Report No.: SEWM2308000314RG12 Rev.: 01 Page: 1 of 1 # **Appendix C** # **Calibration certificate** | 1. Dipole | | |-----------------|--| | CD835V3-SN1052 | | | CD1880V3-SN1044 | | | CD2450V3-SN1044 | | | CD3500V3-SN1010 | | | 2. DAE | | | DAE4-SN1324 | | | 3. Probe | | | EF3DV3-SN4051 | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-TW (Auden) Certificate No: CD835V3-1052_May22 ### **CALIBRATION CERTIFICATE** Object CD835V3 - SN: 1052 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: May 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Probe EF3DV3 | SN: 4013 | 28-Dec-21 (No. EF3-4013_Dec21) | Dec-22 | | DAE4 | SN: 781 | 22-Dec-21 (No. DAE4-781_Dec21) | Dec-22 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | In house check: Oct-23 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sal Jallyn | | Approved by: | Sven Kühn | Technical Manager | 24 | | | | | | Cal Date (Certificate No.) Issued: May 25, 2022 Scheduled Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|-----------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|--------------------------| | Maximum measured above high end | 100 mW input power | 113.7 V/m = 41.12 dBV/m | | Maximum measured above low end | 100 mW input power | 110.6 V/m = 40.88 dBV/m | | Averaged maximum above arm | 100 mW input power | 112.2 V/m ± 12.8 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 800 MHz | 16.2 dB | 41.0 Ω - 11.0 jΩ | | 835 MHz | 29.2 dB | $50.3 \Omega + 3.5 j\Omega$ | | 880 MHz | 17.9 dB | 59.4 Ω - 10.4 jΩ | | 900 MHz | 17.1 dB | 50.7 Ω - 14.2 jΩ | | 945 MHz | 23.9 dB | $46.8 \Omega + 5.3 j\Omega$ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ### Impedance Measurement Plot #### **DASY5 E-field Result** Date: 25.05.2022 Test Laboratory: SPEAG Lab2 ### DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1052 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2021 Sensor-Surface: (Fix Surface) • Electronics: DAE4 Sn781; Calibrated: 22.12.2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 135.2 V/m; Power Drift = -0.02 dB Applied MIF = 0.00 dB RF audio interference level = 41.12 dBV/m **Emission
category: M3** #### MIF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |------------------|------------------|------------------| | 40.76 dBV/m | 40.88 dBV/m | 40.63 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 35.86 dBV/m | 35.88 dBV/m | 35.6 dBV/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 41.06 dBV/m | 41.12 dBV/m | 40.74 dBV/m | 0 dB = 113.7 V/m = 41.12 dBV/m ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-TW (Auden) Certificate No: CD1880V3-1044_May22 ### **CALIBRATION CERTIFICATE** Object CD1880V3 - SN: 1044 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: May 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Probe EF3DV3 | SN: 4013 | 28-Dec-21 (No. EF3-4013_Dec21) | Dec-22 | | DAE4 | SN: 781 | 22-Dec-21 (No. DAE4-781_Dec21) | Dec-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | In house check: Oct-23 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sef Slan | | Approved by: | Sven Kühn | Technical Manager | 5.~ | | | | | Issued: May 25, 2022 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | | |------------------------------------|--------------------|-------------------------|--| | Maximum measured above high end | 100 mW input power | 87.6 V/m = 38.85 dBV/m | | | Maximum measured above low end | 100 mW input power | 85.7 V/m = 38.66 dBV/m | | | Averaged maximum above arm | 100 mW input power | 86.6 V/m ± 12.8 % (k=2) | | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|--------------------------------------| | 1730 MHz | 23.9 dB | $54.2 \Omega + 5.2 j\Omega$ | | 1880 MHz | 19.6 dB | 59.0 Ω + 7.1 jΩ | | 1900 MHz | 20.5 dB | 59.8 Ω + 3.3 jΩ | | 1950 MHz | 26.7 dB | 53.4 Ω - 3.4 jΩ | | 2000 MHz | 21.7 dB | $45.5~\Omega + 6.4~\mathrm{j}\Omega$ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. # **Impedance Measurement Plot** ### **DASY5 E-field Result** Date: 25.05.2022 Test Laboratory: SPEAG Lab2 ### DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1044 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 28.12.2021 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 22.12.2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference
Point: 0, 0, -6.3 mm Reference Value = 161.1 V/m; Power Drift = 0.03 dB Applied MIF = 0.00 dB RF audio interference level = 38.85 dBV/m Emission category: M2 #### MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|------------------| | 38.55 dBV/m | 38.66 dBV/m | 38.4 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 36.03 dBV/m | 36.05 dBV/m | 35.9 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.74 dBV/m | 38.85 dBV/m | 38.57 dBV/m | 0 dB = 87.62 V/m = 38.85 dBV/m ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-TW (Auden) Certificate No: CD2450V3-1044_May22 ### **CALIBRATION CERTIFICATE** Object CD2450V3 - SN: 1044 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: May 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Approved by: ID# | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Probe EF3DV3 | SN: 4013 | 28-Dec-21 (No. EF3-4013_Dec21) | Dec-22 | | DAE4 | SN: 781 | 22-Dec-21 (No. DAE4-781_Dec21) | Dec-22 | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | Secondary Standards | 1D# | Check Date (in house) | Scheduled Check | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | In house check: Oct-23 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | 801911 | | | | | our puge | Cal Date (Certificate No.) Sven Kühn Technical Manager Issued: May 25, 2022 Scheduled Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, $dy = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 2450 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 86.0 V/m = 38.69 dBV/m | | Maximum measured above low end | 100 mW input power | 85.9 V/m = 38.68 dBV/m | | Averaged maximum above arm | 100 mW input power | 86.0 V/m ± 12.8 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 2250 MHz | 16.0 dB | $68.8 \Omega + 2.1 jΩ$ | | 2350 MHz | 25.0 dB | 53.0 Ω - 5.0 jΩ | | 2450 MHz | 30.8 dB | 51.3 Ω - 2.6 jΩ | | 2550 MHz | 44.7 dB | $50.5 \Omega + 0.3 j\Omega$ | | 2650 MHz | 16.7 dB | 63.2 Ω - 10.2 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ### **Impedance Measurement Plot** ### **DASY5 E-field Result** Date: 25.05.2022 Test Laboratory: SPEAG Lab2 ### DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1044 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 28.12.2021 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 22.12.2021 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole E-Field measurement @
2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 78.93 V/m; Power Drift = -0.02 dB Applied MIF = 0.00 dB RF audio interference level = 38.69 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2
38.55 dBV/m | | |--------------------------|--| | Grid 4 M2
37.69 dBV/m | | | Grid 7 M2
38.62 dBV/m | | 0 dB = 86.04 V/m = 38.69 dBV/m ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V.ADT (Auden) Certificate No: CD3500V3-1010 Sep20 # CALIBRATION CERTIFICATE Object CD3500V3 - SN: 1010 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: September 16, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-------------------------------------|--| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Probe EF3DV3 | SN: 4013 | 31-Dec-19 (No. EF3-4013_Dec19) | Dec-20 | | Probe H3DV6 | SN: 6065 | 31-Dec-19 (No. H3-6065_Dec19) | Dec-20 | | DAE4 | SN: 781 | 27-Dec-19 (No. DAE4-781_Dec19) | Dec-20 | | | | (1012/121701_80010) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-17) | In house check: Oct-20 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-17) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Jan-19) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | Maria 1996 - 1997 - 199 | | | | o : Mai 17 (III Nodoc check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | 05:1261 | | | | | Led Illy | | | | | 0/ | | Approved by: | Katja Pokovic | Technical Manager | Mes | | | | | kells | Issued: September 18, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device
reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 3500 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values at 3500 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | | |------------------------------------|--------------------|-------------------------|--| | Maximum measured above high end | 100 mW input power | 84.6 V/m = 38.55 dBV/m | | | Maximum measured above low end | 100 mW input power | 82.8 V/m = 38.36 dBV/m | | | Averaged maximum above arm | 100 mW input power | 83.7 V/m ± 12.8 % (k=2) | | ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters** | Frequency | Return Loss | Impedance | | |-----------|-------------|-----------------|--| | 3300 MHz | 18.5 dB | 63.4 Ω - 1.8 jΩ | | | 3400 MHz | 23.7 dB | 53.1 Ω - 5.9 jΩ | | | 3500 MHz | 25.0 dB | 50.6 Ω - 5.6 jΩ | | | 3600 MHz | 22.1 dB | 44.9 Ω - 5.5 jΩ | | | 3700 MHz | 20.9 dB | 41.9 Ω + 1.4 jΩ | | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ### **Impedance Measurement Plot** ### **DASY5 E-field Result** Date: 16.09.2020 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 3500 MHz; Type: CD3500V3; Serial: CD3500V3 - SN: 1010 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 0 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 3500 MHz; Calibrated: 31.12.2019 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 27.12.2019 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole E-Field measurement @ 3500MHz/E-Scan - 3500MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 34.81 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 38.55 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |------------------|------------------|-------------| | 38.14 dBV/m | 38.36 dBV/m | 38.28 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 38.37 dBV/m | 38.55 dBV/m | 38.41 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.36 dBV/m | 38.54 dBV/m | 38.41 dBV/m | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client: Reviewed by: Certificate No: Z22-60472 SGS Certificate No: Z22-60472 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1324 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: October 17, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 14-Jun-22 (CTTL, No.J22X04180) | Jun-23 | | | | | | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 19, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60472 Page 2 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.147 ± 0.15% (k=2) | 404.421 ± 0.15% (k=2) | 403.891 ± 0.15% (k=2) | | Low Range | 3.98791 ± 0.7% (k=2) | 3.95134 ± 0.7% (k=2) | 3.96641 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 175.5° ± 1 ° | |---|--------------| |---|--------------| Certificate No: Z22-60472 Page 3 of 3 ### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client SGS Suzhou Certificate No. EF-4051_Jun23 ### **CALIBRATION CERTIFICATE** Object EF3DV3 - SN:4051 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date June 02, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|---------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 789 | 03-Jan-23 (No. DAE4-789_Jan23) | Jan-24 | | Reference Probe ER3DV6 | SN: 2328 | 06-Oct-22 (No. ER3-2328_Oct22) | Oct-23 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------
------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name **Function** Signature Calibrated by Jeton Kastrati Laboratory Technician Approved by Certificate No: EF-4051_Jun23 Sven Kühn Technical Manager Issued: June 02, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 21 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y,z sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters En incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis Polarization φ φ rotation around probe axis Certificate No: EF-4051_Jun23 Polarization ϑ or rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 - b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz in R22 waveguide). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - · Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). ### Parameters of Probe: EF3DV3 - SN:4051 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ | 0.63 | 0.49 | 1.31 | ±10.1% | | DCP (mV) B | 103.0 | 101.5 | 98.5 | ±4.7% | ### Calibration Results for Frequency Response (30 MHz – 5.8 GHz) | Frequency
MHz | Target
E-field (En)
V/m | Measured
E-field (En)
V/m | Deviation
E-field (En) | Target
E-field (Ep)
V/m | Measured
E-field (Ep)
V/m | Deviation
E-field (Ep) | Unc (k = 2) | |------------------|-------------------------------|---------------------------------|---------------------------|-------------------------------|---------------------------------|---------------------------|-------------| | 30 | 77.1 | 77.1 | -0.0% | 77.2 | 77.3 | 0.2% | ±5.1% | | 100 | 76.9 | 77.7 | 0.9% | 76.9 | 77.6 | 0.8% | ±5.1% | | 450 | 77.1 | 78.0 | 1.1% | 77.1 | 77.9 | 1.0% | ±5.1% | | 600 | 77.1 | 77.6 | 0.7% | 77.1 | 77.5 | 0.5% | ±5.1% | | 750 | 77.2 | 77.4 | 0.3% | 77.2 | 77.3 | 0.2% | ±5.1% | | 1800 | 143.0 | 140.0 | -2.1% | 143.2 | 140.1 | -2.2% | ±5.1% | | 2000 | 134.9 | 129.4 | -4.0% | 135.0 | 129.5 | -4.1% | ±5.1% | | 2200 | 127.6 | 124.7 | -2.3% | 127.5 | 125.7 | -1.5% | ±5.1% | | 2500 | 125.4 | 120.2 | -4.1% | 125.4 | 121.1 | -3.4% | ±5.1% | | 3000 | 79.3 | 76.1 | -4.0% | 79.3 | 77.2 | -2.7% | ±5.1% | | 3500 | 256.3 | 255.9 | -0.2% | 256.3 | 252.4 | -1.5% | ±5.1% | | 3700 | 250.7 | 244.8 | -2.3% | 249.7 | 241.6 | -3.3% | ±5.1% | | 5200 | 50.8 | 50.8 | 0.1% | 50.8 | 51.2 | 0.9% | ±5.1% | | 5500 | 49.7 | 48.9 | -1.5% | 49.7 | 49.3 | -0.8% | ±5.1% | | 5800 | 48.8 | 47.9 | -1.8% | 48.8 | 47.6 | -2.4% | ±5.1% | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### Parameters of Probe: EF3DV3 - SN:4051 ### **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------------|---|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | Х | 0.00 | 0.00 | 1.00 | 0.00 | 151.7 | ±2.7% | ±4.7% | | 10 | | Y | 0.00 | 0.00 | 1.00 | | 127.6 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 131.7 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 3.55 | 67.87 | 11.33 | 10.00 | 60.0 | ±2.0% | ±9.6% | | | | Y | 3.40 | 67.25 | 11.08 | | 60.0 | | | | | | Z | 6.75 | 76.37 | 16.13 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | Х | 2.20 | 65.87 | 9.39 | 6.99 | 80.0 | ±1.0% | ±9.6% | | | (====================================== | Y | 2.16 | 65.57 | 9.26 | | 80.0 | | | | | | Z | 9.71 | 81.96 | 16.80 | | 80.0 | 1 | | | 10354 | Pulse Waveform (200Hz, 40%) | Х | 1.13 | 63.92 | 7.48 | 3.98 | 95.0 | ±0.8% | ±9.6% | | | (=====, ===, | Y | 1.10 | 63.68 | 7.37 | | 95.0 | | | | | | Z | 20.00 | 89.72 | 17.51 | 1 | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | Х | 0.60 | 62.70 | 6.14 | 2.22 | 120.0 | ±0.9% | ±9.6% | | | , | Y | 0.59 | 62.51 | 6.02 | 1 | 120.0 | | | | | | Z | 20.00 | 90.25 | 16.47 | 1 | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.84 | 69.87 | 16.50 | 1.00 | 150.0 | ±2.7% | ±9.6% | | | , | Y | 2.09 | 73.86 | 17.93 | 1 | 150.0 | 1 | | | | | Z | 2.07 | 69.30 | 17.24 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.43 | 70.58 | 17.11 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | | Y | 2.37 | 71.24 | 17.57 | 1 | 150.0 | 1 | | | | | Z | 2.86 | 72.21 | 17.95 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.08 | 73.64 | 20.39 | 3.01 | 150.0 | ±0.7% | ±9.6% | | | | Y | 2.81 | 73.02 | 20.14 | 1 | 150.0 | | | | | | Z | 3.52 | 73.56 | 20.23 | 1 | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | Х | 3.52 | 67.79 | 16.23 | 0.00 | 150.0 | ±1.6% | ±9.6% | | 40000000000 | | Y | 3.45 | 67.93 | 16.38 | 1 | 150.0 | | | | | | Z | 3.72 | 68.22 | 16.58 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.79 | 66.09 | 15.86 | 0.00 | 150.0 | ±3.4% | ±9.6% | | | | Y | 4.62 | 66.17 | 15.94 | 1 | 150.0 | | | | | | Z | 5.01 | 65.88 | 15.86 | 1 | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### Parameters of Probe: EF3DV3 - SN:4051 ### **Sensor Frequency Model Parameters** | | Sensor X | Sensor Y | Sensor Z | |----------------------|----------|----------|----------| | Frequency Corr. (LF) | 0.07 | -0.02 | 5.73 | | Frequency Corr. (HF) | 2.82 | 2.82 | 2.82 | ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms V ⁻² | T2
msV ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|-------------------------|----------|-----------------------|-----------------------|------| | Х | 40.2 | 259.45 | 35.41 | 9.91 | 0.53 | 4.96 | 1.32 | 0.08 | 1.01 | | у | 31.1 | 200.04 | 35.18 | 9.82 | 0.59 | 4.95 | 1.42 | 0.00 | 1.00 | | z | 66.0 | 434.24 | 36.67 | 13.31 | 0.84 | 5.01 | 0.43 | 0.45 | 1.00 | ### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle | 130.8° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 12 mm | | Tip Length | 25 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | | Probe Tip to Sensor Z Calibration Point | 1.5 mm | # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ ### Receiving Pattern (ϕ), $\theta =
90^{\circ}$ # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) ### Receiving Pattern (ϕ), $\theta = 90^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) ### **Dynamic Range f(E-field)** (TEM cell, $f_{\text{eval}} = 900\,\text{MHz})$ Uncertainty of Linearity Assessment: ±0.6% (k=2) # **Deviation from Isotropy in Air** Error (ϕ, θ) , f = 900 MHz # **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |--------|-----|--|-----------|----------|-----------------| | 0 | | CW | CW | 0.00 | ±4.7 | | 10010 | CAB | SAR Validation (Square, 100 ms, 10 ms) | Test | 10.00 | ±9.6 | | 10011 | CAC | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ±9.6 | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ±9.6 | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ±9.6 | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ±9.6 | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ±9.6 | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ±9.6 | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ±9.6 | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ±9.6 | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ±9.6 | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ±9.6 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ±9.6 | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ±9.6 | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ±9.6 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.6 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6 | | 10035 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.6 | | 10036 | CAA | | Bluetooth | 4.77 | ±9.6 | | | | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.10 | ±9.6 | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | | 4.10 | ±9.6 | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | _ | - | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.6 | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6 | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ±9.6 | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.6 | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ±9.6 | | 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ±9.6 | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6 | | 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ±9.6 | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ±9.6 | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ±9.6 | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 | | 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ±9.6 | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6 | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 | | 10072 | | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ±9.6 | | 10073 | | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ±9.6 | | 10074 | _ | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ±9.6 | | 10076 | | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.6 | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ±9.6 | | 10077 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 | | | - | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ±9.6 | | 10082 | _ | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ±9.6 | | | | | WCDMA | 3.98 | ±9.6 | | 10097 | _ | UMTS-FDD (HSDPA) UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 | | 10098 | _ | Company of the Property of the Company Compa | GSM | 9.55 | ±9.6 | | 10099 | | EDGE-FDD (TDMA, 8PSK, TN 0-4) | LTE-FDD | 5.67 | ±9.6 | | 10100 | _ | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 6.42 | ±9.6 | | 10 101 | | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10102 | _ | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | | 9.29 | ±9.6 | | 10103 | + | | LTE-TOD | 9.29 | ±9.6 | | 10104 | _ | | LTE-TDD | | | | 10105 | - | | LTE-TDD | 10.01 | ±9.6 | | 10108 | - | | LTE-FDD | 5.80 | ±9.6 | | 10109 | | | LTE-FDD | 6.43 | ±9.6 | | 10110 | CAH | | LTE-FDD | 5.75 | ±9.6 | | 10111 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ±9.6 | June 02, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E $k=2$ | |---|---------------------------------|---|----------------------|------------------------------|------------------------| | 10112 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 | | 10113 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10114 | CAD | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 10115 | CAD | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 | | 10116 | CAD | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ±9.6 | | 10117 | CAD | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ±9.6 | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ±9.6 | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6 | | 10140 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10141 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ±9.6 | | 10142 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10143 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ±9.6 | | 10144 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.6 | | 10145 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 | | 10146 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ±9.6 | | 10147 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ±9.6 | | 10149 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 10150 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10151 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ±9.6 | | 10152 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10153 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ±9.6 | | 10154 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 10155 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10156 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 | | 10157 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10158 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 |
±9.6 | | 10159 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 | | 10160 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6 | | 10161 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10162 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ±9.6 | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ±9.6 | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ±9.6 | | 10169 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10170 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10171 | AAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10172 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10173 | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10174 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10175 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10176 | | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10177 | CAJ | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10178 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10179 | - | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10180 | _ | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10181 | _ | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10182 | _ | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10183 | | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50
5.73 | ±9.6 | | 10184 | - | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 00000000 | - | | 10185 | _ | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ±9.6 | | 10186 | | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50
5.73 | ±9.6 | | 10187 | + | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 6.52 | ±9.6 | | 10188 | - | | LTE-FDD | _ | _ | | 10189 | | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50
8.09 | ±9.6 | | 10193 | _ | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN
WLAN | 8.12 | ±9.6 | | 10194 | - | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.21 | ±9.6 | | 100000000000000000000000000000000000000 | CAD | | WLAN | 8.10 | ±9.6 | | 10195 | 615 | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.13 | ±9.6 | | 10195
10196 | - | IEEE 000 44- (IEEE 0010 | VVI AIV | 0.13 | ±3.0 | | 10195
10196
10197 | CAD | | | _ | +0.6 | | 10195
10196
10197
10198 | CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 10195
10196
10197
10198
10219 | CAD
CAD
CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN
WLAN | 8.27
8.03 | ±9.6 | | 10195
10196
10197
10198
10219
10220 | CAD
CAD
CAD
CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN
WLAN
WLAN | 8.27
8.03
8.13 | ±9.6
±9.6 | | 10195
10196
10197
10198
10219
10220
10221 | CAD
CAD
CAD
CAD
CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) JEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN
WLAN
WLAN | 8.27
8.03
8.13
8.27 | ±9.6
±9.6
±9.6 | | 10195
10196
10197
10198
10219
10220 | CAD
CAD
CAD
CAD
CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN
WLAN
WLAN | 8.27
8.03
8.13 | ±9.6
±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |----------------|-----|--|----------|----------|-----------------| | 10225 | CAC | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 | | 10226 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ±9.6 | | 10227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6 | | 10228 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 10229 | ÇAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10231 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ±9.6 | | 10232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10233 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10237 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10238 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10239 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10240 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10241 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ±9.6 | | 10242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 | | 10243 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 | | 10244 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | 10247 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ±9.6 | | 10248 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ±9.6 | | 10249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 10250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6 | | 10251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 | | 10252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 | | 10253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ±9.6 | | 10254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 | | 10255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TOD | 9.20 | ±9.6 | | 10256 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ±9.6 | | 10257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ±9.6 | | 10258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6
±9.6 | | 10259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.97 | ±9.6 | | 10260 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.24 | ±9.6 | | 10261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.83 | ±9.6 | | 10262 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ±9.6 | | 10263 | CAH | STREET CONTROL OF STREET CONTROL OF STREET CONTROL CONTROL OF STREET STRE | LTE-TDD | 9.23 | ±9.6 | | 10264 | CAH | | LTE-TDD | 9.92 | ±9.6 | | 10265 | CAH | | LTE-TDD | 10.07 | ±9.6 | | 10266
10267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | | - | | LTE-TDD | 10.06 | ±9.6 | | 10268 | CAG | | LTE-TDD | 10.13 | ±9.6 | | 10269 | CAG | | LTE-TDD | 9.58 | ±9.6 | | 10270 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 | | 10275 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ±9.6 | | 10277 | CAA | | PHS | 11.81 | ±9.6 | | 10278 | _ | PHS (QPSK,
BW 884 MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 | | 10279 | | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | PHS | 12.18 | ±9.6 | | 10290 | - | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ±9.6 | | 10291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ±9.6 | | 10292 | - | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 | | 10293 | _ | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 | | 10295 | - | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ±9.6 | | 10297 | AAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6 | | 10298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10299 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ±9.6 | | 10300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10301 | AAA | | WiMAX | 12.03 | ±9.6 | | 10302 | AAA | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols) | WiMAX | 12.57 | ±9.6 | | 10303 | AAA | | WiMAX | 12.52 | ±9.6 | | 10304 | AAA | | WiMAX | 11.86 | ±9.6 | | 10305 | AAA | | WiMAX | 15.24 | ±9.6 | | 10306 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols) | WiMAX | 14.67 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E $k=2$ | |-------|---|---|----------|----------|------------------------| | 10307 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols) | WiMAX | 14.49 | ±9.6 | | 10308 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC) | WiMAX | 14.46 | ±9.6 | | 10309 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols) | WiMAX | 14.58 | ±9.6 | | 10310 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols) | WiMAX | 14.57 | ±9.6 | | 10311 | AAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ±9.6 | | 10313 | AAA | IDEN 1:3 | iDEN | 10.51 | ±9.6 | | 10314 | AAA | IDEN 1:6 | iDEN | 13.48 | ±9.6 | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | WLAN | 1.71 | ±9.6 | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10317 | AAD | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ±9.6 | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ±9.6 | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ±9.6 | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ±9.6 | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ±9.6 | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ±9.6 | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ±9.6 | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ±9.6 | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 | | 10400 | AAE | IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10401 | AAE | IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10402 | AAE | IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6 | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ±9.6 | | 10406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 | | 10410 | AAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD | 7.82 | ±9.6 | | 10414 | AAA | WLAN CCDF, 64-QAM, 40 MHz | Generic | 8.54 | ±9.6 | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) | WLAN | 1.54 | ±9.6 | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10417 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) | WLAN | 8.14 | ±9.6 | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) | WLAN | 8.19 | ±9.6 | | 10422 | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ±9.6 | | 10423 | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 | | 10424 | AAC | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 | | 10425 | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 | | 10426 | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 | | 10427 | AAC | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ±9.6 | | 10430 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 | | 10431 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 | | 10432 | AAD | LTE-FDD (QFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 | | 10433 | AAD | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 | | 10434 | AAB | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6 | | 10435 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10447 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ±9.6 | | 10448 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6 | | 10449 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ±9.6 | | 10450 | + | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 | | 10451 | AAB | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ±9.6 | | 10453 | - | Validation (Square, 10 ms, 1 ms) | Test | 10.00 | ±9.6 | | 10456 | - | IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.63 | ±9.6 | | 10457 | | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ±9.6 | | 10458 | - | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6 | | 10459 | | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.6 | | 10460 | - | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10462 | 100000000000000000000000000000000000000 | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.30 | ±9.6 | | 10463 | - | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 10464 | _ | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10465 | _ | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10466 | - | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10467 | | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10468 | - | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 10469 | | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | | | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10470 | AAG | LIE-IDD (SC-FDMA, LRB, IUMHZ, QPSK, UL Subirame=2.3.4.7.6.9) | LIL-IDD | 7.02 | 10.0 |