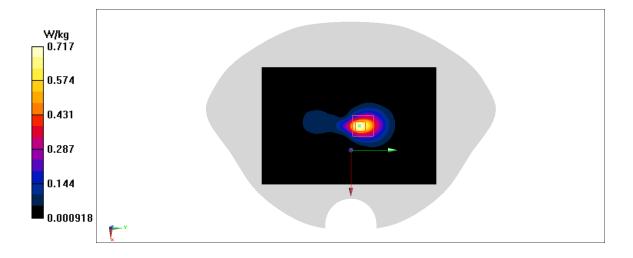


Fig J.7

WLAN_CH144 11a-6M 10.5dB 10000 Front 5mm Date: 2/28/2021 Electronics: DAE4 Sn536 Medium: body 2450 MHz Medium parameters used: f = 5720; σ =5.206 mho/m; εr = 35.873; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN 5720 Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(5.05,5.05,5.05)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.05 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.306 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.369W/kg; SAR(10 g) = 0.115W/kg Maximum value of SAR (measured) = 0.937 W/kg

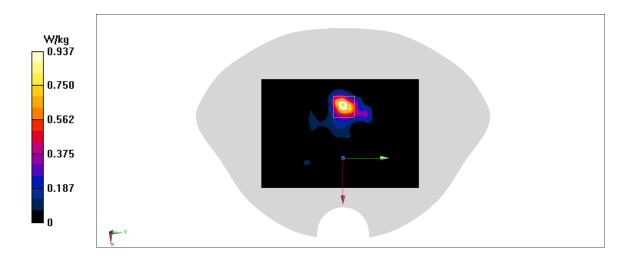


Fig J.8

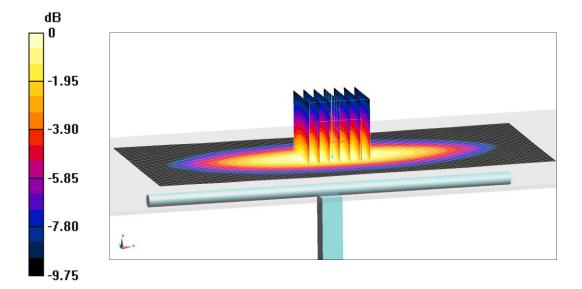
J.8 SYSTEM VALIDATION RESULTS

750 MHz

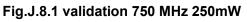
Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; σ =0.908 mho/m; ϵ_r = 41.93; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.41,10.41,10.41)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.92 V/m; Power Drift = -0.02 Fast SAR: SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (interpolated) = 2.77 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =59.92 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.3 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

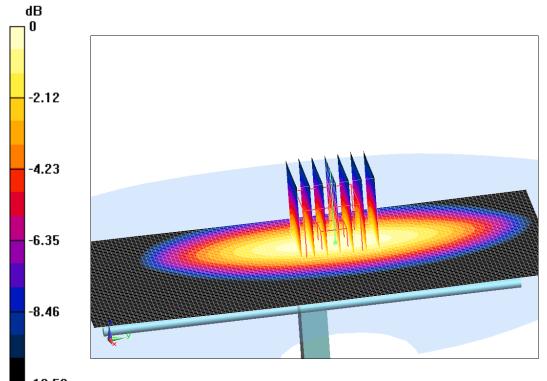

```
0 dB = 2.85 W/kg = 4.55 dB W/kg
```


835 MHz Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ =0.89 mho/m; ϵ_r = 41.27; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.2,10.2,10.2)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.08 V/m; Power Drift = 0.04

Fast SAR: SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (interpolated) = 3.13 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =63.08 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.26 W/kg

-10.58

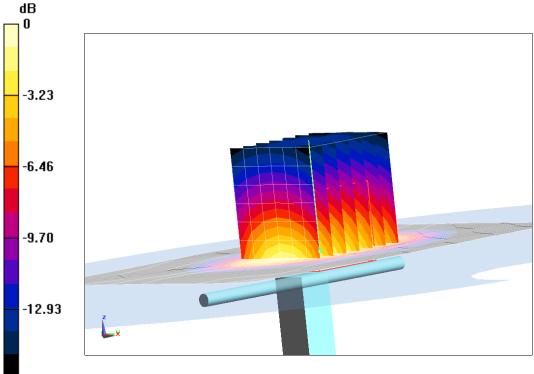
0 dB = 3.26 W/kg = 5.13 dB W/kg

1750 MHz Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: Head 1750 MHz Medium parameters used: f = 1750 MHz; σ =1.345 mho/m; ε_r = 40.13; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.64,8.64,8.64)

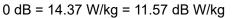
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 104.9 V/m; Power Drift = 0.05

Fast SAR: SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (interpolated) = 14.16 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =104.9 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 16.73 W/kg

SAR(1 g) = 8.95 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 14.37 W/kg

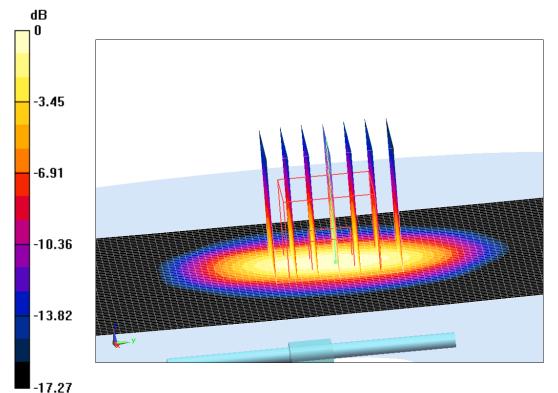
-16.16

1900 MHz Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; σ =1.413 mho/m; ε_r = 39.77; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.33,8.33,8.33)

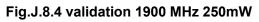
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 110.84 V/m; Power Drift = 0.03

Fast SAR: SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.24 W/kg

Maximum value of SAR (interpolated) = 15.16 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =110.84 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 17.91 W/kg

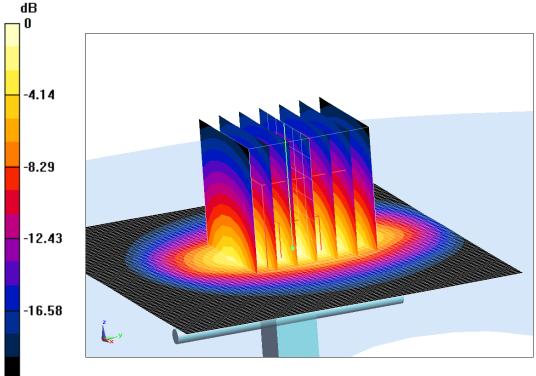
SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 15.14 W/kg

0 dB = 15.14 W/kg = 11.8 dB W/kg

2300 MHz Date: 2/27/2021 Electronics: DAE4 Sn536 Medium: Head 2300 MHz Medium parameters used: f = 2300 MHz; σ =1.671 mho/m; ϵ_r = 39.59; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2300 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.15,8.15,8.15)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 118.44 V/m; Power Drift = 0.04 Fast SAR: SAR(1 g) = 12.42 W/kg; SAR(10 g) = 5.88 W/kg


Maximum value of SAR (interpolated) = 20.39 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =118.44 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 24.04 W/kg

SAR(1 g) = 12.57 W/kg; SAR(10 g) = 5.95 W/kg

Maximum value of SAR (measured) = 20.24 W/kg

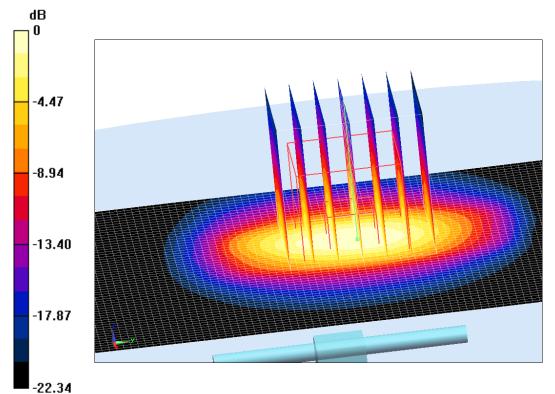
-20.72

0 dB = 20.24 W/kg = 13.06 dB W/kg

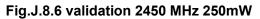
2450 MHz Date: 2/28/2021 Electronics: DAE4 Sn536 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; σ =1.813 mho/m; ϵ_r = 39.79; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(7.77,7.77,7.77)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 116.42 V/m; Power Drift = 0.06 Fast SAR: SAR(1 g) = 12.95 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (interpolated) = 22.05 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =116.42 V/m; Power Drift = 0.06 dB

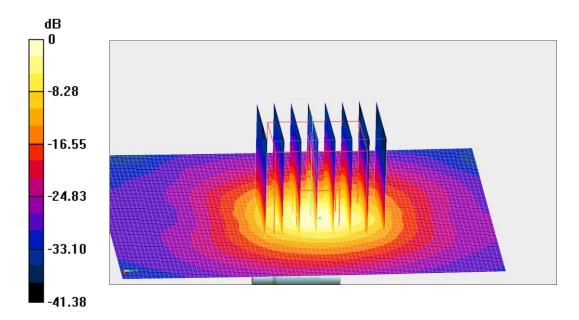

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 12.92 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dB W/kg

5750 MHz Date: 2/28/2021 Electronics: DAE4 Sn536 Medium: Head 5750 MHz Medium parameters used: f = 5750 MHz; σ =5.236 mho/m; $ε_r$ = 35.87; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(5.05,5.05,5.05)


System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 75.5 V/m; Power Drift = -0.05 Fast SAR: SAR(1 g) = 19.92 W/kg; SAR(10 g) = 5.61 W/kg Maximum value of SAR (interpolated) = 20.09 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =75.5 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.97 W/kg

SAR(1 g) = 20.42 W/kg; SAR(10 g) = 5.71 W/kg

Maximum value of SAR (measured) = 19.69 W/kg

0 dB = 19.69 W/kg = 12.94 dB W/kg

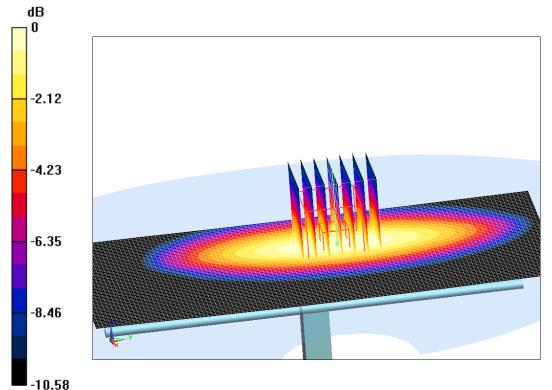
Fig.J.8.7 validation 5750 MHz 250mW

835 MHz Date: 4/14/2021 Electronics: DAE4 Sn536 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ =0.907 mho/m; ϵ_r = 41.63; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(10.2,10.2,10.2)

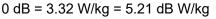
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 62.64 V/m; Power Drift = -0.1

Fast SAR: SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (interpolated) = 3.18 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =62.64 V/m; Power Drift = -0.1 dB


Peak SAR (extrapolated) = 3.7 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kg

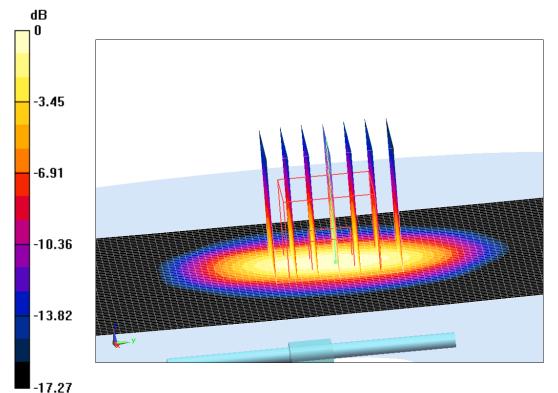
Maximum value of SAR (measured) = 3.32 W/kg

-10.58

1900 MHz Date: 4/14/2021 Electronics: DAE4 Sn536 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; σ =1.375 mho/m; ε_r = 39.95; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7307 ConvF(8.33,8.33,8.33)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 109.43 V/m; Power Drift = -0.05 Fast SAR: SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (interpolated) = 15.27 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =109.43 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.44 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (measured) = 14.96 W/kg

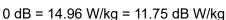


Fig.J.8.9 validation 1900 MHz 250mW

ANNEX K Accreditation Certificate

